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It is well known that via the augmented Lagrangian method, one can solve Stokes’ system by solving the nearly 
incompressible linear elasticity equation. In this paper, we show that the converse holds, and approximate the 
inverse of the linear elasticity operator with a convex linear combination of parameter-free operators. In such a 
way, we construct a uniform preconditioner for linear elasticity for all values of the Lamé parameter 𝜆 ∈ [0, ∞). 
Numerical results confirm that by using inf-sup stable finite-element spaces for the solution of Stokes’ equations, 
the proposed preconditioner is robust in 𝜆.

1. Introduction

The main focus of this work is on developing and analyzing an ef-
fective preconditioning operator for the primal formulation of linear 
elasticity, particularly in the incompressible limit. For a body force, 𝐟 , 
acting on an isotropic elastic material, we model the displacement of 
the deformable media, 𝐮, via the governing equation,

div
(
2𝜇𝜀(𝐮) + 𝜆̃tr(𝜀(𝐮))𝐼

)
= 𝐟 . (1.1)

Here, 𝜇, 𝜆̃ are Lamé parameters, tr is the trace operation for tensors, 𝐼
is the identity tensor, and the strain tensor, 𝜀(𝐮), is given by

𝜀(𝐮) = 1
2
(
∇𝐮+ (∇𝐮)⊤

)
.

In terms of Poisson ratio, 𝜈, and Young’s modulus, 𝐸, the Lamé con-
stants are expressed as

𝜇 = 𝐸
2 + 2𝜈 , 𝜆̃ = 𝐸𝜈

(1 + 𝜈)(1− 2𝜈) , 0 ≤ 𝜈 < 1
2 .

The linearly elastic material becomes nearly incompressible when 𝜈 →
1
2
− and 𝜆̃→∞ (cf. [1]).
In the incompressible limit, traditional finite-element and finite-

difference schemes suffer from volumetric/Poisson locking. This locking 
phenomenon is due to the poor representation of the divergence-free 
vector fields [2] in the underlying space. It is therefore not surprising 
that locking-free numerical schemes of linear elasticity are related to 
discretization methods for Stokes’ equations. A quick look at the pa-
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per by Bramble [3] reveals that the Stokes’ inf-sup condition implies 
the fundamental 2nd Korn’s inequality in elasticity. Such ideas have 
led to the development of stable and accurate numerical methods for 
Stokes’ equation via the augmented Lagrangian formulation, see, e.g., 
[4–6]. Analysis of the corresponding iterative solution techniques for 
the resulting linear systems is studied in [7], and the approach has been 
successful in a variety of related applications [8–10].

Conversely, results from solving Stokes’ equations can be used for 
developing schemes for nearly incompressible linear elasticity. For in-
stance, in [1], Braess introduces an auxiliary variable, 𝑝 = div𝐮, and 
uses the stability of a perturbed Stokes’ problem to derive a priori er-
ror estimates which are uniform with respect to 𝜆̃. Further works by 
Schöberl [11] and Carstensen [12] utilize similar ideas to analyze and 
show robustness of multigrid solvers and reliability and efficiency of 
a posteriori error estimation for finite-element discretizations of linear 
elasticity. We note that, as shown in [13], the results derived here, com-
bined with the operator preconditioning framework in [14,15], can be 
utilized to design novel a posteriori error estimators for nearly incom-
pressible linear elasticity.

Based on this notion, the main contribution of this work is to use 
stable discretizations of Stokes’ equations to develop a preconditioner 
for linear elasticity that, unlike most others, is provably robust and per-
forms uniformly well for all values of 𝜆̃ ∈ [0, ∞). The main ingredients 
in the construction are: (1) the action of the inverse of a standard, 
parameter-free, elliptic operator; and (2) computing an 𝐻1-type or-
thogonal projection onto the space of (discrete) divergence-free vector 
fields. We note here that computing the projection requires solving an-
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other parameter-free (discrete) Stokes’ problem. The underlying idea 
comes from a simple observation concerning linear elasticity with pe-
riodic boundary conditions, under which our preconditioner reduces to 
the exact inverse of the linear elasticity operator. In general, the pre-
conditioner is not the exact inverse, but is very close to it. Such claims 
are validated by numerical tests showing that the preconditioned linear 
system corresponding to discretizations of (1.1) has uniformly bounded 
condition numbers.

