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We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of
modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library
HAZmath. The focus of the paper is on the design and implementation of robust and efficient solver algorithms which
tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain
biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples,
namely the Darcy-Stokes equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional
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1 INTRODUCTION

The present paper introduces a novel collection of tools for interface-coupled multiphysics problems modeled by
partial differential equations (PDEs). We target applications where the interface is a main driver of the processes,
and where solution strategies relying on decoupled single-physics problems suffer from slow convergence. Our
focus is on the multiphysics problems with geometrically complex interfaces and slow dynamics, naturally
promoting monolithic solvers. Specifically, we exploit fractional operators and low-order interface perturbations
as preconditioning techniques.

The motivation for fractional interface operators comes from the fact that the traces of H' and H(div)
functions are usually sought in H'/? and H~1/?, respectively. Such reasoning is exploited, for instance, in domain
decomposition algorithms using Poincaré-Steklov operators [Agoshkov 1988; Badia et al. 2009; Deparis et al.
2006; Quarteroni and Valli 1991], as these operators are spectrally equivalent to a fractional Laplacian operator.
Robustness with respect to all material parameters has, however, been hard to obtain. Fractional and interface
operators have been exploited for monolithic schemes targeting stability and error estimates [Ambartsumyan et al.
2018; Caucao et al. 2022; Galvis and Sarkis 2007; Layton et al. 2002; Riviére and Yotov 2005], but consequences
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for preconditioning have only recently been addressed. Specifically, fractional and metric interface operators
(and sums thereof) have uncovered the structure of parameter robust preconditioners for monolithic schemes,
in particular for Darcy-Stokes problems [Boon et al. 2022a,b; Holter et al. 2020, 2021; Kuchta et al. 2021], but
have been challenging to construct and implement in an efficient fashion. Our focus is to present algorithms for
fractional and metric operators that can be conveniently implemented.

From the numerical side, fast solution algorithms for single fractional Laplacians have been proposed based on
multilevel approaches [Beerland 2019; Baerland et al. 2019; Bramble et al. 2000; Fithrer 2022; Zhao et al. 2017]
and rational approximations [Harizanov et al. 2020, 2018, 2022]. Here, we explore the latter for the sums of
fractional Laplacians required for certain Darcy-Stokes type of problems, based on our recent promising results
[Budisa et al. 2023b]. Additionally, as seen in 3d-1d problems [D’Angelo and Quarteroni 2008; Laurino and Zunino
2019], Biot-Stokes [Boon et al. 2022a; Li and Yotov 2022], and EMI equations [Tveito et al. 2017], lower-order
perturbations arise because interface conditions, such as the balance of forces, are often expressed in terms of
differences of a quantity across the interface rather than the quantity itself. Therefore, we also consider multilevel
algorithms that work robustly in the presence of strong perturbations, i.e. metric terms, at interfaces. That is, we
implement multilevel algorithms with a space decomposition aware of the metric kernel [Budisa et al. 2023a].

The software tools we develop aim to solve computational mesoscale multiphysics problems. By computational
mesoscale, in this context, we refer to problems in the range of a few hundred thousand to tens of millions of
degrees of freedom. These problems may benefit significantly from advanced algorithms, whether or not parallel
computing is used. The collection of tools presented in this paper are FEniCS [Logg et al. 2012] add-ons for block
assembly [Kuchta 2021] and block preconditioning [Mardal and Haga 2012] combined with a flexible algebraic
multigrid (AMG) toolbox, implemented in C, called HAZmath [Adler et al. 2009]. Hence, we have named the tool
collection HAZniCS. One of the reasons for developing HAZniCS is precisely the mentioned flexibility and variety
of the implementation of the AMG method in HAZmath. It allows us to easily modify available linear solvers and
preconditioners or create new model-specific solvers for the multiphysics problems at hand. Additionally, with
HAZniCS, we provide another wide range of efficient computational methods for solving PDEs with FEniCS,
but also a bridge to Python for HAZmath to be used with other PDE simulation tools. Further in the paper, we
highlight with a series of code snippets the implementation of several solvers, namely the aggregation-based and
metric-perturbed AMG methods and the rational approximation method.

Moreover, we consider a series of examples of multiphysics problems mainly related to biomechanical applica-
tions. Namely, we include: (1) a simple three-dimensional example of an elliptic problem on a regular domain, (2)
Darcy-Stokes equations describing the interaction of the viscous flow of cerebrospinal fluid surrounding the brain
and interacting with the porous media flow of interstitial fluid inside the brain, and (3) the mixed-dimensional
equations representing electric signal propagation in neurons and the surrounding matter.

The outline of the current paper is as follows: in Section 2 we introduce the multiphysics models together with
the necessary mathematical concepts and numerical methods. Section 3 focuses on the implementation of those
methods and the interface between the software components. In Section 4 we present the solver capabilities of
our software to simulate relevant biomechanical phenomena. Finally, we draw concluding remarks in Section 5.

2 EXAMPLES

The following three examples introduce different single- and multiphysics PDE models, as well as the relevant
mathematical and computational concepts. More specifically, the examples provide an overview of iterative
methods and preconditioning techniques for interface-coupled problems that lead, e.g., to the utilization of sums
of fractional operators weighted by material parameters.
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2.1 Linear elliptic problem

We start with a linear elliptic problem on a three-dimensional (3d) regular domain. This example will serve as a
baseline for the solvers in HAZniCS. Our goal is to demonstrate that our solver performance is comparable to
other established software and to introduce the notation required to form rational approximations of (sums of)
fractional operators on the matrix level.

Let Q = [0,1]® be the unit cube and let dQ denote its boundary. Given external force f : Q@ — R and the
boundary data g : 9Q — R, we set to find the solution u : Q — R that satisfies

—Au+u=f in Q, (1a)
a
A g on 9Q. (1b)
on

Further, let L? = L?(Q) be the space of square-integrable functions on Q and H® = H*(Q) the Sobolev spaces
with s derivatives in L?. The corresponding inner products and norms for any function space X are denoted
with (-, -)x and || - ||x, respectively. Now, let Vj, ¢ H!(Q) be a finite element space on triangulation of Q, e.g., of
continuous piecewise linear functions (P;). A discrete variational formulation of (1) is: Find u € V}, such that

a(u,v) = £(v) Yo € V, (2)

with a(u,v) = (4, 0)2(q) + (Vu, Vo) 12(q) and £(v) = (f,0)12(q) + (9, 9)r2(00)-
The corresponding system of linear equations reads: Find u € R™ such that

Au = b, (3)

with m the dimension of finite element space Vi, A € R™*™ the system matrix representing bilinear form a(-, -)
and vector b € R™ representing the right-hand side functional #(-). We remark that u and b above are both vectors
in R™, but u is in the so-called nodal representation, while b is in the dual representation [Bramble 2019; Mardal
and Winther 2011]. As such, the matrix A maps the nodal representations of R™ to their dual representations,
while the inverse of the matrix or a preconditioner is a mapping from the dual to the nodal representation.

