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Control volume analysis models physics via the exchange of generalized fluxes between 
subdomains. We introduce a scientific machine learning framework adopting a partition of unity 
architecture to identify physically-relevant control volumes, with generalized fluxes between 
subdomains encoded via Whitney forms. The approach provides a differentiable parameterization 
of geometry which may be trained in an end-to-end fashion to extract reduced models from 
full field data while exactly preserving physics. The architecture admits a data-driven finite 
element exterior calculus allowing discovery of mixed finite element spaces with closed form 
quadrature rules. An equivalence between Whitney forms and graph networks reveals that 
the geometric problem of control volume learning is equivalent to an unsupervised graph 
discovery problem. The framework is developed for manifolds in arbitrary dimension, with 
examples provided for 𝐻(div) problems in ℝ2 establishing convergence and structure preservation 
properties. Finally, we consider a lithium-ion battery problem where we discover a reduced 
finite element space encoding transport pathways from high-fidelity microstructure resolved 
simulations. The approach reduces the 5.89M finite element simulation to 136 elements while 
reproducing pressure to under 0.1% error and preserving conservation.

1. Overview and background

In recent years a number of works aim to use machine learning (ML) to develop data-driven models and surrogates for physical 
systems. Broadly, these use data either: to develop predictive models where first-principles derivation is prohibitively expensive 
or complex; or to learn a surrogate model for expensive/complex simulations to facilitate tasks requiring repeated evaluation of 
a forward model (e.g., uncertainty quantification, optimization, inverse modeling). In multiscale modeling, many seek data-driven 
homogenization techniques to represent mesoscale geometry at continuum scales while avoiding oversimplifications of geometry 
[49,54,80,59,14,37,24,27]. While ML has provided a number of remarkable new capabilities in these fields, the rigorous numeri-
cal analysis typical of traditional finite element (FEM) simulation is generally lacking. ML-based data-driven models are typically 
unable to provide the guaranteed convergence, stability, and preservation of mathematical/physical structure that form the cor-
nerstone of verification and validation. In more classical contexts, even traditional reduced order models (ROMs) struggle with 
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structure-preservation [62], requiring problem specific remedies to treat conservation, geometric structure, inf-sup conditions, 
bounds preservation, and other mathematical/physical structure [43,22,3,56,34,45]. A further challenge is how to maintain per-
formance for nonlinear problems; using projection as a basis of model reduction requires incorporation of techniques such as 
hyper-reduction [17] to mitigate computational scaling with respect to full-order problem.

The work presented here employs concepts from structure-preserving finite element discretization and discrete exterior calculus 
[7,15] to obtain data-driven models and surrogates providing such guarantees by construction. Physics-informed ML and related tech-
niques [42,58,38] incorporate domain knowledge by augmenting loss functions with physics-based regularizers. While successful 
for many problems, these techniques generally enforce physics by penalty so that properties are achieved only within optimization 
error. As a result, mathematical analysis and physical requirements often require complex training strategies with ad hoc hyperpa-
rameter calibration to achieve predictive results [77]. In contrast, we propose a structure-preserving ML approach in which the neural 
architecture itself is engineered to preserve properties by construction, allowing rigorous analysis.

Classically, mimetic or structure-preserving discretizations of partial differential equations (PDEs) are broadly characterized via 
strong form or variational frameworks. The discrete exterior calculus (DEC) forms the basis for the former, allowing analysis of finite 
volume methods ubiquitous in continuum mechanics and transport problems [20,52,53]. Finite element exterior calculus (FEEC) 
forms the basis for the latter [8,6], providing variational generalizations. Both frameworks admit a unified analysis due to their 
shared algebraic/topological structure [15]: while DEC defines discrete operators acting directly on differential forms associated with 
a mesh, FEEC defines finite element spaces which interpolate differential forms. Both achieve structure preservation by preserving 
discrete analogs of the generalized Stokes theorem to construct a de Rham complex - a commuting diagram encoding preservation 
of topological structure related to vector div/grad/curl, providing an abstract framework for analyzing: stability; conservation; and 
non-trivial null-spaces related to e.g., involution in electromagnetism or incompressibility in mechanics. Through mass lumping one 
may recover DEC schemes from FEEC [61]; we will exploit this connection in the data-driven setting.

In our recent work [71], we developed a data-driven discrete exterior calculus (DDEC) which allows training of a parameterized 
de Rham complex associated with machine learnable div/graph/curl defined on graph data. This recasts message-passing graph neu-
ral networks (GNNs) in the language of numerical analysis: the usual message passing and aggregation steps [74] may be interpreted 
as learning generalized fluxes associated with conservation balances. This alternative perspective provides Hodge decompositions, 
Poincare inequalities, and other tools supporting numerical analysis, and learns nonlinearities directly on the reduced model cir-
cumventing the need for hyper-reduction. This framework has a drawback however, in that one must define a priori a graph which 
represents well the underlying domain. For engineering of network systems (e.g., electrical circuits, hydraulic networks, discrete 
fracture networks, thermal circuits, mechanical spring/damper models) this is natural, but for general full field data associated with 
continuum mechanics and transport this is restrictive. This drawback is shared by other recent works pursuing GNNs as a means of 
learning physics [65,30,55]. The current work instead performs graph discovery in an unsupervised manner by identifying physically 
relevant control volumes which support a traditional integral control volume analysis, without reference to a traditional mesh.

In traditional FEEC, the low-order Whitney forms are constructed from the barycentric interpolant of differential forms associated 
with nodes, edges, faces and cells of a mesh. Barycentric interpolants form a partition of unity (POU) - namely, they form a set of 
positive functions which sum to unity, partitioning space into non-disjoint subdomains. Broadly, POUs are a tool to localize analysis 
and approximation: in differential geometry they are the fundamental tool for constructing an atlas of charts [67,32], while in 
numerical analysis they have been used to perform refinements and construct localized approximation spaces [10,21,78,25,44,51]. 
In previous work we have developed deep learning architectures to discover POUs which admit optimal piecewise polynomial 
approximation of data, providing a meshfree ML approximation which exhibits hp-convergence for regression tasks [46,70]. Here, 
we show that by replacing barycentric coordinates with a machine learnable partition of unity in the traditional Whitney form 
construction, we may construct discrete coboundary operators associated with these partitions. This allows an unsupervised discovery 
of control volumes encoding conservation balances. The resulting FEM space may then be used in concert with an equality constrained 
optimization procedure to discover structure-preserving reduced-order models (ROMs) from data.

These ROMs are particularly attractive in their natural treatment of nonlinearities. In traditional projection-based ROMs, one 
obtains terms which depend upon a known full-order model when testing against nonlinearities, mandating techniques such as hy-
perreduction to maintain computational tractability. In contrast, in DDEC we postulate a parameterized (potentially nonlinear) ROM 
without knowledge of a full-order model, instead using data to select parameters. In [71] we provide a complete theory and compu-
tational examples for the general nonlinear case. While structure-preservation may still be obtained while applying hyperreduction 
to projection-based ROMs [22,33,47], the current approach may offer attractive alternatives, particularly for applications with “hid-
den physics” (e.g., closures, homogenization, and aleatoric uncertainty) where the governing equations are unknown. For ease of 
exposition when introducing the Whitney form theory, we restrict focus to linear problems and postpone consideration of nonlinear 
multiphysics problems to a future work.

The paper is organized as follows. We first gather mathematical preliminaries and definitions in Section 2. For brevity, we defer 
to our previous work for a comprehensive introduction to the exterior calculus [71]. We review barycentric coordinates, partitions 
of unity, and the construction of Whitney forms. In Section 3 we present a construction of data-driven Whitney forms in the case of 
Euclidean geometry, before generalizing to an arbitrary manifold in Section 4. The former requires knowledge only of basic vector 
calculus and linear algebra. In the latter, repeating the derivation with discrete exterior calculus highlights the intimate connections 
between the graph, discrete, and finite element exterior calculus. In Section 5 we demonstrate how this may be used as a framework 
for learning physics, developing a novel architecture for parameterizing the POU. While several aspects of the construction are 
necessary to guarantee well-posedness of the resulting model, most notable is the fact that the finite element space admits closed form 
expressions for quadrature, allowing backpropagation through the physics model to the partitions without introducing a variational 
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crime. We then consider the application of the framework to 𝑑𝑖𝑣 − 𝑔𝑟𝑎𝑑 problems, demonstrating convergence for smooth problems 
and compatible treatment of problems with discontinuous coefficients. Finally we consider an application building a surrogate for 
electrostatics in a Lithium-ion battery. A high-fidelity microstructure conforming FEM simulation consisting of 5.89 million elements 
is used as training data, which we reproduce to under 1% error using 8 data-driven Whitney forms. This provides a structure-
preserving reduced-order model with learnt Whitney forms identifying transport pathways through microstructure. In contrast to 
traditional multiscale methods working with representative volume elements or other simplifications of microstructure geometry, 
the benchmark provides a flux-conservative characterization of as-built microstructure which may be obtained from computed 
tomography scans.

2. Mathematical background

2.1. Exterior algebra and differential forms

We first briefly recall some definitions and basic results from exterior algebra and differential forms, introducing the abstract 
framework before specializing to the finite element exterior calculus (FEEC) setting. A graded vector space is a vector space 𝑉 that 
can be expressed as 𝑉 =⨁∞

𝑘=−∞ 𝑉𝑘, where 𝑉𝑘 are subspaces. Introducing the linear map 𝜕𝑘 ∶ 𝑉𝑘 → 𝑉𝑘−1 called the boundary operator, 
with the property 𝜕𝑘◦𝜕𝑘+1 = 0, we define a chain complex as follows

⋯ 𝑉𝑘+1 𝑉𝑘 𝑉𝑘−1 ⋯ ,
𝜕𝑘+1 𝜕𝑘

where we refer to elements Ω ∈ 𝑉𝑘 as chains and associate with each a real-valued cochain 𝜔 ∈ 𝑉 𝑘. We adopt the convention of using 
subscripts to denote chains (𝑉𝑘) and superscripts for cochains (𝑉 𝑘). Given coboundary maps 𝖽𝑘 ∶ 𝑉 𝑘 → 𝑉 𝑘+1 satisfying 𝖽𝑘◦𝖽𝑘−1 = 0, 
and codifferential maps 𝑑𝑘 ∶ 𝑉 𝑘+1 → 𝑉 𝑘 satisfying 𝑑𝑘−1◦𝑑𝑘 = 0, we finally arrive at the following primal and dual cochain complexes.

⋯ 𝑉 𝑘−1 𝑉 𝑘 𝑉 𝑘+1 ⋯𝖽𝑘−1 𝖽𝑘 (1)
⋯ 𝑉 𝑘−1 𝑉 𝑘 𝑉 𝑘+1 ⋯

𝑑𝑘−1 𝑑𝑘
(2)

In the specializations of the abstract theory, the coboundary/codifferential operators will define discrete derivatives between 
mesh/graph entities. This abstract perspective will allow us to derive a formula relating the graph exterior calculus, discrete ex-
terior calculus and finite element exterior calculus at the end of Section 4; we exploit this connection to set up a learning problem on 
physics data. For a complete introduction we refer readers to [71] for an overview of DEC, to [8] for FEEC, to [15] for a unification 
of DEC/FEEC, and to [9,1] for an overview of mathematical background.

Let Ω ⊂ ℝ𝑑 be a domain and Λ(Ω) be the exterior algebra with exterior product ∧. We specifically consider the exterior algebra 
of differential forms and use Λ𝑘(Ω) to denote the space of smooth differential 𝑘-forms on Ω. Introducing the exterior derivative 
𝖽𝑘 ∶ Λ𝑘(Ω) → Λ𝑘+1(Ω) satisfying 𝖽𝑘◦𝖽𝑘−1 = 0, we have the well-known de Rham complex

0 Λ0(Ω) Λ1(Ω) ⋯ Λ𝑑 (Ω) 0𝖽0 𝖽1 𝖽𝑑−1

One important property of the exterior derivative is the so-called Leibniz rule

𝖽(𝑤 ∧ 𝑣) = (𝖽𝑤) ∧ 𝑣+ (−1)𝑘𝑤 ∧ (𝖽𝑣), ∀𝑤 ∈Λ𝑘(Ω), 𝑣 ∈Λ𝑗 (Ω) (3)
For the special case of Ω ⊂ ℝ3 with Lipschitz boundary 𝜕Ω, the de Rham complex may be expressed in standard vector calculus 

terminology

0 𝐶∞(Ω) [𝐶∞(Ω)]3 [𝐶∞(Ω)]3 𝐶∞(Ω) 0.grad curl div

It is a complex due to the exact sequence property that curl◦ grad = div◦ curl = 0. In the finite-element exterior calculus we introduce 
Sobolev spaces 𝐻(𝖣, Ω) ∶= {𝑣 ∈ 𝐿2(Ω), 𝖣𝑣 ∈ 𝐿2(Ω)}, 𝖣 = grad, curl, and div. To treat boundary conditions we consider Sobolev 
spaces with homogeneous Dirichlet boundary conditions, i.e., 𝐻0(𝖣, Ω) ∶= {𝑣 ∈𝐻(𝖣, Ω), tr 𝑣 = 0 on 𝜕Ω}, 𝖣 = grad, curl, and div, with 
corresponding de Rham complex

0 𝐻0(grad,Ω) 𝐻0(curl,Ω) 𝐻0(div,Ω) 𝐿2(Ω) 0.grad curl div (4)
This provides the FEEC specialization of the primal cochain complex in Equation (1). A fundamental theorem of exterior calculus is 
the generalized Stokes theorem,

∫
Ω

𝖽𝑤 = ∫
𝜕Ω

tr𝑤, 𝑤 ∈Λ𝑑−1(Ω). (5)

Replacing 𝑤 with 𝑢 ∧ 𝑣 in (5) and applying the Leibniz rule (3), we obtain the integration-by-parts formula

∫
Ω

(𝖽𝑢) ∧ 𝑣 = (−1)𝑘+1 ∫
Ω

𝑢 ∧ (𝖽𝑣) + ∫
𝜕Ω

tr(𝑢 ∧ 𝑣), 𝑣 ∈Λ𝑘(Ω), 𝑢 ∈Λ𝑑−𝑘−1(Ω). (6)
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By combining the primal cochain complex (Equation (4)) with the integration-by-parts formula, we arrive at the following dual de 
Rham complex

0 𝐿2(Ω) 𝐻(div,Ω) 𝐻(curl,Ω) 𝐻(grad,Ω) 0.
−div curl −grad

(7)

Note that the dual de Rham complex has no boundary conditions.

