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Abstract

Underground storage organs occur in phylogenetically diverse
plant taxa and arise from multiple tissue types including roots and
stems. Thickening growth allows underground storage organs to
accommodate carbohydrates and other nutrients and requires
proliferation at various lateral meristems followed by cell expan-
sion. The WOX-CLE module regulates thickening growth via the
vascular cambium in several eudicot systems, but the molecular
mechanisms of proliferation at other lateral meristems are not
well understood. In potato, onion, and other systems, members of
the phosphatidylethanolamine-binding protein (PEBP) gene
family induce underground storage organ development in
response to photoperiod cues. While molecular mechanisms of
tuber developmentin potato are well understood, we lack detailed
mechanistic knowledge for the extensive morphological and
taxonomic diversity of underground storage organs in plants.
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Introduction

Underground storage organs (USOs) are a solution to
the problem of inconsistent resource availability for
plants, providing reserves during periods of unfavorable
conditions, dormancy, and ecological disturbance. Plants
with USOs accumulate large stocks of water and nutri-
ents (e.g. carbohydrates) in a variety of modified organs
like leaf bases, stems, and roots (Box 1). These re-
sources allow plants to jumpstart regrowth after seasonal
or unexpected changes in their environment with less
dependence on external resources [1]. Further, buds
located on some USOs are protected from aboveground
stressors and can give rise to new aboveground shoots
when conditions improve [2]. These adaptations allow
plants with USOs to thrive in drier, cooler, and more
seasonal climates [3] and diversify at higher rates rela-
tive to plants without USOs [4]. Despite their ecolog-
ical importance and key role in staple food crops, the
molecular mechanisms and processes that generate such
diversity are unknown across large parts of the plant tree
of life.

USOs have evolved repeatedly in vascular plants and
display extensive phenotypic diversity (Box 1) [5].
These macromorphologies can originate from stem, root,
leaf, or hypocotyl tissues, and they may develop either
through shared or distinct developmental and molecular
processes. USOs undergo thickening growth through
the proliferation of various lateral meristems, followed
by cell expansion to accommodate starch and other
stored carbohydrates. This thickening growth is initi-
ated by regulatory genes that are downstream of envi-
ronmental signals, allowing USO induction to be
integrated with seasonal cues (Figure 1). While the
molecular mechanism of stem tuber development is
well-characterized in potato, we lack a comparable un-
derstanding in other taxa and types of USOs. Below, we
review evidence for shared molecular processes under-
lying thickening and induction in diverse angiosperm
taxa, emphasizing advances in the last two years, and
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Box 1. Underground storage organs (USOs) briefly defined (See the study by Tribble et al. [5] for more detailed descriptions

and examples)

e Bulb: a vertically compressed stem in which apical and axillary buds are surrounded by concentric layers of enlarged leaf bases, which

are the primary storage organs.

e Corm: similar to bulbs in their vertically oriented growth, but the stem tissue serves as storage and stored reserves are uniformly distributed.
e Rhizome: horizontally growing stems that grow somewhat uniformly in diameter for storage, and from which aboveground and belowground

branches may develop at nodes.

e Root tuber: roots evenly thickened along their entire length or roots enlarged at the tip serve as storage organs, and are wider than fibrous roots

on the same plant.

e Stem tuber: belowground regions of the stem that enlarge for storage; unlike corms and rhizomes, storage is not uniformly distributed along the

length of the belowground stem.

e Swollen hypocotyl: the intermediary region between the first cotyledon and the belowground radicle or root.
e Taproot: a single straight, vertical root that enlarges for storage, which is sometimes contiguous with a swollen hypocotyl.

discuss outstanding questions about the genetic basis of
USO development and morphology.

Forms of thickening growth in USO
development

Primary thickening growth

Plant growth is traditionally dichotomized into a primary
growth phase and secondary growth phase. Primary
growth is typically synonymized with elongation of the
stem while secondary growth results in thickening of the
stem (radial growth). However, thickening growth can
also occur during the primary growth phase through a
process called primary thickening growth (PTG). PTG
is subtle in most eudicots but plays a major role in USO
development of aquatic eudicots and monocots [6]. PTG
is responsible for the widening of stems in bulbous taxa
to accommodate storage leaves and for thickening growth
in rhizomes (reviewed in the study by Rudall et al. [7]).
In monocots, PTG is carried out by the primary thick-
ening meristem (P'TM), which is continuous with the
shoot apical meristem (Figure 2a, b; see the study by de
Menezes et al. [8] for a different interpretation). While
little i1s known about the molecular mechanism under-
lying PTM initiation in USOs of monocots, investigation
of primary thickening in the photosynthetic shoots of
Moso bamboo (Phyllostackys edulis) have implicated the
ethylene and ABA pathways [9]. Further study of the
molecular mechanism of PTG in USOs is necessary to
understand USO thickening in diverse taxa.

