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ARTICLE INFO ABSTRACT
Keywords: Control volume analysis models physics via the exchange of generalized fluxes between
Scientific machine learning subdomains. We introduce a scientific machine learning framework adopting a partition of unity
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Partition of unity

Data-driven modeling

architecture to identify physically-relevant control volumes, with generalized fluxes between
subdomains encoded via Whitney forms. The approach provides a differentiable parameterization
of geometry which may be trained in an end-to-end fashion to extract reduced models from
full field data while exactly preserving physics. The architecture admits a data-driven finite
element exterior calculus allowing discovery of mixed finite element spaces with closed form
quadrature rules. An equivalence between Whitney forms and graph networks reveals that
the geometric problem of control volume learning is equivalent to an unsupervised graph
discovery problem. The framework is developed for manifolds in arbitrary dimension, with
examples provided for H (div) problems in R? establishing convergence and structure preservation
properties. Finally, we consider a lithium-ion battery problem where we discover a reduced
finite element space encoding transport pathways from high-fidelity microstructure resolved
simulations. The approach reduces the 5.89M finite element simulation to 136 elements while
reproducing pressure to under 0.1% error and preserving conservation.

1. Overview and background

In recent years a number of works aim to use machine learning (ML) to develop data-driven models and surrogates for physical
systems. Broadly, these use data either: to develop predictive models where first-principles derivation is prohibitively expensive
or complex; or to learn a surrogate model for expensive/complex simulations to facilitate tasks requiring repeated evaluation of
a forward model (e.g., uncertainty quantification, optimization, inverse modeling). In multiscale modeling, many seek data-driven
homogenization techniques to represent mesoscale geometry at continuum scales while avoiding oversimplifications of geometry
[49,54,80,59,14,37,24,27]. While ML has provided a number of remarkable new capabilities in these fields, the rigorous numeri-
cal analysis typical of traditional finite element (FEM) simulation is generally lacking. ML-based data-driven models are typically
unable to provide the guaranteed convergence, stability, and preservation of mathematical/physical structure that form the cor-
nerstone of verification and validation. In more classical contexts, even traditional reduced order models (ROMs) struggle with
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structure-preservation [62], requiring problem specific remedies to treat conservation, geometric structure, inf-sup conditions,
bounds preservation, and other mathematical/physical structure [43,22,3,56,34,45]. A further challenge is how to maintain per-
formance for nonlinear problems; using projection as a basis of model reduction requires incorporation of techniques such as
hyper-reduction [17] to mitigate computational scaling with respect to full-order problem.

The work presented here employs concepts from structure-preserving finite element discretization and discrete exterior calculus
[7,15] to obtain data-driven models and surrogates providing such guarantees by construction. Physics-informed ML and related tech-
niques [42,58,38] incorporate domain knowledge by augmenting loss functions with physics-based regularizers. While successful
for many problems, these techniques generally enforce physics by penalty so that properties are achieved only within optimization
error. As a result, mathematical analysis and physical requirements often require complex training strategies with ad hoc hyperpa-
rameter calibration to achieve predictive results [77]. In contrast, we propose a structure-preserving ML approach in which the neural
architecture itself is engineered to preserve properties by construction, allowing rigorous analysis.

Classically, mimetic or structure-preserving discretizations of partial differential equations (PDEs) are broadly characterized via
strong form or variational frameworks. The discrete exterior calculus (DEC) forms the basis for the former, allowing analysis of finite
volume methods ubiquitous in continuum mechanics and transport problems [20,52,53]. Finite element exterior calculus (FEEC)
forms the basis for the latter [8,6], providing variational generalizations. Both frameworks admit a unified analysis due to their
shared algebraic/topological structure [15]: while DEC defines discrete operators acting directly on differential forms associated with
a mesh, FEEC defines finite element spaces which interpolate differential forms. Both achieve structure preservation by preserving
discrete analogs of the generalized Stokes theorem to construct a de Rham complex - a commuting diagram encoding preservation
of topological structure related to vector div/grad/curl, providing an abstract framework for analyzing: stability; conservation; and
non-trivial null-spaces related to e.g., involution in electromagnetism or incompressibility in mechanics. Through mass lumping one
may recover DEC schemes from FEEC [61]; we will exploit this connection in the data-driven setting.

In our recent work [71], we developed a data-driven discrete exterior calculus (DDEC) which allows training of a parameterized
de Rham complex associated with machine learnable div/graph/curl defined on graph data. This recasts message-passing graph neu-
ral networks (GNNs) in the language of numerical analysis: the usual message passing and aggregation steps [74] may be interpreted
as learning generalized fluxes associated with conservation balances. This alternative perspective provides Hodge decompositions,
Poincare inequalities, and other tools supporting numerical analysis, and learns nonlinearities directly on the reduced model cir-
cumventing the need for hyper-reduction. This framework has a drawback however, in that one must define a priori a graph which
represents well the underlying domain. For engineering of network systems (e.g., electrical circuits, hydraulic networks, discrete
fracture networks, thermal circuits, mechanical spring/damper models) this is natural, but for general full field data associated with
continuum mechanics and transport this is restrictive. This drawback is shared by other recent works pursuing GNNs as a means of
learning physics [65,30,55]. The current work instead performs graph discovery in an unsupervised manner by identifying physically
relevant control volumes which support a traditional integral control volume analysis, without reference to a traditional mesh.

In traditional FEEC, the low-order Whitney forms are constructed from the barycentric interpolant of differential forms associated
with nodes, edges, faces and cells of a mesh. Barycentric interpolants form a partition of unity (POU) - namely, they form a set of
positive functions which sum to unity, partitioning space into non-disjoint subdomains. Broadly, POUs are a tool to localize analysis
and approximation: in differential geometry they are the fundamental tool for constructing an atlas of charts [67,32], while in
numerical analysis they have been used to perform refinements and construct localized approximation spaces [10,21,78,25,44,51].
In previous work we have developed deep learning architectures to discover POUs which admit optimal piecewise polynomial
approximation of data, providing a meshfree ML approximation which exhibits hp-convergence for regression tasks [46,70]. Here,
we show that by replacing barycentric coordinates with a machine learnable partition of unity in the traditional Whitney form
construction, we may construct discrete coboundary operators associated with these partitions. This allows an unsupervised discovery
of control volumes encoding conservation balances. The resulting FEM space may then be used in concert with an equality constrained
optimization procedure to discover structure-preserving reduced-order models (ROMs) from data.

These ROMs are particularly attractive in their natural treatment of nonlinearities. In traditional projection-based ROMs, one
obtains terms which depend upon a known full-order model when testing against nonlinearities, mandating techniques such as hy-
perreduction to maintain computational tractability. In contrast, in DDEC we postulate a parameterized (potentially nonlinear) ROM
without knowledge of a full-order model, instead using data to select parameters. In [71] we provide a complete theory and compu-
tational examples for the general nonlinear case. While structure-preservation may still be obtained while applying hyperreduction
to projection-based ROMs [22,33,47], the current approach may offer attractive alternatives, particularly for applications with “hid-
den physics” (e.g., closures, homogenization, and aleatoric uncertainty) where the governing equations are unknown. For ease of
exposition when introducing the Whitney form theory, we restrict focus to linear problems and postpone consideration of nonlinear
multiphysics problems to a future work.

The paper is organized as follows. We first gather mathematical preliminaries and definitions in Section 2. For brevity, we defer
to our previous work for a comprehensive introduction to the exterior calculus [71]. We review barycentric coordinates, partitions
of unity, and the construction of Whitney forms. In Section 3 we present a construction of data-driven Whitney forms in the case of
Euclidean geometry, before generalizing to an arbitrary manifold in Section 4. The former requires knowledge only of basic vector
calculus and linear algebra. In the latter, repeating the derivation with discrete exterior calculus highlights the intimate connections
between the graph, discrete, and finite element exterior calculus. In Section 5 we demonstrate how this may be used as a framework
for learning physics, developing a novel architecture for parameterizing the POU. While several aspects of the construction are
necessary to guarantee well-posedness of the resulting model, most notable is the fact that the finite element space admits closed form
expressions for quadrature, allowing backpropagation through the physics model to the partitions without introducing a variational
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crime. We then consider the application of the framework to div — grad problems, demonstrating convergence for smooth problems
and compatible treatment of problems with discontinuous coefficients. Finally we consider an application building a surrogate for
electrostatics in a Lithium-ion battery. A high-fidelity microstructure conforming FEM simulation consisting of 5.89 million elements
is used as training data, which we reproduce to under 1% error using 8 data-driven Whitney forms. This provides a structure-
preserving reduced-order model with learnt Whitney forms identifying transport pathways through microstructure. In contrast to
traditional multiscale methods working with representative volume elements or other simplifications of microstructure geometry,
the benchmark provides a flux-conservative characterization of as-built microstructure which may be obtained from computed
tomography scans.

2. Mathematical background
2.1. Exterior algebra and differential forms

We first briefly recall some definitions and basic results from exterior algebra and differential forms, introducing the abstract
framework before specializing to the finite element exterior calculus (FEEC) setting. A graded vector space is a vector space V that
can be expressed as V =@, ___ V;, where V} are subspaces. Introducing the linear map 9, : ¥, — V,_; called the boundary operator,
with the property 9,00, , =0, we define a chain complex as follows

Ok41 [
> Vierl > Vi > Vici >

where we refer to elements Q € ¥V, as chains and associate with each a real-valued cochain » € V*. We adopt the convention of using
subscripts to denote chains (V) and superscripts for cochains (V*). Given coboundary maps d* : V¥ — Vk+! satisfying d*od*~! =0,

and codifferential maps d* : V*+! - V¥ satisfying d*~!od* =0, we finally arrive at the following primal and dual cochain complexes.
dk71

k-1
>V

e VT e VR v @
[ d

k
e e ¥

In the specializations of the abstract theory, the coboundary/codifferential operators will define discrete derivatives between
mesh/graph entities. This abstract perspective will allow us to derive a formula relating the graph exterior calculus, discrete ex-
terior calculus and finite element exterior calculus at the end of Section 4; we exploit this connection to set up a learning problem on
physics data. For a complete introduction we refer readers to [71] for an overview of DEC, to [8] for FEEC, to [15] for a unification
of DEC/FEEC, and to [9,1] for an overview of mathematical background.