2.2. Partition of unity and barycentric coordinates

Consider a domain Ω ⊂ ℝ𝑑 with an open cover 𝑈𝑖. A partition of unity (POU) Φ = {𝜙𝑖(𝒙)} is a collection of finitely many smooth 
functions 𝜙𝑖 ∶ Ω → [0, 1] such that 𝜙𝑖(𝒙) ≥ 0, supp(𝜙𝑖) ⊆ 𝑈𝑖, and

∑
𝑖
𝜙𝑖(𝒙) = 1, ∀𝒙 ∈Ω. (8)

For the purposes of this work, we assume Ω to be compact and, for computational tractability, that the cardinality of Φ is finite.
Applying the exterior derivative 𝖽 to this expression, we have

∑
𝑖
𝖽𝜙𝑖(𝒙) = 0, ∀𝒙 ∈Ω. (9)

When Ω = 𝐾 is a simplex whose vertices are 𝒗0, 𝒗1, ⋯ , 𝒗𝑑 , a particular example of a partition of unity is the set of barycentric 
coordinates {𝜆𝑖}𝑑𝑖=0, which are the unique linear polynomials satisfying (8) and (9) as well as the Kronecker delta property 𝜆𝑖(𝒗𝑗 ) = 𝛿𝑖𝑗 . In addition, barycentric coordinates reproduce linear polynomial spaces, i.e., for any linear polynomial 𝑓 ∶𝐾 →ℝ, we have

𝑓 (𝒙) =
∑
𝑖
𝑓 (𝒗𝑖)𝜆𝑖(𝒙), (10)

Consequentially, we also have
∑
𝑖
𝒗𝑖𝜆𝑖(𝒙) = 𝒙 (11)

∑
𝑖
𝒗𝑖 ⊗ 𝖽𝜆𝑖(𝒙) = 𝑰 . (12)

When Ω is a convex 𝑑-dimensional polytope with vertex set 𝒗𝑖, one can define generalized barycentric coordinates 𝜆𝑖 as a set of 
non-negative functions satisfying (10) for any linear polynomial data. In this case, 𝜆𝑖 still form a partition of unity and the properties 
(9), (11), and (12) still hold. In this case however, the choice of 𝜆𝑖 is not unique and they may no longer consist of linear polynomials. 
There are many approaches to define them, e.g., Wachspress coordinates [75], mean value coordinates [26], and moving least squares 
coordinates [50].

In this paper, we will consider a class of parameterized POUs which may be learned from data. In our recent work [70] we 
have shown that data-driven POUs may be used to localize polynomial approximation and achieve high-order hp-convergence for 
regression problems. Section 5.1 poses a new architecture designed to admit closed form expressions for quadrature when discretizing 
variational PDEs. The presentation that follows however holds for an arbitrary POU architecture.

2.3. Whitney forms

Whitney 𝑘-forms are finite-dimensional differential 𝑘-forms on a simplicial complex 𝐾 [48]. More precisely, the Whitney 0-form 
associated with the 0-simplex (vertex) 𝒗𝑖 is the barycentric function 𝜆𝑖. For 𝑘 > 0, the Whitney 𝑘-form corresponding to the 𝑘-simplex 
with vertices 𝒗𝑗0 , 𝒗𝑗1 , ⋯ , 𝒗𝑗𝑘 is given by

𝑗0⋯𝑗𝑘 = 𝑘!
𝑘∑
𝑖=0

(−1)𝑖𝜆𝑗𝑖𝖽𝜆𝑗0 ∧⋯𝖽𝜆𝑗𝑖 ∧⋯ ∧ 𝖽𝜆𝑗𝑘 , (13)

where 𝖽𝜆𝑗𝑖 means that the term is omitted. In total, there are 
(
𝑁0

𝑘+ 1

)
Whitney 𝑘-forms.

In 3D, the exterior derivative acting on 0-forms is 𝖽 = ∇. The Whitney 1-form, for an edge between vertices 𝒗𝑖 and 𝒗𝑗 therefore 
reduces to

𝑖𝑗 = 𝜆𝑖∇𝜆𝑗 − 𝜆𝑗∇𝜆𝑖. (14)
Moreover, for a face with vertices 𝒗𝑖, 𝒗𝑗 , and 𝒗𝑘, the Whitney 2-form is

𝑖𝑗𝑘 = (𝜆𝑖∇𝜆𝑗 ×∇𝜆𝑘)− (𝜆𝑗∇𝜆𝑖 ×∇𝜆𝑘) + (𝜆𝑘∇𝜆𝑖 ×∇𝜆𝑗 ). (15)
Note that 𝑖𝑗 = 0 if 𝑖 = 𝑗 and 𝑖𝑗𝑘 = 0 if 𝑖, 𝑗, and 𝑘 are not distinct.
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Since Whitney forms are constructed from barycentric coordinates, which form a POU, we have the following property of the 
Whitney forms.

Property 2.1. Whitney forms form a partition of unity. In particular, the span of Whitney 𝑘-forms, denoted by 𝑊 𝑘, contains all constant 
𝑘-forms.

Finally, the Whitney forms also have the following exactness property with respect to the exterior derivative.

Property 2.2. Consider the sequence

𝑊 0 𝑊 1 ⋯ 𝑊 𝑑 .
𝖽0 𝖽1 𝖽𝑑−1 (16)

If Ω has trivial homology, then (16) is an exact sequence, i.e., Null(𝖽𝑘) = Range(𝖽𝑘−1) for 𝑘 > 1.

Many generalizations of Whitney forms have been developed in the literature. For example, when Ω is a polytope, generalized 
Whitney forms constructed from generalized barycentric coordinates have been studied, see [28]. In this case, since the generalized 
barycentric coordinates might not be linear polynomials, we lose certain properties of the Whitney forms. However, Property 2.1
and 2.2 still hold in general. We refer readers to [28] for more discussions.

3. Whitney forms from POUs

We will now construct Whitney forms from POUs rather than barycentric coordinates, obtaining a generalization which admits 
interpretation as a control volume analysis and preserves conservation and exact sequence structure. For exposition, we restrict our 
presentation to Ω ⊂ℝ3.

We start from a parameterized POU 
{
𝜙𝑖(𝒙;𝝃)

}𝑁0

𝑖=1 where 𝝃 denotes trainable parameters in the POU architecture. Without con-
fusion, we will drop the dependence on 𝝃, but it is understood that 𝝃 will be calibrated to adapt partitions to data. Mimicking the 
standard Whitney form construction, we adopt these POUs as Whitney 0-forms. Namely, we define POU Whitney 0-forms as

𝜓𝑖 = 𝜙𝑖, 𝑖 = 1,⋯ ,𝑁0 (17)
and introduce the corresponding finite-dimensional function space

𝑉 0 =
{∑

𝑖
𝑐𝑖𝜓𝑖(𝑥) | 𝑐𝑖 ∈ℝ

}
(18)

of dimension 𝑁0.
By application of Stokes’s Theorem (5), for 𝒖 ∈𝐻0(div, Ω), we derive

∫
Ω

𝜓𝑖∇ ⋅ 𝒖 = −∫
Ω

∇𝜙𝑖 ⋅ 𝒖,

and note that

grad𝜓𝑖 =∇𝜙𝑖

(
∑
𝑗
𝜙𝑗 = 1) =

(∑
𝑗
𝜙𝑗

)
∇𝜙𝑗

= 𝜙𝑖∇𝜙𝑖 +
∑
𝑗≠𝑖

𝜙𝑗∇𝜙𝑖

(
∑
𝑗
∇𝜙𝑗 = 0) = 𝜙𝑖

(
−
∑
𝑗≠𝑖

∇𝜙𝑗

)
+
∑
𝑗≠𝑖

𝜙𝑗∇𝜙𝑖

= (−1)
∑
𝑗≠𝑖

(𝜙𝑖∇𝜙𝑗 −𝜙𝑗∇𝜙𝑖)

We obtain the definition of 𝜓𝑖𝑗

∫
Ω

𝜓𝑖∇ ⋅ 𝒖 =
∑
𝑗≠𝑖 ∫Ω

(𝜙𝑖∇𝜙𝑗 − 𝜙𝑗∇𝜙𝑖) ⋅ 𝒖 =∶
∑
𝑗≠𝑖 ∫Ω

𝜓𝑖𝑗 ⋅ 𝒖, (19)

where

𝜓𝑖𝑗 = 𝜙𝑖∇𝜙𝑗 −𝜙𝑗∇𝜙𝑖. (20)
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The definition of 𝜓𝑖𝑗 resembles the classical Whitney 1-form (14), and we therefore refer to 𝜓𝑖𝑗 (20) as the POU Whitney 1-form 
between a pair of index 𝑖 and 𝑗.

We note the correspondence between (19) and a traditional discrete divergence operator. Taking 𝜓𝑖 as an indicator function over 
a compact domain Ω, and taking 𝒖 ∈𝐻0(div, Ω), due to the antisymmetry properties of (20), we obtain the Gauss divergence theorem

∫
Ω

∇ ⋅ 𝒖 =
∑
𝑖 ∫

Ω

𝜓𝑖∇ ⋅ 𝒖 =
∑
𝑖𝑗 ∫

Ω

𝜓𝑖𝑗 ⋅ 𝒖 =
1
2

⎛
⎜
⎜⎝

∑
𝑖𝑗 ∫

Ω

𝜓𝑖𝑗 ⋅ 𝒖−
∑
𝑗𝑖 ∫Ω

𝜓𝑗𝑖 ⋅ 𝒖
⎞
⎟
⎟⎠
= 0.

𝜓𝑖 and 𝜓𝑖𝑗 thus correspond to volume and area densities, with 𝜓𝑖𝑗 defining the boundary shared by 𝜓𝑖 and 𝜓𝑗 . These admit 
interpretation as diffuse representations of traditional mesh entities (cells/faces) in which indicator functions defined on cells have 
been mollified, with corresponding oriented areas defined consistently with the Leibniz rule.

We again define the corresponding finite-dimensional function space as

𝑉 1 =
{∑

𝑖𝑗
𝑐𝑖𝑗𝜓𝑖𝑗 (𝑥) | 𝑐𝑖𝑗 ∈ℝ

}
,

where dim𝑉 1 =𝑁1 =
(
𝑁0

2

)
and, naturally, our derivation above shows that grad𝑉 0 ⊆ 𝑉 1 by design.

Proceeding along the de Rham complex, we similarly apply the Kelvin-Stokes theorem for 𝒖 ∈𝐻0(curl, Ω) to obtain

∫
Ω

𝜓𝑖𝑗∇× 𝒖 = ∫
Ω

∇ ×𝜓𝑖𝑗 ⋅ 𝒖.

In a similar derivation, we obtain for 𝑖 ≠ 𝑗,
curl𝜓𝑖𝑗 =∇×𝜓𝑖𝑗 =∇× (𝜙𝑖∇𝜙𝑗 −𝜙𝑗∇𝜙𝑖) = 2(∇𝜙𝑖 ×∇𝜙𝑗 )

(
∑
𝑘
𝜙𝑘 = 1) = 2

(∑
𝑘
𝜙𝑘

)
(∇𝜙𝑖 ×∇𝜙𝑗 )

= 2
{
𝜙𝑖(∇𝜙𝑖 ×∇𝜙𝑗 ) + 𝜙𝑗 (∇𝜙𝑖 ×∇𝜙𝑗 ) +

∑
𝑘≠𝑖,𝑗

𝜙𝑘(∇𝜙𝑖 ×∇𝜙𝑗 )
}

(
∑
𝑘
∇𝜙𝑘 = 0) = 2

{
𝜙𝑖(−

∑
𝑘≠𝑖

∇𝜙𝑘 ×∇𝜙𝑗 ) + 𝜙𝑗 (∇𝜙𝑖 ×−
∑
𝑘≠𝑗

∇𝜙𝑘) +
∑
𝑘≠𝑖,𝑗

𝜙𝑘(∇𝜙𝑖 ×∇𝜙𝑗 )
}

= 2
∑
𝑘≠𝑖,𝑗

(𝜙𝑖∇𝜙𝑗 ×∇𝜙𝑘 −𝜙𝑗∇𝜙𝑖 ×∇𝜙𝑘 + 𝜙𝑘∇𝜙𝑖 ×∇𝜙𝑗 ).

We obtain

∫
Ω

𝜓𝑖𝑗 ∇× 𝒖 = 2
∑
𝑘≠𝑖,𝑗 ∫Ω

𝜓𝑖𝑗𝑘 ⋅ 𝒖, (21)

where, following (15), the POU Whitney 2-form 𝜓𝑖𝑗𝑘 is defined as

𝜓𝑖𝑗𝑘 ∶= (𝜙𝑖∇𝜙𝑗 ×∇𝜙𝑘)− (𝜙𝑗∇𝜙𝑖 ×∇𝜙𝑘) + (𝜙𝑘∇𝜙𝑖 ×∇𝜙𝑗 ). (22)
Note that 𝜓𝑖𝑗𝑘 = −𝜓𝜎(𝑖𝑗𝑘) where 𝜎(𝑖𝑗𝑘) is an odd permutation of (𝑖, 𝑗, 𝑘) and 𝜓𝑖𝑗𝑘 = 0 if 𝑖, 𝑗, 𝑘 are not distinct. Therefore, 𝜓𝑖𝑗𝑘 correspond 
to diffuse generalizations of the circulations ∫ 𝒖 ⋅ 𝑑𝒍 along an edge, providing the same conservation of circulation principle as the 
classical Kelvin-Stokes theorem. We introduce the corresponding finite-dimensional function space as follows,

𝑉 2 =
{∑

𝑖𝑗𝑘
𝑐𝑖𝑗𝑘𝜓𝑖𝑗𝑘(𝑥) | 𝑐𝑖𝑗𝑘 ∈ℝ

}
,

where dim𝑉 2 =𝑁2 =
(
𝑁0

3

)
. Similarly, our derivation implies that curl𝑉 1 ⊆ 𝑉 2.

Finally, the POU Whitney 3-form can be derived in the same way. Starting from the Stokes’ Theorem (5) for div, i.e., for 𝑢 ∈
𝐻0(grad, Ω),

∫
Ω

𝜓𝑖𝑗𝑘 ⋅∇𝑢 = −∫
Ω

∇ ⋅𝜓𝑖𝑗𝑘 𝑢,

and the fact that, for 𝑖 ≠ 𝑗 ≠ 𝑘
div𝜓𝑖𝑗𝑘 =∇ ⋅𝜓𝑖𝑗𝑘 = 6

(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)
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(
∑
𝑙
𝜙𝑙 = 1) = 6

(∑
𝑙
𝜙𝑙

)
(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)

= 6{
[ ∑
𝑙≠𝑖,𝑗,𝑘

𝜙𝑙
(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)
]
+ 𝜙𝑖

(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)

+ 𝜙𝑗
(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)
+ 𝜙𝑘

(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)
}

(
∑
𝑙
∇𝜙𝑙 = 0) = 6{

[ ∑
𝑙≠𝑖,𝑗,𝑘

𝜙𝑙
(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)
]
+ 𝜙𝑖

(
−
∑
𝑙≠𝑖

∇𝜙𝑙 ×∇𝜙𝑗 ⋅∇𝜙𝑘

)

+ 𝜙𝑗

(
∇𝜙𝑖 ×−

∑
𝑙≠𝑗

∇𝜙𝑙 ⋅∇𝜙𝑘

)
+ 𝜙𝑘

(
∇𝜙𝑖 ×∇𝜙𝑗 ⋅−

∑
𝑙≠𝑘

∇𝜙𝑙

)
}

= −6
∑
𝑙≠𝑖,𝑗,𝑘

(𝜙𝑖∇𝜙𝑗 ×∇𝜙𝑘 ⋅∇𝜙𝑙 −𝜙𝑗∇𝜙𝑖 ×∇𝜙𝑘 ⋅∇𝜙𝑙

+𝜙𝑘∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑙 − 𝜙𝑙∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘),

we have

∫
Ω

𝜓𝑖𝑗𝑘 ⋅∇𝑢 = 6
∑
𝑙≠𝑖,𝑗,𝑘∫Ω

𝜓𝑖𝑗𝑘𝑙𝑢, (23)

where we define the POU Whitney 3-form

𝜓𝑖𝑗𝑘𝑙 ∶= 𝜙𝑖∇𝜙𝑗 ×∇𝜙𝑘 ⋅∇𝜙𝑙 −𝜙𝑗∇𝜙𝑖 ×∇𝜙𝑘 ⋅∇𝜙𝑙 + 𝜙𝑘∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑙 −𝜙𝑙∇𝜙𝑖 ×∇𝜙𝑗 ⋅∇𝜙𝑘.