This rest of the paper is organized as follows. Section 2 sets up the 
bilinear forms and notation used throughout the paper. In Section 3, 
an inf-sup condition and Korn inequality is established to help build 
a parameter-free preconditioner. Next, the spectral equivalence result 
that yields the robust preconditioner is given in Section 4. The case of 
periodic boundary conditions is also considered here. Finally, numerical 
results confirming the theory are shown in Section 5, with concluding 
remarks given in Section 6.

2. Preliminaries and notation

Let Ω ⊂ ℝ𝑑 with 𝑑 ∈ {2, 3} be a bounded polyhedron with Lipschitz 
boundary. Let (⋅, ⋅) denote the 𝐿2(Ω) inner product, ‖ ⋅‖ the 𝐿2(Ω) norm, 
𝑄 = 𝐿2(Ω), and 𝑉 ⊂ [𝐻1(Ω)]𝑑 be a Hilbert space. By ⟨⋅, ⋅⟩ we denote 
the duality pairing between 𝑉 and its dual 𝑉 ′ or 𝑄 and its dual 𝑄′. 
The boundary of Ω is Γ = 𝜕Ω = Γ𝐷 ∪ Γ𝑁 , where Γ𝐷 is a closed set with 
respect to Γ with a nonzero (𝑑 − 1) dimensional measure. Further, we 
denote by [𝐻1

𝐷(Ω)]
𝑑 ⊂ [𝐻1(Ω)]𝑑 the space of vector-valued functions on 

Ω with vanishing traces on Γ𝐷 . Often, 𝑉 = [𝐻1
𝐷(Ω)]

𝑑 , however, we also 
consider examples with periodic boundary conditions on the unit cube 
in ℝ𝑑 and thus, 𝑉 and 𝑄 will be modified accordingly.

The variational problem of (1.1) is to find 𝐮 ∈ 𝑉 such that

𝑎𝜆(𝐮,𝐯) = 𝑎(𝐮,𝐯) + 𝜆𝑏(𝐯,div𝐮) = ⟨𝐟 ,𝐯⟩, (2.1)
for all 𝐯 ∈ 𝑉 , where 𝐟 ∶= 𝐟∕(2𝜇), 𝜆 ∶= 𝜆̃∕(2𝜇), and

𝑎(𝐮,𝐯) = (𝜀(𝐮),𝜀(𝐯)),

𝑏(𝐯, 𝑞) = (div𝐯, 𝑞).

Note that we divide the original equation by 2𝜇 and obtain a modified 
parameter

𝜆 = 𝜈
1− 2𝜈 , 0 ≤ 𝜈 < 1

2 .

The bilinear forms in (2.1) define operators 𝐴𝜆 ∶ 𝑉 → 𝑉 ′, and 𝐵 ∶ 𝑉 →
𝑄′ by
⟨𝐴𝜆𝐮,𝐯⟩ ∶= 𝑎𝜆(𝐮,𝐯),

⟨𝐵𝐯, 𝑞⟩ ∶= 𝑏(𝐯, 𝑞) = (div𝐯, 𝑞).
(2.2)

As 𝜆 = 0 is a special case, we define 𝐴 ∶=𝐴0 with

⟨𝐴𝐮,𝐯⟩ = 𝑎(𝐮,𝐯) ∶= (𝜀 (𝐮) ,𝜀 (𝐯)) . (2.3)
For any two operators, 𝑋 and 𝑌 mapping a space 𝑉 to its dual 𝑉 ′, 

we write 𝑋 ≲ 𝑌 when ⟨𝑋𝑣,𝑣⟩ ≤ 𝐶 ⟨𝑌 𝑣,𝑣⟩ holds for any 𝑣 ∈ 𝑉 with a 
generic constant 𝐶 depending on Ω and independent of 𝜆 and 𝜇. By 
𝑋 ≂ 𝑌 , we denote 𝑋 ≲ 𝑌 and 𝑌 ≲ 𝑋. Then, the goal of this paper is to 
show that

𝐴−1
𝜆 ≂ 𝜆

𝜆+ 1𝑃𝐴
−1 + 1

𝜆+ 1𝐴
−1 =∶𝑀𝜆, (2.4)

where 𝑃 is the 𝑎𝜆(⋅, ⋅)-orthogonal projection onto the space of diver-
gence-free vector fields. Clearly 𝑃 can be implemented by solving 
Stokes’ equations.