In our case, it is well-known that multilevel methods, such as AMG, provide spectrally equivalent and order
optimal algorithms for the inverses of discretizations of the operator I — A. We describe the AMG method and its
implementation in more detail in Section 3.1 and showcase the performance of HAZmath AMG compared with
HYPRE AMG [Falgout and Yang 2002] in Section 4.1.

2.2 Modeling brain clearance during sleep with Darcy-Stokes equations

We consider a multiphysics problem arising in modeling processes of waste clearance in the brain during
sleep [Eide et al. 2021; Xie et al. 2013] with potential links to the development of Alzheimer’s disease. A novel
model, called the glymphatic system [Iliff et al. 2012], states that the viscous flow of cerebrospinal fluid (CSF)
is tightly coupled to the porous flow in the brain tissue and that during sleep, in particular, it clears metabolic
waste from the brain. For a recent review see [Kelley et al. 2022] and for computational models similar to the one
presented here see [Boon et al. 2022a; Holter et al. 2020; Hornkjel et al. 2022; Kedarasetti et al. 2020]. To this
end, we consider patient-specific geometries generated from MR images by the SVTMK library [Mardal et al.
2022] used in [Boon et al. 2022a], see Figure 1. Using SVMTK, the segmented brain geometry is enclosed in a thin
shell which, together with the ventricles (the orange subregion in Figure 1), makes up the Stokes domain. The
diameter of the Stokes domain is roughly 15 cm while the shell thickness is on average 0.8 mm.

In order to model the waste clearance, let Qp C R, d = 2, 3 be the domain of the porous medium flow that
represents the brain tissue!, and let Qs c R? be the domain of viscous flow representing the subarachnoid space

n the context of brain mechanics, the case d = 2 is relevant, e.g., for slices of the brain geometry.
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Fig. 1. (Left) Geometry and computational mesh from [Boon et al. 2022a] of the Darcy-Stokes model of brain clearance.
Mesh and indicator functions for tracking subdomains making up the Darcy (light blue) and the Stokes domains (dark
blue and orange subregions) and their interfaces are generated with SVMTK [Mardal et al. 2022]. (Right) Schematic model
reduction from 3d-3d to 3d-1d problem. Idealized dendrites (in blue) are reduced to their centerline while the coupling with
the surrounding Q is accounted for by averaging over-idealized cylindrical surfaces with radius p.

around it saturated by CSF. Let I denote the interface between the domains, which in this case corresponds to the
surface of the brain. We then consider the Darcy-Stokes model which seeks to find Stokes velocity us : Qs — R?
and pressure ps : Qs — R, and Darcy velocity up : Qp — R¢ and pressure pp : Qp — R that satisfy

-V - os(us,ps) = fs and Vous=0 in Qg, (4a)
up +KVpp =0 and V-up=/p in Qp, (4b)
with interface conditions
Us-n—up-n=0 onT, (4¢)
n-os(us,ps) - n+pp =0 onT, (4d)
n-os(us,ps)-t+Dus-7=0 onT. (4e)

Here, o5 (us, ps) = pVus — psI. We remark that for simplicity, os is defined in terms of the full velocity gradient
and not only its symmetric part, cf. [Layton et al. 2002]. The parameters p, K, and D are positive constants related
to the problem’s physical parameters, i.e., the fluid viscosity, permeability, and the Beavers-Joseph-Saffman (B]S)
coeflicient. Functions fs and fp represent the external forces. Additionally, n denotes the unit outer normal of
Qg and 7 is any unit vector tangent to the interface. In particular, for d = 3 the condition (4e) represents a pair of
constraints. Finally, we assume the following boundary conditions, for 90Qs pUdQs N = 90Qs\I', Qs pNIQs N = 0,

us=0 on 9Qs p, (5a)
os(us,ps)-n=g on Qs N. (5b)

To arrive at the finite element formulation of (4) we introduce a Lagrange multiplier A : ' — R, 1 € A = A(T) for
enforcing the mass conservation across the interface (4c). In addition, we consider conforming discrete subspaces
Vs x Qs € HY(Qs) x L*(Qs) and V; x Qp < H(div, Qp) x L?(Qp) for the Stokes and Darcy subproblems,
respectively. In the numerical examples, such spaces are constructed by Taylor-Hood (P,-P;) elements and lowest
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order Raviart-Thomas elements RT, paired with piecewise constant discontinuous Lagrange elements Pgisc for
Qp. The multiplier space is discretized by Pgi“ elements. Let operators T,, and T, denote the normal and the
tangential trace operators on I'. Then, the discrete system corresponding to (4) states to find (us, ps, up, pp, 4) €
Vs X Qs X Vg X Qg X A that satisfy

—uV-V+DT!T, -V T\ (us\ [f:

V- Ps 0
k1 -v -T,||up|=]0]. (6)

\& Pp Ja

T, -T, A 0

—_—— ——

A x b

The block structure of the operator A is mirrored in its implementation in HAZniCS with trace operators
implemented using [Kuchta 2021], see Supplementary Material and [Budisa et al. 2022]. The following parameter
robust preconditioner for Darcy-Stokes problem (6) is derived in [Holter et al. 2020]:

—uV -V +DT!T,
p
B= K Y(I-VV,) . (7)
KI
P (=Ar+ )2+ K(=Ar +1p)?

The non-standard components here are: the first block which involves a lower-order (interfacial) perturbation of
the tangential components, and the last block involves a weighted sum of fractional operators of different orders.
In Section 3.2 we show how to use HAZniCS methods to implement the preconditioner (7) and, in particular, we
discuss the rational approximation method to compute the inverse of the fractional operator. In Section 4.2 we
demonstrate its performance.

2.3 Mixed-dimensional modeling of signal propagation in neurons

Interaction of slender bodies with their surrounding is of frequent interest in models of blood flow and oxygen
transfer [Berg et al. 2020; Hartung et al. 2021]. It has recently received significant attention as it is a coupling of
high dimensional gap (codimension two) which introduces mathematical difficulties [D’Angelo and Quarteroni
2008; Gjerde et al. 2020; Koch et al. 2020; Koppl et al. 2018]. Here, we consider an alternative application in
neuroscience. In particular, we apply the coupled 3d-1d model [Laurino and Zunino 2019] to study electric
signaling in neurons and its interaction with the extracellular matrix. The complete model involves a system of
PDEs that represents the electrodiffusion and a set of ordinary differential equations (ODE) representing the
membrane dynamics. Our focus is on the PDE part that arises from the operator splitting approach to obtain the
solution of the full PDE-ODE problem [Jeeger et al. 2021].