Again, we have 𝜓𝑖𝑗𝑘𝑙 = −𝜓𝜎(𝑖𝑗𝑘𝑙) where 𝜎(𝑖𝑗𝑘𝑙) is an odd permutation of (𝑖, 𝑗, 𝑘, 𝑙) and 𝜓𝑖𝑗𝑘𝑙 = 0 if 𝑖, 𝑗, 𝑘, 𝑙 are not distinct. The corre-
sponding finite-dimensional function space is

𝑉 3 =
{∑

𝑖𝑗𝑘𝑙
𝑐𝑖𝑗𝑘𝑙𝜓𝑖𝑗𝑘𝑙(𝑥) | 𝑐𝑖𝑗𝑘𝑙 ∈ℝ

}
,

where dim𝑉 3 =𝑁3 =
(
𝑁0

4

)
. Finally, it is clear that div𝑉 2 ⊆ 𝑉 3.

We may use the POU Whitney forms to define the following set of discrete exterior derivatives generalizing the familiar vector 
calculus div/grad/curl, which may be used to discretize PDEs.

𝐷𝐼𝑉 (𝑈 )𝑖 ∶=
∑
𝑗≠𝑖

𝑈𝑖𝑗 , 𝑈𝑖𝑗 = ∫
Ω

𝜓𝑖𝑗 ⋅ 𝒖, ∀𝒖 ∈𝐻0(div,Ω) (24)

𝐶𝑈𝑅𝐿(𝑈 )𝑖𝑗 ∶=
∑
𝑘≠𝑖,𝑗

𝑈𝑖𝑗𝑘, 𝑈𝑖𝑗𝑘 = 2∫
Ω

𝜓𝑖𝑗𝑘 ⋅ 𝒖, ∀𝒖 ∈𝐻0(curl,Ω) (25)

𝐺𝑅𝐴𝐷(𝑈 )𝑖𝑗𝑘 ∶=
∑
𝑙≠𝑖,𝑗,𝑘

𝑈𝑖𝑗𝑘𝑙 , 𝑈𝑖𝑗𝑘𝑙 = 6∫
Ω

𝜓𝑖𝑗𝑘𝑙 𝑢, ∀𝑢 ∈𝐻0(grad,Ω). (26)

As discussed previously, local conservation principles follow from the anti-symmetry in the summands of (24), (25), and (26). We 
next demonstrate that the exact sequence property holds at a discrete level as well:

𝐷𝐼𝑉 (𝐶𝑈𝑅𝐿(𝑈 ))𝑖 =
∑
𝑗≠𝑖

𝐶𝑈𝑅𝐿(𝑈 )𝑖𝑗 (definition of 𝐷𝐼𝑉 )

=
∑
𝑗≠𝑖

∑
𝑘≠𝑖,𝑗

𝑈𝑖𝑗𝑘 definition of 𝐶𝑈𝑅𝐿

=
∑
𝑗≠𝑖

∑
𝑘≠𝑖,𝑗

2∫
Ω

𝜓𝑖𝑗𝑘 ⋅ 𝒖 definition of 𝑈

=
∑
𝑗≠𝑖 ∫Ω

𝜓𝑖𝑗∇× 𝒖 Leibniz rule

= ∫
Ω

𝜓𝑖∇ ⋅∇× 𝒖 Leibniz rule

= 0,

and similarly we obtain
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𝐶𝑈𝑅𝐿(𝐺𝑅𝐴𝐷(𝑈 ))𝑖𝑗 =
∑
𝑘≠𝑖,𝑗

𝐺𝑅𝐴𝐷(𝑈 )𝑖𝑗𝑘 =
∑
𝑘≠𝑖,𝑗

∑
𝑙≠𝑖,𝑗,𝑘

𝑈𝑖𝑗𝑘𝑙

=
∑
𝑘≠𝑖,𝑗

∑
𝑙≠𝑖,𝑗,𝑘

6∫
Ω

𝜓𝑖𝑗𝑘𝑙𝑢 =
∑
𝑘≠𝑖,𝑗 ∫Ω

𝜓𝑖𝑗𝑘 ⋅∇𝑢

= 1
2 ∫

Ω

𝜓𝑖𝑗∇×∇𝑢 = 0.

In fact, the above properties follow directly if we notice that the discrete differential operators (24)–(26) are closely related to the 
coboundary operators used widely in the combinatorial graph exterior calculus; which we briefly recall here. Consider a complete graph  = ( , ) with the vertex set  = {1, 2, ⋯ , 𝑁0} and edge set  , embedded in ℝ3. Let 𝐶𝑘 be the set of 𝑘-chains (a linear combination 
of (𝑘 + 1)-cliques on the graph) and 𝐶𝑘 be the set of cochains. Note that 𝐶𝑘 consists of linear functionals acting on 𝐶𝑘. In the graph 
setting, we define the coboundary operator 𝛿𝑘 ∶ 𝐶𝑘 → 𝐶𝑘+1 as the signed incidence matrix between the 𝑘-cliques and (𝑘 + 1)-cliques 
(see e.g., [29]). In 3D, 𝛿0 is the edge-vertex signed incidence matrix, 𝛿1 is the triangle-edge signed incidence matrix, and 𝛿2 is the 
tetrahedron-triangle signed incidence matrix. We should understand triangles and tetrahedrons as the 3-cliques and 4-cliques on 
the complete graph , respectively. Thus, from the definitions of the coboundary operators [29] and the definitions (24)–(26), and 
aligning the orientations of cliques and ordering of the indices in the summations (24)–(26), we may identify the discrete exterior 
derivatives with the adjoints of the graph operators.

𝐷𝐼𝑉 = 𝛿𝑇0 , 𝐶𝑈𝑅𝐿 = 2𝛿𝑇1 , 𝐺𝑅𝐴𝐷 = 6𝛿𝑇2 . (27)
Moreover,

𝐷𝐼𝑉 𝐶𝑈𝑅𝐿 = 𝛿𝑇0 2𝛿𝑇1 = 2
(
𝛿1𝛿0

)𝑇 = 0

𝐶𝑈𝑅𝐿𝐺𝑅𝐴𝐷 = 2𝛿𝑇1 6𝛿𝑇2 = 12
(
𝛿2𝛿1

)𝑇 = 0

In the remainder of this paper, we employ the FEEC framework to develop Whitney forms as a finite-element basis. Note that the 
finite dimensional function spaces 𝑉 0, 𝑉 1, 𝑉 2, and 𝑉 3 were constructed to satisfy the complex

𝑉 3 𝑉 2 𝑉 1 𝑉 0,
−div curl −grad

(28)

which is a subcomplex of the dual de Rham complex (7). This suggests that, as in the FEEC setting, we should use the POU Whitney 
forms to approximate the functions from the dual point of view and consider the following POU complex

𝑉 3 𝑉 2 𝑉 1 𝑉 0,
grad curl div (29)

which is a subcomplex of the primal de Rham complex (4). Therefore, to discretize the divergence operator, we consider 𝒖 ∈ 𝑉 1 and 
𝑞 ∈ 𝑉 0 and

(∇ ⋅ 𝒖, 𝑞) = (𝒖,−∇𝑞) =
(∑

𝑎𝑏
𝑢𝑎𝑏𝜓𝑎𝑏,

∑
𝑖
𝑞𝑖(−∇)𝜓𝑖

)
=∶ 𝗊𝑇 𝖣𝖨𝖵𝗎,

where 𝗎 and 𝗊 are vectors expansions of 𝒖 and 𝑞 in a basis for 𝑉 1 and 𝑉 0, respectively, and the matrix 𝖣𝖨𝖵 is defined as

(𝖣𝖨𝖵)𝑖,(𝑎𝑏) = (𝜓𝑎𝑏,−∇𝜓𝑖). (30)
Similarly, to discretize the curl operator we consider 𝒖 ∈ 𝑉 2 and 𝒗 ∈ 𝑉 1, and then

(∇× 𝒖,𝒗) = (𝒖,∇× 𝒗) =∶ 𝗏𝑇 𝖢𝖴𝖱𝖫𝗎,

where 𝗎 and 𝗏 are vector representations of 𝒖 and 𝒗, respectively, and the matrix 𝖢𝖴𝖱𝖫 is defined as

(𝖢𝖴𝖱𝖫)(𝑖𝑗),(𝑎𝑏𝑐) = (𝜓𝑎𝑏𝑐 ,∇×𝜓𝑖𝑗 ). (31)
Finally, for the gradient operator, we use 𝑢 ∈ 𝑉 3 and 𝒗 ∈ 𝑉 2, and

(∇𝑢,𝒗) = (𝑢,−∇ ⋅ 𝒗) =∶ 𝗏𝑇 𝖦𝖱𝖠𝖣𝗎,

where 𝗎 and 𝗏 are vector representation of 𝑢 and 𝒗, respectively, and the matrix 𝖦𝖱𝖠𝖣 is defined as

(𝖦𝖱𝖠𝖣)(𝑖𝑗𝑘),(𝑎𝑏𝑐𝑑) = (𝜓𝑎𝑏𝑐𝑑 ,−∇ ⋅𝜓𝑖𝑗𝑘). (32)
Similar to the traditional low-order FEEC/DEC setting [61], the FEEC differential operators (30)–(32) are closely related to the 

DEC differential operators (24)–(26). Based on the properties −∇𝜓𝑖 =
∑
𝑗≠𝑖 𝜓𝑖𝑗 , ∇ ×𝜓𝑖𝑗 = 2 ∑𝑘≠𝑖,𝑗 𝜓𝑖𝑗𝑘, and −∇ ⋅𝜓𝑖𝑗 = (−6) ∑𝓁≠𝑖,𝑗,𝑘 𝜓𝑖𝑗𝑘𝑙 , 

we have
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(𝖣𝖨𝖵)𝑖,(𝑎𝑏) = (𝜓𝑎𝑏,−∇𝜓𝑖) =
∑
𝑗≠𝑖

(𝜓𝑎𝑏,𝜓𝑖𝑗 ),

(𝖢𝖴𝖱𝖫)(𝑖𝑗),(𝑎𝑏𝑐) = (𝜓𝑎𝑏𝑐 ,∇×𝜓𝑖𝑗 ) = 2
∑
𝑘≠𝑖,𝑗

(𝜓𝑎𝑏𝑐 ,𝜓𝑖𝑗𝑘),

(𝖦𝖱𝖠𝖣)(𝑖𝑗𝑘),(𝑎𝑏𝑐𝑑) = (𝜓𝑎𝑏𝑐𝑑 ,−∇ ⋅𝜓𝑖𝑗𝑘) = 6
∑
𝑙≠𝑖,𝑗,𝑘

(𝜓𝑎𝑏𝑐𝑑 ,𝜓𝑖𝑗𝑘𝑙),

which provides the identities

𝖣𝖨𝖵 =𝐷𝐼𝑉 𝐌1, 𝖢𝖴𝖱𝖫 = 𝐶𝑈𝑅𝐿𝐌2, 𝖦𝖱𝖠𝖣 =𝐺𝑅𝐴𝐷𝐌3,

where (𝐌1)(𝑖𝑗),(𝑎𝑏) = (𝜓𝑎𝑏, 𝜓𝑖𝑗 ), (𝐌2)(𝑖𝑗𝑘),(𝑎𝑏𝑐) = (𝜓𝑎𝑏𝑐 , 𝜓𝑖𝑗𝑘), and (𝐌3)(𝑖𝑗𝑘𝑙),(𝑎𝑏𝑐𝑑) = (𝜓𝑎𝑏𝑐𝑑 , 𝜓𝑖𝑗𝑘𝑙) are mass matrices associated with the finite 
element spaces 𝑉 1, 𝑉 2, and 𝑉 3, respectively. Furthermore, using (27), we have

𝖣𝖨𝖵 = 𝛿𝑇0 𝐌1, 𝖢𝖴𝖱𝖫 = 2𝛿𝑇1 𝐌2, 𝖦𝖱𝖠𝖣 = 6𝛿𝑇2 𝐌3. (33)
We remark that the scalings 2 and 6 above do not effect the finite dimensional spaces spanned by the POU Whitney forms, and we 
therefore may drop them without loss of generality in the variational setting.

Equation (33) is the cornerstone of this work; it reveals an intimate connection between the graph exterior calculus we have used 
as a basis for learning physics in [71] and the finite element exterior calculus. Whereas in [72] data was used to associate a metric 
with a given graph, (33) shows that the graph itself and the associated metric information may be inferred directly from the Whitney 
forms. The entries of the matrices 𝐌𝑘 encode graph sparsity by weighting boundary interactions between partitions, and therefore 
the geometric problem of identifying control volumes is equivalent to a graph discovery problem.

4. Generalizations to high-dimensional manifolds

In this section, we generalize the construction of POU Whitney forms to high-dimensional manifolds. Similar to the prior case, we 
define the 0-th order Whitney forms as a given POU on the manifold, and then define higher-order Whitney forms by induction using 
the Leibniz rule and properties of POUs to finally arrive at an equivalence between graph coboundary operators, discrete exterior 
derivatives, and FEEC derivatives. The results of this section directly parallel those of Section 3. Again, let

𝜓𝑖 = 𝜙𝑖, 𝑖 = 1,⋯ ,𝑁0 (34)
the same as in (17), but now 𝜓𝑖 ∶ → [0, 1] for a smooth manifold  ⊆ ℝ𝑑 . Paralleling (13), we define higher-order POU Whitney 
𝑘-forms as follows,

𝜓𝑘𝑗0⋯𝑗𝑘 =
𝑘∑
𝑖=0

(−1)𝑖𝜙𝑗𝑖 𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘 . (35)

The exterior derivative of the 𝑘-th order Whitney form is given by

𝖽𝜓𝑘𝑗0⋯𝑗𝑘 = 𝖽

(
𝑘!

𝑘∑
𝑖=0

(−1)𝑖𝜙𝑗𝑖𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

= 𝑘!
( 𝑘∑
𝑖=0

(−1)𝑖𝖽𝜙𝑗𝑖 ∧ 𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

= 𝑘!
( 𝑘∑
𝑖=0

(−1)𝑖(−1)𝑖𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

= (𝑘+ 1)!
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)
.

Applying the POU properties from (8) and (9), we obtain

𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

(
∑
𝑗𝑘+1

𝜙𝑗𝑘+1 = 1) =
(∑
𝑗𝑘+1

𝜙𝑗𝑘+1

)(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

=
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝜙𝑗𝑘+1
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)
+

𝑘∑
𝑖=0

𝜙𝑗𝑖
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

(
∑
𝑗𝑘+1

𝖽𝜙𝑗𝑘+1 = 0) =
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝜙𝑗𝑘+1
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)
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+
𝑘∑
𝑖=0

𝜙𝑗𝑖

(
𝖽𝜙𝑗0 ∧⋯ ∧

[
−

∑
𝑗𝑘+1≠𝑗𝑖

𝖽𝜙𝑗𝑘+1

]
∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

=
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝜙𝑗𝑘+1
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

−
𝑘∑
𝑖=0

∑
𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝜙𝑗𝑖
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘+1 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

=
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝜙𝑗𝑘+1
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑘

)

−
𝑘∑
𝑖=0

∑
𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

(−1)𝑘−𝑖𝜙𝑗𝑖
(
𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘 ∧ 𝖽𝜙𝑗𝑘+1

)

= (−1)𝑘+1
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

(𝑘+1∑
𝑖=0

(−1)𝑖𝜙𝑗𝑖𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘+1

)
.