3. Brezzi’s inf-sup condition and Korn’s inequality

In order to develop a robust preconditioner, we consider some prop-
erties related to the inf-sup condition on 𝑉 ×𝑄 (see e.g. [16–18]):

inf
𝑞∈𝑄

sup
𝐯∈𝑉

(div𝐯, 𝑞)
‖∇𝐯‖‖𝑞‖ ≥ 𝛽 > 0. (3.1)

As is shown in [3], (3.1) is equivalent to the following inequality due 
to Nečas [19]:

‖𝐮‖ ≲
(
‖𝐮‖2𝐻−1(Ω) +

𝑑∑
𝑗=1

‖‖‖‖‖
𝜕𝐮
𝜕𝑥𝑗

‖‖‖‖‖

2

𝐻−1(Ω)

)1∕2

(3.2)

In addition, [3] shows that (3.2) implies Korn’s inequality:

‖∇𝐮‖ ≲ ‖𝐮‖+ ‖𝜀(𝐮)‖, ∀𝐮 ∈ [𝐻1(Ω)]𝑑 . (3.3)
The classical Korn’s inequality is found in [20,21]. The proof of this in-
equality is simple under Dirichlet boundary conditions. The situation 
is much more complicated in the case of traction conditions on part of 
the boundary. We refer to Kondratiev and Oleinik in [22,23], Duvaut 
and Lions [24], Nitsche [25], and Bramble [3] for proofs of various 
types of Korn’s inequalities. An important consequence of (3.3) is the 
following lemma which shows the coercivity of 𝑎(⋅, ⋅). For complete-
ness, we include a proof of this well known result following [26] (see 
Appendix A).

Lemma 3.1 ([26], p. 27). Let ℜ be the space of rigid body motions,

ℜ =
{
𝐜+𝔪𝐱 | 𝐜 ∈ℝ𝑑 , 𝔪 ∈ 𝔰𝔬(𝑑)

}
,

where 𝐱 is the position vector in ℝ𝑑 and 𝔰𝔬(𝑑) is the algebra of the real and 
anti-symmetric 𝑑 × 𝑑 matrices. Then it holds that

‖∇𝐮‖ ≲ ‖𝜀(𝐮)‖, ∀𝐮 ∈ [𝐻1
𝐷(Ω)]

𝑑 ∪
(
[𝐻1(Ω]𝑑 ∩ℜ⟂𝐿2

)
. (3.4)

We exploit the fact that the linear elasticity problem for large 𝜆 can 
be viewed as a penalty formulation of a constrained minimization prob-
lem (see, e.g. [27,2,3,19]). We introduce the subspace of divergence-
free functions,

𝑊 ∶=Ker(𝐵) =
{
𝐯 ∈ 𝑉 |||𝐵𝐯 = div𝐯 = 0

}
.

As 𝐵 = div is a continuous operator, its kernel is a closed subspace of 
𝑉 . Then, (3.4) and the equivalence between (3.1) and (3.2) imply that 
𝑎(⋅, ⋅) = (𝜀(⋅), 𝜀(⋅)) is an inner product on 𝑉 with corresponding norm 
equivalent to the ‖ ⋅ ‖[𝐻1(Ω)]𝑑 norm. This yields the following inf-sup 
conditions, equivalent to (3.1):

inf
𝑞∈𝑄

sup
𝐯∈𝑉

(div𝐯, 𝑞)
‖𝜀(𝐯)‖‖𝑞‖ = inf

𝐯∈𝑊 ⟂
sup
𝑞∈𝑄

(div𝐯, 𝑞)
‖𝜀(𝐯)‖‖𝑞‖ ≥ 𝛽 > 0. (3.5)

Here, the orthogonality in 𝑊 ⟂ is in terms of the inner product 𝑎(⋅, ⋅). 
For the proof of the equivalence between the two conditions in (3.5), 
we refer to Girault and Raviart [27, Lemma 4.1].