Secondary thickening growth

Secondary thickening growth (STG) plays an important
role in USO thickening in eudicots. In eudicots, STG
occurs through lateral meristems such as the vascular
cambium and cork cambium. While limited STG occurs
in Arabidopsis thaliana, the molecular mechanisms un-
derlying the initiation and proliferation of the vascular
cambium have been well characterized in this model
system (reviewed in studies by Ragni and Greb [10] and
Turley and Etchells [11]). In Arabidopsis, the homeobox
transcription factors WOX4 and WOX14 and the

receptor-like  kinase PHLOEM INTERCALATED
WITH XYLEM (PXY) act downstream of auxin to pro-
mote vascular cambium formation and proliferation
[10,12,13]. The Arabidopsis vascular cambium is highly
informative for USO development; in a gene regulatory
network analysis of USO development in carrot, cassava,
and radish, roughly one third of genes upregulated in the
Arabidopsis  root cambium were also differentially
expressed in the USOs [14]. Similarly, WOX4 is upre-
gulated in storage roots compared to fibrous roots of
sweet potato and several other Convolvulaceae species
[15]. In sweet potato storage roots, the MADS-box
protein SRD1 promotes proliferation of metaxylem
and cambium cells, leading to auxin-dependent thick-
ening growth of storage roots [16]. In the swollen hy-
pocotyl and taproot of radish, RsWOX4 directly
upregulates RsCLEZ2a expression and silencing of
RsClLE22a increases vascular cambium activity [17].
Taken together, evidence from multiple plant systems
with root tuber or swollen hypocotyl USOs suggests that
auxin and the WOX-CLE system (including the CLE
signal peptides, their receptors, and their target
homeodomain-containing WOX transcription factors)
play a widespread role in proliferation of the vascular
cambium [18].

In USOs derived from proliferation of the vascular
cambium, xylem parenchyma are usually the major
storage cells (Figure 2¢, d). Little is known of the ge-
netic differentiation pathway of xylem parenchyma
compared to other xylem derived cells, although HD-
Z1P I1I genes play an important role in Arabidopsis xylem
differentiation [19,20]. In cassava storage roots, the
HD-ZIP 111 gene MeC3HDZ1 is highly expressed in the
cambium and xylem and binds promoters of other stor-
age root-expressed genes # vitro [21]. Transcriptome
evidence from cassava suggests that KNOX/BEL genes
may also play an important role in xylem parenchyma
function [22]. Cassava fibrous roots and storage roots
appear to differ in xylem parenchyma production early in
development, suggesting that this cell type is critical for
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Conceptual model of USO development. (a) In potato, environmental signals such as photoperiod and temperature influence the expression of the key
regulator SP6A in leaves (reviewed in the study by Zeirer et al. [25]). The SP6A protein travels from leaves to underground stems to induce stem tuber
development and to promote thickening. Many known aspects of potato tuber development are not shown. (b) In cassava, a mobile protein such as a
member of the PEBP family may respond to environmental signals and move to the roots to induce root tuber development and promote thickening
growth. However, no functional evidence for such a mobile protein in the formation of storage roots has been obtained, so the key environmental signals
and molecular mechanisms in cassava storage tissue development are still unknown.

storage root formation [23]. Further study of xylem pa-
renchyma differentiation in general, as well STG in
USO forming taxa, will improve our understanding of
the mechanisms of USO development.