Here ∑𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘 𝜙𝑗𝑘+1 implies a summation over indices 𝑗𝑘+1 ∈ {1, … , 𝑁0} which do not take the same value as any of the indices 
𝑗0, … , 𝑗𝑘 ∈ {1, … , 𝑁0}. Finally, we arrive at the following expression allowing construction of the POU Whitney (𝑘 + 1)-forms from 
𝑘-forms.

Property 4.1.

𝖽𝜓𝑘𝑗0⋯𝑗𝑘 = (−1)𝑘+1(𝑘+ 1)!
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝜓𝑘+1𝑗0⋯𝑗𝑘+1

Proof. The result follows from the previous two equalities and the definition of the POU Whitney 𝑘-form (35)

𝖽𝜓𝑘𝑗0⋯𝑗𝑘 = (−1)𝑘+1(𝑘+ 1)!
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

(𝑘+1∑
𝑖=0

(−1)𝑖𝜙𝑗𝑖𝖽𝜙𝑗0 ∧⋯ ∧ 𝖽𝜙𝑗𝑖 ∧⋯ ∧ 𝖽𝜙𝑗𝑘+1

)
. □

One consequence of Property 4.1 is that, for any 𝑢 ∈ Λ𝑑−𝑘−1 satisfying tr 𝑢 = 0, based on (6), we have

∫
Ω

𝜓𝑘𝑗0⋯𝑗𝑘 ∧ 𝖽𝑢 = (−1)𝑘+1 ∫
Ω

𝖽𝜓𝑘𝑗0⋯𝑗𝑘 ∧ 𝑢

= (−1)𝑘+1 ∫
Ω

[
(−1)𝑘+1(𝑘+ 1)!

∑
𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝜓𝑘+1𝑗0⋯𝑗𝑘+1

]
∧ 𝑢

= (𝑘+ 1)!
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘
∫
Ω

𝜓𝑘+1𝑗0⋯𝑗𝑘+1
∧ 𝑢.

The above formula naturally suggests the DEC discretization of differential operators

𝐷𝑑−𝑘−1(𝑈 )𝑗0⋯𝑗𝑘 =
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝑈𝑗0⋯𝑗𝑘+1 , 𝑈𝑗0⋯𝑗𝑘+1 = (𝑘+ 1)!∫
Ω

𝜓𝑘+1𝑗0⋯𝑗𝑘+1
∧ 𝒖, ∀𝒖 ∈ Λ𝑑−𝑘−1. (36)

This operator is locally conservative via the permutation property of 𝜓𝑘𝑗0⋯𝑗𝑘 , and maintains the discrete exact sequence property

𝐷𝑑−𝑘−1(𝐷𝑑−𝑘−2(𝑈 ))𝑗0⋯𝑗𝑘 =
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

𝐷(𝑈 )𝑗0⋯𝑗𝑘+1 =
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

∑
𝑗𝑘+2≠𝑗0 ,⋯,𝑗𝑘+1

𝑈𝑗0⋯𝑗𝑘+2

=
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘

∑
𝑗𝑘+2≠𝑗0 ,⋯,𝑗𝑘+1

(𝑘+ 2)!∫
Ω

𝜓𝑘+2𝑗0⋯𝑗𝑘+2
∧ 𝒖

=
∑

𝑗𝑘+1≠𝑗0 ,⋯,𝑗𝑘
∫
Ω

𝜓𝑘+1𝑗0⋯𝑗𝑘+1
∧ 𝖽𝒖

= 1
(𝑘+ 1)! ∫

Ω

𝜓𝑘𝑗0⋯𝑗𝑘 ∧ 𝖽(𝖽𝒖) = 0.

Similar to the 3D case, by introducing a complete graph  = ( , ) with the vertex set  = {1, 2, ⋯ , 𝑁0} and the edge set  , which 
consists all possible edges between any two vertices, and, again, aligning the orientation of the cliques and the ordering used in the 
summation definition (36), the DEC differential operators 𝐷 are closely related to the coboundary operators 𝛿𝑘, i.e.,
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𝐷𝑑−𝑘−1 = (𝑘+ 1)!𝛿𝑇𝑘 , (37)
where 𝛿𝑘 are the signed incidence matrices between 𝑘-cliques and (𝑘 + 1)-cliques.

This reinterpretation provides the simpler alternative proof of the exact sequence property.

𝐷𝑑−𝑘−1𝐷𝑑−𝑘−2 = (𝑘+ 1)!𝛿𝑇𝑘 (𝑘+ 2)!𝛿𝑇𝑘+1 = (𝑘+ 1)!(𝑘+ 2)!
(
𝛿𝑘+1 𝛿𝑘

)𝑇 = 0.

Following the 3D case, we can define corresponding finite-dimensional function spaces of 𝑘-forms as

𝑉 𝑘 =
{ ∑

𝑗0 ,⋯,𝑗𝑘

𝑐𝑗0⋯𝑗𝑘𝜓
𝑘
𝑗0⋯𝑗𝑘

|𝑐𝑗0⋯𝑗𝑘 ∈ℝ
}

where dim𝑉 𝑘 =
(
𝑁0

𝑘+ 1

)
, allowing recasting of the discrete differential operators into the FEEC setting. Again, we approximate 

functions from the dual point of view and obtain the dual de Rham complex

𝑉 0 ⋯ 𝑉 𝑑−1 𝑉 𝑑 .
𝖽 𝖽 𝖽

For 𝑢 ∈ 𝑉 𝑘+1 and 𝑣 ∈ 𝑉 𝑘, let 𝗎 and 𝗏 be vector representations corresponding to basis expansions in 𝑉 𝑘+1 and 𝑉 𝑘, and we obtain

(𝖽𝑢,𝑣) = (−1)𝑘+1(𝑢,𝖽𝑣) =∶ 𝗏𝑇 𝖣𝑑−𝑘−1 𝗎

where 𝖣𝑑−𝑘−1 is the FEEC discretization of the differential operator 𝖽 defined as follows,

(𝖣𝑑−𝑘−1)(𝑖0⋯𝑖𝑘),(𝑗0⋯𝑗𝑘+1) = (𝜓𝑘+1𝑗0⋯𝑗𝑘+1
, (−1)𝑘+1𝖽𝜓𝑘𝑖0⋯𝑖𝑘 ).

By Property 4.1, the FEEC differential operator 𝖣𝑑−𝑘−1, the DEC differential operator 𝐷𝑑−𝑘−1, and the coboundary operator 𝛿𝑘 (i.e., 
the signed incidence matrix on the complete graph ), are equivalent in the following sense

𝖣𝑑−𝑘−1 =𝐷𝑑−𝑘−1𝐌𝑘+1 = (𝑘+ 1)!𝛿𝑇𝑘𝐌𝑘+1,

where 𝐌𝑘+1 is the mass matrix of the finite element space 𝑉 𝑘+1.

5. Data-driven Whitney forms for learning physics

To infer Whitney forms and physics from data, we will solve the following equality constrained quadratic program

min
𝜃

||𝑢− 𝑢𝑑𝑎𝑡𝑎||2 (38)
such that 𝜃[𝑢] = 𝑓 , (39)

where 𝜃 denotes parameters associated with learning both Whitney forms as well as the underlying physics. In [71], we introduced 
a complete stability theory for models of the form

𝜃[𝑢]Δ𝑘𝑢+ [𝖽𝑢], (40)
i.e., nonlinear perturbations of the 𝑘𝑡ℎ order Hodge Laplacian Δ𝑘 by a nonlinear perturbation  [𝖽𝑢] in conservation form and 
parameterized by a neural network. Following standard Lax-Milgram/fixed point analysis, this model class was shown to be well-
posed given mild conditions on the nonlinearity. For simplicity in the current work, we will consider only the linear div− grad system, 
but stress that the analysis from [71] holds and the FEEC extension may be applied to a more general class of problems.

Solving Equation (38) provides a set of partitions which optimally approximate data while satisfying a structure preserving 
control volume analysis. To accomplish this, in Section 5.1 we introduce a POU architecture that admits closed form expressions 
for quadrature, allowing us to consider variational models for 𝜃 which are end-to-end differentiable, and therefore amenable to 
back propagation. Then in Section 5.2 we introduce a variational model for 𝜃 and outline how to generalize the learning of metric 
information from DDEC to the FEEC setting. More details on the assembly process can be found in Appendix A.

5.1. Partition of unity construction

Use of the POU Whitney forms as FEEC shape functions requires their integration in the bilinear forms of the variational problem. 
Many architectures may be used to parameterize the POU; for example, popular classification architectures consisting of a multilayer 
perceptron composed with a softmax activation are natural choices [46]. However, such architectures require the use of inexact 
quadrature rules, introducing a variational crime and complicating numerical analysis. To avoid this, we introduce a novel archi-
tecture that admits exact expressions for integrals of shape functions and their derivatives. To do so, we construct POUs as convex 
combinations of tensor-product free-knot B-splines. B-splines admit a dual interpretation as ReLU networks [31,11], naturally form 
partitions of unity, and admit closed-form expressions for integrals depending only on the degree of the B-splines and knot locations 
[57,18]. While any degree of B-splines may be used, we choose to work with B1 splines. We sketch the construction of 0-forms and 
1-forms in Figs. 1 and 2, respectively.
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For the unit hypercube Ω = [0, 1]𝑛, we form 𝑛-dimensional B-splines via tensor products of 1D splines, with unique sets of knots 
along each dimension. Let 𝒙 = (𝑥1, … , 𝑥𝑛) ∈Ω. For each 𝑑 = 1, … , 𝑛 let {𝜁𝑘(𝑡) | 𝑘 = 1, … , 𝑁𝑥𝑑 } be a set of 1-dimensional B1 spline basis 
functions with an associated set of spline nodes 𝑇𝑑 = {𝑡𝑑𝑘𝑑 | 𝑘𝑑 = 1, … , 𝑁𝑥𝑑 }, where the knots are ordered so that 𝑡𝑑𝑘𝑑 < 𝑡𝑑𝑘𝑑+1; they 
satisfy the Kronecker delta property (𝜁𝑖(𝑡𝑑𝑗 ) = 𝛿𝑖𝑗 ); and they conform to the boundary (𝑡𝑑1 = 0 and 𝑡𝑑𝑁𝑥𝑑 = 1). By the linear reproduction 
property of B-splines we have the POU property: for all 𝑥 ∈ [0, 1],

𝑁𝑥𝑑∑
𝑘𝑑=1

𝜁𝑘𝑑 (𝑥) = 1.

We denote the tensor product of these splines 𝜁𝑘1𝑘2…𝑘𝑛 ∶ Ω → [0, 1] as

𝜁𝑘1𝑘2…𝑘𝑛 (𝒙) =
𝑛∏
𝑑=1

𝜁𝑘𝑑 (𝑥𝑑 ),

and denote the set of all spline knots 𝑇 ⊂Ω as

𝑇 =
{(
𝑡1𝑘1 , 𝑡

2
𝑘2
,… , 𝑡𝑛𝑘𝑛

)
| 𝑡𝑑𝑘𝑑 ∈ 𝑇𝑑 , 𝑑 = 1,… ,𝑛

}
,

denoting the total number of knots 𝑁knots =
∏

𝑑 𝑁𝑥𝑑 . The POU property is closed under tensor products, i.e.,
𝑁𝑥1∑
𝑘1=1

⋯
𝑁𝑥𝑛∑
𝑘𝑛=1

𝜁𝑘1…𝑘𝑛 (𝒙) =
𝑛∏
𝑑=1

⎛
⎜
⎜⎝

𝑁𝑥𝑑∑
𝑘𝑑=1

𝜁𝑘𝑑 (𝑥𝑑 )
⎞
⎟
⎟⎠
= 1.

We take a convex combination of the tensor product B-splines to arrive at a coarsened non-Cartesian partition of space. Define a 
trainable tensor of weights 𝐖 of size 𝑁𝑥1 ×⋯ ×𝑁𝑥𝑛 ×𝑁

0, with 𝐖 constrained so that for all 𝑘1 … 𝑘𝑛,

𝐖𝑘1…𝑘𝑛𝑖 ≥ 0 and ∑
𝑖
𝐖𝑘1…𝑘𝑛𝑖 = 1.

We discuss choices of 𝐖 in Section 5.3.2. With these convex combinations, and for 𝑖 = 1, … , 𝑁0, we finally define our coarse-scale 
POU functions 𝜙𝑖 ∶ Ω → [0, 1]

𝜙𝑖(𝒙) =
𝑁𝑥1∑
𝑘1=1

⋯
𝑁𝑥𝑛∑
𝑘𝑛=1

𝐖𝑘1…𝑘𝑛𝑖 𝜁𝑘1…𝑘𝑛 (𝒙).

The partition of unity property is closed under convex combinations; i.e., from the convex combination restriction on 𝐖, we obtain 
for any point 𝒙 ∈Ω,

∑
𝑖
𝜙𝑖(𝒙) =

∑
𝑖

𝑁𝑥1∑
𝑘1=1

⋯
𝑁𝑥𝑛∑
𝑘𝑛=1

𝐖𝑘1…𝑘𝑛𝑖𝜁𝑘1…𝑘𝑛 (𝒙) =
𝑁𝑥1∑
𝑘1=1

⋯
𝑁𝑥𝑛∑
𝑘𝑛=1

1 ⋅ 𝜁𝑘1…𝑘𝑛 (𝒙) = 1. (41)

Therefore, our construction satisfies the requirements of Equation (8). Following the definitions in Equation (18), we then define 
𝜓𝑖(𝒙) = 𝜙𝑖(𝒙) and 𝑉 0 = span{𝜓𝑖 | 𝑖 = 1, … , 𝑁0}, and assemble the spaces 𝑉 1, 𝑉 2, … . With careful construction, we can also define 
spaces with a trace of 0 along the boundary, e.g., 𝑉 0

𝐷 = span{𝜓𝑖 | 𝑖 = 1, … , 𝑁0 such that 𝜓𝑖(𝑥) = 0 ∀𝑥 ∈ 𝜕Ω}, presented in the next 
subsection.

5.1.1. Boundary/interior POUs for Dirichlet conditions
When we later define the variational problem, we will need to perform a lift of the solution on the portion of the boundary 

Γ𝐷 ⊂ 𝜕Ω associated with Dirichlet boundary conditions. Toward this end, we modify the convex combination tensor to provide: 
interior partitions, 0-forms whose restriction to the boundary is zero; and boundary partitions, 0-forms with a Kronecker delta property 
on Γ𝐷 .

We restrict the convex combination tensor 𝐖 into blocks corresponding to interior and boundary partitions. This restriction, 
and the corresponding block diagonal structure, may be expressed in terms of a matricization of 𝐖, as defined in e.g., [40,41]. 
Matricization of a tensor 𝐗 ∈ ℝ𝑁1×⋯×𝑁𝑛 along index 𝑘 reshapes 𝐗 into a matrix 𝐗(𝑘) of size 

(
∏𝑛

𝑑=1
𝑑≠𝑘

𝑁𝑑

)
×𝑁𝑘. We restrict the form 

of 𝐖 so that its matricization satisfies

𝐖(𝑛+1) =
[
𝐖int

(𝑛+1) 0
0 𝐖bdry

(𝑛+1)

]
. (42)

With 𝑁knots total knots and 𝑁bc = #{𝑇 ∩Γ𝐷} boundary knots, this restriction yields 𝐖int
(𝑛+1) ∈ℝ(𝑁knots−𝑁bc)×𝑁0

int and 𝐖bdry
(𝑛+1) ∈ℝ𝑁bc×𝑁0

bdry . 
Fig. 1 provides an example POU consisting of three interior and two boundary POUs.
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Fig. 1. Construction of 0-forms 𝜓𝑖 . Convex combinations of tensor product free-knot B-splines form a basis for 𝑉 0 and 𝑉 0
𝐷 . Left: Interior spline nodes are marked with 

circles, while boundary nodes are squares. Contours of a single tensor product B-spline are plotted alongside knot locations. Center: Sparsity of convex combination 
tensor 𝑊 for interior and boundary POUs. Partitioning is performed separately for interior and boundary knots, providing a basis with Kronecker delta property on 
the boundary suitable for imposing Dirichlet conditions. Right: The resulting basis functions parameterize the homogeneous component of the space (𝑉 0

𝐷 ) along with 
a basis for imposing Dirichlet conditions (𝑉 0) via a lift (see Section 5.1.1). Quadrature may be performed by pulling back to the original tensor product space.