Let Q ¢ RY be a domain and A(Q) be the exterior algebra with exterior product A. We specifically consider the exterior algebra
of differential forms and use A¥(Q) to denote the space of smooth differential k-forms on Q. Introducing the exterior derivative
dk 1 AK(Q) - AF+1(Q) satisfying d¥od*~! = 0, we have the well-known de Rham complex

0 — A% —3 Al@) — - 2 Ad@) — 0

One important property of the exterior derivative is the so-called Leibniz rule

dwAv)=@dw)Av+(=Drway), YweA Q), ve N Q) 3)

For the special case of Q ¢ R? with Lipschitz boundary dQ, the de Rham complex may be expressed in standard vector calculus
terminology

grad div

0 — C®©Q =5 [C@P 25 [Cx@F —3 C(Q) — 0.

It is a complex due to the exact sequence property that curl o grad = div o curl = 0. In the finite-element exterior calculus we introduce
Sobolev spaces H(D,Q) := {v € L*(Q), Dv € L*(Q)}, D = grad, curl, and div. To treat boundary conditions we consider Sobolev
spaces with homogeneous Dirichlet boundary conditions, i.e., Hy(D,Q) :={v € H(D,Q), trv=0 on 0Q}, D = grad, curl, and div, with
corresponding de Rham complex

0 — Hy(grad, @) =% Hy(curl, @) 0% Hy(div, Q) —53 12Q) — 0. 4)

This provides the FEEC specialization of the primal cochain complex in Equation (1). A fundamental theorem of exterior calculus is
the generalized Stokes theorem,

/dw = /tr w, we AIQ). 5)

Q 0Q

Replacing w with u A v in (5) and applying the Leibniz rule (3), we obtain the integration-by-parts formula

/(du) Av=(=1)k! /u A (dv) + / trwAv), veANQ), ueAFI(Q). 6)
Q

Q 0Q
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By combining the primal cochain complex (Equation (4)) with the integration-by-parts formula, we arrive at the following dual de
Rham complex

0 ¢— L2Q) 4—— H(div,Q) ¢— H(cur,Q) 4o Herad ) <— 0. %)

Note that the dual de Rham complex has no boundary conditions.
2.2. Partition of unity and barycentric coordinates

Consider a domain Q c R¢ with an open cover U;. A partition of unity (POU) ® = {¢;(x)} is a collection of finitely many smooth
functions ¢, : Q@ — [0, 1] such that ¢;(x) >0, supp(¢;) C U;, and

Y ¢i0=1, VxeQ. 8)

For the purposes of this work, we assume Q to be compact and, for computational tractability, that the cardinality of @ is finite.
Applying the exterior derivative d to this expression, we have

Y dd(x)=0, VxeQ 9

When Q = K is a simplex whose vertices are vy, v,,--,v,, a particular example of a partition of unity is the set of barycentric
coordinates { ; }fzo, which are the unique linear polynomials satisfying (8) and (9) as well as the Kronecker delta property 4,(v;) = §;;.
In addition, barycentric coordinates reproduce linear polynomial spaces, i.e., for any linear polynomial f : K — R, we have

F@)= Y f @A), (10)
Consequentially, we also have

Y vd(x)=x an

Y v, ®@di(x)=1. (12)

When Q is a convex d-dimensional polytope with vertex set v;, one can define generalized barycentric coordinates A; as a set of
non-negative functions satisfying (10) for any linear polynomial data. In this case, 4; still form a partition of unity and the properties
(9), (11), and (12) still hold. In this case however, the choice of 4; is not unique and they may no longer consist of linear polynomials.
There are many approaches to define them, e.g., Wachspress coordinates [75], mean value coordinates [26], and moving least squares
coordinates [50].

In this paper, we will consider a class of parameterized POUs which may be learned from data. In our recent work [70] we
have shown that data-driven POUs may be used to localize polynomial approximation and achieve high-order hp-convergence for
regression problems. Section 5.1 poses a new architecture designed to admit closed form expressions for quadrature when discretizing
variational PDEs. The presentation that follows however holds for an arbitrary POU architecture.

2.3. Whitney forms

Whitney k-forms are finite-dimensional differential k-forms on a simplicial complex K [48]. More precisely, the Whitney 0-form
associated with the 0-simplex (vertex) v; is the barycentric function 4;. For k > 0, the Whitney k-form corresponding to the k-simplex
with vertices VsV U, is given by

k
Wipoje =k D=1 4, dAj A ddy A AdA (13)
i=0
— NO
where d/; means that the term is omitted. In total, there are < k41 ) Whitney k-forms.

In 3D, the exterior derivative acting on 0-forms is d = V. The Whitney 1-form, for an edge between vertices v; and v; therefore

reduces to
W, =4V, — 4V, a4

Moreover, for a face with vertices v;, v;, and v, the Whitney 2-form is

Wi = AV A X VA) = (A,V 4, X VA) + (4 VA, X V4)). (15)

Note that W;; =0 if i = j and W,;, = 0 if i, j, and k are not distinct.

4
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Since Whitney forms are constructed from barycentric coordinates, which form a POU, we have the following property of the
Whitney forms.

Property 2.1. Whitney forms form a partition of unity. In particular, the span of Whitney k-forms, denoted by W*, contains all constant
k-forms.

Finally, the Whitney forms also have the following exactness property with respect to the exterior derivative.

Property 2.2. Consider the sequence

d

d dg_
wo 25 w! s I (16)

If Q has trivial homology, then (16) is an exact sequence, i.e., Null(d,) = Range(d,_,) for k> 1.

Many generalizations of Whitney forms have been developed in the literature. For example, when Q is a polytope, generalized
Whitney forms constructed from generalized barycentric coordinates have been studied, see [28]. In this case, since the generalized
barycentric coordinates might not be linear polynomials, we lose certain properties of the Whitney forms. However, Property 2.1
and 2.2 still hold in general. We refer readers to [28] for more discussions.

3. Whitney forms from POUs

We will now construct Whitney forms from POUs rather than barycentric coordinates, obtaining a generalization which admits
interpretation as a control volume analysis and preserves conservation and exact sequence structure. For exposition, we restrict our
presentation to Q C R3.

0
We start from a parameterized POU {qﬁi(x;f)}i[ll where & denotes trainable parameters in the POU architecture. Without con-
fusion, we will drop the dependence on &, but it is understood that £ will be calibrated to adapt partitions to data. Mimicking the
standard Whitney form construction, we adopt these POUs as Whitney 0-forms. Namely, we define POU Whitney 0-forms as

wi=¢;, i=1- N° 17)

and introduce the corresponding finite-dimensional function space

Vo= {Zciu/i(xﬂcie[R} (18)

of dimension N°.
By application of Stokes’s Theorem (5), for u € H,(div,Q), we derive

/in-u=—/V¢,~-u,

Q Q

and note that

grady; = Vb,
Ql¢=1 = <2 ¢,) Ve,
J J
=¢; Vo + Z ¢jv¢i
J#i
Qve =0 =¢ (— > V¢,> + 2 6,V
J J#i J#i
=(=1) Y. ($;V; - b;Ve)
J#i
We obtain the definition of y;;
/w,-V-u=2 @V, -,V u=: Y [ w; u 19)
5 Py J#
where
Wij:¢iv¢j_¢jv¢[' (20)
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The definition of y; ; resembles the classical Whitney 1-form (14), and we therefore refer to y; 7 (20) as the POU Whitney 1-form
between a pair of index i and j.

We note the correspondence between (19) and a traditional discrete divergence operator. Taking y; as an indicator function over
a compact domain Q, and taking u € H,(div, Q), due to the antisymmetry properties of (20), we obtain the Gauss divergence theorem

[vu=3 fuvu=3 [uu=3|3 [v,u-T [uu]0
iQ ijQ ijQ in

Q

v; and y;; thus correspond to volume and area densities, with y;; defining the boundary shared by w; and y;. These admit
interpretation as diffuse representations of traditional mesh entities (cells/faces) in which indicator functions defined on cells have
been mollified, with corresponding oriented areas defined consistently with the Leibniz rule.

We again define the corresponding finite-dimensional function space as

vi= {Zcijll’ij(x) lc;; € R} s
ij
NO
where dimV'! = N! = ( 5 > and, naturally, our derivation above shows that grad V° C V! by design.

Proceeding along the de Rham complex, we similarly apply the Kelvin-Stokes theorem for u € H(curl, ©) to obtain

/u/ijVXu=/V><u/ij~u.

Q Q

In a similar derivation, we obtain for i # j,

curly; = Vxy,; = VX (§;V; — d;Veb) = 2(Veh; X Vb))

Q=1 =2<Z¢k>(V¢ixV¢,)
k k

2 {¢,-(V¢,- X V) +¢, (Ve x V) + Y b (Ve x V¢,)}

k#i,j

(D Ve =0) =2{¢i<—ZV¢kXV¢j)+¢,<v¢ix—ZV¢k>+ > ¢k<v¢,-XV¢,->}
k

k#i k#j k#i.j
=2 ) ($,Vh; X Vb — Vb, X Vb + B Ve X Vb ).
kei,j
We obtain
/WijVXMZZZ/Wijk'u’ (21
Q kg

where, following (15), the POU Whitney 2-form y; Jk is defined as

Wik 1= @V, X Vi) = (@,V X Voby) + (Vb X Vb, ). (22)

Note that v, =~k Where o(ijk) is an odd permutation of (i, j, k) and w;;, =0 if i, j, k are not distinct. Therefore, y;;, correspond
to diffuse generalizations of the circulations [ u - dI along an edge, providing the same conservation of circulation principle as the
classical Kelvin-Stokes theorem. We introduce the corresponding finite-dimensional function space as follows,

V= {Z Wik () | ¢iji € R} s
ijk

0
where dimV?2 = N?2= J\g > Similarly, our derivation implies that curl V! C V2.