We use the reduced EMI model [Buccino et al. 2021] that represents the extracellular space as a 3d domain and
the neuronal body (soma, axons, and dendrites) as one-dimensional curves. The 3d-1d coupled system states to
find extracellular and intracellular potentials (ps, p1) that satisfy

Crm 4
=V (03Vp3) + 5rpA—t(H?P3 -p) =1 in Q, (8a)

d d Cm
—a . (pzolapl) + pA_t(pl - H'})pg) = fl onT. (8b)

Here, Q is a domain in 3d, while I is the 1d network of curves representing the neuron by centerlines of soma,
axons, and dendrites, see Figure 1. The derivative along I is defined in arc length coordinate s. Coupling between
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the domains is realized by the averaging operator H{f which computes the mean of functions in Q on the idealized
cylindrical surface that represents the interface between the dendrites and their surroundings. More precisely,
givenapointy € Tand p : Q@ — R, IIYp : I — Ris such that I p(y) = |C,(y)|~* /C () ¥ dl where C,(y) is a
circle centered at y with radius p in the plane whose normal v is given by the tangent ti) I' at y, cf. Figure 1. That
is, p represents the radius of a neuron segment and, as such, typically varies in space. However, for simplicity
of the presentation, we assume p to be constant. Moreover, by dr we denote the Dirac measure of I'. The term
pAL;" (p1— HI’f p3) represents the electric current flow exchange between the domains across dimensions due to the
potential differences, with At being the time step size. The parameters o3, 01 and Cp, represent the extracellular
and intracellular conductivity and the membrane capacitance, respectively. Assuming dQp U dQxn = dQ\I" and
0Qp N IQN = 0, we also impose the boundary conditions

P3=93 on dQp, (9a)
—o3Vps -n=0 on 9Qy, (9b)
—p?aVp-n=0 on dl. (9¢)

As previously, we relate a linear system of equations to (8). Let Q3 ¢ H!(Q) and Q; ¢ H!(T) be conforming
finite element spaces (e.g. P;1) on the shape-regular triangulation of Q and T, respectively. The discrete linear
system corresponding to (8) states to find (ps3, p1) € Q3 X Q; such that

-030q ~ H1p~/ 4 p3 f3
+ e -1 = , 10
[ ( —szﬂr) P ( =) U O ) 5 s "
~——  ——
Ap M X b
with p; = pAC—;" and the system operator A = Ap + p; M. We call linear systems such as (10) metric-perturbed

problems, and their implementation in HAZniCS is available in [Budisa et al. 2022] and Supplementary Material.

The operator A is symmetric positive definite and we can use the preconditioned conjugate gradient (CG)
method to solve the system (10). However, we observe that the bilinear form represented by M is degenerate. That
is, for very large values of the coupling parameter p,, the semi-definite coupling part M dominates and the system
becomes nearly singular. We identify that the operator M induces an L?-based metric space M(T) = {(¢3,q1) €
Q3 X Q1 : /I-(Hr% —q1)? < oo} and the singular part is related to the kernel of the coupling operator, that is
ker(M) = {(g3, q1) € Q3 X Qs : IIrgs — g1 = 0} which can be a large subspace of the solution space. Consequently,
the condition number of the system grows rapidly with increasing g,, which results in slow convergence of the
CG solver, even when using the standard AMG method as the preconditioner as in Section 2.1. We remark that
[Cerroni et al. 2019] demonstrate that (standard, smoothed aggregation) AMG leads to robust solvers when the
coupling is weak (p; << 1). In Section 3.3 we demonstrate how to implement and solve the system (10) with
HAZniCS methods based on the AMG with specialized block Schwarz smoothers. In Section 4.3 we showcase
some key performance points of the solver.

3 IMPLEMENTATION

The software module HAZniCS combines several libraries, each providing a key functionality for multiphysics
simulations. The main components include:

(i) HAZmath [Adler et al. 2009] - a finite element, graph, and solver library built in C;
(if) FEniCS [Logg et al. 2012] - a computing platform in Python for solving PDEs;
(iii) cbc.block [Mardal and Haga 2012] - an extension to FEniCS that enables assembling and solving block-
partitioned problems;
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(iv) FEniCS;; [Kuchta 2021] - an extension to FEniCS for assembling systems of equations posed on domains of
different dimensionality.

In HAZniCS, each preconditioning method mentioned in the Section 2 is implemented in HAZmath as a C
function with the same signature - it takes in a vector (an array of double values), applies a set of operations
and returns a solution vector. To be able to use it in Python, the HAZniCS Python library is generated using
SWIG [Beazley 1996] and, in turn, can be imported simply as import haznics. In the following code snippets,
we demonstrate how this interface is built.

First, we note that while Python and FEniCS use memory management systems, HAZmath does not and users
are required to keep track of the memory themselves. As such, any object transferred between the two systems
is copied to avoid that the memory systems of Python or FEniCS delete data that is in use in HAZmath. We
also remark that, although SWIG contains tools for making C code appear Pythonic (i.e. distinguishing between
function input and output) we have opted for making the Python interface a direct translation of the underlying
C code.

For each preconditioner, HAZniCS stores two functions - a setup and an application function. The setup
functions take in different variables depending on the type of the preconditioner but always return a pointer to
HAZmath data type precond of a general preconditioner. This data type has two components: preconditioner
data structure data and matrix-vector operation function fct(), see Listing 1, where type REAL is a macro of the
standard C type double.

typedef struct {

void *data;

void (*fct)(REAL %, REAL *, void *);
} precond;

Listing 1. HAZmath structure for type precond.

During setup, HAZmath saves all matrices, vectors and parameters necessary for applying the preconditioner to a
data structure, and points to the function that executes the matrix-vector application algorithm. All preconditioner
functions have the same signature - they take in two arrays of REAL values (input and output vectors) and data
related to the matrix-vector operation as void*. Note that different preconditioner algorithms require different
information to be saved, thus the different preconditioner data structure types are passed as void pointers and
then type cast back to original data types in the corresponding (preconditioner-specific) application function, cf.
for example Listing 6.

Using the generated HAZniCS Python library, we wrap the HAZmath preconditioner functions as class methods
in cbe.block. In this way, efficient HAZmath preconditioners (in C) can be used with FEniCS (or PETSc) operators
and cbe.block iterative methods (in Python) in a code that is easily readable and simple to utilize. We remind that,
in HAZmath, all preconditioner functions have the same signature. On the other hand, in any cbc.block iterative
method, all preconditioners are applied through a matrix-vector product method matvec(). Hence, we define a
base class Precond equipped with a matvec() method designed specifically for call of HAZmath preconditioners,
see Listing 2. The class is derived from the cbc.block data type block_base, making the HAZmath preconditioners
fully integrated with other classes and methods of the cbc.block library.

class Precond(block_base):
#L...]
def matvec(self, b):
#L...]
# create solution vector
x = self.A.create_vec(dim=1)
x = df.Vector (df .MPI.comm_self, x.size())
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#0...]