5.2. Variational model and graph network architecture

Let 𝜕Ω = Γ𝑁 ∪ Γ𝐷 , where Γ𝐷, Γ𝑁 are disjoint. We consider as data solutions to the div-grad problem,
𝐅− 𝜇∇𝑝 = 0

∇ ⋅ 𝐅 = 𝑓 in Ω

𝑝 = 𝑔𝐷 on Γ𝐷
𝐅 ⋅ 𝑛 = 𝑔𝑁 on Γ𝑁 ,

(43)

where 𝜇 ∈𝐿2(Ω) is a discontinuous diffusion coefficient.
To enforce boundary conditions, we split the pressure 𝑝 = 𝑝0 + 𝑝𝐷 into 𝑝0 and 𝑝𝐷 with 𝑝0 = 0 and 𝑝𝐷 = 𝑔𝐷 on Γ𝐷 , and introduce 

the space

𝑉 0
𝐷 = {𝜓 ∈ 𝑉 0 |𝜓(𝑥) = 0 ∀𝑥 ∈ Γ𝐷} = span

⎧
⎪
⎨
⎪⎩

𝑁𝑥1∑
𝑘1=1

⋯
𝑁𝑥𝑛∑
𝑘𝑛=1

𝑊 int
𝑘1…𝑘𝑛𝑖

𝜁𝑘1…𝑘𝑛 (𝒙), 𝑖 = 1…𝑁0
int

⎫
⎪
⎬
⎪⎭
.

We seek a solution (𝑝0, 𝐅) ∈ 𝑉 0
𝐷 × 𝑉 1 that for all (𝑞0, 𝐄) ∈ 𝑉 0

𝐷 × 𝑉 1 satisfies the mixed variational problem
(𝐅,𝐄)− (𝖽0𝑝0,𝐄) = (𝖽0𝑝𝐷,𝐄)

−(𝐅,𝖽0𝑞0) = (𝑓 , 𝑞0)− (𝑔𝑁 , 𝑞0)Γ𝑁 .
(44)

Expanding the solution (𝑝0, 𝐅) in terms of the Whitney forms
𝐅 =

∑
𝑖,𝑗
𝐹𝑖𝑗𝜓𝑖𝑗 𝜓𝑖𝑗 ∈ 𝑉 1

𝑝0 =
∑
𝑖
𝑝𝑖𝜓𝑖 𝜓𝑖 ∈ 𝑉 0

𝐷,
(45)
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Fig. 2. Construction of 1-forms 𝜓𝑖𝑗 from pairs of 0-forms 𝜓𝑖 and 𝜓𝑗 constructed in Fig. 1. Following the definition 𝜓𝑖𝑗 = 𝜓𝑖∇𝜓𝑗 −𝜓𝑗∇𝜓𝑖 , we observe the antisymmetry 
𝜓𝑖𝑗 = −𝜓𝑗𝑖 . X-components of the vector-valued 1-form are plotted.

we may recast Equation (44) in matrix form
[

𝐌1 −𝖣𝖨𝖵𝑇
−𝖣𝖨𝖵 𝟎

][
𝐅̂
𝐩̂

]
=
[

𝐛𝐷
−𝐛𝑓 − 𝐛𝑁

]
, (46)

where we have introduced ̂⋅ to denote a vector of modal coefficients, and

𝑏𝐷 (𝑖𝑗) = (∇𝑝𝐷,𝜓𝑖𝑗 ) = ∫
Ω

∇𝑝𝐷 ⋅𝜓𝑖𝑗

𝑏𝑓 𝑖 = (𝑓 ,𝜓𝑖) = ∫
Ω

𝑓𝜓𝑖

𝑏𝑁 𝑖 = (𝑔𝑁 ,𝜓𝑖)Γ𝑁 = ∫
Γ𝑁

𝑔𝑁𝜓𝑖.

(47)

Following [71], we introduce trainable symmetric positive semi-definite metric tensors 𝐁0, 𝐃0, 𝐁1, and 𝐃1 corresponding to Hodge 
star operators and parameterize 𝖽0 and 𝖽0𝑇 as follows

𝖽0 =𝐃−1
1 𝛿0𝐃0

𝖽0
𝑇 = 𝐁−1

0 𝛿𝑇0 𝐁1
(48)

where 𝛿0 and 𝛿𝑇0 are the related graph exterior calculus combinatorial operators on a complete graph with 𝑁0 vertices. We thus have 
𝖣𝖨𝖵𝑇 =𝐌1𝖽

0 and 𝖣𝖨𝖵 = 𝖽0
𝑇𝐌1, and finally arrive at our discrete model form

[
𝐌1 −𝐌1𝐃−1

1 𝛿0𝐃0
−𝐁−1

0 𝛿𝑇0 𝐁1𝐌1 𝟎

][
𝐅̂
𝐩̂

]
=
[

𝐛𝐷
−𝐛𝑓 − 𝐛𝑁

]
. (49)
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Due to its block structure, assuming 𝐌1 is symmetric and positive definite, the solvability of (49) reduces to the invertibility of the 
Schur complement 𝐒 = 𝐁−1

0 𝛿𝑇0 𝐁1𝐌1𝐃−1
1 𝛿0𝐃0 (note our definition of Schur complement here is slightly different from the convention 

by a negative sign). Note that the Schur complement 𝐒 is basically a Hodge Laplacian defined in [71], which is invertible excluding 
the corresponding homology (see Theorem 3.5 in [71]). Therefore, we have the following theorem.

Theorem 5.1. Assuming 𝐁0, 𝐃0, 𝐁1, 𝐃1, and 𝐌1 are symmetric positive definite, the mixed formulation (49) is solvable when excluding the 
corresponding homology of the Schur complement 𝐒 = 𝐁−1

0 𝛿𝑇0 𝐁1𝐌1𝐃−1
1 𝛿0𝐃0.

The underlying connection between FEEC and DEC is apparent if one chooses metric tensors satisfying 𝐌1 ≈ 𝐁−1
1 𝐃1. In traditional 

FEM, this corresponds to performing a mass lumping [2,12,16]. If that approximation held, the linear system would reduce to
[

𝐌1 −𝐌1𝐃−1
1 𝛿0𝐃0

−𝐁−1
0 𝛿𝑇0 𝐁1𝐌1 𝟎

][
𝐅̂
𝐩̂

]
=
[

𝐛𝐷
−𝐛𝑓 − 𝐛𝑁

]

⟺
[
𝐁−1
1

𝐁−1
0

][
𝐈 −𝛿0

−𝛿𝑇0 𝟎

][
𝐃1

𝐃0

][
𝐅̂
𝐩̂

]
=
[

𝐛𝐷
−𝐛𝑓 − 𝐛𝑁

]
.

(50)

The assembly required to solve the linear system in Equation (49) is tedious but straightforward. Since our bases for 𝑉 0, 𝑉 0
𝐷 , and 

𝑉 1 are each convex combinations of splines, the entries of 𝐌1 and 𝖣𝖨𝖵 are given by analytic, closed-form expressions depending 
upon the spline knots 𝑇𝑑 and convex combination tensor 𝐖 (see Appendix A for example computation of mass matrices). To evaluate 
the forcing terms in Equation (47), the B1 spline interpolants of 𝑓 , 𝑝𝐷, and 𝑔𝑁 are used to perform exact quadrature.

We remark that analytic expressions for quadrature are crucial for the method to be computationally tractable. The scheme may 
be implemented in machine learning frameworks such as TensorFlow, PyTorch, or Jax which support automatic differentiation, 
so that the derivatives of Equation (49) are available. During training, the exact quadrature allows back propagation through the 
solution operator to evolve the control volumes. After training, the entries of the linear system in Equation (46) may be saved as a 
reduced order model which can be solved without reference to the underlying B-spline grid; the computational complexity associated 
with evaluating the B-spline space need only be incurred when post-processing the solution.

5.3. Training

Several variables in the above formulation are left to be optimized as a machine learning problem: the set of spline knots along 
each dimension 𝑇𝑑 ; the parameters associated with the convex combination tensor 𝐖; and the exterior calculus metrics 𝐃0, 𝐃1, 𝐁0, 𝐁1.

5.3.1. Constraints to ensure proper ordering of spline knots
To integrate the Whitney forms, we require the knot ordering constraint (𝑡𝑘 < 𝑡𝑘+1) to be satisfied over the course of training. 

Rather than training knot locations 𝑡𝑘 directly, we parameterize the distance between consecutive knots

𝑑𝑘 ∶= 𝑡𝑘 − 𝑡𝑘−1 = 𝜎(𝜏𝑘),

where 𝜎(⋅) is the sigmoid function and 𝜏𝑘 is a trainable parameter, ensuring 𝑑𝑘 > 0 and 𝑡𝑘 < 𝑡𝑘+1. The knot positions may be evaluated 
as 𝑡1 = 0 and for 𝑘 > 1,

𝑡𝑘 =
𝑘∑
𝑙=1

𝑑𝑙 .

The trainable variables 𝜏𝑘 are initialized by sampling a standard normal distribution.

5.3.2. Constraints: convex combination tensor
The convex combination tensor 𝐖 must satisfy for all 𝑘1… 𝑘𝑛

𝐖𝑘1…𝑘𝑛𝑖 ≥ 0 and ∑
𝑖
𝐖𝑘1…𝑘𝑛𝑖 = 1.

To enforce these constraints, we parameterize 𝐖 by introducing a learnable tensor 𝐕 and applying a softmax activation to the final 
index

𝐖𝑘1…𝑘𝑛𝑖 =
exp𝐕𝑘1…𝑘𝑛𝑖∑
𝑖 exp𝐕𝑘1…𝑘𝑛𝑖

, (51)

where 𝐕𝑘1…𝑘𝑛 ,𝑖 denotes the weight associated with the knot located at (𝑡𝑘1 , … , 𝑡𝑘𝑛 ).
In the case where Γ𝐷 ≠ ∅, we repeat this process for 𝐖int and 𝐖bdry, introducing two trainable tensors 𝐕int and 𝐕bdry

𝐖int
𝑘1…𝑘𝑛𝑖

=
exp𝐕int

𝑘1…𝑘𝑛𝑖∑
𝑖 exp𝐕int

𝑘1…𝑘𝑛𝑖

,
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𝐖bdry
𝑘1…𝑘𝑛𝑖

=
exp𝐕bdry

𝑘1…𝑘𝑛𝑖
∑
𝑖 exp𝐕

bdry
𝑘1…𝑘𝑛𝑖

.

For the sake of comparison, we examine three distinct methods for choosing convex combinations:

1. The individual entries of 𝐕 are prescribed by directly trainable variables. In this case, the entries of 𝐕 are initialized by sampling 
a standard normal distribution.

𝐕𝑘1…𝑘𝑛𝑖 = 𝜽𝑘1…𝑘𝑛𝑖 (52)
2. The entries of 𝐕 are prescribed by a ResNet with a Box initialization [19]. This network takes knot coordinates as input and 

outputs corresponding weights, i.e., 𝐕𝑘1…𝑘𝑛𝑖 = 𝑅𝑒𝑠𝑁𝑒𝑡𝑖(𝑡𝑘1 , … , 𝑡𝑘𝑛 ). We present results for a ResNet with four hidden layers, 
where each layer has a number of hidden nodes equal to twice the number of POUs, using 𝑡𝑎𝑛ℎ activation for the hidden layers 
and a linear final layer.

𝐳(0)𝑘1…𝑘𝑛
= 𝝈

(
𝐀(0)𝑡𝑘1…𝑘𝑛 − 𝐛(0)

)

𝐳(𝓁)𝑘1…𝑘𝑛
= 𝝈

(
𝐀(𝓁)𝐳(𝓁−1)𝑘1…𝑘𝑛

− 𝐛(𝓁)
)
+ 𝐳(𝓁)𝑘1…𝑘𝑛

for layers 𝓁 = 1,… ,𝐿− 1

𝐕𝑘1…𝑘𝑛𝑖 =𝐀(𝐿)
𝑖 𝐳(𝐿)𝑘1…𝑘𝑛

− 𝐛(𝐿)𝑖

(53)

3. The entries of 𝐕 are prescribed by the quadratic form associated with a trainable radial basis function (RBF) kernel. The 
parameterization learns centers 𝐜𝑖 initialized via a uniform distribution over Ω and correlation factors 𝐐𝑖 initialized as identity 
matrices; here, the vector 𝑡𝑘1 ,…,𝑘𝑛 is the tensor product of individual spline knots (𝑡𝑘1 , … , 𝑡𝑘𝑛 ).

𝐕𝑘1…𝑘𝑛𝑖 = −(𝐜𝑖 − 𝑡𝑘1…𝑘𝑛 )
𝑇𝐐𝑇𝐐(𝐜𝑖 − 𝑡𝑘1…𝑘𝑛 ) (54)

Application of the softmax yields a RBF with POU normalization. Note that 𝐐𝑖 admit interpretation as Cholesky factors of a 
covariance matrix, allowing learning of anisotropic weights. If we instead took 𝐐𝑖 as a scalar 𝑞𝑖 times an identity matrix, we 
would obtain a traditional RBF with 𝑞2𝑖 prescribing a shape parameter [79].

While this choice of architectures is by no means complete, we hope to highlight a range of potential inductive biases to impose on the 
partitions. The first is most expressive, while the latter two impose more regularity and potentially are more memory efficient. The 
ResNet strategy may prove more effective for problems in high dimensions. We recommend readers to [70,46] for further discussion 
of POUNet architectures and their relative merits.

5.3.3. Constraints on exterior calculus metrics
The metric tensors 𝐁0, 𝐁1, 𝐃0, 𝐃1 must be symmetric-positive definite matrices to obtain a valid Hodge star operator and induce 

an inner-product [71]. For simplicity we parameterize these via diagonal matrices with positive entries. To obtain a parameterization 
of a metric tensor 𝐌 (i.e., either 𝐁𝑘 or 𝐃𝑘), we introduce a trainable tensor 𝐦, and define

𝐌 = diag(exp(𝐦)).

We denote by 𝐛0, 𝐛1, 𝐝0, 𝐝1 the parameters associated with 𝐁0, 𝐁1, 𝐃0 and 𝐃1, respectively. The trainable variables are all initialized 
as zero vectors to obtain an identity matrix initialization for the metric tensors, so 𝖽0 and 𝖽0𝑇 initially match their combinatorial 
counterparts.

A more expressive alternative parameterization would be to learn the Cholesky factors 𝐌 =𝐦𝐦⊺, for upper-triangular trainable 
𝐦, however we adopt a diagonal parameterization to promote sparsity.