Finally, the POU Whitney 3-form can be derived in the same way. Starting from the Stokes’ Theorem (5) for div, i.e., for u €
H(grad,Q),

/Wijk'vu=_/v'wijku’

Q Q
and the fact that, for i #j #k

divy,, =V -, =6(Vd; x Vo, - Vg, )
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Qd=1 =6<Z¢,>(V¢,~XV¢,-V¢k)
1

i

=6{[ R (V¢,~><V¢,--V¢k)] +; (Vo x Vo, - Vo)

I#i).k

+¢; (Vo XV, - Vb ) + by (Vo X Vb, - Ve )}

Q vy =0) =6 [ > b (Vo x Ve, ~V¢>k)] +¢; <— DV XV, vm)
1

I1#i,j,k 1#i
+; <v¢,. X=Y V- quk) + i <V¢,- x Ve, - —Zwl)}
I#] I#k
=-6 Z (@ VP XV -V —d;V; x Ve - V¢
1#i,j,k

+ & VP XV -V —d )V XV - V),

we have
/w,-,-k-V“=6 Y /y/,.jk,u, (23)
5 I#ijk &

where we define the POU Whitney 3-form

Wik =GV, XV -V =,V XV -V + 9V XV, - Vb — ) Vp; X Vp; - Vipy..

Again, we have y,;; = =,k Where o(ijkl) is an odd permutation of (i, j, k,/) and y;;, =0 if i, j, k,I are not distinct. The corre-
sponding finite-dimensional function space is

3
V= { z CijaWijii(X) | ¢ € R} >
ikl

0
where dim V3 = N3 = (JZ ) Finally, it is clear that divV2 C V3.

We may use the POU Whitney forms to define the following set of discrete exterior derivatives generalizing the familiar vector
calculus div/grad/curl, which may be used to discretize PDEs.

DIV(U), := Y U, U, =/‘I'u -u, Yu € Hy(div, Q) (24)
J#i Q
CURLW),; := Y Uy Uy =2/Wijk -u, Yu € Hy(curl, Q) (25)
k#i.j
Q
GRADW) ;. i= Y, Uyn Uy =6/q,,.jk, u, Yu € Hy(grad, Q). (26)
I#i,j.k o

As discussed previously, local conservation principles follow from the anti-symmetry in the summands of (24), (25), and (26). We
next demonstrate that the exact sequence property holds at a discrete level as well:

DIV(CURL(U)), = ) CURL(U);, (definition of DIV')

J#i

= Z Z Uik definition of CURL
JF#L k#L]

= Z Z Z/V/ijk ‘u definition of U
JFE kL] o

= Z / v VXu Leibniz rule
JF G

= / v;V-Vxu Leibniz rule
Q

=0

>

and similarly we obtain
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CURL(GRAD(U)); = ¥, GRADW) ;= Y Y Uyy

k#i,j Kt 1,k
=z 26/Wijk1“=2/ll’ijk‘v”
kitinj I#ijk & ki
=1 VXxVu=0
=3 v;; VX Vu=0.
Q

In fact, the above properties follow directly if we notice that the discrete differential operators (24)-(26) are closely related to the
coboundary operators used widely in the combinatorial graph exterior calculus; which we briefly recall here. Consider a complete graph
G =(V,&) with the vertex set V = {1,2,---, N°} and edge set £, embedded in R>. Let C, be the set of k-chains (a linear combination
of (k + 1)-cliques on the graph) and C* be the set of cochains. Note that C* consists of linear functionals acting on C,. In the graph
setting, we define the coboundary operator §, : C¥ — C¥*! as the signed incidence matrix between the k-cliques and (k + 1)-cliques
(see e.g., [29]). In 3D, §, is the edge-vertex signed incidence matrix, &, is the triangle-edge signed incidence matrix, and 6, is the
tetrahedron-triangle signed incidence matrix. We should understand triangles and tetrahedrons as the 3-cliques and 4-cliques on
the complete graph G, respectively. Thus, from the definitions of the coboundary operators [29] and the definitions (24)-(26), and
aligning the orientations of cliques and ordering of the indices in the summations (24)—(26), we may identify the discrete exterior
derivatives with the adjoints of the graph operators.

DIV =87, CURL=26, GRAD=65]. (27)
Moreover,
_sThsT _ T_
DIV CURL=6;268 =2(5;8,)" =0
_osTesT — T_
CURLGRAD=26] 65, =12 (5,6,) =0

In the remainder of this paper, we employ the FEEC framework to develop Whitney forms as a finite-element basis. Note that the
finite dimensional function spaces V0, V!, V2, and V3 were constructed to satisfy the complex

V3 ¢ V2 ¢ Vvl ¢ VO, (28)

Y_div Neurl \—grad

which is a subcomplex of the dual de Rham complex (7). This suggests that, as in the FEEC setting, we should use the POU Whitney
forms to approximate the functions from the dual point of view and consider the following POU complex

grad

V3 ) V2 curl> Vl div> VO, (29)

which is a subcomplex of the primal de Rham complex (4). Therefore, to discretize the divergence operator, we consider u € ! and
geV9and

(V-u,q)=w,-Vq)= <Z UapWap» Z q,-(—V)u/,-) =:q¢' DIVy,

ab

where u and q are vectors expansions of u and ¢ in a basis for V! and V?, respectively, and the matrix DIV is defined as

(DIV),’,(ab) = Wap — V). (30)
Similarly, to discretize the curl operator we consider u € V2 and v € V!, and then
(Vxu,v)=u,Vxv)=: v CURLU,

where u and v are vector representations of u and v, respectively, and the matrix CURL is defined as

(CURL)(;j) (abe) = Wape> V X W) (31)

Finally, for the gradient operator, we use u € V3 and v € V2, and

(Vu,v) =, -V -v)=: v GRADu,

where u and v are vector representation of u and v, respectively, and the matrix GRAD is defined as

(GRAD)(ijk),(abcd) = Wabea>—V - Wijk)- (32)

Similar to the traditional low-order FEEC/DEC setting [61], the FEEC differential operators (30)—(32) are closely related to the
DEC differential operators (24)-(26). Based on the properties =Vy; =3, w;;, VX =23 Wi, and =V -y, = (=6) Xy 1 Wik
we have
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(DIV); (aby = Waps — V) = Z(Waha Vi),

J#i
(CURL) ) (abe) = Waber VX Wi)) =2 ) Waper Wija)-
ki j
(GRAD) k) (abed) = Wabea» =V - Wiji) =6 Z Wabed: Wijki)
1),k

which provides the identities

DIV=DIVM,, CURL=CURLM,, GRAD=GRADM,,
where (M) by = Waps ¥ij)s M2 ijn(abe) = Waes Wijr)s and (M) ik abeay = Wanea» Wijki) @€ mass matrices associated with the finite
element spaces V!, V2, and V3, respectively. Furthermore, using (27), we have

DIV=46;M;, CURL=25/M,, GRAD=65]Ms;. (33)

We remark that the scalings 2 and 6 above do not effect the finite dimensional spaces spanned by the POU Whitney forms, and we
therefore may drop them without loss of generality in the variational setting.

Equation (33) is the cornerstone of this work; it reveals an intimate connection between the graph exterior calculus we have used
as a basis for learning physics in [71] and the finite element exterior calculus. Whereas in [72] data was used to associate a metric
with a given graph, (33) shows that the graph itself and the associated metric information may be inferred directly from the Whitney
forms. The entries of the matrices M, encode graph sparsity by weighting boundary interactions between partitions, and therefore
the geometric problem of identifying control volumes is equivalent to a graph discovery problem.

4. Generalizations to high-dimensional manifolds

In this section, we generalize the construction of POU Whitney forms to high-dimensional manifolds. Similar to the prior case, we
define the 0-th order Whitney forms as a given POU on the manifold, and then define higher-order Whitney forms by induction using
the Leibniz rule and properties of POUs to finally arrive at an equivalence between graph coboundary operators, discrete exterior
derivatives, and FEEC derivatives. The results of this section directly parallel those of Section 3. Again, let

v = i=1""sN0 (34)

the same as in (17), but now y; : M — [0, 1] for a smooth manifold M C R¢. Paralleling (13), we define higher-order POU Whitney
k-forms as follows,

k
k _ . —
Yiowix = %(—1)’(]51-[ d¢10 A A d¢ji A A d¢jk' (35)
i=

The exterior derivative of the k-th order Whitney form is given by

0k

k
dy/j’.‘ =d (k! Z(—l)i¢jld¢j0 A Adgy A Adq.')jk)
i=0

i=l

k
:k!< (~1)'d; Adpj A AdD) A Ad¢jk>
i=0

k
— K <z(_1)i(_1)id¢j0 A Ad; A /\dqﬁjk)

i=0
= (k+ D! (deby, A Aty ).
Applying the POU properties from (8) and (9), we obtain

Ay, A A

(Z ¢jk+l> <d¢jo Ao A d¢jk)

(Z ¢jk+l =D

Jk+1 Jk+1
k
= Y by (Al nndey, )+ D, (dby A A ddy A nddy, )
Jks1#JoJk i=0
(2 do;,,, =0) = Z By (d¢fo At A d¢jk>
k1 Jks1FJoJk
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k
+§¢ji <d¢j0A'-'A |:_ Z d¢jk+1:| Am/\d(ﬁjk)

Ji+1#ii

= Z ) B (d¢jo A A d¢jk)

Jk+17J05 " 5Jk

k
_Z Z ®;, (d¢jn A ndy A"'Adq"’jk)

i=0 g 1#J0>Jk

= Z ) ¢fk+l (d¢jo A /\d(‘bjk)

Jk+17J0s " 5Jk

k
-2 X U, (d% A Ay A Ay, /\d¢jk+1)

i=0 jrp1#jo-5Jk

k+l
= (=1)kH Z (Z(_l)i¢j;d¢jo /\~~-A(@ A"'Ad¢/k+1>'

Jk+1#Josdk \i=0

Here ear#ior-ji Py, iMplies a summation over indices jy; € {1,.... N 0} which do not take the same value as any of the indices
Jos+++»Jk € {1,...,N°}. Finally, we arrive at the following expression allowing construction of the POU Whitney (k + 1)-forms from

k-forms.

Property 4.1.

dw/o “Jk

_ k+1 | k+1
=D k+ D! Z ) Yo ks
Jr+1Fd0s 5k

Proof. The result follows from the previous two equalities and the definition of the POU Whitney k-form (35)

dw/o “Jk

k+1
SOV M O XE TSI RN e

Jk+1#dos 5k \i=0

One consequence of Property 4.1 is that, for any u € AY~*~! satisfying tru =0, based on (6), we have

k ok
/Wj()“'jk/\du_( D / WJO AL

Q Q
— (k] 1kl | k+1
=(-1) /[( D R+ Y "’jo---fk+,]A"
Jke1FJ0sJk
- ] k+1
(k+1) / J() Jk+l
1k+1#Jo kg

The above formula naturally suggests the DEC discretization of differential operators

— +1 d—k—1
Dd’k’l(U)jO“'jk - Z Uj(]'"jk+l ’ Ujo'“/k+1 =+ 1)'/ Wigwierr N Vuen : (36)
Jier1 7005 Jk Q

This operator is locally conservative via the permutation property of y/ e and maintains the discrete exact sequence property

Dyt (Dyjs UV = Y, DW= D, Z Uy

Jrt17405 5 Jk Tk 170055 Jk Jk42FJo> d k1
D D R I R Y

Tkt 17005k Tk FdosJk 1 Q
_ k+1
s 2 _/Wjo"'jk+lAdu

Jier1#Jos sk g
-1 w* . Ad(du)=0.

