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Abstract: Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts
often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data
acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical
shifts for 50 structurally diverse small organic molecules containing atoms from only the first two
rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors
and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-
referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift
predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with
the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO)
method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM
solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from
a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for
13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.

Keywords: NMR; DFT; chemical shift predictions; benchmark; computational chemistry

1. Introduction

Prediction of NMR chemical shifts using computational quantum chemistry, including
density functional theory (DFT), is a well-established methodology that can significantly
decrease the likelihood of structure determination errors [1–8]. Such calculations can aid
in NMR peak assignments [9,10], as highlighted in our recent example of misassigned
beta-lactam carbonyl chemical shifts [11]. They have been used to confirm organic [12–15],
inorganic [16,17], and organometallic [18,19] reaction products, particularly those with un-
expected or unusual molecular structures [20–22], and they have been applied in complex
speciation studies [23–25]. Perhaps most notably, chemical shift calculations were used
to revise incorrectly reported natural product structures: aquatolide [26], vannusal B [27],
glabramycin C [28], and hexacyclinol [29]. For elucidation of spectroscopically challeng-
ing natural products, Buevich and Elyashberg demonstrated that DFT NMR calculations
could enhance the performance of computer-assisted structure elucidation (CASE) [30–32].
More recently, such calculations have been used to determine the conformations of cyclic
peptides in solution [33,34], and they have been applied to biomolecules, such as nucleic
acids [35–37], carbohydrates [38–40], and proteins [41–43]. Calculations of chemical shifts,
via shielding tensors, have also been combined with solid-state NMR to help refine X-ray
diffraction data of proteins [44] and to determine the packing arrangements of microcrys-
talline material [45], a practice referred to as NMR crystallography [46].
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DFT is among the most widely used computational chemistry tools for chemical shift
calculations due to the combination of accuracy and efficiency [3,7,47]. Application of
DFT for structure problem solution involves judicious choice of both a density functional
and basis set, which can be obtained from benchmark studies on a test set of compounds,
often from 20 to 100 small- to medium-sized, rigid molecules that have readily available
experimental data. A multitude of DFT benchmark studies have been reported in the
literature (Table 1), yet these studies have presented conflicting conclusions regarding
the most accurate method. For instance, Konstantinov and Broadbelt found BMK to be
the best performing functional for chemical shift predictions [48], while Toomsalu and
Burk found it to be the worst performing [49]. Granted, these two studies used different
solvent conditions (viz., toluene-d8 and CDCl3), but even for the same solvent system
there have been significantly different findings, such as Benassi recommending WP04
for δC predictions in CDCl3 based on a benchmark test set of 104 diverse, small organic
molecules [50], while Buß and Koch found the performance of WP04, for a test set of
24 heterocycles in CDCl3, to be the second worst performing density functional for δC [51].
Paradoxically, the worst performing functional, WC04, from Buß and Koch’s study [51]
was specifically parameterized for accurate δC predictions by Wiitala and coworkers [52].
More to this point, Stoychev, Auer, and Neese found double-hybrid density functionals,
such as DSD-PBEP86, to provide superior performance for δH predictions that were most
comparable to extremely costly coupled cluster calculations [53], while de Oliveria et al.
recently reported no benefit for the use of double hybrids over conventional density
functionals (i.e., GGAs, meta-GGAs, and hybrids) [54]. Additionally, most authors found
that the gauge-independent atomic orbital (GIAO) method provides the best accuracy, but
there have been two contemporary reports on improved accuracy using the continuous
set of gauge transformations (CSGT) method [49,55]. Thus, it is difficult to choose which
model chemistry to apply for spectral data predictions. One possible reason for these
discrepancies is the use of vastly different experimental data sets for benchmarking.

One of the earliest and most comprehensive compound sets comprising 80 struc-
tures of proton (1H) chemical shifts was curated by Rablen et al. [1] in 1999 and later
augmented by Tantillo and coworkers [3] with the inclusion of carbon (13C) chemical
shift data (Figure 1a) and an additional 24 compounds in a separate probe set (Figure 1b).
Although the test and probe sets of Rablen and Tantillo have been used for several bench-
marking studies [1,3,50,56] with various density functionals, basis sets, and solvent effect
studies, they are not without challenges: (1) relativistic effects from elements in rows
three and beyond of the periodic table must be included for accurate δC predictions of
carbons bound to the heavy atom (Figure 1c) [57]; (2) molecules such as furfural (Figure 1c)
and dimethyl acetal exhibit multiple low-lying conformers in solution whose Boltzmann-
weighting factors are highly dependent on the level of theory employed; (3) compounds
such as methanol and indole contain hydrogen bond donors that will exhibit concentration-,
pH-, and temperature-dependent chemical shifts in solution; (4) aromatic, olefinic, and
alkynyl compounds may also exhibit concentration-dependent chemical shifts due to ag-
gregation from π–π stacking [58,59]; and 5) experimental data were not measured in a
single solvent system (instead, either CDCl3 or CCl4 was used, which may yield significant
differences [60]). Experimental NMR chemical shift data used by Rablen and Tantillo were
from eight sources [61–68] with sample concentrations for carbon NMR spectra, which
at times reached up to 10% weight/volume (solid) or volume/volume (liquid). At such
high concentrations, interactions between solute molecules may also lead to chemical shift
differences [58].

When considering curation of a well-behaved test set, several compounds should
be eliminated from the test set for the reasons indicated above (i.e., colored structures in
Figure 1), such as those that contain row three elements or hydrogen bond donors or exhibit
multiple low-lying conformers. Moreover, the experimental NMR data should be fully
verified, including peak assignments, at a sufficiently low concentration in a single solvent
system (viz., CDCl3), and spectra should be appropriately and consistently referenced to
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ensure reliability. In addition, because several molecules in the test set are highly reactive
and thus not easily obtainable (i.e., bicyclobutane, cyclopropanone, and cyclobutene), they
should also be excluded from consideration.

Table 1. Comparison of different benchmark studies for 1H and 13C NMR chemical shift predictions.

Best δH Method a Best δC Method a Orig. b Geom.
Optimization

Solv./Model c Conv. d Benchmark Set Ref.

mPW1LYP/6-311+G(2d,p) WP04/DGTZVP GIAO B3LYP/6-
311+G(2d,p) CDCl3/SMD linear 104 small organics [50]

BMK/6-311G(d) BMK/6-31G(d) GIAO B3LYP/6-
31+G(d,p) toluene/none linear 37 small organics [48]

B97-2/pcS-3 B97-2/pcS-3 GIAO B3LYP-D3/def2-
TZVP water/CPCM MOSS 176 metabolites [69]

B3LYP/6-31G(d,p) B3LYP/6-31G(d,p) GIAO B3LYP/6-31G(d,p) gas/none linear 28 small organics [70]

B97-2/pcS-2 B97-2/6-311G(d,p) GIAO CCSD(T)/cc-pVTZ gas/none TMS 29 CCSD(T) calcs. [71]

δH not evaluated B3LYP/6-311+G(d)
B3LYP/MIDI! GIAO B3LYP/MIDI! gas/none

CDCl3/none linear 15 gas cmpds.
37 solution cmpds. [72]

not recommended e LC-TPSS/cc-pVTZ CSGT LC-TPSS/def2-SVP CDCl3/COSMO linear 39 small molecules [55]

WP04/pcS-2
PBE0/6-31G(d)

PBE0/pcS-2
PBE0/6-31G(d) GIAO

δH: B3LYP/6-31(d)
δC: ωB97X-D/6-
31G(d)

CDCl3/PCM linear 24 heterocycles [51]

WP04/aug-cc-pVDZ mPW1PW91/
6-311+G(2d,p) GIAO B3LYP/6-

31+G(d,p) CDCl3/PCM linear 23 small organics [73]