While the vascular cambium plays an important role in
STG of many plants, others achieve STG via other
diverse mechanisms. In the swollen hypocotyl and
taproot of beet, additional, anomalous cambia form
outside of the first, coinciding with increasing cytokinin

and auxin levels (Figure Ze, ) [24]. In potato, cell di-
vision occurs mainly in the perimedullary zone of the
pith. The origin of this pith is from procambium-derived
meristematic centers, distinct from the vascular cam-
bium (Figure 2g, h; reviewed in the study by Zeirer et al.
[25]). Although most growth in a developing potato
tuber occurs in the perimedullary zone, to our knowl-
edge no studies test for anatomical changes in this
region in transgenic plants. Some monocots also exhibit
STG via a secondary thickening meristem (STM: also
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Diverse origins of thickening in underground storage organs. (a, b) Primary thickening as it occurs in onion (Allium cepa). (a) Schematic of a
longitudinal section through a young onion stem. The primary thickening meristem (PTM) is continuous with the shoot apical meristem. (b) Zoom in of
black rectangle in (a). (¢, d) Secondary thickening in tuberous roots exemplified by cassava (Manihot esculenta). (c) Schematic of a cross section through
tuberous root. (d) Zoom in of black rectangle in (c). The bifacial vascular cambium produces phloem centrifugally and xylem, mostly xylem parenchyma,
centripetally. (e, f) Secondary thickening in swollen hypocotyl exemplified by beet (Beta vulgaris). (e) Schematic of a cross section through swollen
hypocotyl main tissue types. (f) Zoom in of black rectangle in (e). Beets contain approximately concentric circles of anomalous cambium that arise from
phloem and pericycle. (g, h) Secondary thickening in stem tuber as exemplified by potato (Solanum tuberosum). (g) Cross section of stem tuber.
Meristematic clusters are randomly dispersed through the perimedullary zone. (h) Zoom in of black rectangle in (g). Meristem clusters contribute the large
amount of parenchyma. (i, j) Secondary thickening in monocot rhizome exemplified by Patersonia occidentalis. (i) Schematic of cross section showing
main tissue types in rhizome. (j) Zoom in of black rectangle in (i). Monocot cambium produces secondary vascular bundles and parenchyma centripetally
and parenchyma cells centrifugally. The PTM and the monocot cambium are depicted as defuse, but see the study by de Menezes et al. [8] for alternative
explanation. Arrow heads in (a, c, e, g, i) point to distinct meristems in each taxon; arrows in (b, d, f, h, j) indicate plane of divisions. The colors in the right
panel indicate the important tissues during the origin of thickening in underground storage organs. Vasculature indicates the xylem + phloem tissues
together in (a, i). The xylem derivatives (those immediately adjacent to the vascular cambium) and the mature non-parenchymatous tissues are colored

yellow.

known as the monocot cambium, distinct from the
vascular cambium), which underlies STG in some USO-
forming Asparagales (Figure 21, j, reviewed in the study
by Tribble et al. [5]). To our knowledge, no studies
characterize the molecular basis of the STM in USOs.
However, expression of WOX4-like genes and PXY-like
genes in the aboveground STMs of Yucca and Cordyline
[26] suggests that some molecular mechanisms of the
monocot cambium are similar to STG by the vascular
cambium and likewise may underlie USO development.
Broadly, the diverse mechanisms of STG that give rise to
storage parenchyma require further molecular study.

Thickening through cell expansion

Following cell proliferation, cells in USOs must also
expand to accommodate starches or other storage car-
bohydrates, which accumulate during USO develop-
ment [27]. In beet, brassinosteroid signaling is
necessary for parenchyma cell enlargement within the
hypocotyl and dramatically contributes to the overall
diameter of the swollen hypocotyl [28,29]. 'Tran-
scriptomic studies indicate that lignin synthesis genes
are underrepresented and expansin encoding genes
(proteins that loosen cell walls) are upregulated in
diverse eudicot USOs compared to non-modified organs

[15,30—36], likely facilitating cell expansion to accom-
modate non-structural carbohydrates and lateral growth
through cell expansion. In the root tubers of monocot
Bomarea this pattern holds for lignin but expansins are
instead underexpressed [37]. This suggests that the role
of expansins in USO cell expansion may be lineage
specific while reduced lignin is ubiquitous.