# convert rhs and lhs to numpy arrays

b_np = b[:]

x_np = x[:]

# apply the preconditioner (solution saved in x_np)
haznics.apply_precond(b_np, x_np, self.precond)

# convert x_np to GenericVector

x.set_local (x_np)

return x

Listing 2. Baseclass Precond with matvec() implemented in HAZmath backend of cbc.block.

The preconditioner’s matrix-vector operation is then applied through a simple HAZmath function apply_precond(),

see Listing 3. It uses the data and a preconditioner-specific matrix-vector function that are passed in the input
variable precond *pc, cf. Listing 1. Note that the input vectors (numpy arrays) need to be cast to C arrays (REAL
%) to perform the matrix-vector operation, which is done using typemaps in SWIG. A snippet of the typemap is
available in Supplementary Material.

void apply_precond(REAL *r, REAL *z, precond *pc) {
pc->fct(r, z, pc->data);
}

Listing 3. HAZmath function apply_precond().

In the following, we detail the implementation of the preconditioners used in Section 2. In Section 3.1 and
Section 3.2 we show the AMG and the rational approximation preconditioners employed through the cbc.block
extension. Alternatively, we can directly call HAZmath functions within FEniCS without relying on cbc.block,
since we already have a compiled Python library HAZniCS. This use case is shown in Section 3.3 where we
describe solvers for metric-perturbed problems.

3.1 Algebraic multigrid method

As the main preconditioning routine, we use the Algebraic MultiGrid Method (AMG) [Brandt et al. 1982], which
constructs a multilevel hierarchy of vector spaces, each of which is responsible for correcting different components
of the error (see also [Xu and Zikatanov 2017] and the references therein). Specifically, our approach is based on
the Unsmoothed Aggregation (UA-AMG) [Blaheta 1986; Marek 1991; Vakhutinsky et al. 1979] and the Smoothed
Aggregation (SA-AMG) method [Hu et al. 2016; Mika and Vanék 1992; Mika and Vanék 1992; Vanék et al. 1996,
1998]. The UA-AMG algorithms in HAZmath are based on graph matching (or pairwise aggregation) and can be
found in [Hu et al. 2019; Kim et al. 2003].

from "haznics import AMG

# AMG setup parameters

params = {
"AMG_type": haznics.UA_AMG,
"cycle_type": haznics.NL_AMLI _CYCLE,
"smoother": haznics.SMOOTHER_GS,

"coarse_solver": haznics.DIRECT,
"aggregation_type": haznics.VMB,
"max_aggregation": 100,

3

# Solver setup

B = AMG(A, params)

Ainv = ConjGrad(A, precond=B, tolerance=1e-10)
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# Solve
x = Ainv x b

Listing 4. Call of the AMG preconditioner for the linear elliptic problem (1). Complete code can be found in script
HAZniCS-examples/demo_elliptic_test.py.

In Listing 4 we showcase how to use the AMG from HAZmath as the preconditioner in FEniCS-related examples.
We import the preconditioner class AMG from cbc.block, implementation of which is shown in Listing 5. It
takes the coefficient matrix A and an optional dictionary of setup parameters. Such parameters are set through
HAZmath macros and are integrated within the HAZniCS Python library through a dictionary. For example,
we can specify the type of the AMG method we will apply using the keyword "AMG_type" and the value
haznics.UA_AMG. Other listed keywords determine "cycle_type" (cycling algorithm), "smoother" (type of
smoother), "coarse_solver" (coarse grid solver), "max_aggregation" (maximum number of vertices in an
aggregate), and "aggregation_type" (type of aggregation). Full list of parameters and values of macros can be
found in HAZmath files include/params.h and include/macro.h, respectively.

class AMG(Precond):
def __init__(self, A, parameters=None):
# change data type for the matrix (to dCSRmat pointer)
A_ptr = PETSc_to_dCSRmat (A)
# initialize amg parameters (AMG_param pointer)
amgparam = haznics.AMG_param()
# set extra amg parameters
if parameters:
haznics.param_amg_set_dict(parameters, amgparam)
# set AMG preconditioner

precond = haznics.create_precond_amg(A_ptr, amgparam)
#L...]
Precond.__init__(self, A, "AMG", parameters, amgparam, precond)

Listing 5. Preconditioner class AMG implemented in HAZmath backend of cbc.block.

We show an example of the implementation of the AMG preconditioner class in Listing 5. Before calling the
preconditioner setup function, some input FEniCS data types need to be converted to HAZmath data types. For
example, an auxiliary function PETSC_to_dCSRmat () converts FEniCS or PETSc matrices to HAZmath matrices.
This conversion is simple, as FEniCS/PETSc and HAZmath utilize compressed sparse row (CSR) format.

Coming back to Listing 4, the AMG preconditioner is passed to the CG iterative solver ConjGrad from cbc.block
to act on the residual in each iteration. As shown in the previous section, the application of the preconditioner
is made as a matrix-vector operation, which in the case of the AMG method corresponds to the function
precond_amg() stated in Listing 6. It reads the AMG setup data through the variable pcdata->mgl_data, sets
up the right-hand side vector (the residual r of the outer iterative method) and initializes the solution vector,
applies the AMG algorithm through the function mgcycle () and returns the computed solution via the increment
variable z.

void precond_amg(REAL *r, REAL *z, void =*data) {
precond_data #*pcdata=(precond_data #*)data; // data for the preconditioner
const INT m = pcdata->mgl_data[@].A.row; // general size of the system
const INT maxit = pcdata->maxit; // how many times to apply AMG
INT i;

AMG_param amgparam; param_amg_init(&amgparam);
param_prec_to_amg (&amgparam, pcdata); // set up AMG parameters
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AMG_data xmgl = pcdata->mgl_data; // data for the AMG
mgl->b.row = m; array_cp(m, r, mgl->b.val); // residual is the rhs
mgl->x.row = m; dvec_set(m, &mgl->x, 0.0);

for (i = @; 1 < maxit; ++i) mgcycle(mgl, &amgparam); // apply AMG

array_cp(m, mgl->x.val, z); // copy the result to z

Listing 6. Implementation of the AMG preconditioner in HAZmath.

Using HAZmath’s implementation of the AMG method in function mgcycle() gives the flexibility to apply
and modify the algorithm to other relevant applications. The next two sections present how we use it in methods
that approximate inverses of fractional and metric-perturbed operators.