B3LYP/6-311++G(2df,p) δC not evaluated GIAO B3LYP/6-31+G(d) CDCl3/none linear 80 small organics [1]

WP04/aug-cc-pVDZ δC not evaluated GIAO B3LYP/6-31G(d) CDCl3/PCM linear 80 small organics [56]

B3LYP/cc-pVDZ B3LYP/cc-pVDZ GIAO B3LYP/6-31G(d) CDCl3/COSMO linear 312 small
molecules [74]

SSB-D/ET-pVQZ SSB-D/ET-pVQZ GIAO SSB-D/ET-pVQZ gas/none TMS 33 small molecules [75]

PBE0/cc-pVTZ PBE0/aug-cc-pVDZ CSGT B3LYP/6-
311++G(d,p) CDCl3/none TMS 25 small organics [49]

B3LYP/6-311++G(d,p) δC not evaluated GIAO B3LYP/6-31G(d,p) CDCl3/none C6H6 14 aromatics [76]

δH not evaluated B3LYP/cc-pVDZ GIAO B3LYP/6-
311++G(2d,p) DMSO/CPCM linear 51 organics [77]

LH20t/pcSseg-4 mPSTS/pcSseg-4 curr. f CCSD(T)/cc-pVTZ gas/none TMS 23 small organics f [78]

DSD-PBEP86/ps4 DSD-PBEP86/ps4 GIAO CCSD(T)/cc-pVTZ gas/none CH4 15 gas cmpds. [53]

mPW1PW91/6-311G(d) same as δH method GIAO B3LYP/6-31G(d,p) CDCl3/PCM TMS 25 organics [79]

revTPSS/cc-pVTZ δC not evaluated GIAO M06-2X/6-
311+G(2d,p) gas/none TMS 72 small organics [54]

DSD-PBEP86/pcSseg-3 MP2/pcSseg-3 GIAO CCSD(T)/cc-pVQZ gas/none N/A g 117 gas cmpds. [80]

a In cases where two methods are listed, no definitive conclusion on the best model chemistry was provided
in the study. b Method for treating gauge origin dependence. c Solvent refers to the solvent (or gas phase)
that the experimental NMR data were measured in, while model refers to the implicit solvent model used, if
any. d Method to convert isotropic shielding tensors to chemical shifts. Linear = linear scaling factors; MOSS =
motif-specific scaling (six linear scaling factors for different functionalities); TMS, C6H6, and CH4 = uses these
compounds as single point references. e Errors with respect to experiment were found to be too large for δH
predictions. f Benchmarking relative to theoretical results from CCSD(T)/def2-TZVP; gauge–origin invariance
from current density approach [81]. g Benchmarking relative to absolute shieldings obtained from high-level in
vacuo GIAO-CCSD(T)/pcSseg-3//CCSD(T)/cc-pVQZ calculations.
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Figure 1. (a) Benchmark test set used by Rablen et al. [1] and Tantillo et al. [3] to generate linear
scaling factors per Equation (1). Bold-faced, colored structures are modeling challenges due to row
three atoms (red), H-bond donors (blue), or multiple low-energy conformers (green). (b) Probe set
used by Tantillo et al. [3] to examine accuracy of DFT model chemistries for δH and δC predictions.
(c) Examples of problematic structures for benchmarking: (i) attachment of Cl, a row three heavy
atom, to carbon results in a 13.9 ppm δC overprediction by DFT; and (ii) difficulties with accurately
determining conformer energetics, as shown for several different energy calculations both with
and without dispersion corrections using the same B3LYP/6-31G(d) geometries, can lead to vastly
different Boltzmann populations and chemical shift predictions. Both 1H and 13C chemical shifts (δC

in parentheses) were calculated using the DP4+ model (PCM-mPW1PW91/6-31+G**//B3LYP/6-
31G*) [82].
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An additional plausible reason for the differing conclusions from various DFT chemi-
cal shift benchmarking studies is the varying referencing schemes used to convert isotropic
shielding tensors into chemical shifts. The simplest method of subtracting the calcu-
lated isotropic shielding tensor, σ, for tetramethylsilane (TMS), according to the equation,
δ = σTMS − σcmpd, is also the least accurate due to poor cancellation of errors, especially
when comparing carbon atoms with different hybridization [83]. A better approach that im-
proves error cancellation is to replace TMS with a structurally similar reference compound
relative to the molecule of interest [84–87]. Alternatively, the most frequently applied
methodology, which also improves error cancellation over TMS and does not require ex-
perimental data for specific reference compounds, is to calculate and apply linear scaling
factors for a given computational model according to Equation (1) [1,3]. However, the
downside is that such linear scaling factors must be determined from a large training set of
experimental data, often as part of a comprehensive benchmarking study.

δ =

y-intercept − σ

−slope
(1)

The goal of this research was to re-measure and verify experimental NMR assignments
for a set of compounds, hereafter referred to as DELTA50, that can be used to provide a
reliable benchmark for existing and new DFT methodologies as they are developed. In
addition, a majority of currently available functionals, basis sets, and solvation models as
implemented in Gaussian 16 [88] were tested to determine which is the most appropriate for
1H and 13C NMR chemical shift predictions. The DELTA50 set was then used to calculate
(per Equation (1)) linear scaling factors for conversion of isotropic shielding tensors to
chemical shifts. Finally, the performance of the optimal methods and linear scaling factors
were assessed using 20 natural products and small- to medium-sized organic compounds,
which represents a probe set.

2. Results and Discussion

2.1. DELTA50 Compound Curation and Experimental Measurements

DELTA50 (Figure 2) contains 50 compounds, comprising 114 proton and 143 carbon
chemical shifts, which is a subset of the compounds from the test and probe sets of Rablen [1]
and Tantillo [3] (Figure 1) that avoids the previously mentioned problem cases. A wide
variety of functional groups (nitro, fluoro, nitrile, aldehyde, ketone, ester, alkyne, amide,
amine, olefin, aliphatic, aromatic, and ether), ring sizes (three- to six-membered), and bond
hybridizations are present, resulting in 1H and 13C NMR chemical shifts ranging from 0.25
to 9.80 ppm and −2.9 to 219.4 ppm, respectively.

Proton and carbon NMR spectra were acquired at 298 K for ≤10 mM solutions of each
compound dissolved in CDCl3 with 0.03% TMS as internal reference using a 600 MHz
spectrometer. A concentration of 10 mM in a 5 mm NMR tube (~1–2 mg) allowed for
collection of 13C NMR spectra in reasonable overall acquisition times (e.g., approximately
2–4 h on a Bruker 600 MHz AVANCE III spectrometer equipped with a liquid N2-cooled
broadband Prodigy™ probe) with all resonances detectable (signal-to-noise ratio ≥ 3:1).
Proton NMR spectra were acquired using a 2.73 s acquisition time, 20 ppm spectral width,
6.175 ppm transmitter frequency, 16 scans, and a 1 s relaxation delay. Carbon NMR spectra
were acquired using a 0.9 s acquisition time, 240 ppm spectral width, 100 ppm transmitter
frequency, 3072 to 4096 scans, and a 2 s relaxation delay. Spectral data were processed in
MestReNova, version 14.2. using 0.3 and 1.0 Hz exponential line broadenings applied to
1H and 13C, respectively. Both proton (δH) and carbon (δC) chemical shifts were referenced
to TMS at 0.00 ppm and recorded to two decimal places. Individual proton and carbon
spectra for each molecule are provided in the Supplementary Materials with expansions
for individual multiplets or congested spectral regions, and the assigned chemical shifts
are shown for each spectrum; these are also shown in Figure 2.
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Figure 2. DELTA50 benchmark set of 50 small molecules that avoid the issues described in Figure 1.
Experimental 1H chemical shifts are provided for numbered carbon atoms with 13C chemical shifts
listed in parentheses. Numbering corresponds to that used in calculations. Experimental data were
acquired on a 600 MHz NMR in CDCl3 and referenced to TMS at 0.00 ppm for both 1H and 13C.