Next, we define 𝑃 ∶ 𝑉 →𝑊 to be the orthogonal projection onto 𝑊
with respect to 𝑎(⋅, ⋅). In other words, for 𝐯 ∈ 𝑉 the projection 𝑃𝐯 ∈𝑊
is the unique solution to

𝑎(𝑃𝐯,𝐰) = 𝑎(𝐯,𝐰), ∀𝐰 ∈𝑊 . (3.6)
It is immediate to see that 𝐯0 = 𝑃𝐯 solves the Stokes’ equation:

Find (𝐯0, 𝑝) ∈ 𝑉 ×𝑄 such that
𝑎(𝐯0,𝐰) + 𝑏(𝐰,𝑝) = 𝑎(𝐯,𝐰), ∀𝐰 ∈ 𝑉 ,

𝑏(𝐯0, 𝑞) = 0, ∀𝑞 ∈𝑄,
(3.7)

where the “pressure” 𝑝 serves as a Lagrange multiplier for the diver-
gence free constraint.

4. Spectral equivalence and a robust preconditioner

In this section, we use the aforementioned relationship between the 
inf-sup condition and Korn’s inequality to develop a robust precondi-
tioner, 𝑀𝜆, for the linear elasticity equations. We start by proving the 
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spectral equivalence (2.4) between 𝑀𝜆 and the inverse of the linear 
elasticity operator, 𝐴𝜆.

Theorem 4.1. If 𝑀𝜆 ∶ 𝑉 ′ → 𝑉 is defined by

𝑀𝜆 =
𝜆

1 + 𝜆
𝑃𝐴−1 + 1

𝜆+ 1𝐴
−1,

where 𝐴𝜆, 𝐴, and 𝑃 are as in (2.2), (2.3) and (3.6). Then,

⟨𝐠,𝑀𝜆𝐠⟩ ≂ ⟨𝐠,𝐴−1
𝜆 𝐠⟩ ∀𝐠 ∈ 𝑉 ′. (4.1)

Proof. To show the spectral equivalence, it suffices to prove that for 
any 𝜆 ∈ [0, ∞) and 𝐯 ∈ 𝑉 ,

⟨𝐴𝜆𝐯,𝐯⟩ ≲ ⟨𝑀−1
𝜆 𝐯,𝐯⟩ ≲ ⟨𝐴𝜆𝐯,𝐯⟩.

It follows from 𝑃 2 = 𝑃 that

(𝐼 + 𝑡𝑃 )−1 = 𝐼 − 𝑡
𝑡+ 1𝑃 ∀𝑡 ∈ℝ∖{−1}. (4.2)

Using this fact, we obtain

𝑀−1
𝜆 =

( 1
𝜆+ 1 (𝐼 + 𝜆𝑃 )𝐴−1

)−1

=𝐴 ((𝜆+ 1)𝐼 − 𝜆𝑃 )

=𝐴+ 𝜆𝐴(𝐼 − 𝑃 ).

(4.3)

By comparing (4.3) with ⟨𝐴𝜆𝐯, 𝐯⟩ = ⟨𝐴𝐯, 𝐯⟩ + 𝜆‖ div𝐯‖2, it remains to 
show that
‖div𝐯‖2 ≂ ⟨𝐴(𝐼 − 𝑃 )𝐯,𝐯⟩

= 𝑎 (𝐯− 𝑃𝐯,𝐯− 𝑃𝐯) = ‖𝜀 (𝐯− 𝑃𝐯)‖2 .
(4.4)

The lower bound in (4.4) directly follows from
‖div𝐯‖ = sup

𝑞∈𝑄, ‖𝑞‖=1
(div𝐯, 𝑞) = sup

𝑞∈𝑄, ‖𝑞‖=1
(div(𝐯− 𝑃𝐯), 𝑞)

≤ ‖tr[𝜀(𝐯− 𝑃𝐯)]‖ ≤√
𝑑 ‖𝜀(𝐯− 𝑃𝐯)‖ .