3.2 Solvers for indefinite problems with fractional operators

Implementation of the Darcy-Stokes preconditioner (7) within HAZniCS is given in Listing 7. First, we recognize
that the preconditioner extracts the relevant block from the operator A to construct the Stokes velocity precon-
ditioner, while the remaining inner product operators are assembled (as they are not part of A, cf. system (6)).
The option to extract or assemble the (auxiliary) operators to define a preconditioner is a powerful feature of
HAZniCS/cbc.block. Hence, in Listing 7, we use scalable algorithms from HAZniCS and PETSc [Balay et al. 2022]
to approximate the inverses of each block separately. AMG schemes are used for the inverses of operators on
Vs and Vp where, particularly in the latter, the HAZniCS preconditioner class HXDiv implements the auxiliary
space method [Hiptmair and Xu 2007] for H(div) problems [Kolev and Vassilevski 2012]. Inverses of operators
representing L? inner products on the pressure spaces are realized via simple iterative schemes such as the
symmetric successive over-relaxation (SSOR). Finally, the preconditioner for the Lagrange multiplier, which
involves the inverse of a sum of fractional operators, is computed with the rational approximation method that
employs AMG (mgcycle()) internally.

We discuss in the following how to use and implement rational approximation [Hofreither 2020] that acts as
an application of the inverse of a fractional operator.

3.2.1 Rational approximation. Let s,t € [-1,1] and «, § > 0. The basic idea is to find a rational function
approximating f(x) = (ax® + px*)=1, x > 0, that is,

P (x)
Ok (x)’

where Py and Qy are polynomials of degree k’ and k, respectively. Assuming k” < k, the rational function can be
given in partial fraction form R(x) = ¢y + Z:Z’l xfp forco € R, ci,pi € C,i=1,2,...,n, With a slight abuse of
notation, denote with A a symmetric positive definite operator. Then, the rational function R(-) can be used to

approximate f(A) as follows,

(ax® + Bx') ™' ~ R(x) = (11)

z=f(A)r = cor+ch,~ (A—pil)_lr. (12)

The overall algorithm is shown in Algorithm 1. In our case, the operator A is a discretization of the Laplacian
operator —A, and I is the discrete operator of the L? inner product. Therefore, the equations in Step 1 of Algorithm 1
can be viewed as discretizations of the shifted Laplacian problems —A w; — p; w; = r. For real non-positive poles,
the problem is SPD, so we may define fractions or functions of the operator —A — p;I.
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from block.algebraic.hazmath import RA, AMG, HXDiv

from block.algebraic.petsc import SOR

# Composite function space

VS, QS, VD, QD, Q = W

# Define SPD operators defining inner products on the spaces

# Stokes velocity block is taken from the system matrix

Bo = A[0][0]

# L*2 inner product on QS

B1 = assemble ((1/mu)xinner(TrialFunction(QS), TestFunction(QS))=*dx)

# H(div) inner product on VD

ub, vD = TrialFunction(VD), TestFunction(VD)

B2 = assemble((1 / K) * (inner(u2, v2) * dx + inner(div(u2), div(v2)) * dx))
# L*2 inner product on QD

B3 = assemble(Kxinner(TrialFunction(QD), TestFunction(QD))#*dx)

# Lagrange Multiplier requires -\Delta + I and I on Q

p, 9 = TrialFunction(Q), TestFunction(Q)

h = CellDiameter (bmesh)

Deltag = assemble(avg(h)*x(-1) * dot(jump(p), jump(q)) * dS + inner(p, g) * dx)
Ig = assemble(inner(p, q) * dx) # in Delta_g we use DG discretization
# For inversion we require parameters for rational approximation (RA)
params = {'coefs': [1. / mu(@), K(@)J, 'pwrs': [-0.5, ©.5], '#[...]1"}
B4 = RA(Deltag, Ig, parameters=params)

# Define the approximate preconditioner
B = block_diag_mat ([LAMG(B@), SOR(B1), HXDiv(B2), SOR(B3), B4])

Listing 7. Scalable implementation of Darcy-Stokes preconditioner (7). Complete code can be found in scripts
HAZniCS-examples/demo_darcy_stokesx*.py.

Algorithm 1 Compute z = f(A)r using rational approximation.

1: Solve for wi: (A—p)w;=r, i=1,2,...,n,.
p

2. Compute: z = cor + 3, ¢;w;
i=1

As remarked earlier, the finite element matrices are always associated with mappings between nodal and dual
representations. In the following, we describe such representations for the preconditioners of interest. Let A be
the stiffness matrix corresponding to a discretization of (—A) and M be the corresponding mass matrix. Consider
the following generalized eigenvalue problem

AU=MUA, U'MU=1 = UTAU=A. (13)
For any continuous function F(x), x € [0, p] we define
F(A) == MUF(A)UTM, (14)

where p := p (M7'A) is the spectral radius of the matrix M~'A. We would like to approximate f(A) = (F(A))™!
using the rational approximation R(x) of f(x) = ﬁ If we have a function ¢g(t) = f(pt) defined on the interval
[0,1] and r(#) is the best rational approximation to g(¢), then

X X x & Cci
R S O e
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Therefore, if we know c¢; and p; for g(t) on the interval [0, 1], the residues and poles for f(x) = f(pt) are pc; and
ppi, respectively.
Using that, (13) and (14), the rational approximation of f(A) is a dual to nodal mapping as follows

p
f(A) = cgM™ + Z pci (A= ppiM)~L, (16)
i=1
In summary, to apply the rational approximation, we need to find solvers to apply M~" and each (A — pp;M)~".
If p; € R, pi <0, we end up solving a series of elliptic problems where multigrid methods are very efficient. As
mentioned in Section 3.1, the HAZmath library contains several fast-performing implementations of the AMG
method, such as SA-AMG and UA-AMG methods.

Furthermore, many methods compute the coefficients ¢; and p;, cf. an overview in [Hofreither 2020]. In
HAZmath, we have implemented the Adaptive Antoulas-Anderson (AAA) algorithm proposed in [Nakatsukasa
et al. 2018]. The AAA method is based on a representation of the rational approximation in barycentric form and
greedy selection of interpolation points. In most cases, this approach leads to p; < 0, so we can use the AMG
method to solve each problem in Step 1 of Algorithm 1.

class RA(Precond):
def __init__(self, A, M, parameters=None):

# change data type for the matrices (to dCSRmat pointen)
A_ptr, M_ptr = map(PETSc_to_dCSRmat, (A, M))
# initialize amg parameters (AMG_param pointer)
amgparam = haznics.AMG_param()
#L...1]
haznics.param_amg_set_dict(parameters, amgparam)
# get scalings
scaling_a = 1. / A.norm("linf")
scaling_m = 1. / df.as_backend_type(M).mat().getDiagonal().min()[1]
# get coefs and powers

alpha, beta = parameters['coefs"']

s_power , t_power = parameters['pwrs']

# set RA preconditioner #

precond = haznics.create_precond_ra(A_ptr, M_ptr, s_power, t_power,
alpha, beta, scaling_a, scaling_m,
amgparam)

# [...]

Precond.__init__(self, A, "RA", parameters, precond)

Listing 8. Class RA implemented in HAZmath backend of cbc.block.