A concentration-dependent study was undertaken to ensure that samples were suffi-
ciently dilute to avoid deleterious aggregation using a representative subset of compounds
with diverse functionalities from DELTA50: benzene, pyridazine, tetrahydrofuran (THF),
3-butyn-2-one, and fluorobenzene (Figure 3). Here, it was found that proton chemical shifts
were stable within a variance of ±0.3% at concentrations up to 50 mM. The largest concen-
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tration effects were observed for pyridazine and 3-butyn-2-one, which were also found to
exhibit the largest proton chemical shift deviations from theoretical predictions in Rablen’s
study [1]. THF did not show any chemical shift changes up to a concentration of 50 mM, as
would be expected for an aliphatic compound, while the chemical shifts of benzene and
fluorobenzene deviated by less than 0.02%, indicating that π–π interactions were not appre-
ciable at these concentrations. The alkyne proton chemical shift (3.21 ppm) of 3-butyn-2-one
proportionally increased up to 0.1% with increasing concentration, while the methyl proton
resonance (2.38 ppm) showed no change, indicating slight π interactions. The protons meta
to nitrogen of pyridazine (7.49 ppm) showed the largest concentration dependence, and
it was also noticed in the pyridazine samples that the peak width and chemical shift of
residual water varied considerably (υ1/2 12 to 23 Hz and δH 1.54 to 1.80 ppm). This pointed
to the presence of DCl in CDCl3 that could protonate basic nitrogens, especially at low
concentrations. Thus, a few solid crystals of anhydrous K2CO3 were added to the CDCl3
solvent to neutralize DCl, and this resulted in more consistent chemical shifts as well as
markedly improved pyridazine peak shape. Based on these results, anhydrous K2CO3
was used for all sample preparations of basic compounds, and a 10 mM concentration was
considered acceptable for the compounds in the DELTA50 test set.
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Figure 3. Proton chemical shift dependence as a function of concentration in CDCl3. (a) Pyridazine
without K2CO3. (b) Pyridazine with K2CO3 to neutralize residual DCl. (c) 600 MHz NMR spectral
overlays for individual compounds. Concentrations were varied from 1 to 50 mM. The largest
chemical shift deviations with respect to concentration are highlighted for pyridazine (blue triangles
and circles) and the alkyne proton of 3-butyn-2-one (pink squares).

In some cases where chemical shift assignments were not sufficiently obvious from
chemical shifts, scalar coupling, and integration, additional one- and two-dimensional
(NOE, gCOSY, multiplicity-edited gHSQC, and/or gHMBC) spectra were acquired for
confirmation. In particular, selective NOEs (300 to 700 ms mixing times) were used to de-
termine the assignment of the methyl peaks in 2-methyl-2-butene, N,N-dimethylacetamide
(DMAc), and N,N-dimethylformamide (DMF).

The differences between the previous experimental data and those recorded in the
present study are shown as histogram plots (Figure 4). While 76 proton chemical shifts
(67%) were within ±0.05 ppm of the previously reported experimental data, there were
19 outliers (17%) with greater than a ±0.10 ppm deviation. The largest difference of
0.21 ppm was for the α-ether protons of tetrahydropyran. Linear scaling factors calculated
at the B3LYP/cc-pVTZ//B3LYP/6-31G(d) level using the previous experimental data were
approximately 0.2% different than using the newly acquired data (slope = −1.0429, intercept
= 31.6499 versus slope = −1.0450, intercept = 31.6889, respectively), resulting in a maximum
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0.04 ppm difference in predicted proton chemical shifts. For δC, 88 out of 143 measurements
(62%) were within ±0.25 ppm of the previously reported experimental data; 8 outliers
(6%) were found with greater than a ±0.50 ppm difference. The largest carbon chemical
shift difference of 2.45 ppm was for the keto carbon of cyclohexanone. Linear scaling
factors, at the B3LYP/cc-pVTZ//B3LYP/6-31G(d), differed by approximately 0.1% (slope
= −1.0372, intercept = 181.5955 using the previous experimental data, and slope = −1.0364,
intercept = 181.5727 using the newly acquired data). This resulted in differences of up to
0.15 ppm.
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Figure 4. Histogram plots showing frequency of measured differences between experimental data
available in the literature compared with re-measured values in this study for 114 proton chemical
shifts and 143 carbon chemical shifts.

To ensure that only a single low-energy conformer comprised at least 98% of the Boltz-
mann distribution, a conformer search was performed for each molecule in the DELTA50
set using a mixed torsional, low-mode sampling search in MacroModel and the OPLS4
force field [89] as implemented in the Schrödinger software suite, version 2021-1 [90]. In
some cases, multiple conformers were found, such as boat and chair forms of cyclohexane,
and these were analyzed further by DFT energy calculations using the M06-2X/6-31+G(d,p)
model chemistry (including vibrational energy corrections) and the SMD solvent model
for chloroform, as implemented in Gaussian 16 [88]. This model chemistry was chosen
because the M06-2X functional combined with the SMD solvent model has been shown to
be particularly effective for prediction of relative energies [91–94]. Minimum energy con-
formations were initially verified by lack of imaginary vibrational modes (i.e., the second
derivative matrix of energy with respect to displacement was positive definite). Boltzmann
probabilities were calculated (see Supplementary Materials for additional details), and the
dominant conformer (≥98% probability weighting) was included in the DELTA50 set (as
was the case for the chair conformation of cyclohexane).

For each molecule in the DELTA50 set, geometries were optimized at the B3LYP/6-
31G(d) level. The Cartesian coordinates and atom numbering for optimized geometries
are provided in the Supplementary Materials along with the experimentally measured
chemical shifts. A relatively low level of theory was chosen for molecular geometry opti-
mizations because: (1) geometries are reasonably well predicted at this level; (2) geometry
optimization is one of the most time-consuming steps in a DFT calculation; and (3) pre-
dicted chemical shift dependencies on molecular geometry should be correctable via linear
scaling factors [3]. Moreover, the impact of geometry optimization on overall accuracy was
further assessed after evaluating the performance of various functionals, basis sets, and
solvent models.
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2.2. DFT Benchmark Study

The performance of 73 density functionals implemented in Gaussian 16 [88] was
evaluated for GIAO isotropic shielding predictions using a large, correlation-consistent,
triple-zeta basis set, cc-pVTZ, ultrafine integration grid, and the polarizable continuum
model (PCM) for solvent effects. Hartree–Fock (HF) theory was also evaluated for compari-
son purposes. A wide variety of different classes of functionals (Table 2) were included:
those based on either the local density approximation (LDAs), generalized gradient ap-
proximation (GGAs), meta-GGAs, or hybrids, such as the popular B3LYP functional, that
include an empirically derived contribution of HF exchange. In addition, range-separated
functionals, which are often denoted with the prefix ‘LC’ for long-range correction, were
also evaluated. Range-separated functionals vary the contributions from the various ex-
change terms based on pairwise electronic spatial distance to overcome problems from
long-range density over-delocalization [95]. Finally, the impact of including an empirical
dispersion correction, denoted as either ‘D’ or ‘D3′, was also considered. While most of
these functionals were designed for reproduction of electronic energies, two functionals,
WP04 and WC04, were specifically parameterized for accurate proton and carbon chemical
shift prediction, respectively [52].

Table 2. Performance of density functionals and HF for 1H and 13C chemical shift predictions.