G+ ) Viewie

Q

Similar to the 3D case, by introducing a complete graph G = (V,£) with the vertex set ¥ = {1,2,---, N°} and the edge set &, which
consists all possible edges between any two vertices, and, again, aligning the orientation of the cliques and the ordering used in the
summation definition (36), the DEC differential operators D are closely related to the coboundary operators §;, i.e.,

10
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Dy =k+1)67, 37)

where §, are the signed incidence matrices between k-cliques and (k + 1)-cliques.
This reinterpretation provides the simpler alternative proof of the exact sequence property.

T
Dyjoy Dygoa =k +1D16] (k+2)16], | = (k+ DIk +2)! (8441 6;) =0.

Following the 3D case, we can define corresponding finite-dimensional function spaces of k-forms as

k_ k
[ { . Z o Yoo |- € R}
Joo ok
NO
k+
functions from the dual point of view and obtain the dual de Rham complex

where dimV* = < 1), allowing recasting of the discrete differential operators into the FEEC setting. Again, we approximate

0 d—1 d
VO 4 e e VAT vl

For u € V¥ and v € V¥, let u and v be vector representations corresponding to basis expansions in V¥*! and V¥, and we obtain

(du,v) = (=D (u,dv) =: v Dy_;_ju

where D,;_,_, is the FEEC discretization of the differential operator d defined as follows,
— (k! k+1 4, k
(Dy—g-1 )(i0~~~[k),(j0»~~jk+l) = (Wjomij ,(=1) dllfio...ik)-
By Property 4.1, the FEEC differential operator D,;_,_,, the DEC differential operator D,_,_,, and the coboundary operator §, (i.e.,
the signed incidence matrix on the complete graph ¢), are equivalent in the following sense

Dyoiot = Dy_giMyypy = (k+ DISTM,

where M, is the mass matrix of the finite element space V**1.
5. Data-driven Whitney forms for learning physics
To infer Whitney forms and physics from data, we will solve the following equality constrained quadratic program

min || =t (38)
such that Ly[u] = f, (39

where 6 denotes parameters associated with learning both Whitney forms as well as the underlying physics. In [71], we introduced
a complete stability theory for models of the form

Lolu]Apu+ N'[du], (40)

i.e., nonlinear perturbations of the k' order Hodge Laplacian A, by a nonlinear perturbation AN'[du] in conservation form and
parameterized by a neural network. Following standard Lax-Milgram/fixed point analysis, this model class was shown to be well-
posed given mild conditions on the nonlinearity. For simplicity in the current work, we will consider only the linear div — grad system,
but stress that the analysis from [71] holds and the FEEC extension may be applied to a more general class of problems.

Solving Equation (38) provides a set of partitions which optimally approximate data while satisfying a structure preserving
control volume analysis. To accomplish this, in Section 5.1 we introduce a POU architecture that admits closed form expressions
for quadrature, allowing us to consider variational models for £, which are end-to-end differentiable, and therefore amenable to
back propagation. Then in Section 5.2 we introduce a variational model for £, and outline how to generalize the learning of metric
information from DDEC to the FEEC setting. More details on the assembly process can be found in Appendix A.

5.1. Partition of unity construction

Use of the POU Whitney forms as FEEC shape functions requires their integration in the bilinear forms of the variational problem.
Many architectures may be used to parameterize the POU; for example, popular classification architectures consisting of a multilayer
perceptron composed with a softmax activation are natural choices [46]. However, such architectures require the use of inexact
quadrature rules, introducing a variational crime and complicating numerical analysis. To avoid this, we introduce a novel archi-
tecture that admits exact expressions for integrals of shape functions and their derivatives. To do so, we construct POUs as convex
combinations of tensor-product free-knot B-splines. B-splines admit a dual interpretation as ReLU networks [31,11], naturally form
partitions of unity, and admit closed-form expressions for integrals depending only on the degree of the B-splines and knot locations
[57,18]. While any degree of B-splines may be used, we choose to work with B1 splines. We sketch the construction of 0-forms and
1-forms in Figs. 1 and 2, respectively.

11
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For the unit hypercube Q = [0, 1]", we form n-dimensional B-splines via tensor products of 1D splines, with unique sets of knots
along each dimension. Let x = (x;,...,x,) € Q. Foreachd =1, ... ,n let {cjk(t) | k=1,...,N, } be a set of 1-dimensional B1 spline basis

functions with an associated set of spline nodes T, = { tid lkg=1,....N. }, where the knots are ordered so that td < IZ )

: dy— 5 3 d_ d ;
satisfy the Kronecker delta property (G5 =8,); and they conform to the boundary (¢{ =0 and ¢ N, = =1). By the 11near reproduction

they

property of B-splines we have the POU property: for all x € [0, 1],

NXd
> G =1.

k=1

We denote the tensor product of these splines ¢y (. : Q—[0,1] as

Gy gty @) = [ [ €y )
d=1

and denote the set of all spline knots 7" C Q as

_ 12 n d —
T_{(tkl’tkz"“’tkn> | tkd er,d_l,...,n},

denoting the total number of knots Nypes = [, Ny, - The POU property is closed under tensor products, i.e.,

Ny, Ny,
Z Z Ckl k (x)—H Z de(xd) =1.
ky=1 k=1 d=1|kg=1

We take a convex combination of the tensor product B-splines to arrive at a coarsened non-Cartesian partition of space. Define a
trainable tensor of weights W of size N, XX N, XN 0, with W constrained so that for all &, ...k,

Wik, 20 and ZW,CIM,(H,-:].
i

We discuss choices of W in Section 5.3.2. With these convex combinations, and for i = 1,..., N°, we finally define our coarse-scale
POU functions ¢; : Q — [0,1]

Ny N,
qb(x)—z D Wit Sy (-
K=l K=l

The partition of unity property is closed under convex combinations; i.e., from the convex combination restriction on W, we obtain
for any point x € Q,

NX NX,,
qu(x)—Z Z Z Wi, @)= D DTG o () =1 (41)
i k=1 k,=1 k=1 k,=1

Therefore, our construction satisfies the requirements of Equation (8). Following the definitions in Equation (18), we then define
w;(x) = ¢,(x) and V° =span{y; |i=1,..., N}, and assemble the spaces V', V'2,.... With careful construction, we can also define
spaces with a trace of 0 along the boundary, e.g., VB =span{y; |i=1,..., N such that y;(x) = 0Vx € dQ}, presented in the next
subsection.

5.1.1. Boundary/interior POUs for Dirichlet conditions

When we later define the variational problem, we will need to perform a lift of the solution on the portion of the boundary
I'p € 0Q associated with Dirichlet boundary conditions. Toward this end, we modify the convex combination tensor to provide:
interior partitions, 0-forms whose restriction to the boundary is zero; and boundary partitions, 0-forms with a Kronecker delta property
onIlp.

We restrict the convex combination tensor W into blocks corresponding to interior and boundary partitions. This restriction,
and the corresponding block diagonal structure, may be expressed in terms of a matricization of W, as defined in e.g., [40,41].

Matricization of a tensor X € RN1**N» along index k reshapes X into a matrix X, of size (H2—1 N, d) X N;. We restrict the form
d#k
of W so that its matricization satisfies

|:Wint 0
W | e ] . (42)
(n+1) bdry
0 Wiy
) ) o ; - NpexN?
With Nynts total knots and Ny, =#{T NI} boundary knots, this restriction yields W' | & RMkaos=Noe*Nin and WP g Vb Noary
knots be D ry y: (n+

(n+1)
Fig. 1 provides an example POU consisting of three interior and two boundary POUs.

12
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Fig. 1. Construction of 0-forms y,. Convex combinations of tensor product free-knot B-splines form a basis for V° and V. Left: Interior spline nodes are marked with
circles, while boundary nodes are squares. Contours of a single tensor product B-spline are plotted alongside knot locations. Center: Sparsity of convex combination
tensor W for interior and boundary POUs. Partitioning is performed separately for interior and boundary knots, providing a basis with Kronecker delta property on
the boundary suitable for imposing Dirichlet conditions. Right: The resulting basis functions parameterize the homogeneous component of the space (Vg) along with
a basis for imposing Dirichlet conditions (V') via a lift (see Section 5.1.1). Quadrature may be performed by pulling back to the original tensor product space.

5.2. Variational model and graph network architecture

Let 0Q =Ty UT'p, where I'p, 'y are disjoint. We consider as data solutions to the div-grad problem,
F—-uVp=0
V-F=f in Q
(43)
P=E&p onl)

F-ii=gy onTy,

where y € L%(Q) is a discontinuous diffusion coefficient.
To enforce boundary conditions, we split the pressure p = p, + pp into p, and p;, with p, =0 and p, = g, on I'p, and introduce
the space

N. N

X1 Xn

Vi={weV’|ly(x)=0Vxel,}=span kzl-nkzl Wi k() i= 1L N
1= n=

We seek a solution (p,,F) € VB x V1 that for all (¢5,E) € VD0 x V! satisfies the mixed variational problem

(F.E) - (d°p, B) = (dpp, B)

0 (44)
—(F,d"qp) =(f,110)—(gN7CIo)rN~
Expanding the solution (py,F) in terms of the Whitney forms
F=Y Fy, v, ev!
ij . (45)
Py = Zﬁﬂl’i v € VD’
i

13
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Fig. 2. Construction of 1-forms y;; from pairs of 0-forms w; and y; constructed in Fig. 1. Following the definition y;; = y; Vy; —y; Vy;, we observe the antisymmetry
v,;; = —;;- X-components of the vector-valued 1-form are plotted.

we may recast Equation (44) in matrix form

M, -DIVT][F]_ bp (46)
-DIV. 0 pl [-b,—by]’

where we have introduced * to denote a vector of modal coefficients, and

bpij=ppwij)= [ Vpp-w;;

{O\

br, == [ 1w )
Q

ENVi-

~—~

bN,- = (gN,lI/;)rN =
Iy
Following [71], we introduce trainable symmetric positive semi-definite metric tensors B, D,, B;, and D, corresponding to Hodge
star operators and parameterize d° and d°" as follows
d’ =D7'5,D,
(48)
0T _ p-1T
&' =B;'5TB,
where §, and 65 are the related graph exterior calculus combinatorial operators on a complete graph with N vertices. We thus have
DIVT =M, d” and DIV =d°" M,, and finally arrive at our discrete model form

M, —MlDflfsoDo] [F] - [ bp ] ' (49)

-B;'5) B/ M, 0 p —b, —by

14
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Due to its block structure, assuming M, is symmetric and positive definite, the solvability of (49) reduces to the invertibility of the
Schur complement S = Bglég BIMIDI‘I(SODO (note our definition of Schur complement here is slightly different from the convention
by a negative sign). Note that the Schur complement S is basically a Hodge Laplacian defined in [71], which is invertible excluding

the corresponding homology (see Theorem 3.5 in [71]). Therefore, we have the following theorem.