In the demo examples HAZniCS-examples/demo_darcy_stokesx*.py, see also Listing 7 and Supplementary
Material, we use the rational approximation method from HAZmath for the fractional operator block in (7).
First, we import the preconditioner class RA representing the rational approximation method from the cbc.block
backend designated for HAZmath methods. It takes in two matrices, A and M, that are the discretizations of H'
and L? inner products on the solution domain. It also takes in an optional dictionary of parameters that, among
others, specify weights «, f and fractional powers s, t. The constructor of the class RA sets up the preconditioner
data, see Listing 8.

That is, it computes:
o the coefficients c;, p; with the AAA algorithm based on matrices A and M and parameters «, § in keyword
’coefs’ and s, t in keyword ’pwrs’;
o AMG levels for each A — p;M based on optional additional parameters in the parameters dictionary.
These two steps are performed in the function create_precond_ra() in HAZmath.
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Additionally, we compute the upper bound on p (M~'A). For example, in case of P; finite elements, the bound
depends on the matrix norms ||[M~!||c and ||A||e and the topological dimension of the problem, see [Budisa et al.
2023b]. Hence, the function create_precond_ra() takes scaling parameters to approximate the spectral radius.
In practice, M™! scales as (at least) h~1, so the topological dimension is not an important factor in the scalings.

The rational approximation preconditioner is then applied in each iteration through a matrix-vector function,
as explained at the beginning of Section 3. In this case, the matrix-vector function is the HAZmath function
precond_ra_fenics() that applies the two steps from Algorithm 1. In Listing 9 we show the implementation
snippet of the key parts of the preconditioner algorithm.

void precond_ra_fenics(REAL *r, REAL xz, void =*data) {
/0. ]
// z = z + residues[0] * M*{-1} r
if(fabs(residues->val[0]) > 0.) {
status = dcsr_pcg(scaled_M, &r_vec, &z_vec, &pc_scaled_M, 1e-6, 100, 1, Q@);

}
array_ax(n, residues->val[@], z_vec.val);
/7 [...]
for(i = @; i < npoles; ++i) {
/7. .. ]

dvec_set (update.row, &update, 0.0);

// solve (A - poles[i] * M) update = r

status = dcsr_pcg(&(mgl[il[@].A), &r_vec, &update, &pc_frac_A,1e-6,100,1,0);
//C...1]

// z = z + residues[i+1]*xupdate

array_axpy(n, residues->val[i+1], update.val, z_vec.val);

Listing 9. HAZmath function precond_ra_fenics().

3.3 Solvers for interface metric-perturbed problems

We continue with presenting the implementation of the solver for the 3d-1d coupled problem in Section 2.3.
Previously, we bridged the HAZmath and FEniCS libraries via a class of preconditioners implemented in cbc.block,
while here we introduce an alternative way to use HAZmath solvers. In the file demo_3d1d.py we have specified
the block problem (10) using FEniCS extensions FEniCS;; and cbc.block, see Supplementary Material and [Budisa
et al. 2022]. Next, we display in Listing 10 the steps necessary to use HAZmath solver for this block problem
directly through the library haznics. The listing consists of two parts: data conversion and calling the solver
wrapper function.

First, after assembly, the system matrix A and the right hand side b are of type block_mat and block_vec,
respectively. We convert them to HAZmath data types dvector (vector of double values) and block_dCSRmat
(block CSR matrix) so we can use them in the solver called through the function fenics_metric_amg_solver().
This auxiliary HAZniCS function acts as an intermediary to set solver data and parameters and to run the solver.
It can be found in file src/haznics/helper.c.

Furthermore, unless we want to use default values, we can set relevant parameters for the HAZmath solver,
such as the tolerance of the iterative method or the type of the preconditioner. This can be done by creating an
input file that passes the specific parameters to HAZmath to an input_param type variable. The file is then read
within the solver wrapper function. A snippet of the input file input_metric.dat for the problem (10) can be
found in Supplementary Material.
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# convert vectors
bb = ii_convert(b)

b_np = bb[:]
bhaz = haznics.create_dvector (b_np)
xhaz = haznics.dvec_create_p(n)

# convert matrices; A = AD + rho * M
Ahaz = block_to_haz(A)

Mhaz block_to_haz (M)

ADhaz = block_to_haz (AD)

# call solver
niters = haznics.fenics_metric_amg_solver (Ahaz, bhaz, xhaz, ADhaz, Mhaz)

Listing 10. Call of HAZniCS solver for the 3d-1d coupled system (10). Complete code can be found in script
HAZniCS-examples/demo_3d1d. py.

This setup allows to apply the metric-perturbed AMG solver. We recall that we have chosen to solve the 3d-1d
problem (10) by the CG method preconditioned with AMG that uses block Schwarz smoothers to obtain robustness
in the coupling parameter p; > 1. The HAZmath implementation of that solver has a slight modification that
uses a combination of the block Schwarz and Gauss-Seidel smoothers. We give a few details on the algorithm and
its implementation in the following section, while the full code is available in file src/solver/itsolver.c.

3.3.1 Metric-perturbed algebraic multigrid method. Let us go back to the system (10) and set V = Q3 X Q;. The
general subspace correction method looks for a stable space decomposition

V==WV+Vi+...+V; (17)

to divide solving the system on the whole space V to solving smaller problems on each subspace and summing
up the contributions in additive or multiplicative fashion [Xu 1992; Xu and Zikatanov 2002]. Furthermore, the
following condition from [Lee et al. 2007] is sufficient to obtain a robust subspace correction method to solve
nearly singular system such as (10):

Ker(M) NV = (Ker(M) N Vp) + (Ker(M) N V7) + ...+ (Ker(M) N Vj). (18)

We employ this space decomposition to create a robust AMG method where V represents the coarse space and
Vi, i=1,...,], define a Schwarz-type smoother. By robustness, we imply that the convergence of the method is
independent of the values of the coupling parameter g, and mesh parameter h. To construct subspace splitting
satisfying (18), it is necessary to choose the subspaces so that the following holds: for each element of a frame
spanning the kernel of M, there exists a subspace V; containing this frame element. Notice that this requirement
does not assume that the frame element is known, but rather that the subspace where this element is contained is
known.