δH (ppm) δC (ppm) δH (ppm) δC (ppm)

Functional a,b RMSD c MD c RMSD c MD c Functional a,b RMSD c MD c RMSD c MD c

HF 0.190 0.74 3.44 10.15 TPSS 0.107 0.26 2.38 6.62
Xα 0.152 0.43 2.85 10.03 revTPSS 0.108 0.26 2.32 7.13
SVWN 0.144 0.44 2.68 9.95 PKZB 0.129 0.31 2.65 6.49
BLYP 0.127 0.42 2.86 7.12 BRxBRc 0.130 0.36 2.78 6.61
BP86 0.126 0.37 2.51 7.64 VSXC 0.124 0.35 3.44 10.52
BVP86 0.125 0.37 2.51 7.61 τ-HCTH 0.114 0.37 2.43 5.99
BPW91 0.124 0.39 2.43 7.61 M06-L 0.094 0.24 2.24 6.54
mPWPW91 0.126 0.39 2.51 7.71 M11-L 0.134 0.43 3.63 10.06
PBE 0.132 0.40 2.55 8.06 MN12-L 0.116 0.38 3.04 8.46
SOGGA11 0.169 0.54 4.10 9.43 MN15-L 0.118 0.30 3.10 9.19
SOGGA11X 0.111 0.31 1.67 5.16 LC-TPSS 0.147 0.52 2.33 7.75
BPL 0.115 0.42 2.81 7.25 LC-revTPSS 0.145 0.50 2.26 7.55
G96LYP 0.118 0.40 2.63 6.91 LC-M06-L 0.142 0.55 2.16 6.89
B97-D 0.117 0.36 2.66 6.19 CAM-B3LYP 0.102 0.25 1.66 5.02
B97-D3 0.117 0.36 2.66 6.19 LC-ωPBE 0.139 0.40 1.99 5.65
HCTH 0.127 0.44 2.74 7.05 LC-ωHPBE 0.139 0.40 1.99 5.65
HCTH/93 0.119 0.39 2.57 6.98 ωB97 0.130 0.37 1.78 4.46
HCTH/147 0.121 0.39 2.66 6.84 ωB97X 0.119 0.32 1.62 4.57
N12 0.112 0.39 2.47 6.33 ωB97X-D 0.109 0.29 1.57 4.64
LC-BP86 0.148 0.49 2.40 8.18 HISS 0.126 0.40 1.99 6.38
LC-BPW91 0.152 0.51 2.47 8.34 HSE06 0.109 0.26 1.77 4.89
LC-N12 0.153 0.56 2.52 7.98 N12-SX 0.110 0.28 1.78 4.80
B3LYP 0.098 0.26 1.97 5.49 B1B95 0.113 0.32 1.77 5.22
B3PW91 0.105 0.25 1.77 5.03 TPSSh 0.097 0.22 1.99 5.42
B1LYP 0.096 0.24 1.90 5.45 τ-HCTHhyb 0.101 0.25 1.96 5.24
O3LYP 0.109 0.31 2.20 5.61 M05 0.131 0.34 2.72 10.79
X3LYP 0.098 0.24 1.96 5.54 M05-2X 0.166 0.60 2.72 8.17
mPW1PW91 0.107 0.27 1.72 4.81 M06-2X 0.161 0.57 2.70 7.19
mPW1PBE 0.108 0.27 1.72 4.80 M06-HF 0.295 1.06 6.30 17.26
mPW1LYP 0.097 0.24 1.96 5.61 M08-HX 0.165 0.58 3.28 9.16
mPW3PBE 0.106 0.25 1.80 5.17 MN15 0.142 0.41 2.26 5.93
PBE0 0.109 0.27 1.74 4.85 PW6B95 0.108 0.29 1.80 5.03
PBEh1PBE 0.109 0.27 1.74 4.88 PW6B95-D3 0.108 0.29 1.80 5.03
WP04 0.086 0.32 2.73 10.21 M11 0.180 0.62 3.27 10.21
WC04 0.150 0.42 2.99 8.00 MN12-SX 0.110 0.29 2.44 8.02
B97-1 0.101 0.24 1.85 5.20 APF 0.108 0.26 1.74 4.88
B97-2 0.103 0.23 1.78 4.70 B98 0.099 0.24 1.84 5.21

a Gas phase B3LYP/6-31G(d) geometries, cc-pVTZ basis set, and PCM(CHCl3) were used. b Recommended
functionals highlighted in blue, bold font. c RMSD = root-mean-square deviation; MD = maximum deviation.
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Isotropic shielding tensors, σ, were converted to chemical shifts through linear regres-
sion analysis in Excel. To evaluate performance of each functional, residuals (deviations)
were plotted as a function of chemical shift, and root-mean-square deviations (RMSD)
and maximum deviations (MD) were calculated (Table 2). Particular focus was placed on
evaluation of systematic errors with respect to hybridization and functional groups.

In general, a systematic improvement in accuracy was seen in going from HF theory
to LDAs and then to more advanced functionals, e.g., HF < LDAs < GGAs ≈ meta-GGAs
< hybrids. However, range separation showed minimal improvement in accuracy, and
in most cases, except ωB97X-D, no difference was observed upon including an empirical
dispersion correction. Maximum deviations for proton and carbon chemical shifts were
typically from 0.2 to 0.5 ppm and 5 to 8 ppm, respectively. HF, SOGGA11, and several of
the Minnesota functionals performed particularly poorly. The best performing functionals
in the present study were found to be ωB97X-D for carbon chemical shifts and WP04 for
proton chemical shifts.

Figure 5 shows an example of carbon chemical shift deviations from experiment for
several representative functionals from each class versus Hartree–Fock theory. Deviations
were typically smaller for proton and carbon chemical shifts that resonate upfield (i.e.,
less than approximately 4.5 and 60 ppm for δH and δC, respectively), which corresponds
to sp3-hybridized carbons. The largest deviations for carbon chemical shift predictions
were typically carbonyls, olefins, and sp-hybridized carbons. Systematic errors were
observed among several functional groups across the board for most density functionals.
For instance, mPW1PW91, PBE0, B3LYP, and B97-D overpredicted the more electron-rich
carbon in olefins by 2–5 ppm and underpredicted the amide carbonyl in DMF and DMAc
by 3–6 ppm. Alkynes and nitriles were overpredicted by several ppm for mPW1PW91 and
PBE0, underpredicted by 1–2 ppm for B97-D, or exhibited no noticeable bias for B3LYP.

Following functional evaluation, the basis set size was investigated. In principle,
larger, more complete basis sets should have the flexibility to better approximate the
electronic density and thereby yield higher accuracy, but this has not always been found
to be the case with DFT-based methods [96–98]. Importantly, the size of the basis set
can dramatically increase computational time. A medium-sized basis set would be most
appropriate for larger molecules of greater than 600–700 Da, while the most accurate basis
set should be utilized for calculations of small molecules or fragment structures and for
critical compounds, such as newly discovered natural products with unusual scaffolds
(e.g., homodimericin A [99]). Table 3 shows the errors and computation times for 40 basis
sets from double to quadruple zeta, including polarization and diffuse functions on both
heavy atoms and hydrogens. While counterintuitive (yet similar to other benchmark
studies), smaller basis sets were found to provide more accurate carbon chemical shift
predictions [48,51,71], with def2-SVP identified as the best performing basis set when
paired with the ωB97X-D functional. Conversely, proton chemical shift predictions typically
require larger basis sets, and diffuse functions appear to be productive for reducing errors.
The best performing basis set was 6-311++G(2df,p); however, the computational time was
found to be more than six times longer for calculation of nitromethane compared to the
next smaller Pople-type basis set, 6-311++G(2d,p). Because 6-311++G(2d,p) performed
nearly as well, this was chosen as the preferred basis set when paired with WP04 for proton
chemical shift predictions.