(4.5)

The upper bound is just a restatement of (3.5) because (𝐼 − 𝑃 )𝐯 ∈𝑊 ⟂. 
In fact, we have
𝛽 ‖𝜀 (𝐯− 𝑃𝐯)‖ ≤ sup

𝑞∈𝑄, ‖𝑞‖=1

(
div(𝐯− 𝑃𝐯), 𝑞

)

= sup
𝑞∈𝑄, ‖𝑞‖=1

(
div𝐯, 𝑞

)
= ‖div𝐯‖ ,

(4.6)

and this completes the proof of (4.4) and, hence, (4.1). □

4.1. Periodic boundary conditions

To expose the main idea for the preconditioner and motivate how to 
tackle a more general case, we investigate the case of periodic boundary 
conditions. Here, the spectral equivalence is in fact an equality (“≂” 
in (4.1) becomes “=”). For a given 𝐟 (periodic in all 𝑑 directions), we 
extend the solution 𝐮 to ℝ𝑑 by periodicity and use a Fourier transform. 
We define 𝐮𝜆, 𝐮∞, and 𝐮0 as the solutions to

𝐴𝜆𝐮𝜆 = 𝐟 , 𝐴∞𝐮∞ = 𝐟 , and 𝐴𝐮0 = 𝐟 ,

respectively. Here, 𝐴∞ is the operator corresponding to the Stokes 
equation (with periodic boundary conditions) and 𝐮∞ is the velocity 
component of its solution. To show that 𝑀𝜆 =𝐴−1

𝜆 , we prove that

𝐮𝜆 =
𝜆

𝜆+ 1𝐮∞ + 1
𝜆+ 1𝐮0. (4.7)

The proof of this relation is a straightforward computation using the 
Fourier transform and the following identities:
̂div𝜀(𝐰) = 1

2 |𝜉|
2(𝐼 +Π𝜉)𝐰̂, (4.8)

̂div𝜀(𝐰) = 1
2 |𝜉|

2 (𝐼 + (2𝜆+ 1)Π𝜉
)
𝐰̂, (4.9)

where Π𝜉 = |𝜉|−2𝜉𝜉∗, (𝑋) = 1
2 (𝑋 +𝑋∗) +𝜆 tr(𝑋)𝐼 , and 𝑋 ∈ℝ𝑑×𝑑 . Notice 

that Π2
𝜉 =Π𝜉 and, hence, (4.2) holds with Π𝜉 instead of 𝑃 . We then find 

that

𝐮̂𝜆 = 2|𝜉|−2
(
𝐼 − 2𝜆+ 1

2(𝜆+ 1)Π𝜉

)
𝐟̂ , 𝐮̂0 = 2|𝜉|−2

(
𝐼 − 1

2Π𝜉

)
𝐟̂ . (4.10)

Furthermore, the Stokes’ problem in the Fourier space is:
(

1
2 |𝜉|2(𝐼 +Π𝜉) 𝜉

𝜉∗ 0

)(
𝐮̂∞
𝑝

)
=
(
𝐟̂
0

)
.

Solving this system shows that

𝐮̂∞ = 2|𝜉|−2(𝐼 −Π𝜉)𝐟̂ , 𝑝 = |𝜉|−2𝜉∗ 𝐟̂ . (4.11)
Finally, the relation (4.7) follows immediately from (4.10) and (4.11).

4.2. Discrete problems

Although we have defined the preconditioner 𝑀𝜆 for 𝐴𝜆 on the con-
tinuous level, a quick check shows that the analysis in Theorem 4.1
holds verbatim for the discretized problem as long as a Stokes stable 
finite-element pair, 𝑉ℎ ×𝑄ℎ ⊂ 𝑉 ×𝑄, is available. In particular, assume 
𝑉ℎ ×𝑄ℎ satisfies the discrete inf-sup condition (cf. [27]),

inf
𝑞ℎ∈𝑄ℎ

sup
𝐯ℎ∈𝑉ℎ

(div𝐯ℎ, 𝑞ℎ)
‖∇𝐯ℎ‖‖𝑞ℎ‖

≥ 𝛽ℎ > 0,

and let 𝐴ℎ
𝜆 ∶ 𝑉ℎ → 𝑉 ′

ℎ and 𝐮ℎ ∈ 𝑉ℎ be given by

⟨𝐴ℎ
𝜆𝐮ℎ,𝐯ℎ⟩ = 𝑎𝜆(𝐮ℎ,𝐯ℎ) = ⟨𝐟 ,𝐯ℎ⟩ ∀𝐯 ∈ 𝑉ℎ. (4.12)

Then, let 𝑊ℎ = {𝐯ℎ ∈ 𝑉ℎ ∶ 𝑏(𝐯ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑄ℎ}, 𝐴ℎ = 𝐴ℎ
0 , and 𝑃ℎ ∶