Mechanisms of USO induction by
environmental signals

Competence to induce USO development

Before they are competent to begin USO thickening
growth in response to environmental signals, some
plants proceed through early developmental stages or
produce specialized morphological structures. Many
plants must transition through fixed ontogenetic stages
corresponding to the age of the plant (sometimes
termed vegetative phase change), a process that is not
well-characterized in USO-forming taxa [25,38]. Some
plants also produce specialized structures that bear
USOs, which develop before USO thickening growth.
For example, before normal tuberization in potato, the
plant produces underground shoots known as stolons
(but see the study by Herben et al. [39], where stolons
are defined as an aboveground structure). The stolon
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undergoes elongation underground and develops a hook
at the apex before thickening into a tuber [40,41]. The
development of underground stems which give rise to
stem tubers and the rhizomes found in many perennial
taxa is not well understood [42], even though stolon
elongation is an important step preceding tuber devel-
opment. Interestingly, RNAi-knockdown of BRAN-
CHEDI) in potato allows plants to bypass the
requirement for underground stolon development
before tuberization; these plants produce aerial tubers
directly from axillary buds [43]. Although tuber devel-
opment occurs without stolons in this experimental
case, stolon elongation is an important precursor to un-
derground tuber development in wild-type potato. Once
the stolons develop, short-day treatment induces a
simultaneous end of elongation and beginning of
tuberization, with a corresponding decrease in GA and
increase in ABA [44,45]. Thus, proceeding through prior
ontogenetic stages allows environmental factors such as
photoperiod (below) to induce USO development.

Photoperiod signaling mediated by PEBP family
proteins

Photoperiod cues induce USO development in diverse
taxa through members of the phosphatidylethanolamine-
binding protein (PEBP) gene family, which includes
FLOWERING LOCUS T PROTEIN (FT) and other
flowering regulators (e.g., potato [46], onion [47], Asiatic
hybrid lily [48], Bomarea multiflora [37], reviewed in the
studies by Khosa et al. [38] and Navarro and Prat [49]).
The co-option of this gene family among various taxa and
USO types reflects widespread coordination of below-
ground nutrient storage with seasonal cues and flowering
[38]. For example, differential regulation of the F7 ho-
molog SELF PRUNING 64 (StSP6A4) by CYCLING DOF
FACTOR 1 (StCDF1) underlies genetic variation in the
day length required for USO development. Equatorial
potato genotypes require short days to tuberize, but a
truncated allele of the S7CDF1 gene allows some geno-
types to tuberize in long days, enabling potato cultivation
at high latitudes. The protein encoded by this truncated
StCDF1 allele is not degraded under long days and
upregulates StCONSTANS-LIKE1 (StCOLI), leading to
lower levels of the tuberization-repressing FT-like gene
8z8§P5G and higher levels of tuberization-promoting
8z8P6A, and as a consequence, tuber induction [50].
Similarly, onions are subject to photoperiod regulation
through AcF77, which promotes bulbing, and AcF74,
which inhibits bulbing by repressing AcF7T1 expression
[47]. Thus, FT-like genes regulate USO formation in
both monocots and eudicots and in a variety of
USO types.

After $28P6A is upregulated in response to short days, it
influences potato tuber development through multiple
molecular mechanisms. StSP6A forms various protein
complexes that promote tuber development, such as the
tuberigen activation complex (TAC), composed of

Underground storage organ development Plunkert efal. 5

StSP6A, 14-3-3 proteins, and the transcription factor
and FD homolog StFDL1, and the alternative TAC,
which contains the ABA pathway transcription factor
ABA INSENSITIVE 5-like 1 (StABI5-like 1) instead of
StFDL1 [51,52]. The TAC regulates the AP1-like gene
StMADS1 which contributes to tuberization [53]. In
addition to functioning as part of transcriptional regu-
latory complexes, StSP6A physically interacts with the
sucrose efflux transporter StSWEET11 to promote
potato tuber formation, supporting crosstalk between
sucrose source-sink partitioning and photoperiodic
pathways [54]. Thus, StSP6A regulates tuberization in
potato by multiple molecular mechanisms. Further work
to characterize the mechanisms by which FT homologs
function in systems other than potato will improve our
understanding of deep homology and shared regulatory
pathways among different USO-forming taxa and types
of USOs.