In general, δH predictions exhibited substantially fewer systematic errors than δC.
There were still a few notable cases: the aldehyde proton of DMF was often underpredicted
by 0.1 to 0.5 ppm, cyclopropane was overpredicted by 0.1 to 0.3 ppm, and the alkyne
protons in t-butyl acetylene and 3-butyn-2-one were underpredicted by 0.1 to 0.3 ppm.
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Figure 5. Comparison of deviations for carbon chemical shift predictions for representative density
functionals and HF (cc-pVTZ basis sets, B3LYP/6-31G* optimized geometries, and PCM solvation
model for chloroform was used in all instances).
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Table 3. Impact of basis set on accuracy of 1H and 13C NMR chemical shift predictions a.

Functional: WP04 ωB97X-D Functional: WP04 ωB97X-D
δH (ppm) δC (ppm) δH (ppm) δC (ppm)

Basis Set b Time c RMSD d MD d RMSD d MD d Basis Set b Time c RMSD d MD d RMSD d MD d

SV 0.11 0.171 0.48 2.04 5.90 6-31G(d,p) 0.25 0.098 0.37 1.51 5.91
SVP 0.22 0.119 0.45 1.50 4.61 6-31+G(d,p) 0.31 0.086 0.24 1.59 4.77
TZV 0.18 0.162 0.80 2.53 8.01 6-311G(d,p) 0.31 0.095 0.33 1.80 5.08
TZVP 0.36 0.096 0.32 1.65 4.46 6-311+G(d,p) 0.40 0.086 0.37 1.69 4.54
def2-SV 0.20 0.148 0.47 1.68 5.93 6-311++G(d,p) 0.44 0.086 0.35 1.71 4.60
def2-SVP 0.24 0.119 0.45 1.50 4.61 6-311++G(2d,p) 0.59 0.077 0.30 1.68 4.66
def2-TZV 0.18 0.162 0.80 2.53 8.01 6-311++G(2df,p) 3.76 0.075 0.27 1.54 4.35
def2-TZVP 2.93 0.080 0.25 1.63 4.81 6-311++G(2df,2p) 4.05 0.078 0.29 1.53 4.43
def2-TZVPP 3.63 0.084 0.28 1.61 4.53 apr-cc-pVDZ 0.36 0.096 0.30 1.77 5.18
def2-QZV 0.33 0.147 0.62 2.23 6.11 may-cc-pVDZ 0.36 0.096 0.30 1.77 5.18
EPR-II 0.35 0.122 0.34 2.17 11.34 jun-cc-pVDZ 0.36 0.096 0.30 1.77 5.18
EPR-III 4.52 0.079 0.30 1.60 4.75 jul-cc-pVDZ 0.50 0.079 0.21 2.07 6.99
D95 0.14 0.163 0.49 2.93 13.71 aug-cc-pVDZ 0.70 0.080 0.29 2.12 6.29
D95V 0.13 0.165 0.49 2.97 13.76 apr-cc-pVTZ 4.14 0.082 0.34 1.57 4.66
MIDI! 0.14 0.183 0.68 2.41 6.09 may-cc-pVTZ 4.14 0.082 0.34 1.57 4.66
3-21G 0.09 0.215 0.76 2.19 6.28 jun-cc-pVTZ 5.24 0.082 0.31 1.63 4.89
4-31G 0.11 0.172 0.61 2.28 6.07 jul-cc-pVTZ 8.33 0.081 0.30 1.62 4.85
6-21G 0.11 0.208 0.63 2.19 6.08 aug-cc-pVTZ 12.86 0.081 0.28 1.66 5.12
6-31G 0.11 0.162 0.59 2.08 5.55 cc-pVDZ 0.27 0.109 0.35 1.71 4.96
6-31G(d) 0.20 0.115 0.47 1.62 7.25 cc-pVTZ 3.66 0.086 0.32 1.57 4.64

a Calculations using gas phase B3LYP/6-31G(d) geometries and PCM (chloroform) solvent model. b Recom-
mended basis sets highlighted in blue, bold font. c Relative time for PCM-ωB97X-D calculation of nitromethane
with specified basis set. d RMSD = root-mean-square deviation; MD = maximum deviation.

Chemical shift calculations require that the Hamiltonian include interaction terms
from the external magnetic field vector, which under a finite basis set leads to a depen-
dence on the choice of the vector origin or gauge [100]. While all gauge methods converge
to the same limit at increasing basis set size, most chemical shift calculations are typi-
cally handled via GIAO [101–105] due to faster convergence; however, Iron [55] found
that the CSGT [105–107] method provides more accurate results when paired with long-
range corrected (LC) functionals (i.e., the CSGT method with LC-TPSS/cc-pVTZ and the
COSMO solvation model was recommended). To test if alternative gauge procedures
showed improvement in predictability, CSGT and individual gauges for atoms in molecules
(IGAIM) [106,107] were compared to GIAO. Because the accuracy of the gauge method
is dependent on basis set size, the basis set was also varied from double- to triple-zeta
with inclusion of varying amounts of diffuse and polarization functions. Table 4 shows
that, as expected, GIAO converged much more quickly than CSGT and IGAIM. For carbon
chemical shift predictions, GIAO produced the lowest RMSD error at only a double-zeta
basis set, def2-SVP, and predictions became worse at larger basis sets. The CSGT and
IGAIM predictions were nearly equivalent and required triple-zeta basis sets augmented
with diffuse functions (viz., aug-cc-pVTZ and jul-cc-pVTZ), which were more than an order
of magnitude longer in computation time, to yield comparable levels of accuracy to GIAO
with def2-SVP. For proton chemical shifts, GIAO was slower to converge compared to
carbon, yet GIAO still exhibited significantly improved accuracy at smaller basis set sizes
versus CSGT and IGAIM. Based on these results, GIAO should be the preferred method
when considering both speed and accuracy.
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Table 4. Impact of gauge-referencing method and basis set on δH and δC predictions a.

Gauge Method b
Functional: WP04 ωB97X-D

δH (ppm) δC (ppm)

Basis Set Time c RMSD d MD d RMSD d MD d

def2-SVP GIAO 0.24 0.119 0.45 1.50 4.61
def2-TZVP GIAO 2.93 0.080 0.25 1.63 4.81
def2-TZVPP GIAO 3.63 0.084 0.28 1.61 4.53
6-31G(d,p) GIAO 0.25 0.098 0.37 1.51 5.91
6-31+G(d,p) GIAO 0.31 0.086 0.24 1.59 4.77
6-311+G(d,p) GIAO 0.40 0.086 0.37 1.69 4.54
6-311++G(d,p) GIAO 0.44 0.086 0.35 1.71 4.60
6-311++G(2d,p) GIAO 0.59 0.077 0.30 1.68 4.66
6-311++G(2df,p) GIAO 3.76 0.075 0.27 1.54 4.35
6-311++G(2df,2p) GIAO 4.05 0.078 0.29 1.53 4.43
jul-cc-pVDZ GIAO 0.50 0.079 0.21 2.07 6.99
aug-cc-pVDZ GIAO 0.70 0.080 0.29 2.12 6.29
jul-cc-pVTZ GIAO 8.33 0.081 0.30 1.62 4.85
aug-cc-pVTZ GIAO 12.86 0.081 0.28 1.66 5.12
def2-SVP CSGT 0.23 0.321 1.62 2.96 10.20
def2-TZVP CSGT 2.78 0.100 0.41 2.05 6.20
def2-TZVPP CSGT 3.26 0.088 0.34 1.83 5.84
6-31G(d,p) CSGT 0.24 0.385 2.29 2.26 7.90
6-31+G(d,p) CSGT 0.29 0.313 1.89 1.70 5.79
6-311+G(d,p) CSGT 0.36 0.194 0.92 2.16 6.73
6-311++G(d,p) CSGT 0.39 0.188 0.88 2.17 6.90
6-311++G(2d,p) CSGT 0.48 0.087 0.23 1.76 5.03
6-311++G(2df,p) CSGT 3.47 0.092 0.44 1.78 5.31
6-311++G(2df,2p) CSGT 3.68 0.082 0.41 1.76 5.35
jul-cc-pVDZ CSGT 0.41 0.121 0.53 2.06 8.22
aug-cc-pVDZ CSGT 0.54 0.114 0.51 2.04 8.50
jul-cc-pVTZ CSGT 6.73 0.080 0.36 1.58 4.54
aug-cc-pVTZ CSGT 9.63 0.081 0.36 1.56 4.45
def2-SVP IGAIM 0.23 0.321 1.63 2.96 10.22
def2-TZVP IGAIM 2.78 0.100 0.41 2.05 6.21
def2-TZVPP IGAIM 3.18 0.087 0.34 1.83 5.85
6-31G(d,p) IGAIM 0.24 0.386 2.31 2.26 7.90
6-31+G(d,p) IGAIM 0.29 0.314 1.91 1.69 5.76
6-311+G(d,p) IGAIM 0.36 0.194 0.93 2.17 6.73
6-311++G(d,p) IGAIM 0.39 0.188 0.89 2.18 6.90
6-311++G(2d,p) IGAIM 0.48 0.087 0.23 1.76 5.03
6-311++G(2df,p) IGAIM 3.47 0.092 0.44 1.78 5.31
6-311++G(2df,2p) IGAIM 3.68 0.082 0.41 1.76 5.36
jul-cc-pVDZ IGAIM 0.39 0.121 0.53 2.06 8.21
aug-cc-pVDZ IGAIM 0.54 0.114 0.51 2.04 8.50
jul-cc-pVTZ IGAIM 6.55 0.080 0.36 1.58 4.54
aug-cc-pVTZ IGAIM 9.66 0.081 0.36 1.56 4.45