𝑉ℎ →𝑊ℎ be the 𝑎(⋅, ⋅) orthogonal projection.
An immediate, and important, observation is that computing the 

action of the preconditioner, 𝑀ℎ
𝜆 , does not require a evaluating 𝑃ℎ𝐯ℎ for some 𝐯ℎ ∈ 𝑉ℎ directly. This would be difficult, as a basis in the weakly 

divergence-free space, 𝑊ℎ, is not always available. Instead, the action 
of 𝑃ℎ is computed by solving the discrete Stokes’ problem:

Find 𝑃ℎ𝐯ℎ ∈ 𝑉ℎ, 𝑝ℎ ∈𝑄ℎ such that
𝑎(𝑃ℎ𝐯ℎ,𝐰ℎ) + 𝑏(𝐰ℎ,𝑝ℎ) = 𝑎(𝐯ℎ,𝐰ℎ), ∀𝐰ℎ ∈ 𝑉ℎ,

𝑏(𝑃ℎ𝐯ℎ, 𝑞ℎ) = 0, ∀𝑞ℎ ∈𝑄ℎ.
(4.13)

We add that the analysis we have given here provides a theoretical 
justification for the preconditioning results reported in [28].

Remark 4.2. Under the assumption div𝑉ℎ ⊂ 𝑄ℎ, (4.12) has uniform a 
priori error estimates for all 𝜆 ∈ [0, ∞). Here we refer to [29–32] for sta-
ble Stokes’ element pairs satisfying div𝑉ℎ ⊂ 𝑄ℎ and using discontinuous 
pressure spaces. We need to be careful when div𝑉ℎ ⊄ 𝑄ℎ and modify the 
bilinear form 𝑎𝜆ℎ in such cases as follows:

⟨𝐴ℎ
𝜆𝐮ℎ,𝐯ℎ⟩ = 𝑎(𝐮ℎ,𝐯ℎ) + 𝜆𝑏(𝐯ℎ,Πℎdiv𝐮ℎ) = ⟨𝐟 ,𝐯ℎ⟩ ∀𝐯 ∈ 𝑉ℎ, (4.14)

where Πℎ is the 𝐿2-projection onto 𝑄ℎ. This approach has been dis-
cussed in [1,11], where the role of Πℎ is implicit but crucial to drawing 
the connection with the Stokes’ equations, thus ensuring robust a priori 
error estimates. In general, the action of Πℎ is computed by inverting 
a mass matrix, which could be costly, especially when the functions in 
𝑄ℎ are subject to inter-element continuity constraints. It is, however, 
easy to justify that we can use a spectrally equivalent diagonal matrix, 
such as the diagonal of the mass matrix, to implement the action of 
Πℎ. This is the approach we have taken in the numerical tests for the 
Taylor-Hood [33] (2 ×1) element as presented in Section 5.

Based on Remark 4.2, a straightforward modification of the proof 
of Theorem 4.1 leads to the next theorem for the discretized prob-
lem (4.14).
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Table 1
Number of iterations for 2 ×0 .
ℎ = 2−𝐿 𝜈 = 0.25 𝜈 = 0.4 𝜈 = 0.49 𝜈 = 0.499 𝜈 = 0.4999

𝐿 = 2 4 5 6 6 6
𝐿 = 3 3 4 6 7 7
𝐿 = 4 3 4 6 7 7
𝐿 = 5 3 4 6 7 7
𝐿 = 6 3 4 5 7 7

Theorem 4.3. If 𝑀ℎ
𝜆 ∶ 𝑉 ′

ℎ → 𝑉ℎ is defined by

𝑀ℎ
𝜆 ∶= 𝜆

1 + 𝜆
𝑃ℎ𝐴−1

ℎ + 1
𝜆+ 1𝐴

−1
ℎ , (4.15)

where 𝐴ℎ
𝜆 is as defined in (4.14), then,

⟨𝐠,𝑀ℎ
𝜆 𝐠⟩ ≂ ⟨𝐠,(𝐴ℎ

𝜆
)−1𝐠⟩ ∀𝐠 ∈ 𝑉 ′

ℎ .