5.3.4. Optimization problem statement
We denote the set of trainable variables 𝝃, which includes

𝝃 =
⎧
⎪
⎨
⎪⎩

distance between spline knot parameters {𝜏𝑑𝑘 | 𝑘 = 1,… ,𝑁𝑥𝑑 }
convex combination tensors 𝐕int,𝐕bdry

metrics 𝐛0,𝐛1,𝐝0,𝐝1
. (55)

With these trainable variables, Equation (38) specializes to

min
𝝃

‖‖‖‖‖‖
𝑝data −

(
𝑝𝐷 +

∑
𝑖
𝑝̂𝑖𝜓𝑖

)‖‖‖‖‖‖

2

2

+ 𝛼2
‖‖‖‖‖‖
𝐹data −

∑
𝑖𝑗
𝐹𝑖𝑗𝜓𝑖𝑗

‖‖‖‖‖‖

2

2

such that
[

𝐌1 −𝐌1𝐃−1
1 𝛿0𝐃0

−𝐁−1
0 𝛿𝑇0 𝐁1𝐌1 𝟎

][
𝐅̂
𝐩̂

]
=
[

𝐛𝐷
−𝐛𝑓 − 𝐛𝑁

] (56)
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where 𝛼 is a normalization parameter used to ensure the flux and pressure loss are of the same magnitude; in our case, we choose

𝛼 =
‖‖𝑝data‖‖2
‖‖𝐹data‖‖2

.

In Equation (55), the objective functions and constraints depend on 𝝃, in that the distance between spline knots 𝜏𝑑𝑘 and the 
convex combination tensors 𝐕int and 𝐕bdry parameterize the zero-forms 𝜓𝑖 and one-forms 𝜓𝑖𝑗 , which are used as the bases in which 
our solution is expressed (they form the elements of the 0-form mass matrix 𝐌1 and the 1-form mass matrix 𝐌1), and the metrics 
𝐛0, 𝐛1, 𝐝0, 𝐝1 parameterize the matrices 𝐁0, 𝐁1, 𝐃0, 𝐃1.

To solve this, we adopt a reduced-space strategy. The equality constraint amounts to a moderately sized dense linear system 
which may be inverted, providing

𝐩̂ = −𝐒−1
(
−𝐁−1

0 𝛿𝑇0 𝐁1𝐛𝐷 + (𝐛𝑓 + 𝐛𝑁 )
) (57)

𝐅̂ =𝐌−1
1

(
𝑏𝐷 +𝐌1𝐃−1

1 𝛿0𝐃0𝐩̂
)
, (58)

where 𝐒 = 𝐁−1
0 𝛿𝑇0 𝐁1𝐌1𝐃−1

1 𝛿0𝐃0 is the Schur complement. These may be substituted into the objective of Equation (55) to obtain an 
unconstrained nonlinear optimization problem which may be treated with a first-order optimizer and back propagation. Alternatively 
for larger systems where inversion of 𝐌1 and 𝐒 may be intractable, Lagrange multipliers may be applied as presented in [71].

Note that the loss function in this minimization problem is a data-sampled estimation of the squared 𝐻1(Ω) norm; in our results, 
we refer to the first term of the objective as the 𝐿2(Ω) loss and the unscaled second term as the 𝐻1

0 (Ω) seminorm loss.

6. Results

We consider the following problems:

1. Manufactured problem - establishing convergence properties
2. Five-strip problem - establishing structure preservation for 𝐻(div, Ω) problems
3. Battery problem - demonstrating surrogate construction for realistic multiscale problems

The manufactured problem serves as a comparison to standard methods for solving finite element problems; by manufacturing a 
solution we can quantify convergence with respect to fine and coarse resolution. The five-strip problem is a classical patch test 
for mixed FEM spaces to verify 𝐻(div, Ω conformity for problems with discontinuous material properties [35,72]; discretizations 
assuming regularity beyond 𝐻(div, Ω) exhibit oscillatory solutions. The battery problem models the flow of current through a lithium-
ion matrix under a unit voltage drop. We solve both problems on a reference domain Ω = [0, 1]2. Both problems obey the same set of 
differential equations (albeit with different coefficients, boundary conditions, forcing terms, etc.), presented below.

Data is taken either from randomly sampled evaluations of a known analytic solution, or if an analytic solution is not known (i.e., 
for the battery problem), high-fidelity FEM simulation (for more details, see Appendix B).

All training instances minimize Equation (56) using the Adam optimizer [39], with all parameters except the learning rate 
set according to the TensorFlow default values. The optimizer employed a learning rate schedule that reduced the learning rate 
by half if the loss did not improve after five epochs, terminating training after four such reductions of the learning rate. For the 
manufactured problem and five-strip problem, the batch size equalled the number of data points (i.e., each epoch consisted of one 
gradient descent step), while for the battery problem, the batch size was set to 100K points (i.e., each epoch consisted of 59 gradient 
descent steps to iterate through all 5.89M training points). Training was replicated with different random initializations five times 
(i.e., 𝑁samples = 5) for each model instance. Code was run using TensorFlow 2.2 using a workstation running Linux RHEL 7.7 (Maipo) 
with 64 core Intel Xeon Gold 6130. Each training run used a single Nvidia Tesla V100 GPU with 32 GB memory. Unless otherwise 
noted, hyperparameters have been selected via a sequential grid search; the appendices include selected studies to demonstrate 
sensitivities to hyperparameters.

6.1. Manufactured problem

We first consider a manufactured problem with smooth solution. We consider the problem in Equation (43) on Ω = [0, 1]2 under 
the forcing

𝐅−∇𝑝 = 0 in Ω

∇ ⋅ 𝐅 = −8𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦) in Ω

𝑝 = 0 on Γ𝐷 = {(𝑥,𝑦) ∈Ω |𝑥 ∈ {0,1}}

𝐅 ⋅ 𝑛 = 0 on Γ𝑁 = {(𝑥,𝑦) ∈Ω |𝑦 ∈ {0,1}},
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Fig. 3. Representative solutions for manufactured problem with 12 × 12 fine-scale resolution and 8 coarsened partitions. (Top) True solutions, for pressure 𝑝 and flux 
𝐅; (Bottom) FEEC predictions.

Table 1
Error comparison between data-driven model and FEM for manufactured problem. FEEC method 
uses 4 interior POUs and 4 boundary POUs, resulting in a substantially smaller linear system while 
preserving comparable accuracy.
Method Fine-scale resolution Degrees of Freedom Pressure MSE
FEM Q1 5 × 6 30 4.3470 × 10−3
FEM Q1 4 × 8 32 7.0664 × 10−3
FEM Q1 12 × 12 144 1.7891 × 10−4
FEEC 12 × 12 32 2.1853 × 10−4

which has the solution
𝑝(𝑥,𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦)

𝐅(𝑥,𝑦) =
[
2𝜋 cos(2𝜋𝑥) sin(2𝜋𝑦)
2𝜋 sin(2𝜋𝑥) cos(2𝜋𝑦)

]
.

(59)

We solve (56) fitting to 10K points sampled from a uniform distribution over Ω. The loss function uses a weighting of 𝛼 = 1
2𝜋 . We 

vary both the number of fine-scale resolutions and number of coarsened partitions to study convergence. We use a learning rate of 
0.01 with the Adam optimizer, reducing the learning rate by half if the loss stagnates. Otherwise, the optimizer uses its default values 
in TensorFlow, training for a total of 1000 epochs. Unless otherwise noted, we consider the direct parameterization of the convex 
combination tensor.

6.1.1. Model performance
On this smooth problem, our FEEC method matches the performance of a nodal FEM at the fine scale resolution while requiring 

substantially fewer degrees of freedom. Representative results for training with 4 interior POUs and 4 boundary POUs are shown 
in Fig. 3. We compare the results of our trained FEEC model to three different FEM models using linear Lagrange elements on a 
quadrilateral mesh - one that maintains the same resolution as the POU’s fine-scale grid, and two that match the number of degrees 
of freedom of the coarsened linear system. The FEM comparisons are computed using the FEniCSX software library [64,63,4]. Results 
are shown in Table 1. We achieve an accuracy that is comparable to solving at the same resolution of the fine-scale splines, while 
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Table 2
Error under refinement, increasing the number of fine-scale splines for the smooth sine-cosine problem. Convergence 
matches optimal convergence for piecewise linear continuous FEM.
Fine Scale 𝐿2(Ω) MSE 𝐻1

0 (Ω) MSE
Spline Grid Median Min Max Median Min Max
8 × 8 4.2083 × 10−4 3.2706 × 10−4 5.2920 × 10−4 0.5559 0.5004 0.6171
12 × 12 1.4249 × 10−4 1.1942 × 10−4 1.5941 × 10−4 0.3304 0.3049 0.3522
16 × 16 9.5777 × 10−5 7.1075 × 10−5 1.0280 × 10−4 0.2672 0.2326 0.2790
20 × 20 6.8622 × 10−5 4.1444 × 10−5 8.6188 × 10−5 0.2127 0.1672 0.2597
24 × 24 4.0407 × 10−5 3.0599 × 10−5 4.3923 × 10−5 0.1595 0.1448 0.1775
28 × 28 2.6854 × 10−5 1.9053 × 10−5 4.4021 × 10−5 0.1243 0.1053 0.1666
32 × 32 2.1173 × 10−5 1.8414 × 10−5 6.2870 × 10−5 0.1025 0.0940 0.1552

Convergence rate 2.09 2.12 1.66 1.18 1.21 0.99

Fig. 4. Log-log plots for 𝐿2(Ω) (left) and 𝐻1
0 (Ω) (right) loss terms, with an increasing number of fine-scale spline knots. For both terms of the loss, we observe a linear 

trend in our loss, matching the error rates of classical structure-preserving FEM methods.

Table 3
Training metrics when using different parameterizations of the convex combination tensor 𝐖.
Parameterization 𝐿2(Ω) 𝐻1

0 (Ω) 𝐻1(Ω)

Direct 𝟏.𝟖𝟎𝟖𝟖 × 𝟏𝟎−𝟒 0.3663 0.3804
ResNet 2.3590 × 10−3 0.3962 0.5801
RBFNet 4.8052 × 10−4 𝟎.𝟑𝟐𝟗𝟗 𝟎.𝟑𝟔𝟕𝟒

solving a linear system substantially smaller than we would otherwise; similarly, we outperform the linear systems with comparable 
numbers of degrees of freedom by close to an order of magnitude, even for this small problem.

6.1.2. Refinement study
We next demonstrate convergence under ℎ-refinement when increasing the number of fine-scale splines. Table 2 and Fig. 4

demonstrates second-order convergence under the 𝐿2(Ω) norm and first-order convergence under the 𝐻1
0 (Ω) norm when refining 

the underlying B-spline grid, matching the optimal convergence of continuous Galerkin methods with linear polynomial basis. Each 
model is trained on the same dataset, using a fixed number of 8 internal POUs and 8 boundary POUs.

6.1.3. Effect of POU parameterization
We test the three different parameterizations of the convex combination tensor 𝐖 described in Section 5.3.2, for a problem with 

a 12 × 12 fine-scale spline grid mapping to 8 interior POUs and 8 boundary POUs. Results are shown in Table 3. We note that training 
with the ResNet requires significantly longer to train (10K vs 1K epochs) at a smaller learning rate (10−4 vs. 10−2). There was no 
noticeable difference in training time per epoch between each parameterization. Examples of representative POUs from each are 
shown in Fig. 5. While most expressive, training directly on the entries of 𝐖 yields partitions with little regularity. ResNet’s impose 
regularity but obtain globally supported partitions, while RBFs impose regularity and compactly supported partitions.

The question of when to anticipate compactly supported partitions is a subtle one. While a traditional FEM construction would 
generate compactly supported functions over elements, this is partly to ensure h-convergence under refinement. As our intention 
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Fig. 5. A representative POU from each of the different parameterizations of the convex combination tensor 𝐖. Direct training is most expressive but imposes no 
regularity. ResNets and RBFNets impose regularity, with the RBFs biasing toward compactly supported partitions.

Fig. 6. Setup for diffusion coefficients for five strip problem. The gradient of the solution is perpendicular to the interface between strips, leading to a trivial piecewise 
linear solution.

is to use data to realize an accurate model on a coarse grid, this is not necessary. Intuition is further complicated by the fact 
that ResNets have no mechanism to minimize linear dependence between partitions; performing e.g., Gram-Schmidt to realize a 
maximally orthogonal basis would reveal a more compact representation. Regardless, the choice of parameterization has no effect 
on conservation.

6.2. Five strip problem

The five strip problem is a classical benchmark to test mixed methods for conservation laws with non-uniform diffusion coeffi-
cients: in each of five horizontal strips across Ω = [0, 1], a different diffusion rate 𝜅 is assigned, as sketched in Fig. 6. Because the 
gradient of the solution 𝑝 is perpendicular to the gradient in the material properties, the interface condition !𝜅𝜕𝑛𝑝" = 0 is trivially 
satisfied.

The problem is given by

𝐅− 𝜿∇𝑝 = 0 in Ω

∇ ⋅ 𝐅 = 0 in Ω

𝑝 = 0 on Γ𝐷,left = {(0,𝑦)}

𝑝 = 1 on Γ𝐷,right = {(1,𝑦)}

𝐅 ⋅ 𝑛 = 0 on Γ𝑁 = {(𝑥,𝑦) ∈Ω |𝑦 ∈ {0,1}},

where we define
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𝜿(𝑥,𝑦) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

1.0 𝑥 ∈
[
0, 1

5

]

1.4 𝑥 ∈
[
1
5 ,

2
5

]

0.8 𝑥 ∈
[
2
5 ,

3
5

]

0.6 𝑥 ∈
[
3
5 ,

4
5

]

1.0 𝑥 ∈
[
4
5 , 1

]

This problem has the unique solution
𝑝(𝑥,𝑦) = 𝑥

𝐅(𝑥,𝑦) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

[
1.0
0

]
for 𝑥 ∈

[
0, 1

5

]

[
1.4
0

]
for 𝑥 ∈

[
1
5 ,

2
5

]

[
0.8
0

]
for 𝑥 ∈

[
2
5 ,

3
5

]

[
0.6
0

]
for 𝑥 ∈

[
3
5 ,

4
5

]

[
1.0
0

]
for 𝑥 ∈

[
4
5 , 1

]

(60)

We train our FEEC model with a fine-scale resolution of 2 × 20 B-splines, coarsened into 5 interior POUs and 5 exterior POUs. 
As we have chosen a number of POUs equal to the number of strips, this test serves to identify whether we can exactly recover the 
five physically relevant subdomains as control volumes. We use an initial learning rate of 𝜆 = 0.01, which is reduced by half if the 
loss stagnates. We train for 5000 epochs on a dataset of 10K uniformly sampled points in Ω = [0, 1]2, with a batch size equal to the 
dataset size.

The results in Fig. 7 demonstrate the ability of the scheme to reproduce the solution for both 𝐅 and 𝑝, indicating that it has 
correctly identified each strip as a control volume. These results are particularly notable since the FEEC method is provided no 
information about the location of the strips, nor the values of the corresponding diffusion coefficients; in an unsupervised fashion 
the geometry is learned by the POU parameterization and the material property is learned by the metric information. We note that 
for this problem, the adaptivity of the spline knots is crucial: during training, the spline knots are pushed towards the interfaces of 
the strips, to provide the sharp interfaces that appear in Fig. 7.