a Calculations using gas phase B3LYP/6-31G(d) geometries and PCM (chloroform) solvent model b Recommended
gauge method highlighted in blue, bold font. c Relative time for PCM-ωB97X-D calculation of nitromethane with
specified basis set. d RMSD = root-mean-square deviation; MD = maximum deviation.

Chemical shifts strongly depend on the molecular geometry and internuclear bond
distances. Fortunately, the ground state geometry of most compounds has been shown to be
well predicted at relatively low levels of theory using a wide variety of density functionals
and even Hartree–Fock theory. At the start of this benchmarking study, geometries were
optimized in vacuo at the B3LYP/6-31G(d) level, which is a frequently used methodology
for computations of spectroscopic properties as well as energetics. The appropriateness
of that choice was investigated by holding the NMR chemical shift calculation method
constant [PCM-ωB97X-D/def2-SVP for δC and PCM-WP04/6-311++G(2d,p) for δH] while
varying the geometry optimization method. Four different functionals (B3LYP, B3LYP-D3,
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M06-2X, and ωB97X-D), which are often used for geometry optimizations, were tested
when paired with Pople-type basis sets from double- to triple-zeta. In addition, implicit
solvation models, PCM or SMD, were applied to the optimizations of B3LYP, B3LYP-D3, and
M06-2X because they exhibited the best accuracy for gas phase calculations. Finally, several
computationally economical methods, such as HF, PBE, BLYP, and two semi-empirical
methods, PM7 and AM1, were also investigated. Data in Table 5 show that the choice
of geometry optimization method led to similar accuracy, which validates the choice of
using a relatively low level of theory for the bulk of this benchmarking study. B3LYP
performed better than M06-2X and ωB97X-D. Inclusion of dispersion correction resulted in
a slight improvement in accuracy, at the expense of a negligible increase in computational
time. Thus, B3LYP-D3 was used rather than B3LYP, with the additional benefit that the
impact of the D3 correction should also enhance the accuracy of the energy prediction for
Boltzmann-weighting. Adding an implicit solvation model also resulted in a moderate
improvement in accuracy, with the PCM model slightly outperforming SMD. The most
accurate predictions for carbon chemical shifts were found when using PCM-B3LYP-D3
with the 6-311G(d,p) basis set, while proton chemical shifts were very slightly less accurate
with that basis set compared to 6-31G(d,p).

Finally, the impact of the solvent model on the accuracy of chemical shifts was stud-
ied. Three implicit solvation models implemented in Gaussian 16 were tested with the
DELTA50 set using either ωB97X-D/def2-SVP for δC or WP04/6-311++G(2d,p) for δH. The
integral equation formalism (IEF) version of the polarizable continuum model (PCM) is the
recommended (default) model in Gaussian 16 [108]. The SMD model of Truhlar et al. [109]
is a revised version of the PCM model that was developed specifically for reproducing
solvation energies. Finally, the polarizable conductor calculation model, CPCM, [110,111]
was also evaluated. Results in Table 6 show a marked improvement with the use of any
solvation model but only a slight improvement in accuracy when using PCM versus CPCM
or SMD.

Based on the totality of the previous results, the best performing density functional
for carbon chemical shift prediction was found to be ωB97X-D when paired with the
def2-SVP basis set. For proton chemical shift predictions, the WP04 functional exhibited
the lowest error when combined with the 6-311++G(2df,p) basis set, but calculation times
were unreasonably long. In contrast, the smaller 6-311++G(2d,p) basis set gave nearly
comparable accuracy at a six-fold reduced computational cost. For both proton and carbon
chemical shift predictions, the GIAO method was most accurate at these basis set sizes.
Molecular geometries should be optimized at the B3LYP-D3/6-311G(d,p) level. Implicit
solvent effects from the PCM model should be included at all stages of the calculation. The
best performing models were δH: GIAO-PCM-WP04/6-311++G(2d,p)//PCM-B3LYP-D3/6-
311G(d,p) and δC: GIAO-PCM-ωB97X-D/def2-SVP//PCM-B3LYP-D3/6-311G(d,p). When
it is necessary to reduce calculation times for larger molecules, the geometry optimization
step can be changed to B3LYP/6-31G(d) with a moderate reduction in accuracy for carbon
chemical shift predictions while maintaining the same level of accuracy for protons after
changing the basis set to jul-cc-pVDZ for proton NMR calculations. Importantly, dispersion
corrections should still be used for electronic energy calculations with this faster method.
In cases where dispersive interactions may be critical to the optimized geometry, such
as inclusion of explicit solvent and studies of organometallic complexes, then the high-
accuracy method should be used. The recommended methods and linear scaling factors
are listed in Table 7.
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Table 5. Impact of molecular geometry on chemical shift predictions a.

NMR Method PCM-ωB97X-D/def2-SVP PCM-WP04/6-311++G(2d,p)

Time c

(h)

δH (ppm) δC (ppm)