Theorem 5.1. Assuming B, D, B;, D, and M, are symmetric positive definite, the mixed formulation (49) is solvable when excluding the
corresponding homology of the Schur complement S =B' 5] B;M;D;'5,D,.

The underlying connection between FEEC and DEC is apparent if one chooses metric tensors satisfying M, ~ Bl“D |- In traditional
FEM, this corresponds to performing a mass lumping [2,12,16]. If that approximation held, the linear system would reduce to

M, -M,D;'6,D,] [F _ by
-B;'51 B M, 0 p —b; —by

] | [

The assembly required to solve the linear system in Equation (49) is tedious but straightforward. Since our bases for V'°, VB, and
V! are each convex combinations of splines, the entries of M; and DIV are given by analytic, closed-form expressions depending
upon the spline knots T; and convex combination tensor W (see Appendix A for example computation of mass matrices). To evaluate
the forcing terms in Equation (47), the B1 spline interpolants of f, pp, and g, are used to perform exact quadrature.

We remark that analytic expressions for quadrature are crucial for the method to be computationally tractable. The scheme may
be implemented in machine learning frameworks such as TensorFlow, PyTorch, or Jax which support automatic differentiation,
so that the derivatives of Equation (49) are available. During training, the exact quadrature allows back propagation through the
solution operator to evolve the control volumes. After training, the entries of the linear system in Equation (46) may be saved as a
reduced order model which can be solved without reference to the underlying B-spline grid; the computational complexity associated
with evaluating the B-spline space need only be incurred when post-processing the solution.

(50)

5.3. Training

Several variables in the above formulation are left to be optimized as a machine learning problem: the set of spline knots along
each dimension T;; the parameters associated with the convex combination tensor W; and the exterior calculus metrics D, D, By, B;.

5.3.1. Constraints to ensure proper ordering of spline knots
To integrate the Whitney forms, we require the knot ordering constraint (7, <#,,,) to be satisfied over the course of training.
Rather than training knot locations 7, directly, we parameterize the distance between consecutive knots

d, =t —ty_ =0o(ry),

where o(-) is the sigmoid function and 7, is a trainable parameter, ensuring d; > 0 and 7, <1, ;. The knot positions may be evaluated
ast; =0 and for k> 1,

k
= dy.
I=1
The trainable variables 7, are initialized by sampling a standard normal distribution.

5.3.2. Constraints: convex combination tensor
The convex combination tensor W must satisfy for all k, ... k,,

Wi, . .k,i20 and Zwkl,..k,,izl'
i

To enforce these constraints, we parameterize W by introducing a learnable tensor V and applying a softmax activation to the final
index

eXPVk,‘..kni
Wiy = SRS 7 (51)
Y exp ky...kyi
where V. ; denotes the weight associated with the knot located at (7 ..., ).

In the case where I'j, # f, we repeat this process for Wit and WPd"Y introducing two trainable tensors V"t and Vbdry
int
int ky..kpi

kyookpi i )
1 nt Zi exlem

kyookyi

expV
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bdry
expV
bdry  _ PV ki
ky...kyi bdry
> exkaI”_k .

For the sake of comparison, we examine three distinct methods for choosing convex combinations:

1. The individual entries of V are prescribed by directly trainable variables. In this case, the entries of V are initialized by sampling
a standard normal distribution.

Viy ki = Ok, ki (52)

2. The entries of V are prescribed by a ResNet with a Box initialization [19]. This network takes knot coordinates as input and
outputs corresponding weights, i.e., Vi, ;= ResNet;(t,....t; ). We present results for a ResNet with four hidden layers,
where each layer has a number of hidden nodes equal to twice the number of POUs, using tanh activation for the hidden layers
and a linear final layer.

Z(O) =O'<A(0)lk1_“kn —b(o))

Kook
4 -1 1%
Zi]?..kn =6<A(f>zf€]___,)c”—b(f))+zﬁcl)___kn for layers £ =1,...,L -1 53)
_ A (L) (L)
Vit =AT 2 —;

3. The entries of V are prescribed by the quadratic form associated with a trainable radial basis function (RBF) kernel. The
parameterization learns centers ¢; initialized via a uniform distribution over Q and correlation factors Q; initialized as identity
matrices; here, the vector 7, is the tensor product of individual spline knots (7, ..., #; ).

Vi iy == =15 1) QT Qe =14, i) (54)

Application of the softmax yields a RBF with POU normalization. Note that Q; admit interpretation as Cholesky factors of a
covariance matrix, allowing learning of anisotropic weights. If we instead took Q; as a scalar ¢; times an identity matrix, we
would obtain a traditional RBF with q,.2 prescribing a shape parameter [79].

While this choice of architectures is by no means complete, we hope to highlight a range of potential inductive biases to impose on the
partitions. The first is most expressive, while the latter two impose more regularity and potentially are more memory efficient. The
ResNet strategy may prove more effective for problems in high dimensions. We recommend readers to [70,46] for further discussion
of POUNet architectures and their relative merits.

5.3.3. Constraints on exterior calculus metrics

The metric tensors By, B;, Dy, D; must be symmetric-positive definite matrices to obtain a valid Hodge star operator and induce
an inner-product [71]. For simplicity we parameterize these via diagonal matrices with positive entries. To obtain a parameterization
of a metric tensor M (i.e., either B, or D, ), we introduce a trainable tensor m, and define

M = diag(exp(m)).

We denote by by, b;, d, d; the parameters associated with B\, B, D, and D, respectively. The trainable variables are all initialized
as zero vectors to obtain an identity matrix initialization for the metric tensors, so d and a7 initially match their combinatorial
counterparts.

A more expressive alternative parameterization would be to learn the Cholesky factors M = mm/’, for upper-triangular trainable
m, however we adopt a diagonal parameterization to promote sparsity.

5.3.4. Optimization problem statement
We denote the set of trainable variables &, which includes

distance between spline knot parameters {TZ [k=1,....N,,}
& =1 convex combination tensors Vint, ybdry . (55)
metrics by, b, dy,d;
With these trainable variables, Equation (38) specializes to
2 2
mgin Pdata — (PD + Zﬁi%‘) +a || Fgata — Z Fvy
7 ) ij 5 (56)
M -M,D-15,D,] [F b
such that 1 I 2070 (7] = b
[—BahﬁgB,M, 0 p —b;—by
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where «a is a normalization parameter used to ensure the flux and pressure loss are of the same magnitude; in our case, we choose

_ [|Pdatall>

”Fdata”z .

In Equation (55), the objective functions and constraints depend on &, in that the distance between spline knots TZ and the
convex combination tensors Vint and VP4 parameterize the zero-forms v; and one-forms y;;, which are used as the bases in which
our solution is expressed (they form the elements of the 0-form mass matrix M, and the 1-form mass matrix M, ), and the metrics
by, b;, dj, d; parameterize the matrices By, B;, Dy, D,.

To solve this, we adopt a reduced-space strategy. The equality constraint amounts to a moderately sized dense linear system
which may be inverted, providing

~

p=-S""(-B;'6IB by + (b, +by)) (57)
F=M;" (b, + M,D;'5,D,p). (58)

where S = B(;l&g B; M, D7'5(Dy, is the Schur complement. These may be substituted into the objective of Equation (55) to obtain an
unconstrained nonlinear optimization problem which may be treated with a first-order optimizer and back propagation. Alternatively
for larger systems where inversion of M; and S may be intractable, Lagrange multipliers may be applied as presented in [71].

Note that the loss function in this minimization problem is a data-sampled estimation of the squared H'(Q) norm; in our results,
we refer to the first term of the objective as the L?(Q) loss and the unscaled second term as the H({ (Q) seminorm loss.

6. Results

We consider the following problems:

1. Manufactured problem - establishing convergence properties
2. Five-strip problem - establishing structure preservation for H(div, Q) problems
3. Battery problem - demonstrating surrogate construction for realistic multiscale problems

The manufactured problem serves as a comparison to standard methods for solving finite element problems; by manufacturing a
solution we can quantify convergence with respect to fine and coarse resolution. The five-strip problem is a classical patch test
for mixed FEM spaces to verify H(div,Q conformity for problems with discontinuous material properties [35,72]; discretizations
assuming regularity beyond H (div, Q) exhibit oscillatory solutions. The battery problem models the flow of current through a lithium-
ion matrix under a unit voltage drop. We solve both problems on a reference domain Q = [0, 1]2. Both problems obey the same set of
differential equations (albeit with different coefficients, boundary conditions, forcing terms, etc.), presented below.

Data is taken either from randomly sampled evaluations of a known analytic solution, or if an analytic solution is not known (i.e.,
for the battery problem), high-fidelity FEM simulation (for more details, see Appendix B).

All training instances minimize Equation (56) using the Adam optimizer [39], with all parameters except the learning rate
set according to the TensorFlow default values. The optimizer employed a learning rate schedule that reduced the learning rate
by half if the loss did not improve after five epochs, terminating training after four such reductions of the learning rate. For the
manufactured problem and five-strip problem, the batch size equalled the number of data points (i.e., each epoch consisted of one
gradient descent step), while for the battery problem, the batch size was set to 100K points (i.e., each epoch consisted of 59 gradient
descent steps to iterate through all 5.89M training points). Training was replicated with different random initializations five times
(i-e., Ngamples = 5) for each model instance. Code was run using TensorFlow 2.2 using a workstation running Linux RHEL 7.7 (Maipo)
with 64 core Intel Xeon Gold 6130. Each training run used a single Nvidia Tesla V100 GPU with 32 GB memory. Unless otherwise
noted, hyperparameters have been selected via a sequential grid search; the appendices include selected studies to demonstrate
sensitivities to hyperparameters.