Proof. First, from the proof of Theorem 4.1, we replace ⟨𝐴𝜆𝐯, 𝐯⟩ =
⟨𝐴𝐯, 𝐯⟩ + 𝜆‖ div𝐯‖2 with its discretization:

⟨𝐴ℎ
𝜆𝐯ℎ,𝐯ℎ⟩ = ⟨𝐴𝐯ℎ,𝐯ℎ⟩+ 𝜆‖Πℎ div𝐯ℎ‖2, ∀𝐯ℎ ∈ 𝑉ℎ.

Then, the upper and lower bounds for ‖Πℎ div𝐯ℎ‖ can be derived in 
analogous way to estimates in (4.5) and (4.6). This completes the 
proof. □

Remark 4.4. Notice that when div𝑉ℎ ⊄ 𝑄ℎ, an upper bound for ‖ div𝐯ℎ‖
similar to (4.5) would not hold in general, thus validating the impor-
tance of introducing Πℎ.

5. Numerical results

In this section, we provide numerical examples demonstrating the 
effectiveness and robustness of the preconditioner, 𝑀ℎ

𝜆 , as defined in (4.15). The computational domain is Ω = (0, 1) × (0, 1), and we seek to 
solve (2.1) for the exact solution 𝐮 given by

𝐮 =
(
sin(𝜋𝑥) cos(𝜋𝑦), − cos(𝜋𝑥) sin(𝜋𝑦)

)
.

We compute the right-hand side, 𝐟 , accordingly and impose pure Dirich-
let boundary conditions, i.e., Γ = Γ𝐷 . Equations are discretized on a 
uniformly refined triangular mesh with mesh size ℎ = 2−𝐿, where we 
use continuous and piecewise quadratic ℝ𝑑 -valued polynomials in 2
to approximate 𝐮. We test different finite-element spaces for the multi-
plier 𝑝.

The resulting linear system of equations is solved by the precondi-
tioned conjugate gradient method, with 𝑀ℎ

𝜆 as the preconditioner. We 
implement the actions of 𝑃ℎ𝐴−1

ℎ and 𝐴−1
ℎ using direct solvers. The stop-

ping criterion is based on the relative residual with tolerance 10−6. All 
numerical experiments, including the discretization and the precondi-
tioned linear solvers, were implemented using the finite-element and 
solver library HAZmath [34].

For the first set of experiments, we employ the space of piecewise 
constants, 0, as the finite-element space for 𝑝. Thus, we implement the 
action of 𝑃ℎ𝐴−1

ℎ by solving Stokes’ equations (3.7) using the 2 × 0
finite-element pair, which is known to be inf-sup stable in 2D. We re-
port the performance of the proposed preconditioner in Table 1 (for the 
number of iterations) and Table 2 (for the condition number of 𝑀ℎ

𝜆𝐴
ℎ
𝜆). These results show that the number of iterations and condition number 

remain stable as 𝜈 → 0.5−, i.e., as 𝜆 →∞. This observation confirms our 
theoretical predictions.

For the second set of experiments, we utilize the nodal element 
space, 1, for 𝑝. In this case, as pointed out earlier in Remark 4.2, 
assembling 𝑏(𝐯ℎ, Πℎdiv𝐮ℎ) requires inverting ℎ, the 1 mass matrix. 
In the tests, however, we use the inverse of diag(ℎ) to approximate −1

ℎ . Then the action of 𝑃ℎ𝐴−1
ℎ is computed by solving (4.13) using the 2 ×1 finite-element pair (Taylor-Hood). As Table 3 shows, the use of 

Table 2
Condition number of 𝑀ℎ

𝜆𝐴
ℎ
𝜆 for 2 ×0 .

ℎ = 2−𝐿 𝜈 = 0.25 𝜈 = 0.4 𝜈 = 0.49 𝜈 = 0.499 𝜈 = 0.4999

𝐿 = 2 1.15 1.48 2.52 2.84 2.88
𝐿 = 3 1.14 1.44 2.47 2.98 3.03
𝐿 = 4 1.13 1.44 2.55 2.90 2.94
𝐿 = 5 1.13 1.44 2.51 2.86 2.89
𝐿 = 6 1.13 1.44 2.45 2.87 2.91

Table 3
Number of iterations for 2 ×1 (without the projection Πℎ).
ℎ = 2−𝐿 𝜈 = 0.25 𝜈 = 0.4 𝜈 = 0.49 𝜈 = 0.499 𝜈 = 0.4999