Geometry Optimization Method b RMSD d MD d RMSD d MD d

AM1 0.001 0.217 1.24 2.96 9.11
PM7 0.005 0.260 1.61 2.32 8.56
HF/MIDI! 0.105 0.094 0.41 1.65 5.51
HF/6-31G(d) 0.149 0.103 0.38 1.94 5.77
BLYP/6-31G(d) 0.286 0.080 0.29 1.76 7.26
PBE/6-31G(d) 0.295 0.080 0.23 1.61 5.37
B3LYP/3-21G 0.152 0.104 0.48 2.35 6.97
B3LYP/MIDI! 0.208 0.086 0.37 1.83 5.56
B3LYP/6-31G(d) 0.284 0.078 0.30 1.50 4.61
B3LYP/6-31G(d,p) 0.368 0.077 0.30 1.49 4.55
B3LYP/6-311G(d,p) 0.624 0.079 0.37 1.49 4.31
B3LYP/6-31+G(d,p) 0.876 0.077 0.28 1.50 4.53
B3LYP/6-311+G(d,p) 1.390 0.079 0.36 1.50 4.32
B3LYP-D3/6-311G(d,p) 0.612 0.079 0.37 1.49 4.28
PCM-B3LYP-D3/6-31G(d) 0.369 0.078 0.27 1.50 4.79
PCM-B3LYP-D3/6-31G(d,p) 0.466 0.077 0.27 1.49 4.70
PCM-B3LYP-D3/6-311G(d,p) 0.834 0.078 0.33 1.45 4.16
PCM-B3LYP-D3/6-31+G(d,p) 0.965 0.079 0.25 1.55 4.79
PCM-B3LYP-D3/6-311+G(d,p) 1.570 0.078 0.32 1.49 4.27
ωB97X-D/6-31G(d) 0.414 0.078 0.28 1.52 5.04
ωB97X-D/6-31G(d,p) 0.537 0.080 0.31 1.52 5.00
ωB97X-D/6-311G(d,p) 0.914 0.080 0.35 1.51 4.75
ωB97X-D/6-31+G(d,p) 1.180 0.077 0.25 1.51 4.99
ωB97X-D/6-311+G(d,p) 2.010 0.080 0.34 1.50 4.73
M06-2X/6-31G(d) 0.413 0.079 0.27 1.52 5.13
M06-2X/6-31G(d,p) 0.493 0.078 0.27 1.51 5.09
M06-2X/6-311G(d,p) 0.763 0.081 0.30 1.54 4.91
M06-2X/6-31+G(d,p) 1.095 0.078 0.26 1.51 5.08
M06-2X/6-311+G(d,p) 1.640 0.081 0.30 1.53 4.96
SMD-M06-2X/6-31G(d) 0.685 0.079 0.25 1.52 5.01
SMD-M06-2X/6-31G(d,p) 0.882 0.077 0.26 1.49 4.97
SMD-M06-2X/6-311G(d,p) 1.230 0.079 0.23 1.50 4.80
SMD-M06-2X/6-31+G(d,p) 2.770 0.079 0.25 1.52 4.73
SMD-M06-2X/6-311+G(d,p) 3.600 0.079 0.23 1.50 4.82

a Calculations using PCM (chloroform) solvent model. b Recommended geometry optimization method high-
lighted in blue, bold font. c CPU time for optimization of naupliolide (starting from AM1 geometry). d RMSD =
root-mean-square deviation; MD = maximum deviation.

Table 6. Impact of implicit solvent model on chemical shift predictions a.

δH (ppm) δC (ppm)

Solvent Model b RMSD c MD c RMSD c MD c

PCM 0.079 0.21 1.50 4.61
CPCM 0.080 0.20 1.50 4.57
SMD 0.087 0.29 1.51 4.69
none 0.107 0.33 1.84 5.31

a Calculations using PCM (chloroform) solvent model and B3LYP/6-31G(d) geometries. b Recommended implicit
solvation model highlighted in blue, bold font. c RMSD = root-mean-square deviation; MD = maximum deviation.
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Table 7. Recommended DFT methods and linear scaling factors.

Calculation Step Method 1: Speed + Efficiency Method 2: High Accuracy

Geometry Optimization B3LYP/6-31G(d) a PCM-B3LYP-D3/6-311G(d,p)
Energy Calculation PCM-B3LYP-D3/6-31G(d) PCM-B3LYP-D3/6-311G(d,p)
δH Calculation GIAO-PCM-WP04/jul-cc-pVDZ GIAO-PCM-WP04/6-311++G(2d,p)
δH Scaling Factors b m = −1.0309, b = 31.8883 m = −1.0311, b = 32.2654
δC Calculation GIAO-PCM-ωB97X-D/def2-SVP GIAO-PCM-ωB97X-D/def2-SVP
δC Scaling Factors b m = −1.0081, b = 195.6683 m = −1.0065, b = 196.0386

a The “fine” integration grid will also improve calculation speed with a negligible impact on accuracy at this
level of theory (note: a larger grid is needed for meta-GGAs [112]). b slope = m, y-intercept = b; to be used in
Equation (1).

2.3. Probe Set Evaluation

Next, the performance of each method from Table 7 was evaluated for chemical shift
predictions of small- to medium-sized complex synthetic organic compounds and natural
products. In this fashion, DELTA50 can be considered a training set for generation of
linear scaling factors or optimization of new empirical density functionals, while the series
of complex structures and natural products represents a probe set. Twenty relatively
rigid, well-studied compounds ranging in molecular weights from 96 to 854 g mol−1 with
experimental NMR data measured in deuterated chloroform were included in this probe set.
These structures and calculation results are listed in Figure 6 and Table 8, respectively. Most
of the compounds in the probe set have existing single-crystal X-ray diffraction (SCXRD)
data, and/or their structures have been verified via total synthesis. Additionally, for 18
out of 20 compounds, previous DFT chemical shift calculations have been performed. For
several cases, multiple high-quality computational NMR studies have been performed
(see Supplementary Materials for data from additional reports). This allows for direct
comparison to the best performing methods in this study. Also noteworthy is that for most
of these compounds, extensive 2D NMR data have been collected, such that the proton
and carbon chemical shift assignments are unlikely to be misassigned. A few proton and
carbon assignments are still ambiguous, such as the carbons resonating from 40 to 50 ppm
of ingenane diterpene 8, and these have been left out of the probe set (further details can be
found in the Supplementary Materials).

Several trends are immediately noticeable. As expected, method two generally exhib-
ited the most accurate performance as evident by the lowest RMSD for 14 out of 20 proton
chemical shift predictions and 16 out of 20 carbon chemical shift predictions. Moreover,
the maximum δC deviation across all compounds, representing 424 carbon chemical shift
predictions, was only 6.5 ppm for a ketone carbon of homodimericin A, which provides a
relatively low upper limit upon which putative NMR structure proposals could be called
into question following DFT calculations using the prescribed model chemistry in this
paper. It should also be noted that in a few cases where existing literature DFT methods
were found to outperform method two, such as the δH predictions of strychnine or the
δC predictions of artemisinin, these were from studies where the DFT procedures were
specifically optimized for these classes of compounds rather than being a general-purpose
chemical shift model chemistry for organic compounds.

From Figure 6, there also appears to be a spatial relationship between the least accurate
predicted proton and carbon chemical shift from method two, which is highlighted by the
colored circles. This was unexpected considering that markedly different optimal density
functionals and basis set sizes were used for carbon (GIAO-PCM-ωB97X-D/def2-SVP)
versus proton [GIAO-PCM-WP04/6-311++G(2d,p)] chemical shift predictions, although
they share the same geometry optimization method [PCM-B3LYP-D3/6-311G(d,p)]. In all
cases except echinopine B, the least accurately predicted proton is not attached to the least
accurately predicted carbon. Rather, while both nuclei are in close spatial proximity, they
are separated by approximately 2.5 to 5 Å. This is most pronounced for olefinic carbons that
are often overpredicted by approximately 3 to 5 ppm leading to an underprediction, or over-
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shielding effect, on nearby protons by approximately 0.1 to 0.3 ppm. It is also noteworthy
that a few investigators have found that isotropic shielding tensors are particularly sensitive
to the molecular geometry [113,114], and this may indicate that future improvements in
density functional performance for chemical shift predictions might come indirectly from
improvements in the geometry optimization method rather than from the functional used
for GIAO shielding tensor calculations.
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Figure 6. Probe set structures. Atomic locations of maximum chemical shift deviations compared to
experiment for method two calculations from this study are highlighted for δC and δH in magenta
and lime green, respectively.
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Table 8. DFT method performances for chemical shift predictions of probe compounds.