Algorithm 2 Compute z = Br using metric-perturbed AMG

Require: Givenr and z « 0
1: Solve on the interface using forward Schwarz smoother: z « z + H’;Bschwarzﬂ’rr
2: Solve on the whole space using AMG method: z < z + Banmg (r — Az)

3: Solve on the interface using backward Schwarz smoother: z « z + H’F)Bg hwarIE (7 — AZ)
cnwarz

The metric-perturbed AMG method is given in the Algorithm 2. We can see that B is defined as
I—BA := (I - TIVB; I1A) (I - BamcA) (I — TIE Bschwar I11A).

Schwarz
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It is easy to see that B is symmetric and, following the theory developed in [Hu et al. 2013], B is also positive
definite if Boymc is symmetric positive definite and Bgchwar, 1S nonexpansive. Therefore, it can be used as a
preconditioner for the CG method. This preconditioner is implemented in HAZmath and its excerpt from the
function is given in Listing 11.

void precond_bdcsr_metric_amg_symmetric(REAL *r, REAL *z, void *data) ({
/0. ]
// Schwarz method on the interface part
Schwarz_param *schwarz_param = predata->schwarz_param;

Schwarz_data *schwarz_data = predata->schwarz_data;
smoother_dcsr_Schwarz_forward(schwarz_data, schwarz_param, &zz, &rr);
/7. .. ]

// AMG solve on the whole matrix

AMG_data_bdcsr *mgl = predata->mgl_data;

mgl->b.row total_row; array_cp(total_row, r, mgl->b.val);

mgl->x.row = total_col; array_cp(total_row, z, mgl->x.val);

for ( i=maxit; i--; ) mgcycle_bdcsr(mgl,6&amgparam);

//C...]

// Schwarz method on the interface part
smoother_dcsr_Schwarz_backward(schwarz_data, schwarz_param, &zz, &rr);
//0. .. ]

Listing 11. Implementation of the metric AMG preconditioner in Algorithm 2.

4 RESULTS

In this section, we show the performance of the solvers and preconditioners developed for the examples in
Section 2. We recall that their complete code can be found in [Budisa et al. 2022]. Due to limited data availability,
we use meshes that have matching degrees of freedom and conform to the interface, although we note that that
all examples can work with unfitted meshes. What is needed is the interface operator which relates the degrees
of freedom from one mesh to the other. Such an operator (averaging, interpolation, etc.) is always represented
by a sparse matrix, and it enables us to recover and eliminate the algebraic low frequencies efficiently without
additional information about the geometry of the mesh.

4.1 Linear elliptic problem

We use the 3d elliptic problem (1) to compare the HAZniCS solvers to already established solver libraries. This way,
we demonstrate that HAZniCS, specifically the AMG solver within, shows a fast and reliable performance when
solving common PDE problems. For the comparison, we use the AMG method BoomerAMG from the HYPRE
library [Falgout and Yang 2002] of scalable linear solvers and multigrid methods that are already integrated within
FEniCS software through PETSc. We note that all the computations are performed in serial on a workstation
with an Intel® Core™ i7-1165G7 @ 2.80GHz (8 cores) CPU and 40GB of RAM.

The results are given in Figure 2. It is clear that the AMG methods of HYPRE and HAZmath show similar
performance. While the HYPRE BoomerAMG method gives fewer total CG iterations and consequently less
solving time, the setup of the HAZmath UA-AMG method is multiple times faster while still taking comparable
solving time. Therefore, we are confident about using the methods from HAZniCS in our multiphysics solvers,
namely the HAZmath’s AMG method as a component of the rational approximation and metric-perturbed
preconditioners from Sections 3.2 and 3.3.
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Fig. 2 & Table 1. Performance of the CG method preconditioned with either HAZmath AMG or HYPRE AMG, with regards
to the number of degrees of freedom Nyor and up to relative residual tolerance 107°. Results are obtained by running
HAZniCS-examples/demo_elliptic_test.py. (Left) The setup (dotted line), solve (dashed line) and total (full line) CPU
time Tcpy required to solve (1). The blue data points represent HAZmath AMG preconditioner, while the red data points
represent HYPRE AMG preconditioner. (Right) Number of iterations (Niter) of the CG method preconditioned with either
HAZmath AMG or HYPRE AMG.
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Fig. 3. Performance of Darcy-Stokes preconditioner (7) implemented in Listing 7. Discretization by (CR1—Py) — (RTo—Po) —Po
elements with D = 0.1. (Top) Number of MinRes iterations until convergence for different values of y, K and mesh sizes.
(Bottom) Total solution time for solving (6) including the setup time of the preconditioner. Black line indicates linear scaling.
Results are obtained by running HAZniCS-examples/demo_darcy_stokes_3d_flat.py.

4.2 Darcy-Stokes problem

To demonstrate the performance of the rational approximation algorithms of HAZniCS, we next focus on the
Darcy-Stokes system (6) and its preconditioner (7). Implementation of the preconditioner in HAZniCS can be
found in Listing 7, and we recall that we utilize multilevel methods for the Stokes velocity and Darcy flux blocks
while the multiplier block uses rational approximation detailed in Section 3.2.

Let us first showcase the robustness and scalability of implementing the Darcy-Stokes preconditioner. Here we
focus on the (more challenging) case Qg, Qp C R* while results for a similar study in two dimensions are given
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in Supplementary Material. Let now Qg = [0, %] x [0, 1]2 and Qp = [%, 1] x [0, 1]2. We consider discretization of
(6) by (stabilized, cf. Supplementary Material), CR;-P, elements in the Stokes domain, RT,-P, elements in the
Darcy domain and Py elements on the interface. Using gradually refined meshes of Qs U Qp, which match on the
interface T, the choice of elements leads to linear systems with 2 - 10® < Ngf < 11 - 10°. Furthermore, we shall
vary the model parameters such that 107¢ < y, K < 1 while D = 0.1 is fixed.

The performance of the preconditioner is summarized in Figure 3, where we list the dependence of the solution
time and the number of MinRes iterations on mesh size and model parameters. Here the convergence criterion is
the reduction of the preconditioned residual norm by 10'2. Moreover, the tolerance in the rational approximation
is set to 107! yielding roughly n, ~ 20 poles in (12). However, numerical experiments [Budisa et al. 2023b]
suggest that a less accurate approximation, leading to as little as 6 poles, could be sufficient. In Figure 3, it can be
seen that iteration counts are bounded in the parameters, that is, (7) defines a parameter robust Darcy-Stokes
preconditioner. Moreover, the implementation in Listing 7 leads to optimal, O (Nyof), scaling.
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Fig. 4. Darcy-Stokes model on realistic brain geometry. (Left) Clip of the solution field when no-slip boundary conditions
are considered everywhere except on the small region on the base (cf. larger pressure in red). Here, the traction locally
increases pressure and induces flow in the Stokes domain. Pressure in the Darcy domain is rather uniform. Flow in the
Darcy domain is visualized by green streamlines. (Right) Convergence of the solution components (denoted by 0 < i < 4
for subspaces Vs, Qs, Vp, Op and A) of (6) when using preconditioner (7) (solid lines). Dashed lines show (diverging)
behavior when using a simpler preconditioner which utilized (A +1)!/2 on the interface. Results are obtained by running
HAZniCS-examples/demo_darcy_stokes_brain.py.