6.3. Battery problem

The battery problem provides a nontrivial extension of the five-strip problem where now the geometry is complex and the 
material coefficients vary over seven orders of magnitude across different subdomains, providing a pathologically ill-conditioned 
problem representative of multiscale problems. Data is provided by a combination of discrete element method and conformal finite 
element codes to generate a realistic microstructure corresponding to a lithium-ion battery [60,68]; details of the simulation are 
provided in Appendix B. We consider

𝐅− 𝜅∇𝑝 = 0 in Ω

∇ ⋅ 𝐅 = 0 in Ω

𝑝 = 1 on Γ𝐷,left = {(0,𝑦)}

𝑝 = 0 on Γ𝐷,right = {(1,𝑦)}

𝐅 ⋅ 𝑛 = 0 on Γ𝑁 = {(𝑥,𝑦) |𝑦 ∈ {0,1}}.

The values for 𝜅 follow a configuration of three phases of materials - an active lithium phase (𝜅 = 1), a conductive binder (𝜅 = 100), 
and an electrolyte material (𝜅 = 0.0001). The configuration for 𝜅 is shown in Fig. 8. Similar to the five-strip problem, successfully 
fitting control volumes to this problem corresponds to identifying the topologically complex transport pathways associated with the 
microstructure.

We train our FEEC model with a learning rate 𝜆 = 0.05, number of interior POUs 𝑁0
int = 8, and exterior POUs 𝑁0

bdry = 8. Results 
showing the sensitivities of hyperparameters are presented in Appendix C.
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Fig. 7. Results from data-driven model for the five strip problem. (Top) True solutions, for pressure 𝑝 and flux 𝐅; (Bottom) FEEC predictions. By recovering the true 
solution using the same number of partitions as strips, we demonstrate our ability to recover physically relevant subdomains in an unsupervised manner, without 
requiring data for strip geometry or material properties.

Fig. 8.Microstructure configuration for lithium-ion battery problem (left). Lithium particles (blue) are embedded in a non-conductive matrix (white), with a conductive 
binder (orange) promoting diffusion through microstructure. Transport is governed by transport pathways corresponding to a percolation problem, and provides a 
realistic assessment of whether we can identify associated control volumes. Associated electric field (right, x-component shown) demonstrates singularities occurring 
at junctions between phases, presenting challenging small scale features to recover. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

6.3.1. Model performance
Representative solutions and comparisons to true solutions for 𝑝 and 𝐅 are shown in Fig. 9. Additionally, we can preserve 

quantities of interest for this problem, such as the flux out the right-hand boundary, within 1% error after hyperparameter turning, 
while reducing the size of the underlying linear system from 5.89M degrees of freedom to 136, corresponding to a coarsening from 
a 20×20 fine-scale spline knot grid to 8 interior POUs and 8 boundary POUs. Descriptive statistics for the most accurate training 
hyperparameters are reported in Table 4; in Appendix C we study how specific hyperparameters influence training accuracy.

For the battery problem, the flux through the domain boundary (i.e., integrating the normal component of 𝐅 along the line 
{𝑥 = 1}) is an important quantity of interest associated with the effective diffusion coefficient of the microstructure. We achieve a 
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Fig. 9. True and predicted potential and electric fields for lithium-ion battery microstructure shown in Fig. 8. Predictions use a 20 × 20 B-spline grid, with 8 POUs for 
the interior and an additional 8 POUs for the exterior.

Table 4
Best resulting accuracy across all sample runs and hyperparameters for 𝐿2(Ω), 
𝐻1

0 (Ω), and 𝐻1(Ω) errors (left) and for the quantity of interest associated with 
the battery problem (right). Training was performed for 20 ×20 fine-scale spline 
knots coarsened to 8 interior and 8 exterior POUs. Reduction of the data from 
5.89 million degrees of freedom to 136 degrees of freedom amounts to a 43308×
reduction in model size while preserving 1% error for relevant quantity of in-
terest.
Metric Best Error
𝐿2(Ω) 5.206 × 10−4

𝐻1
0 (Ω) 1.655 × 10−1

𝐻1(Ω) 1.708 × 10−1

Flux Through Boundary
Predicted Value 29.0910
True Value 29.3893

Relative Error 1.0147%

best relative error of 1%, with summary statistics presented in Table 4. Accurate prediction of this quantity is notable, as there are 
no training data used to directly recover it and it instead follows from correctly preserving conservation structure. This is in contrast 
to physics-informed approaches which incorporate this data directly and impose it by penalty (e.g., [36,81]). In Appendix C we 
include a study exploring how this quantity of interest and full field error are effected by hyperparameters such as the learning rate 
and the number of fine-scale splines. In Fig. 10 we study h-refinement of the B-spline grid and its effect on 𝐿2(Ω) and 𝐻1

0 (Ω) error. While there is more variance during training due to random initialization, we generally approach a similar second- and first-order 
convergence rate trend for pressure and flux as seen in the manufactured solution study, as shown in Table 5.

6.4. Conclusions

We have presented a new unsupervised learning architecture for discovering structure-preserving control volume models from 
data. A differentiable construction of Whitney forms with respect to an underlying machine learned partition of unity parameterizes 
a de Rham complex, inducing learnable discrete coboundary operators which provide a link between subdomain geometry and 
graphs encoding flux/circulation balances. The primary contribution is an end-to-end differentiable parameterization of geometry 
and physics on arbitrary manifolds. By applying equality constrained optimization, we simultaneously obtain partitions of space 
and accompanying integral balance laws which match data. Current methods for physics-informed learning rely on collocation or 
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Table 5
Resulting accuracy for pressure, i.e., 𝐿2(Ω), error (left) and flux, i.e., 𝐻1

0 (Ω), error (right). Training was performed for 
20 × 20 fine-scale spline knots coarsened to 8 interior and 8 exterior POUs with a learning rate of 𝜆 = 0.05. Reduction of 
the data from 5.89 million degrees of freedom to 136 degrees of freedom amounts to a 43308× reduction in model size 
while still maintaining expected convergence rates.
Fine Scale 𝐿2(Ω) MSE 𝐻1

0 (Ω) MSE
Spline Grid Median Min Max Median Min Max
8 × 8 4.782 × 10−3 3.888 × 10−3 5.334× 10−3 0.3626 0.3038 0.3906
12 × 12 3.846 × 10−3 2.414 × 10−3 5.189× 10−3 0.2688 0.2651 0.3196
16 × 16 2.601 × 10−3 1.417 × 10−3 4.702× 10−3 0.2309 0.2214 0.2584
20 × 20 1.786 × 10−3 1.428 × 10−3 3.453× 10−3 0.1984 0.1832 0.2068
24 × 24 1.192 × 10−3 1.030 × 10−3 2.357× 10−3 0.1700 0.1495 0.1832

Convergence rate 1.25 1.19 0.69 0.67 0.64 0.71

Fig. 10. 𝐿2(Ω) (left) and 𝐻1
0 (Ω) (right) loss terms for an increasing number of fine-scale spline knots. For both terms of the loss, we observe a linear trend in our loss, 

matching the error rates of classical structure-preserving FEM methods.

other discretizations of partial differential operators to fit data via backpropagation, whereas the geometric approach presented here 
naturally preserves related topological structure.

The approach offers several benefits which we pursue in future work, both as a framework for learning computationally efficient 
reduced-order models and as a tool for learning data-driven models when first-principles derivation is intractable. Combining this 
work with the nonlinear extensions in [71] allows the construction of reduced-order models without reference to an underlying 
full-order model; this avoids the need for hyper-reduction and remains applicable when the full governing equations are unknown. 
Additionally, the learned model provides a natural physics-preserving surrogate of Dirichlet2Neumann maps, which have proven to 
be a natural means of describing multiscale/domain decomposition techniques such as FETI [23] and mortar methods [13,5]. The 
technique is therefore an ideal candidate for building surrogates in multiscale systems-of-systems, replacing component models in 
systems with either partially unknown or computationally intractable physics.

For traditional forward simulation, the de Rham complex is primarily a tool for studying second-order linear elliptic equations 
with limited applicability beyond an important but limited class of problems, including: Maxwell, transport physics, and mechanics. 
The data-driven setting potentially extends much broader, as we have shown in [71] that a data-driven Hodge Laplacian may be used 
to stabilize a “black-box” unknown flux, ensuring structure-preservation and well-posedness while take advantage of deep networks 
ability to capture arbitrary flux relationships. An important and interesting aspect of future work will focus on how to include 
other aspects of structure-preservation for advection-dominated problems which require notions of compatibility related to bounds 
preservation and Lie derivatives not provided by the de Rham theory.

A particular promising direction of research is whether alternative parameterizations may be developed beyond the coarsened B-
splines pursued here. Of particular interest are parameterizations which scale to large dimensions while maintaining approximation 
properties and tractable quadrature rules. In principle, POUs could be parameterized by e.g., a multilayer perceptron composed 
with a softmax activation; however this forces the use of Monte Carlo quadrature and subsequently incurs a variational crime. 
While we have avoided this in favor of a more rigorous mathematical setting, in engineering contexts these and other alternative 
parameterizations may have substantial value. This is particularly true for high-dimensional problems where the current B-spline 
construction will suffer from the curse-of-dimensionality (i.e., computational complexity scaling as the number of 1D splines raised 
to the dimension).



Journal of Computational Physics 496 (2024) 112520

25

J.A. Actor, X. Hu, A. Huang et al.

While we have presented the Whitney form construction for a general manifold, the current work applies the theory only to 
compact subsets of ℝ2. There are several promising directions where the general theory is likely to prove impactful. For some appli-
cations, models may be learned directly on manifolds: e.g., atmosphere physics on the sphere, transport dynamics on biomembranes, 
or shell models for elastoplasticity could all be developed rigorously from this theory. For high-dimensional PDEs, one could pursue 
dimension reduction by developing autoencoder architectures to identify models on smooth manifolds. We pursue these lines of 
research to future work.
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Appendix A. Exact integration

We show how to assemble the matrices 𝐌1 and 𝖣𝖨𝖵𝑇 using exact expressions for the integrals involved in their definitions. We 
emphasize that we have closed-form expressions for all of our integrals, without resorting to quadrature, but leave the remainder as 
an exercise for the reader. For simplicity, we assume that Ω = [0, 1]2.

A.1. Notation

In the description that follows, we use the following indexing conventions:

• the letter 𝑐 indexes fine-scale cells, i.e., sub-intervals of [0, 1] between two fine-scale spline knots
• the letters 𝑘, 𝑙, 𝑚, and 𝑛 index 1D splines and spline knots
• the multi-index 𝒌 indexes a 2D tensor product of 1D spline functions
• the single letters 𝑖 and 𝑗 index POU functions, i.e., 0-forms
• the pairs of letters 𝑖𝑗 index 1-forms
• the single letter 𝑎 indexes 0-form test functions
• the pair of letters 𝑎𝑏 index 1-form test functions

When clear, summation bounds are omitted.

https://www.energy.gov/downloads/doe-public-access-plan
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𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

𝑑1 𝑑2 𝑑3 𝑑4

𝜁1

Fig. A.11. Example of one-dimensional B-splines 𝜁𝑘 for 𝑘 = 1,… ,𝑁 = 5. Knots 𝑡𝑘 and distances 𝑑𝑘 are correspondingly labeled.

A.2. 1D assembly

We begin by introducing closed-form expressions for the integral of products of B-spline functions in one dimension, as well as 
their derivatives, to arbitrary powers. We denote the one-dimensional B-spline functions as 𝜁𝑘 for 𝑘 = 1, … , 𝑁 ; for example, B1 spline 
basis functions (i.e., hat functions) 𝜁𝑘 ∶ [0, 1] → [0, 1] are defined as

𝜁𝑘(𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0 𝑥 < 𝑡𝑘−1
𝑥−𝑡𝑘−1
𝑡𝑘−𝑡𝑘−1

𝑥 ∈ [𝑡𝑘−1, 𝑡𝑘]
𝑡𝑘−𝑥
𝑡𝑘+1−𝑡𝑘

𝑥 ∈ [𝑡𝑘, 𝑡𝑘+1]

0 𝑥 > 𝑡𝑘+1

,

where {𝑡1 = 0, 𝑡2, … , 𝑡𝑁−1, 𝑡𝑁 = 1} are spline knots. Hat functions are indexed so that they provide a basis to interpolate the spline 
knots, i.e., 𝜁𝑘(𝑡𝑙) = 𝛿𝑘𝑙 (Fig. A.11). On each subinterval 𝑑𝑐 = [𝑡𝑐−1, 𝑡𝑐] we define

𝐼𝑐(𝛼,𝛽,𝜂, 𝜈) ∶ =
𝑡𝑐

∫
𝑡𝑐−1

(
𝜕𝜁𝑐−1

)𝛼 (𝜕𝜁𝑐
)𝛽 𝜁𝜂𝑐−1𝜁𝜈𝑐

= (−1)𝛼 1
𝜂 + 𝜈 + 1

1(
𝜂 + 𝜈
𝜂

)𝑑1−(𝛼+𝛽)𝑐 ,
(A.1)

where 
(
𝜂 + 𝜈
𝜂

)
denotes the expression for the binomial coefficient. Thus,

1

∫
0

(
𝜕𝜁𝑐−1

)𝛼 (𝜕𝜁𝑐
)𝛽 𝜁𝜂𝑐−1𝜁𝜈𝑐 =

∑
𝑐
𝐼𝑐(𝛼,𝛽, 𝜂, 𝜈). (A.2)

With this expression, we build four-tensors that we will later use to assemble the matrices 𝐌1 and 𝖣𝖨𝖵𝑇 . Along each dimension 
𝑧 ∈ {𝑥, 𝑦}, we define four-tensors 𝐀𝑧 and 𝐂𝑧 of size 𝑁 ×𝑁 ×𝑁 ×𝑁 , defined entry-wise via

𝐀𝑧𝑘𝑙𝑚𝑛 =
1

∫
0

𝜁𝑧𝑘 (𝑧) 𝜁
𝑧
𝑙 (𝑧) 𝜁

𝑧
𝑚(𝑧) 𝜁

𝑧
𝑛 (𝑧) 𝑑𝑧

𝐂𝑧𝑘𝑙𝑚𝑛 =
1

∫
0

𝜁𝑧𝑘 (𝑧) 𝜕𝑧𝜁
𝑧
𝑙 (𝑧) 𝜁

𝑧
𝑚(𝑧) 𝜕𝑧𝜁

𝑧
𝑛 (𝑧) 𝑑𝑧.