Compound
MW

(g mol−1) Confs c δ

(ppm)

This Study a

Previous DFT StudiesMethod 1 Method 2
RMSD d MD d RMSD d MD d RMSD d MD d Ref. e

bicyclo
[2.1.1]-hexan-2-one 96 1 δH:

δC:
0.03
0.6

0.05
0.8

0.07
0.5

0.12
0.7

0.12
1.1

0.20
1.7 [26]

α-pinene 136 1 δH:
δC:

0.08
1.6

0.19
3.5

0.08
1.5

0.15
3.6

0.63
3.6

1.14
7.4 [115]

aquatolide 246 3 δH:
δC:

0.10
1.7

0.26
4.1

0.05
1.5

0.11
3.2

0.11
1.8

0.27
4.1 [26]

naupliolide 246 4 δH:
δC:

0.14
2.3

0.33
5.5

0.10
1.9

0.20
5.6

0.23
3.0

0.58
7.8 [26]

echinopine B 246 9 δH:
δC:

0.07
1.4

0.17
2.6

0.08
1.4

0.22
2.5

0.10
2.5

0.22
5.5 [26]

parthenolide 248 3 δH:
δC:

0.08
1.5

0.14
3.0

0.02
1.4

0.04
2.8

not available

diepoxy-guaianolide 262 5 δH:
δC:

0.12
1.7

0.21
4.1

0.05
1.8

0.12
4.1

0.18
1.3

0.44
2.6

[116]

cannabicitran
(CBT-C) 258 b 2 δH:

δC:
0.11
0.9

0.17
2.2

0.07
1.0

0.17
2.2

0.12
1.1

0.31
2.0

[117]

ingenane diterpene 8 278 2 δH:
δC:

0.17
2.7

0.39
4.5

0.06
2.2

0.14
4.7

0.08
2.2

0.20
3.9

[26]

artemisinin 282 1 δH:
δC:

0.10
1.1

0.25
2.1

0.12
1.1

0.24
2.3

– f

0.8 g
– f

1.4 g [118]

nobilistine A 317 20 δH:
δC:

0.14
1.7

0.25
3.6

0.12
1.5

0.25
3.5

0.27
1.6

0.65
3.1

[119]

intricarene 326 2 δH:
δC:

0.10
2.3

0.24
4.0

0.09
2.1

0.21
3.8

0.12
2.2

0.27
4.9 [26]

strychnine 334 3 δH:
δC:

0.15
1.5

0.41
4.0

0.10
1.4

0.25
3.8

0.08
1.8

0.18
6.7 [120]

holstiine 382 4 δH:
δC:

0.16
2.4

0.30
7.7

0.10
1.9

0.23
5.1

0.21
2.9

0.47
11.3 [121]

colchicine 399 81 δH:
δC:

0.10
2.1

0.21
3.8

0.11
2.2

0.20
4.0

0.16
2.3

0.25
5.0 [59]

hexacyclinol 416 23 δH:
δC:

0.15
2.4

0.38
7.0

0.13
2.1

0.30
5.9

0.29
4.6

0.62
9.0 [122]

homodimericin
A 491 9 δH:

δC:
0.10
3.4

0.21
7.7

0.10
2.9

0.19
6.5

not available

strychnobaillonine 613 12 δH:
δC:

0.19
3.0

0.46
10.4

0.16
2.4

0.34
6.4

0.22
2.9

0.62
6.7 [123]

sungucine 635 11 δH:
δC:

0.18
1.9

0.51
4.4

0.14
1.8

0.31
4.5

0.18
1.8

0.64
5.4 [124]

paclitaxel 854 >157 δH:
δC:

0.17
2.8

0.43
7.2

0.19
2.3

0.52
6.3

– f

3.7
– f

9.1 [125]

a Results from performance of methods one and two from Table 7. b For cannabicitran, calculations were performed
on a truncated structure (MW 258). c Number of conformers within 5 kcal mol−1 of the DFT-calculated global
energy minimum. d RMSD = root-mean-square deviation; MD = maximum deviation, in ppm. (Best performance
for each compound is highlighted in blue, bold font). e Reference to previous DFT prediction results if available.
See SI for calculation details. f The only DFT predictions available were for δC. g Only 6 out of 15 δC calculations
were reported [118].

3. Materials and Methods

The following solvents and standard reagents were purchased from Sigma-Aldrich:
chloroform-d (99.96 atom %D) with 0.03% (v/v) TMS, tetrahydrofuran (anhydrous, inhibitor-
free, ≥99%), 1-methyl pyrrole (99%), γ-butyrolactone (99+%), nitroethane (99.5%), pyrazine
(99+%), bicyclo [2.2.1]hepta-2,5-diene (98%), cyclopentane (analytical standard), pyri-
dazine (98%), fluorobenzene (analytical standard), pyrimidine (≥98.0%), acetaldehyde
(ACS reagent grade, ≥99.5%, in a sealed ampule), trimethylene oxide (97%), 2-butyne
(98%), ethylene oxide (2000 µg/mL dissolved in dichloromethane, a certified reference ma-
terial, in a sealed ampule), furan (≥99%), cyclopropane (≥99%, in a gas cylinder), 2-methyl
propene (99%, in a gas cylinder), N,N-dimethylacetamide (99.8%, extra dry), cyclohexane
(99.5%, anhydrous), methyl acetate (99.5%, anhydrous), nitromethane (≥99.0%), acetonitrile
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(99.8%, anhydrous), N,N-dimethylformamide (99.8%, anhydrous), 2,5-dihydrofuran (97%),
toluene (99.8%, anhydrous), isobutyronitrile (99%), acetone (≥99.9%, HPLC grade), tert-
butyl methyl ether (99.8%, anhydrous), tetrahydropyran (99%, anhydrous), propionitrile
(analytical standard), 2-methyl-2-butene (99+%), and N-methylpyrrolidine (97%). 3-Butyn-
2-one (98+%) was obtained from Lancaster Synthesis. The following reagent standards were
purchased from Oakwood Chemicals: cyclobutanone, cyclopent-2-enone, 3,3-dimethyl-
1-butene, 2-methyl-2-nitropropane, benzene (ACS grade), nitrobenzene, 3,3-dimethyl-1-
butyne, pyridine, anisole, cyclohex-2-enone, cyclohexanone, 1-methyl piperidine, maleic
anhydride, p-benzoquinone, pivalonitrile, cyclopentanone, and isoxazole.

Dissolved solutions of gaseous reagents, cyclopropane and isobutylene (2-methyl
propene), were prepared by bubbling them through CDCl3 and then serially diluting until
acceptable NMR spectra were obtained (i.e., chemical shifts were stable upon dilution,
indicating no aggregation).

Homodimericin A was provided by Aili Fan (Peking University, Beijing, China).
A variety of density functionals, as implemented in Gaussian 16 [88], were evaluated

as part of the benchmarking study. The exchange and correlation components of LDAs,
GGAs, and meta-GGAs as well as standalone combinations are listed in the Supplementary
Materials along with primary references. In addition, the long-range correction method of
Hirao and co-workers was also applied to the non-hybrid functionals, BP86, BPW91, N12,
TPSS, revTPSS, and M06-L, which were noted in Table 1 with the prefix ‘LC’.

4. Conclusions

Experimental proton and carbon NMR chemical shift data for 50 structurally diverse
compounds dissolved in deuterated chloroform were carefully measured in this study,
enabling a comprehensive benchmark of DFT methods. Linear scaling factors to convert
isotropic shielding tensors to chemical shifts were generated for two recommended method-
ologies that balance speed and accuracy. These two best performing methods were then
evaluated against 20 probe organic compounds and natural products with high accuracy
observed particularly when compared to previously reported DFT predictions for proton
and carbon chemical shifts of these well-studied structures.

Of particular importance, this chemical shift test set can be used for performance
evaluation of newly developed model chemistries as well as future design and optimization
of empirical density functionals. Such work will be a focus for future research conducted in
our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062449/s1, fully assigned experimental NMR spec-
tra for DELTA50 compounds, optimized xyz coordinates for all calculated molecules, tables of
chemical shifts for probe compounds, and an Excel file containing linear scaling factors and individ-
ual results for all model chemistries evaluated. References [2,3,26,29,52,59,88–90,115–233] are cited in
the supplementary materials.
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