The experimental setup of our previous example led to rather small multiplier spaces with dimA = 2048 for
the finest mesh considered. To get larger interfaces and multiplier spaces, we finally turn to the brain geometry
in Figure 1. Although realistic, the geometry is still largely simplified as we have excluded the cerebellum, the
aqueduct, and the central canal and expanded the subarachnoid space to allow more visible CSF pathways.
Nevertheless; the geometry fully represents the complexity of the interface (gyric and sulcal brain surface),
which is an important part and an additional difficulty when solving the coupled viscous-porous flow problem.
Using the same discretization as before the computational mesh leads to Ngof ~ 11 - 10® with dimA ~ 50 - 103
For the purpose of illustration we set u = 3, K = 107*, D = 0.5 and consider most of the outer surface of Qs
with no-slip boundary condition except for a small region on the bottom where traction is prescribed. The flow
field computed after 500 iterations of MinRes is plotted in Figure 4. Therein we also compare convergence of
MinRes solver using preconditioner (7) with a simpler one which uses in the A block the operator K(—A +I)'/2,
cf. the analysis in [Layton et al. 2002]. Importantly, we observe that the new preconditioner, which ignores the
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intersection structure of the multiplier space, leads to very slow convergence or even divergence of the iterations.
In contrast, with (7) MinRes appears to be converging. We remark that the rather slow (in comparison to Figure 3)
convergence with block diagonal preconditioner (7) is related to the thin-shell geometry of the Stokes domain. In
particular, the performance of block-diagonal Stokes preconditioner using the mass matrix approximation for the
Schur complement is known to deteriorate for certain boundary conditions when the aspect ratio of the domain
is large [Sogn and Takacs 2022].

4.3 3d-1d coupled problem

Lastly, we demonstrate how the mixed-dimensional flow problem from Section 2.3 is solved using the HAZniCS
solver for metric-perturbed problems. The problem is defined by the geometry illustrated in the left subfigure
of Figure 5. The neuron geometry is obtained from the NeuroMorpho.Org inventory of digitally reconstructed
neurons and glia [NeuroMorpho 2017]. The neuron from a rat’s brain includes a soma and 72 dendrite branches.
It is embedded in a rectangular box of approximate dimensions 281um X 281um X 106um. Then, the mixed-
dimensional geometry is discretized with an unstructured tetrahedral mesh in a way conforming to T', i.e., the 1d
neuron mesh consists of the 3d edges lying on I'. As discretization, we use P, finite elements for both the 3d and
1d function spaces. Overall we end up with 641 788 degrees of freedom for the 3d and 3156 degrees of freedom
for the 1d problem. Additionally, we enforce homogeneous Neumann conditions on the outer boundary of both
subdomains.

‘O metric Schwarz O only Gauss—Scidol‘

fi iterations Tcpy setup (in s) Tepy solve (in s) p(in ppm)
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Fig. 5. (Left) Domain geometry of the 3d-1d problem (8). The 1d domain as the neuron and the network of neuronal dendrites
is marked in cyan color and a shallow clip of the 3d brain tissue domain is marked in purple. The outline of the 3d domain is
marked with black lines. (Right) Performance of the CG method to solve the system (10), preconditioned with either the
metric-perturbed SA-AMG method or the standard SA-AMG with Gauss-Seidel smoother from HAZniCS. With regards
to parameters p and At and up to relative residual tolerance 107, we measure number of iterations and CPU time (Tcpy)
required for setup and solve. Cases showing divergence and exceeding 2000 iterations are not reported. Results are obtained
by running HAZniCS-examples/demo_3d1d. py.

To obtain the numerical solution, we use the CG method to solve the system (10) preconditioned with the metric-
perturbed AMG method described in Section 3.3. The solver is executed through the call of the HAZniCS wrapper
function fenics_metric_amg_solver() and the solver parameters are set through the input file input.dat.
The convergence is considered reached if the I, relative residual norm is less than 107°. We choose the SA-AMG
that uses the block Schwarz smoother (defined by the kernel decomposition (18)) for the interface degrees of
freedom and the Gauss-Seidel smoother on the interior degrees of freedom. We note by the interface degrees of
freedom the sub-components of the 3d variable that contribute to the interface current flow exchange, i.e., the
nonzero components of H? qs for g3 € Q3. The application of the block Schwarz smoothers is done in a symmetric
multiplicative way, as presented in Listing 11. In addition, we compare the performance to preconditioning with
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the standard SA-AMG that uses the (pointwise) Gauss-Seidel smoother in the whole system (for all degrees of
freedom).

We study the performance with regards to varying the time step size At and the coupling/dendrite radius p.
Specifically, we are interested in the solvers’ performance for very small time steps since this results in the metric
term in the system (10) to dominate. The conductivity and membrane capacitance parameters remain constant
and fixed throughout their respective domains to o3 = 3 mS cm™!, 6y = 7mS cm™! and Cp, = 1 4F cm™2 [Buccino
et al. 2019]. The results are given in the collection of three subplots in Figure 5. The first subplot in Figure 5
shows stable number of iterations for the metric-perturbed AMG preconditioner, and increasing for the standard
AMG and the smaller time step sizes. This is also evident in the third subplot showing required solving CPU time.
In the second subplot, though, we recognize the increased setup time of the metric-perturbed AMG since it needs
to construct Schwarz subspaces. Summing the total time, we can conclude that for larger time steps (miliseconds
and larger) it is enough to consider the standard AMG preconditioner. However, for small time steps (At < 1072s)
and larger coupling radii (p > 1pm), as in realistic cases, our metric-perturbed AMG method performs more
efficiently and is robust with regards to problem parameters. Therefore, we can confidently incorporate the
method as part of the solver for the full EMI model [Buccino et al. 2021; Jeeger et al. 2021].

5 CONCLUSION

This paper introduces a collection of software solutions, HAZniCS, for solving interface-coupled multiphysics
problems. The software combines two frameworks, HAZmath and FEniCS, into a flexible and powerful tool
to obtain reliable and efficient simulators for various coupled problems. The focus of this work has been the
(3d-2d coupled) Darcy-Stokes model and the 3d-1d coupled diffusion model for which we have presented the
implementation and illustrated the performance of our solvers. In addition, we believe that the results shown in
the paper demonstrate a great potential to utilize our framework in other relevant applications. The solver library
allows interfacing with other finite element libraries which support the discretization of multiphysics problems,
such as the new generation FEniCS platform FEniCSx or the Julia library Gridap.jl [Verdugo and Badia 2022].
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