6.1. Manufactured problem

We first consider a manufactured problem with smooth solution. We consider the problem in Equation (43) on Q = [0, 1]* under
the forcing

F-Vp=0 inQ

V - F = —8z% sin(2zx) sin(2xy) inQ
p=0 onl'p={(x,yeQ|xe{0,1}}
F-i=0 onTy ={(x,y) €Q|ye{0,1}},
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Fig. 3. Representative solutions for manufactured problem with 12 x 12 fine-scale resolution and 8 coarsened partitions. (Top) True solutions, for pressure p and flux
F; (Bottom) FEEC predictions.

Table 1

Error comparison between data-driven model and FEM for manufactured problem. FEEC method
uses 4 interior POUs and 4 boundary POUs, resulting in a substantially smaller linear system while
preserving comparable accuracy.

Method Fine-scale resolution Degrees of Freedom Pressure MSE
FEM Q1 5%6 30 4.3470x 1073
FEM Q1 4x8 32 7.0664 x 1073
FEM Q1 12x12 144 1.7891 x 107*
FEEC 12x12 32 2.1853x 107*

which has the solution

p(x,y) =sin(2zx) sin(2zy)

F(x.y) = 27 cos(2x) sin(2zy) (59)
V= oy sin(2zx) cos2zy) | -
We solve (56) fitting to 10K points sampled from a uniform distribution over Q. The loss function uses a weighting of « = L. we

2z
vary both the number of fine-scale resolutions and number of coarsened partitions to study convergence. We use a learning rate of

0.01 with the Adam optimizer, reducing the learning rate by half if the loss stagnates. Otherwise, the optimizer uses its default values
in TensorFlow, training for a total of 1000 epochs. Unless otherwise noted, we consider the direct parameterization of the convex
combination tensor.

6.1.1. Model performance

On this smooth problem, our FEEC method matches the performance of a nodal FEM at the fine scale resolution while requiring
substantially fewer degrees of freedom. Representative results for training with 4 interior POUs and 4 boundary POUs are shown
in Fig. 3. We compare the results of our trained FEEC model to three different FEM models using linear Lagrange elements on a
quadrilateral mesh - one that maintains the same resolution as the POU’s fine-scale grid, and two that match the number of degrees
of freedom of the coarsened linear system. The FEM comparisons are computed using the FEniCSX software library [64,63,4]. Results
are shown in Table 1. We achieve an accuracy that is comparable to solving at the same resolution of the fine-scale splines, while

18



J.A. Actor, X. Hu, A. Huang et al. Journal of Computational Physics 496 (2024) 112520

Table 2
Error under refinement, increasing the number of fine-scale splines for the smooth sine-cosine problem. Convergence
matches optimal convergence for piecewise linear continuous FEM.

Fine Scale L*(Q) MSE Hd (Q) MSE

Spline Grid Median Min Max Median Min Max
8§x8 4.2083x 107* 3.2706 x 1074 5.2920 x 10 0.5559 0.5004 0.6171
12x12 1.4249 x 10~ 1.1942 x 10~ 1.5941 x 107* 0.3304 0.3049 0.3522
16 x 16 9.5777 x 107 7.1075x 107 1.0280x 10~* 0.2672 0.2326 0.2790
2020 6.8622x 107 4.1444x 1073 8.6188 x 107> 0.2127 0.1672 0.2597
24 %24 4.0407 x 107 3.0599 x 1073 4.3923 x 107 0.1595 0.1448 0.1775
28 %28 2.6854 x 107 1.9053 x 10~ 4.4021 x 1073 0.1243 0.1053 0.1666
32x32 2.1173x 107 1.8414x 1073 6.2870 x 107> 0.1025 0.0940 0.1552
Convergence rate 2.09 2.12 1.66 1.18 1.21 0.99

Pressure MSE

Flux MSE
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Fig. 4. Log-log plots for L*(Q) (left) and H(" () (right) loss terms, with an increasing number of fine-scale spline knots. For both terms of the loss, we observe a linear
trend in our loss, matching the error rates of classical structure-preserving FEM methods.

Table 3

Training metrics when using different parameterizations of the convex combination tensor W.
Parameterization LX(Q) H)(Q) H'(Q)
Direct 1.8088 x 10~ 0.3663 0.3804
ResNet 2.3590 x 1073 0.3962 0.5801
RBFNet 4.8052x 1074 0.3299 0.3674

solving a linear system substantially smaller than we would otherwise; similarly, we outperform the linear systems with comparable
numbers of degrees of freedom by close to an order of magnitude, even for this small problem.

6.1.2. Refinement study

We next demonstrate convergence under h-refinement when increasing the number of fine-scale splines. Table 2 and Fig. 4
demonstrates second-order convergence under the L2(Q) norm and first-order convergence under the Hé (©) norm when refining
the underlying B-spline grid, matching the optimal convergence of continuous Galerkin methods with linear polynomial basis. Each
model is trained on the same dataset, using a fixed number of 8 internal POUs and 8 boundary POUs.

6.1.3. Effect of POU parameterization

We test the three different parameterizations of the convex combination tensor W described in Section 5.3.2, for a problem with
a 12x 12 fine-scale spline grid mapping to 8 interior POUs and 8 boundary POUs. Results are shown in Table 3. We note that training
with the ResNet requires significantly longer to train (10K vs 1K epochs) at a smaller learning rate (10~* vs. 10~2). There was no
noticeable difference in training time per epoch between each parameterization. Examples of representative POUs from each are
shown in Fig. 5. While most expressive, training directly on the entries of W yields partitions with little regularity. ResNet’s impose
regularity but obtain globally supported partitions, while RBFs impose regularity and compactly supported partitions.

The question of when to anticipate compactly supported partitions is a subtle one. While a traditional FEM construction would
generate compactly supported functions over elements, this is partly to ensure h-convergence under refinement. As our intention
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Fig. 5. A representative POU from each of the different parameterizations of the convex combination tensor W. Direct training is most expressive but imposes no
regularity. ResNets and RBFNets impose regularity, with the RBFs biasing toward compactly supported partitions.
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Fig. 6. Setup for diffusion coefficients for five strip problem. The gradient of the solution is perpendicular to the interface between strips, leading to a trivial piecewise
linear solution.

is to use data to realize an accurate model on a coarse grid, this is not necessary. Intuition is further complicated by the fact
that ResNets have no mechanism to minimize linear dependence between partitions; performing e.g., Gram-Schmidt to realize a
maximally orthogonal basis would reveal a more compact representation. Regardless, the choice of parameterization has no effect
on conservation.

6.2. Five strip problem

The five strip problem is a classical benchmark to test mixed methods for conservation laws with non-uniform diffusion coeffi-
cients: in each of five horizontal strips across Q = [0, 1], a different diffusion rate « is assigned, as sketched in Fig. 6. Because the
gradient of the solution p is perpendicular to the gradient in the material properties, the interface condition [xd,p] =0 is trivially
satisfied.

The problem is given by

F-«xVp=0 in Q
V-F=0 in Q
p=0 on I'p jere = {(0, )}
p=1 on I'p rigne = {(1, )}

F.

S

=0 onl'y={(x,») €Q|ye{0,1}},

where we define
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1.0 xe[O,%]
1.4 xe[%%]
k(x,y)=40.8 xe[%%]
0.6 xe[gg]
1.0 xe[;-‘,l]

This problem has the unique solution

px,y)=x
[1.0]
for x € [0, l]
L 0 . 5
[1.4]
0 for x € [% %]
(03] 5 3 (60)
F(x,y)= 0 forxe[g,g]
[0.6] -
0 for x € [g, g:l
[1.0] .
0 for x e [g’ 1]

We train our FEEC model with a fine-scale resolution of 2 x 20 B-splines, coarsened into 5 interior POUs and 5 exterior POUs.
As we have chosen a number of POUs equal to the number of strips, this test serves to identify whether we can exactly recover the
five physically relevant subdomains as control volumes. We use an initial learning rate of 4 =0.01, which is reduced by half if the
loss stagnates. We train for 5000 epochs on a dataset of 10K uniformly sampled points in Q = [0, 1]2, with a batch size equal to the
dataset size.

The results in Fig. 7 demonstrate the ability of the scheme to reproduce the solution for both F and p, indicating that it has
correctly identified each strip as a control volume. These results are particularly notable since the FEEC method is provided no
information about the location of the strips, nor the values of the corresponding diffusion coefficients; in an unsupervised fashion
the geometry is learned by the POU parameterization and the material property is learned by the metric information. We note that
for this problem, the adaptivity of the spline knots is crucial: during training, the spline knots are pushed towards the interfaces of
the strips, to provide the sharp interfaces that appear in Fig. 7.

6.3. Battery problem

The battery problem provides a nontrivial extension of the five-strip problem where now the geometry is complex and the
material coefficients vary over seven orders of magnitude across different subdomains, providing a pathologically ill-conditioned
problem representative of multiscale problems. Data is provided by a combination of discrete element method and conformal finite
element codes to generate a realistic microstructure corresponding to a lithium-ion battery [60,68]; details of the simulation are
provided in Appendix B. We consider

F—-«xVp=0 in Q
V.- F=0 in Q
p=1 on I'p et = {(0, 1)}
p=0 on I'p rigne = {(1, 1)}
F-i=0 on'y ={(x,y)|y€{0,1}}.

The values for « follow a configuration of three phases of materials - an active lithium phase (x = 1), a conductive binder (x = 100),
and an electrolyte material (x = 0.0001). The configuration for « is shown in Fig. 8. Similar to the five-strip problem, successfully
fitting control volumes to this problem corresponds to identifying the topologically complex transport pathways associated with the
microstructure.