We may express both integrals as sums of 𝐼𝑐 (𝛼, 𝛽, 𝜂, 𝜈). First, for 𝐀𝑧𝑘𝑙𝑚𝑛, we observe that each entry can be rewritten as

𝐀𝑧𝑘𝑙𝑚𝑛 =
∑
𝑐
𝐼𝑐(0,0, 𝜂𝑐 , 𝜈𝑐 )𝟏𝜂𝑐+𝜈𝑐=4, (A.3)

where

𝜂𝑐 = #{𝑗 = 𝑐 − 1 | 𝑗 ∈ {𝑘, 𝑙,𝑚,𝑛}}

𝜈𝑐 = #{𝑗 = 𝑐 | 𝑗 ∈ {𝑘, 𝑙,𝑚,𝑛}}.
(A.4)

When we evaluate the 𝐼𝑐(0, 0, 𝜂𝑐 , 𝜈𝑐) terms, we arrive at the following values:
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𝐀𝑧𝑘𝑙𝑚𝑛 =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

1
5𝑑

𝑧
1 𝑘 = 𝑙 =𝑚 = 𝑛 = 0

1
5 (𝑑

𝑧
𝑘 + 𝑑

𝑧
𝑘+1) 𝑘 = 𝑙 =𝑚 = 𝑛 ∈ {1,… ,𝑁 − 1}

1
5𝑑

𝑧
𝑁 𝑘 = 𝑙 =𝑚 = 𝑛 =𝑁

1
20𝑑

𝑧
𝑘+1

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

𝑘 = 𝑙 =𝑚, 𝑛 = 𝑘+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑘 = 𝑙 = 𝑛, 𝑚 = 𝑘+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑘 =𝑚 = 𝑛, 𝑙 = 𝑘+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑙 =𝑚 = 𝑛, 𝑘 = 𝑙 + 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑙 =𝑚 = 𝑛 = 𝑘+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑘 =𝑚 = 𝑛 = 𝑙 + 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑘 = 𝑙 = 𝑛 =𝑚+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑘 = 𝑙 =𝑚 = 𝑛+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}

1
30𝑑

𝑧
𝑘+1

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝑘 = 𝑙, 𝑚 = 𝑛 = 𝑘+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑘 =𝑚, 𝑙 = 𝑛 = 𝑘+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑘 = 𝑛, 𝑙 =𝑚 = 𝑘+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑙 =𝑚, 𝑘 = 𝑛 = 𝑙 + 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑙 = 𝑛, 𝑘 =𝑚 = 𝑙 + 1, 𝑘 ∈ {0,… ,𝑁 − 1}
𝑚 = 𝑛, 𝑘 = 𝑙 =𝑚+ 1, 𝑘 ∈ {0,… ,𝑁 − 1}

.

Similarly,

𝐂𝑧𝑘𝑙𝑚𝑛 =
∑
𝑐
𝐼𝑐(𝛼𝑐 ,𝛽𝑐 , 𝜂𝑐 , 𝜈𝑐)𝟏𝜂𝑐+𝜈𝑐=2,𝛼𝑐+𝛽𝑐=2 (A.5)

where
𝛼𝑐 = #{𝑗 = 𝑐 − 1 | 𝑗 ∈ {𝑙,𝑛}}

𝛽𝑐 = #{𝑗 = 𝑐 | 𝑗 ∈ {𝑙,𝑛}}

𝜂𝑐 = #{𝑗 = 𝑐 − 1 | 𝑗 ∈ {𝑘,𝑚}}

𝜈𝑐 = #{𝑗 = 𝑐 | 𝑗 ∈ {𝑘,𝑚}}.

(A.6)

Computing these values, we find

𝐂𝑧𝑘𝑙𝑚𝑛 =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

1
3

1
𝑑𝑧1

𝑘 = 𝑙 =𝑚 = 𝑛 = 1

1
3

(
1
𝑑𝑧𝑘

+ 1
𝑑𝑧𝑘+1

)
𝑘 = 𝑙 =𝑚 = 𝑛 ∈ {2,… ,𝑁 − 1}

1
3

1
𝑑𝑧𝑁

𝑘 = 𝑙 =𝑚 = 𝑛 =𝑁

−1
3

1
𝑑𝑧𝑘

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝑘 = 𝑙 =𝑚, 𝑛 = 𝑘+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑘 =𝑚 = 𝑛, 𝑙 = 𝑘+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑘 =𝑚 = 𝑛 = 𝑙 + 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑘 = 𝑙 =𝑚 = 𝑛+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}

1
6

1
𝑑𝑧𝑘

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝑘 = 𝑙 = 𝑛, 𝑚 = 𝑘+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑙 =𝑚 = 𝑛, 𝑘 = 𝑙 + 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑙 =𝑚 = 𝑛 = 𝑘+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑘 = 𝑙 = 𝑛 =𝑚+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}

−1
6

1
𝑑𝑧𝑘

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝑘 = 𝑙, 𝑚 = 𝑛 = 𝑘+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑘 = 𝑛, 𝑙 =𝑚 = 𝑘+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑙 =𝑚, 𝑘 = 𝑛 = 𝑙 + 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑚 = 𝑛, 𝑘 = 𝑙 =𝑚+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}

1
3

1
𝑑𝑧𝑘

{
𝑘 =𝑚, 𝑙 = 𝑛 = 𝑘+ 1, 𝑘 ∈ {1,… ,𝑁 − 1}
𝑙 = 𝑛, 𝑘 =𝑚 = 𝑙 + 1, 𝑘 ∈ {1,… ,𝑁 − 1}

.

Note that both of these tensors 𝐀𝑧 and 𝐂𝑧 are both sparse and structured.
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A.3. 2D assembly

We next to assemble the mass-matrix of one-forms, 𝐌1 . Consider the entry 𝐌1(𝑎𝑏),(𝑖𝑗), which is given as

𝐌1(𝑎𝑏),(𝑖𝑗) = ∫
Ω

𝜓𝑖𝑗 ⋅𝜓𝑎𝑏

= ∫
Ω

(𝜓𝑖𝜕𝑥𝜓𝑗 −𝜓𝑗𝜕𝑥𝜓𝑖)(𝜓𝑎𝜕𝑥𝜓𝑏 −𝜓𝑏𝜕𝑥𝜓𝑖)

+ (𝜓𝑖𝜕𝑦𝜓𝑗 −𝜓𝑗𝜕𝑦𝜓𝑖)(𝜓𝑎𝜕𝑦𝜓𝑏 −𝜓𝑏𝜕𝑦𝜓𝑖).

This integral decouples into the product of two integrals, one over the domain 𝑥 = [0, 1] and one over 𝑦 = [0, 1]. For example, the 
first cross-term becomes:

∫
Ω

𝜓𝑖
(
𝜕𝑥𝜓𝑗

)
𝜓𝑎

(
𝜕𝑥𝜓𝑏

)

= ∫
Ω

( ∑
𝒌𝑖=(𝑘𝑖 ,𝑙𝑖)

𝐖𝒌𝑖𝑖 𝜁𝒌𝑖 (𝒙)
)

⋅ 𝜕𝑥
⎛
⎜
⎜⎝

∑
𝒌𝑗=(𝑘𝑗 ,𝑙𝑗 )

𝐖𝒌𝑗 𝑗 𝜁𝒌𝑗 (𝒙)
⎞
⎟
⎟⎠
⋅

( ∑
𝒌𝑎=(𝑘𝑎 ,𝑙𝑎)

𝐖𝒌𝑎𝑎 𝜁𝒌𝑎 (𝒙)
)

⋅ 𝜕𝑥

( ∑
𝒌𝑏=(𝑘𝑏 ,𝑙𝑏)

𝐖𝒌𝑏𝑏 𝜁𝒌𝑏 (𝒙)
)
𝑑𝒙

=
∑
𝒌𝑖

∑
𝒌𝑗

∑
𝒌𝑎

∑
𝒌𝑏

𝐖𝒌𝑖𝑖𝐖𝒌𝑗 𝑗𝐖𝒌𝑎𝑎𝐖𝒌𝑏𝑏 ⋅ 𝐂𝑥𝑘𝑖𝑘𝑗𝑘𝑎𝑘𝑏 ⋅𝐀
𝑦
𝑙𝑖𝑙𝑗 𝑙𝑎𝑙𝑏

.

(A.7)

We can build similar expressions for the other seven terms in the integrand of the expression for 𝐌1(𝑎𝑏),(𝑖𝑗), expressing the integrand 
as tensor contractions involving permutations of 𝐖, 𝐂𝑧, and 𝐀𝑧.

The matrix 𝖣𝖨𝖵 and the vectors on the right-hand side of the linear system in Equation (46) can also be assembled using a 
similar process of decoupling the integral into the product of two one-dimensional integrals and then combining the one-dimensional 
integrals using tensor contraction. Alternatively, since 𝖣𝖨𝖵𝑇 = 𝐌1𝛿0, once 𝐌1 is assembled it may be cheaper to assemble the 
combinatorial gradient 𝛿0 and construct 𝖣𝖨𝖵 via matrix products instead. Note that the evaluation of the right-hand side vectors in 
Equation (46) require the ability to evaluate the functions 𝑓 , 𝑔𝐷 and 𝑔𝑁 at the fine-scale spline knots, which evolve during the course 
of training; these functions are approximated by their fine-scale piecewise linear interpolants at the spline knots.

We make a handful of observations about the assembly process. First, we immediately note that since the tensor 𝐖 and the 
distance between spline knots 𝑑𝑧 evolve with each gradient descent step, assembly must be repeated at every step during training. 
The second observation concerns the memory cost of performing tensor contraction for entries in 𝐌1(𝑎𝑏),(𝑖𝑗). While the tensors 𝐀𝑧 and 
𝐂𝑧 are sparse, the TensorFlow operators for tensor contraction only accept dense tensors. As a result, the tensor contraction in e.g., 
Equation (A.7) requires an intermediate step that allocates a dense tensor of size 𝑁2

𝑥𝑁
2
𝑦𝑁

02, as an in-place memory accumulator, 
which becomes limiting when the number of splines at fine-scale resolution along each axis becomes large (i.e., values of 𝑁 ≥ 40). 
Alternatively, the tensor contraction can be expressed by the appropriate sparse-dense matrix multiplication operations, although 
this method ultimately does not save any memory usage - the 1-form fine-to-coarse map is of size 𝑁2

𝑥𝑁
2
𝑦𝑁

02, which is of the same 
size as the intermediate allocation step.

Appendix B. Numerical details for battery problem

The lithium ion battery cathode configuration depicted in Fig. 8 is composed of three phases, active material particles shown in 
blue, a conductive binder domain shown in orange, and an electrolyte shown in white. These configurations were generated using 
the discrete element method implemented in LAMMPS [69], the details of which are found in [68]. This discrete element method 
data was used to generate a physically realistic microstructure, and was then remapped onto an unstructured tetrahedral mesh using 
the conformal decomposition finite element method. For further details we refer readers to [60,68].

For this problem, the data in the loss comes from a high-fidelity continuous Galerkin finite element method implemented in 
Sierra/Aria [66]. An electrical transport equation

∇ ⋅ (𝜅∇𝑉 ) = 0 (B.1)
is solved on the domain for voltage 𝑉 on the nodal locations, where the active material particles are assigned 𝜅 = 1, the conductive 
binder domain particles 𝜅 = 100, and the electrolyte 𝜅 = 0.0001. Piecewise linear integration functions on quadrilaterals were used. 
Dirichlet boundary conditions of 𝑉 = 1 and 𝑉 = 0 are assigned to the left and right hand sides of the domain, respectively. The 
equation is integrated by parts, assembled into a linear system, and solved iteratively in parallel using a GMRES solver with multi-
level preconditioner, all implemented through Trilinos [73]. Fluxes are reconstructed as piecewise constant on the elements (P0) 
directly from the calculated voltage fields.



Journal of Computational Physics 496 (2024) 112520

29

J.A. Actor, X. Hu, A. Huang et al.

Table C.6
List of model parameters and training hyperparameters that were varied for bat-
tery problem.

Parameter Values
𝑁𝑥 , 𝑁𝑦 Fine-scale spline resolution {8,12,16,20,24}
𝑁0

int Coarse-scale interior POUs {4,8,12,16}
𝜆 Learning Rate {0.001,0.005,0.05}

Fig. C.12. Loss curves for 𝐿2(Ω) (top) and 𝐻1
0 (Ω) (bottom) components of the overall loss function, plotted after each epoch of training, for an increasing number of 

fine-scale spline nodes. Each color represents a different learning rate: blue corresponds to a learning rate of 0.001; orange to 0.005, and green to 0.05. The mean 
of the five repeated training runs is shown as a solid line, with the standard deviation shaded above and below. The sharp jumps are due to specific training runs 
terminating early due to the stopping criteria during training.

From the FEM solution we create a point cloud of training data by mapping the fluxes onto the nodes via the Clement interpolant, 
and then associating the nodal evaluations of the pressure and interpolated flux values with the scattered set of nodal positions.

Appendix C. Hyperparameter selection for battery problem

For the battery problem, we focus on the effects of varying the hyperparameters listed in Table C.6.

C.1. Learning rate

We explored optimal learning rates by performing a grid search. After a period of initial exploration, we found that the learning 
rates of {0.001, 0.005, 0.05} warranted more study. Results with the smallest learning rate, of 𝜆 = 0.001, took significantly longer to 
train; for example the blue curves in Fig. C.12 lag behind the orange and green curves. While it is possible to train well with such 
a small learning rate, doing so takes substantially longer due to requiring more epochs to reach a comparable point of training 
accuracy. The other two learning rates of 𝜆 = 0.05 (orange), and 𝜆 = 0.005 (green), trained faster, and both provide comparable 
results. In Fig. C.12, we see the effects of increasing the number of fine-scale spline nodes on each of the terms in the overall loss. In 
all instances, training improves with greater resolution, as seen by the final loss values for the 𝐿2(Ω) and 𝐻1

0 (Ω) components of the loss, which are plotted in Fig. C.13.

C.2. Number of fine-scale splines

The number of fine-scale splines was chosen to reflect a range of values that would instantiate models that would fit in GPU 
memory, given the size of the fine-to-coarse map of 1-forms and reflecting the final observations in Appendix A. The results of 
varying these are reflected in the refinement study in Section 6.1.2, and are complemented by the results in Fig. C.13. The results 
presented earlier are agnostic to the learning rate, assuming the problem trains to completion. For the smallest learning rate of 
𝜆 = 0.001, this was not normally the case, but for the two other, larger learning rates, we matched the linear error rates of classical 
methods.

C.3. Quantity of interest

For the battery Problem, the relevant quantity of interest is the flux on the right side of the domain’s boundary (i.e., the along 
the line {𝑥 = 1}). The relative error of this quantity of interest is plotted, for different fine-scale resolutions and various learning 



Journal of Computational Physics 496 (2024) 112520

30

J.A. Actor, X. Hu, A. Huang et al.

Fig. C.13. 𝐿2(Ω) and 𝐻1
0 (Ω) loss terms for a range of fine-scale resolutions and learning rates. Each color represents a different learning rate: blue corresponds 

to a learning rate of 0.001; orange to 0.005, and green to 0.05. Box plots represent quartile data and diamond points mark outliers associated with five random 
initializations for training.

Fig. C.14. Relative error in quantity of interest for an increasing number of fine-scale spline nodes. Each color represents a different learning rate: blue corresponds to 
a learning rate of 0.001; orange to 0.005, and green to 0.05. For the two larger learning rates (0.005 and 0.5, respectively) the error remains relatively steady around 
0.02, i.e., 2% error, with the best error occurring for a fine scale resolution of 𝑛𝑥 = 12 and a learning rate of 0.05, for an error of 1%. Box plots represent quartile data 
(and the diamond points mark outliers) from using different random initializations for training.
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rates, in Fig. C.14. Regardless of fine-scale resolution and learning rate, we achieve an average relative error of around 2% for the 
two larger learning rates, and a best relative error of 1%. Unlike with the loss function (discussed in Section 6.1.2), we do not see 
convergence with respect to the number of fine-scale splines. The observed plateau behavior is due to differences in the placement 
of the fine-scale splines as they try to resolve integrating the sharp discontinuities in the solution along the boundary, where the 
material in the battery changes between lithium, ion, or binder. That this quantity of interest is preserved is notable - there is no 
training data on the boundary of our domain, and there is no penalty to our loss function (as in PINNs [58,76] or Deep Ritz [81]) 
for achieving the flux correct along the boundary; the preservation of this quantity of interest comes from our proper treatment of 
the underlying chain complexes that preserve the correct physics, even as the size of the linear system has been reduced from 5.89 
million degrees of freedom down to 136, corresponding to 8 POUs on the boundary and 8 POUs on the interior.
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