Temperature and drought regulation

Heat and drought stress also influence USO develop-
ment. In potato, overexpression of Sz5P6A improves
potato tuber yield under heat stress, suggesting that
downregulation of S#§P64 under heat stress mediates
reduced tuber production [55]. The circadian clock
gene TIMING OF CAB EXPRESSION 1 (StTOCI) re-
presses StSP6A transcription under heat stress, likely by
preventing SzSP6A4 autoactivation [56]. The microRNA
SES is upregulated under heat conditions and represses
8t8§P6A post-transcriptionally [57]. Comparisons of
St8P6A and SES expression at different temperatures
and developmental stages revealed that post-
transcriptional regulation by SES plays a major role in
S8z8§P6A mRNA levels early in tuberization, while tran-
scriptional regulation of Sz§P6A4 influences mRNA
levels at later stages [58]. In chrysanthemum (Chrysan-
themum morifolium), drought stress leads to a reduced
number of rhizomes, likely by repressing the DEAD-box
RNA helicase CmRH56, which in turn leads to GA
degradation [59]. Given that GmRH56 knock-down does
not eliminate rhizome production entirely, it is likely
that other regulators influence rhizome number in this
system. Neither SES nor CmRH56 have been implicated
in USO developmental regulation in response to heat
and drought in other systems. It is unclear whether
temperature and drought regulation of USO develop-
ment tends to proceed through taxon-specific mecha-
nisms, or if further study of the mechanisms of USO
regulation by heat, drought, and other factors would
reveal shared pathways among taxa and USO types.

Conclusion

The above sections highlight the disparity in scientific
understanding of molecular mechanisms underlying
USO development. While certain crop systems (namely
potato, Figure 1a) are well characterized for some stages
of USO development (induction and expansion, less so
for initiation of stem elongation), we still lack a basic
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understanding of molecular and developmental mecha-
nisms across most USO types and plant lineages
(Figure 1b). Moreover, we have not characterized the
role of known molecular players in USO development in
determining USO anatomy and morphology. We propose
five particularly exciting avenues for future research on
USO development:

1. Characterize the molecular and morphological basis
of USO development in root tubers, bulbs, and other
understudied USO types.

2. Investigate the morphological and genetic basis of
thickening growth in eudicot USOs.

3. Determine the effects of manipulating known molec-
ular players in potato development on tuber anatomy;,
particularly at the perimedullary zone, to integrate
molecular knowledge with anatomical changes.

4. Investigate the molecular mechanisms of cell prolif-
eration from two understudied lateral meristems, the
primary thickening meristem and the monocot
cambium.

5. Test for deep homology among USO types and taxa
by studying orthologous genes in multiple taxa.

Filling these knowledge gaps requires employing
genomic and transgenic approaches to test candidate
genes in USO-forming systems other than potato.
Although transformation in non-model systems can pose
a challenge, several USO-forming taxa can be stably
transformed through floral-dip methods and could be
developed as new models for USO development (e.g.
rhizomes in monkeyflower [60,61]; swollen hypocotyl
and taproot in radish [62]). Important USO-forming
crop taxa such as sweet potato, onion, and cassava
could also be improved for USO developmental research
with sufficient transformation protocols and genomic
resources (e.g. the study by Zeirer et al. [63]). Finally,
the wild relatives of crop taxa (such as Oryza long-
istaminata, a rhizomatous relative of cultivated rice) can
be developed as models for USO research with tangible
benefits for crop development [64,65]. Such studies
should be accompanied by detailed morphological and
anatomical characterization of transgenic lines to thor-
oughly describe the modifications of plant tissues
through development (e.g. in the studies by Noh et al.
[16] and Dong et al. [17]).

Despite the morphological and phylogenetic diversity of
USO-forming plants, some molecular players such as
PEBP family genes are frequently involved in USO
regulation. This is even true of distantly related taxa such
as potato and onion, a monocot and a dicot that undergo
contrasting morphological mechanisms of thickening
growth to produce a stem tuber and a bulb, respectively.
Beyond PEBP family genes, it is unclear whether mo-
lecular mechanisms are relatively organ- and taxon-
specific, are shared by similar USO types, or are shared

by closely related taxa. By uncovering molecular mech-
anisms of USO development in diverse plant systems, we
can determine the extent to which these mechanisms are
shared among different USO types and diverse taxa.
Since USOs serve as a source of protected buds and
nutrients, understanding USO development broadly is a
critical step toward understanding how plants survive
harsh conditions. This knowledge has implications for
the repeatability of growth form evolution and the nature
of convergence at macroevolutionary scales.
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