We train our FEEC model with a learning rate 4 =0.05, number of interior POUs Ni(; . =8, and exterior POUs Ng dry = 8. Results
showing the sensitivities of hyperparameters are presented in Appendix C.
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Fig. 7. Results from data-driven model for the five strip problem. (Top) True solutions, for pressure p and flux F; (Bottom) FEEC predictions. By recovering the true
solution using the same number of partitions as strips, we demonstrate our ability to recover physically relevant subdomains in an unsupervised manner, without

requiring data for strip geometry or material properties.
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Fig. 8. Microstructure configuration for lithium-ion battery problem (left). Lithium particles (blue) are embedded in a non-conductive matrix (white), with a conductive
binder (orange) promoting diffusion through microstructure. Transport is governed by transport pathways corresponding to a percolation problem, and provides a
realistic assessment of whether we can identify associated control volumes. Associated electric field (right, x-component shown) demonstrates singularities occurring
at junctions between phases, presenting challenging small scale features to recover. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)
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6.3.1. Model performance

Representative solutions and comparisons to true solutions for p and F are shown in Fig. 9. Additionally, we can preserve
quantities of interest for this problem, such as the flux out the right-hand boundary, within 1% error after hyperparameter turning,
while reducing the size of the underlying linear system from 5.89M degrees of freedom to 136, corresponding to a coarsening from
a 20x20 fine-scale spline knot grid to 8 interior POUs and 8 boundary POUs. Descriptive statistics for the most accurate training
hyperparameters are reported in Table 4; in Appendix C we study how specific hyperparameters influence training accuracy.

For the battery problem, the flux through the domain boundary (i.e., integrating the normal component of F along the line
{x =1}) is an important quantity of interest associated with the effective diffusion coefficient of the microstructure. We achieve a
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Fig. 9. True and predicted potential and electric fields for lithium-ion battery microstructure shown in Fig. 8. Predictions use a 20 x 20 B-spline grid, with 8 POUs for
the interior and an additional 8 POUs for the exterior.

Table 4

Best resulting accuracy across all sample runs and hyperparameters for L*(Q),
Hy(Q), and H'(Q) errors (left) and for the quantity of interest associated with
the battery problem (right). Training was performed for 20x 20 fine-scale spline
knots coarsened to 8 interior and 8 exterior POUs. Reduction of the data from
5.89 million degrees of freedom to 136 degrees of freedom amounts to a 43308x
reduction in model size while preserving 1% error for relevant quantity of in-

terest.
Metric Best Error Flux Through Boundary
L2(Q) 5.206 x 10~ Predicted Value 29.0910
H\Q) 1.655 x 10~! True Value 29.3893
H'(Q) 1.708 x 107! Relative Error 1.0147%

best relative error of 1%, with summary statistics presented in Table 4. Accurate prediction of this quantity is notable, as there are
no training data used to directly recover it and it instead follows from correctly preserving conservation structure. This is in contrast
to physics-informed approaches which incorporate this data directly and impose it by penalty (e.g., [36,81]). In Appendix C we
include a study exploring how this quantity of interest and full field error are effected by hyperparameters such as the learning rate
and the number of fine-scale splines. In Fig. 10 we study h-refinement of the B-spline grid and its effect on L?(Q) and Hé (Q) error.
While there is more variance during training due to random initialization, we generally approach a similar second- and first-order
convergence rate trend for pressure and flux as seen in the manufactured solution study, as shown in Table 5.

6.4. Conclusions

We have presented a new unsupervised learning architecture for discovering structure-preserving control volume models from
data. A differentiable construction of Whitney forms with respect to an underlying machine learned partition of unity parameterizes
a de Rham complex, inducing learnable discrete coboundary operators which provide a link between subdomain geometry and
graphs encoding flux/circulation balances. The primary contribution is an end-to-end differentiable parameterization of geometry
and physics on arbitrary manifolds. By applying equality constrained optimization, we simultaneously obtain partitions of space
and accompanying integral balance laws which match data. Current methods for physics-informed learning rely on collocation or
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Table 5

Resulting accuracy for pressure, i.e., L?(Q), error (left) and flux, i.e., HO1 (), error (right). Training was performed for
20 x 20 fine-scale spline knots coarsened to 8 interior and 8 exterior POUs with a learning rate of A =0.05. Reduction of
the data from 5.89 million degrees of freedom to 136 degrees of freedom amounts to a 43308x reduction in model size
while still maintaining expected convergence rates.

Fine Scale L*(Q) MSE H)(Q) MSE
Spline Grid Median Min Max Median Min Max
8x8 4.782x 1073 3.888 x 1073 5.334x 107 0.3626 0.3038 0.3906
12x12 3.846x 1073 2.414x 1073 5.189x 1073 0.2688 0.2651 0.3196
16x 16 2.601 x 107 1.417x 107 4.702x 1073 0.2309 0.2214 0.2584
20 %20 1.786 x 1073 1.428 x 107 3.453x 107 0.1984 0.1832 0.2068
24 %24 1.192x 1073 1.030x 107 2.357x 1073 0.1700 0.1495 0.1832
Convergence rate 1.25 1.19 0.69 0.67 0.64 0.71
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Fig. 10. L*(Q) (left) and H(; () (right) loss terms for an increasing number of fine-scale spline knots. For both terms of the loss, we observe a linear trend in our loss,
matching the error rates of classical structure-preserving FEM methods.

other discretizations of partial differential operators to fit data via backpropagation, whereas the geometric approach presented here
naturally preserves related topological structure.

The approach offers several benefits which we pursue in future work, both as a framework for learning computationally efficient
reduced-order models and as a tool for learning data-driven models when first-principles derivation is intractable. Combining this
work with the nonlinear extensions in [71] allows the construction of reduced-order models without reference to an underlying
full-order model; this avoids the need for hyper-reduction and remains applicable when the full governing equations are unknown.
Additionally, the learned model provides a natural physics-preserving surrogate of Dirichlet2Neumann maps, which have proven to
be a natural means of describing multiscale/domain decomposition techniques such as FETI [23] and mortar methods [13,5]. The
technique is therefore an ideal candidate for building surrogates in multiscale systems-of-systems, replacing component models in
systems with either partially unknown or computationally intractable physics.

For traditional forward simulation, the de Rham complex is primarily a tool for studying second-order linear elliptic equations
with limited applicability beyond an important but limited class of problems, including: Maxwell, transport physics, and mechanics.
The data-driven setting potentially extends much broader, as we have shown in [71] that a data-driven Hodge Laplacian may be used
to stabilize a “black-box” unknown flux, ensuring structure-preservation and well-posedness while take advantage of deep networks
ability to capture arbitrary flux relationships. An important and interesting aspect of future work will focus on how to include
other aspects of structure-preservation for advection-dominated problems which require notions of compatibility related to bounds
preservation and Lie derivatives not provided by the de Rham theory.

A particular promising direction of research is whether alternative parameterizations may be developed beyond the coarsened B-
splines pursued here. Of particular interest are parameterizations which scale to large dimensions while maintaining approximation
properties and tractable quadrature rules. In principle, POUs could be parameterized by e.g., a multilayer perceptron composed
with a softmax activation; however this forces the use of Monte Carlo quadrature and subsequently incurs a variational crime.
While we have avoided this in favor of a more rigorous mathematical setting, in engineering contexts these and other alternative
parameterizations may have substantial value. This is particularly true for high-dimensional problems where the current B-spline
construction will suffer from the curse-of-dimensionality (i.e., computational complexity scaling as the number of 1D splines raised
to the dimension).
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While we have presented the Whitney form construction for a general manifold, the current work applies the theory only to
compact subsets of R2. There are several promising directions where the general theory is likely to prove impactful. For some appli-
cations, models may be learned directly on manifolds: e.g., atmosphere physics on the sphere, transport dynamics on biomembranes,
or shell models for elastoplasticity could all be developed rigorously from this theory. For high-dimensional PDEs, one could pursue
dimension reduction by developing autoencoder architectures to identify models on smooth manifolds. We pursue these lines of
research to future work.
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Appendix A. Exact integration

We show how to assemble the matrices M, and DIVT using exact expressions for the integrals involved in their definitions. We
emphasize that we have closed-form expressions for all of our integrals, without resorting to quadrature, but leave the remainder as
an exercise for the reader. For simplicity, we assume that Q = [0, 1].

A.1. Notation

In the description that follows, we use the following indexing conventions:

the letter ¢ indexes fine-scale cells, i.e., sub-intervals of [0, 1] between two fine-scale spline knots
the letters k,/,m, and n index 1D splines and spline knots

the multi-index k indexes a 2D tensor product of 1D spline functions

the single letters i and j index POU functions, i.e., 0-forms

the pairs of letters ij index 1-forms

the single letter « indexes 0-form test functions

the pair of letters ab index 1-form test functions

When clear, summation bounds are omitted.
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Fig. A.11. Example of one-dimensional B-splines ¢, for k=1,..., N =5. Knots ¢, and distances d, are correspondingly labeled.

A.2. 1D assembly

We begin by introducing closed-form expressions for the integral of products of B-spline functions in one dimension, as well as
their derivatives, to arbitrary powers. We denote the one-dimensional B-spline functions as ¢, for k=1, ..., N; for example, B1 spline
basis functions (i.e., hat functions) ¢, : [0, 1] — [0, 1] are defined as

0 X<ty
X—lj_
—EL x el
— ) k-1

Ci(x) = 1y —x [ ! B
—— X E|[1,t
i1~k L
0 X >ty

where {t, =0,1,,...,t5_,,ty = 1} are spline knots. Hat functions are indexed so that they provide a basis to interpolate the spline
knots, i.e., £ (t,) =, (Fig. A.11). On each subinterval d, =[r,_,,,] we define

I

L@yt = / (061)" (02)" ¢ ¢

fe! (A1)
I S SR S )

n+v+1 (,, + v)
n
where <'1 + V) denotes the expression for the binomial coefficient. Thus,
n

1

/ (08,1)" (02.) & ¢r = Y L(a.pon.v). (A.2)
O c

With this expression, we build four-tensors that we will later use to assemble the matrices M; and DIV’. Along each dimension
z € {x,y}, we define four-tensors A% and C* of size N X N X N X N, defined entry-wise via

1
Alimn = / (E(2) E(2) CE2) CE(2) dz
0

1
G = [ 60 0.60) G0 0,652 a.
0
We may express both integrals as sums of I.(a, f, 7, v). First, for A7, . we observe that each entry can be rewritten as
Az/mn = 2 IC(O,O, Ne> Vc)lﬂc+Vc=4’ (A3)
c

where

no=#j=c—1|j€kl,mn}}
(A.4)
v.=#{j=c | j€{k,l,mn}}.

When we evaluate the I,(0,0,7,,v,) terms, we arrive at the following values:
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Similarly,

=l=m=n=0

=l=m=ne{l, -1}
=l=m=n=N
k=l=mn=k+1,ke{0,...,N -1}
k=l=nm=k+1,ke{0,...,N -1}
k=m=n,l=k+1,ke{0,...,N -1}
Il=m=nk=1+1, kE{O..,N—l}
Il=m=n=k+1,ke{0,....,.N -1}
k=m=n=I1+1,ke{0,...,N -1}
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k=l=m=n+1,ke{0,...,N -1}
k=l,m=n=k+1,ke{0,...,N -1}
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z
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where

a,=#{j=c—-11je{l.n}}

Bo=#ij=c ljefln

ne=#j=c—1]je{km}}

v.=#{j=c

Computing these values, we fin

11
zZ
3d1
1 1 1
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()
11
3dy
11
311;
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Gdi
1L
6dl:
11
3d,‘z

Note that both of these tensors A% and C? are both sparse and structured.

| j€{km}}.

-1}

m=nk=l=m+1,ke{0,..., N -1}

1

d

k=l=m=n=1

k=l=m=ne{2, -1}
k=l=m=n=N
k=l=mn=k+1,ke{l,...,N -1}
= n,l=k+1,ke{1,..., -1}
= :n:l+1,k€{l,...,N—l}
k=l=m=n+1,ke{l, N -1}
k=l=nm=k+1,ke{l,..., N -1}
<l=m nk=I+1,ke{l,....,N-1}
Il=m= k+1,k€{l,...,N—l}
k= =m+1,ke{l, N -1}
k=l,m=n=k+1,ke{l,..., N -1}
<k: J=m=k+1,ke{l,...,N -1}
=m, k= n—l+1ke{1 N -1}

nk=I= m+1,ke{1,..., -1}

k=m,l=n=k+1,ke{l, N -1}
Il=nk=m=I+1,ke{l,...,N-1}
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A.3. 2D assembly

We next to assemble the mass-matrix of one-forms, M, . Consider the entry M, ;;)» Which is given as

Ml(ab),(ij)szij “Wap
Q

= /(ll/iaxllfj — W0 W)W, 0. W) — W0 W;)
Q

+ (W0, — w0, W) (W, 0,y — W0, w)).

This integral decouples into the product of two integrals, one over the domain x = [0, 1] and one over y = [0, 1]. For example, the
first cross-term becomes:

/w,- (0xw;) wa (0xw)

Q

=/( Z wkifgki(x)>'ax Z ijjij(x) .
Q

ki=(k;,l;) kj=(kjl;) (A7)

< D Wkaaéku(x)>.ax< > kabCkb(x))dx

kg=(kalo) Ky =(Kiply)

- . X CAY
- Z Z Z Wk,-iwk,-jwkaawkbb Ck,-kjkakb Al,-zjza/b'
k

k; ky kp

i J a

We can build similar expressions for the other seven terms in the integrand of the expression for M, ;> €xpressing the integrand
as tensor contractions involving permutations of W, C#, and AZ.

The matrix DIV and the vectors on the right-hand side of the linear system in Equation (46) can also be assembled using a
similar process of decoupling the integral into the product of two one-dimensional integrals and then combining the one-dimensional
integrals using tensor contraction. Alternatively, since DIV = M, §,, once M, is assembled it may be cheaper to assemble the
combinatorial gradient &, and construct DIV via matrix products instead. Note that the evaluation of the right-hand side vectors in
Equation (46) require the ability to evaluate the functions f, g, and g, at the fine-scale spline knots, which evolve during the course
of training; these functions are approximated by their fine-scale piecewise linear interpolants at the spline knots.

We make a handful of observations about the assembly process. First, we immediately note that since the tensor W and the
distance between spline knots d* evolve with each gradient descent step, assembly must be repeated at every step during training.
The second observation concerns the memory cost of performing tensor contraction for entries in M, ;- While the tensors A* and
C? are sparse, the TensorFlow operators for tensor contraction only accept dense tensors. As a result, the tensor contraction in e.g.,
Equation (A.7) requires an intermediate step that allocates a dense tensor of size NfNyzN 02, as an in-place memory accumulator,
which becomes limiting when the number of splines at fine-scale resolution along each axis becomes large (i.e., values of N > 40).
Alternatively, the tensor contraction can be expressed by the appropriate sparse-dense matrix multiplication operations, although
this method ultimately does not save any memory usage - the 1-form fine-to-coarse map is of size NfNyZN 02, which is of the same
size as the intermediate allocation step.

Appendix B. Numerical details for battery problem

The lithium ion battery cathode configuration depicted in Fig. 8 is composed of three phases, active material particles shown in
blue, a conductive binder domain shown in orange, and an electrolyte shown in white. These configurations were generated using
the discrete element method implemented in LAMMPS [69], the details of which are found in [68]. This discrete element method
data was used to generate a physically realistic microstructure, and was then remapped onto an unstructured tetrahedral mesh using
the conformal decomposition finite element method. For further details we refer readers to [60,68].

For this problem, the data in the loss comes from a high-fidelity continuous Galerkin finite element method implemented in
Sierra/Aria [66]. An electrical transport equation

V.- &VV)=0 (B.1)

is solved on the domain for voltage ¥ on the nodal locations, where the active material particles are assigned « = 1, the conductive
binder domain particles k = 100, and the electrolyte x = 0.0001. Piecewise linear integration functions on quadrilaterals were used.
Dirichlet boundary conditions of V' =1 and V =0 are assigned to the left and right hand sides of the domain, respectively. The
equation is integrated by parts, assembled into a linear system, and solved iteratively in parallel using a GMRES solver with multi-
level preconditioner, all implemented through Trilinos [73]. Fluxes are reconstructed as piecewise constant on the elements (P0)
directly from the calculated voltage fields.
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Table C.6
List of model parameters and training hyperparameters that were varied for bat-
tery problem.
Parameter Values
N, N, Fine-scale spline resolution {8,12,16,20,24}
i‘; . Coarse-scale interior POUs {4,8,12,16}
Learning Rate {0.001,0.005,0.05}

\
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Number of fine-scale spline knots

Fig. C.12. Loss curves for L*(Q) (top) and HO1 (Q) (bottom) components of the overall loss function, plotted after each epoch of training, for an increasing number of
fine-scale spline nodes. Each color represents a different learning rate: blue corresponds to a learning rate of 0.001; orange to 0.005, and green to 0.05. The mean
of the five repeated training runs is shown as a solid line, with the standard deviation shaded above and below. The sharp jumps are due to specific training runs
terminating early due to the stopping criteria during training.

From the FEM solution we create a point cloud of training data by mapping the fluxes onto the nodes via the Clement interpolant,
and then associating the nodal evaluations of the pressure and interpolated flux values with the scattered set of nodal positions.

Appendix C. Hyperparameter selection for battery problem
For the battery problem, we focus on the effects of varying the hyperparameters listed in Table C.6.
C.1. Learning rate

We explored optimal learning rates by performing a grid search. After a period of initial exploration, we found that the learning
rates of {0.001,0.005,0.05} warranted more study. Results with the smallest learning rate, of 1 =0.001, took significantly longer to
train; for example the blue curves in Fig. C.12 lag behind the orange and green curves. While it is possible to train well with such
a small learning rate, doing so takes substantially longer due to requiring more epochs to reach a comparable point of training
accuracy. The other two learning rates of A =0.05 (orange), and A =0.005 (green), trained faster, and both provide comparable
results. In Fig. C.12, we see the effects of increasing the number of fine-scale spline nodes on each of the terms in the overall loss. In
all instances, training improves with greater resolution, as seen by the final loss values for the L?(Q) and Hé (Q) components of the
loss, which are plotted in Fig. C.13.

C.2. Number of fine-scale splines

The number of fine-scale splines was chosen to reflect a range of values that would instantiate models that would fit in GPU
memory, given the size of the fine-to-coarse map of 1-forms and reflecting the final observations in Appendix A. The results of
varying these are reflected in the refinement study in Section 6.1.2, and are complemented by the results in Fig. C.13. The results
presented earlier are agnostic to the learning rate, assuming the problem trains to completion. For the smallest learning rate of
4=0.001, this was not normally the case, but for the two other, larger learning rates, we matched the linear error rates of classical
methods.

C.3. Quantity of interest

For the battery Problem, the relevant quantity of interest is the flux on the right side of the domain’s boundary (i.e., the along
the line {x =1}). The relative error of this quantity of interest is plotted, for different fine-scale resolutions and various learning
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Fig. C.13. L*(Q) and H(; (Q) loss terms for a range of fine-scale resolutions and learning rates. Each color represents a different learning rate: blue corresponds
to a learning rate of 0.001; orange to 0.005, and green to 0.05. Box plots represent quartile data and diamond points mark outliers associated with five random

initializations for training.
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Fig. C.14. Relative error in quantity of interest for an increasing number of fine-scale spline nodes. Each color represents a different learning rate: blue corresponds to
a learning rate of 0.001; orange to 0.005, and green to 0.05. For the two larger learning rates (0.005 and 0.5, respectively) the error remains relatively steady around
0.02, i.e., 2% error, with the best error occurring for a fine scale resolution of n, = 12 and a learning rate of 0.05, for an error of 1%. Box plots represent quartile data
(and the diamond points mark outliers) from using different random initializations for training.
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rates, in Fig. C.14. Regardless of fine-scale resolution and learning rate, we achieve an average relative error of around 2% for the
two larger learning rates, and a best relative error of 1%. Unlike with the loss function (discussed in Section 6.1.2), we do not see
convergence with respect to the number of fine-scale splines. The observed plateau behavior is due to differences in the placement
of the fine-scale splines as they try to resolve integrating the sharp discontinuities in the solution along the boundary, where the
material in the battery changes between lithium, ion, or binder. That this quantity of interest is preserved is notable - there is no
training data on the boundary of our domain, and there is no penalty to our loss function (as in PINNs [58,76] or Deep Ritz [81])
for achieving the flux correct along the boundary; the preservation of this quantity of interest comes from our proper treatment of
the underlying chain complexes that preserve the correct physics, even as the size of the linear system has been reduced from 5.89
million degrees of freedom down to 136, corresponding to 8 POUs on the boundary and 8 POUs on the interior.
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