𝐿 = 2 6 11 25 34 46
𝐿 = 3 6 11 40 83 132
𝐿 = 4 6 11 40 126 206
𝐿 = 5 6 10 39 135 347
𝐿 = 6 5 9 37 135 410

Table 4
Number of iterations for 2 ×1 (with the projection Πℎ).
ℎ = 2−𝐿 𝜈 = 0.25 𝜈 = 0.4 𝜈 = 0.49 𝜈 = 0.499 𝜈 = 0.4999

𝐿 = 2 4 5 5 5 5
𝐿 = 3 4 6 11 12 12
𝐿 = 4 4 6 12 15 15
𝐿 = 5 4 6 12 15 15
𝐿 = 6 4 6 11 14 15

Table 5
Condition number 𝑀ℎ

𝜆𝐴
ℎ
𝜆 for 2 ×1 (with the projection Πℎ).

ℎ = 2−𝐿 𝜈 = 0.25 𝜈 = 0.4 𝜈 = 0.49 𝜈 = 0.499 𝜈 = 0.4999

𝐿 = 2 1.20 1.71 4.31 5.69 5.89
𝐿 = 3 1.20 1.71 4.38 5.81 6.02
𝐿 = 4 1.19 1.71 4.38 5.81 6.02
𝐿 = 5 1.18 1.71 4.38 5.81 6.02
𝐿 = 6 1.17 1.71 4.38 5.81 6.02

the projection, Πℎ, i.e., using 𝑏(𝐯ℎ, 𝐮ℎ) directly, is essential for achieving 
a robust scheme. Whereas the number of iterations grows as 𝜈 → 0.5−
without using the projection, we see in Table 4 (for the number of iter-
ations) and Table 5 (for the condition number of 𝑀ℎ

𝜆𝐴
ℎ
𝜆) that with the projection Πℎ, the performance of 𝑀ℎ

𝜆 is greatly improved. Although 
the number of iterations and condition number is slightly higher than 
those obtained with the 2 × 0 finite-element pair, they remain stable 
as 𝜈 → 0.5−, i.e., as 𝜆 →∞. This indicates that the efficacy of the pro-
posed preconditioner 𝑀ℎ

𝜆 is not affected by the choice of finite-element 
space for 𝑝, as long as the corresponding finite-element pair is inf-sup 
stable.

6. Concluding remarks

Theorem 4.1 and the corresponding numerical tests in Section 5 con-
firm that a robust discretization and solvers for nearly incompressible 
elasticity must rely on robust solvers for Stokes’ equations. This point is 
important as it confirms the relationship between the inf-sup condition 
for Stokes’ equation and the second Korn’s inequality for linear elas-
ticity. Numerical results show that the proposed preconditioner, 𝑀ℎ

𝜆 , remains stable as 𝜈 → 0.5−, i.e., as 𝜆 →∞, regardless of the choice of 
finite-element space for 𝑝, as long as it forms a Stokes’ inf-sup stable 
finite-element pair. We note that this includes higher-order approxima-
tions as well. While the preconditioner is robust for several families 
of finite elements, in our view, the best suited ones are elements re-
cently developed in [35,31], as they provide spaces with projections 
that commute with the divergence and lead directly to discretizations 
for linear elasticity. Finally, we note that this work would be useful 
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in designing auxiliary space preconditioners for the elasticity equation 
when discretized using (any) stable finite-element space.
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Appendix A. Proof of Lemma 3.1

Lemma A.1. Let ℜ be the space of rigid body motions

ℜ =
{
𝐜+𝔪𝐱 | 𝐜 ∈ℝ𝑑 , 𝔪 ∈ 𝔰𝔬(𝑑)

}
,

where 𝐱 is the position vector in ℝ𝑑 and 𝔰𝔬(𝑑) is the algebra of the real and 
anti-symmetric 𝑑 × 𝑑 matrices. Then it holds that

‖∇𝐮‖ ≲ ‖𝜀(𝐮)‖, ∀𝐮 ∈ [𝐻1
𝐷(Ω)]

𝑑 ∪
(
[𝐻1(Ω]𝑑 ∩ℜ⟂𝐿2

)
. (A.1)

Proof. First, we only consider 𝐮 ∈ 𝑉 = [𝐻1
𝐷(Ω)]

𝑑 and remark that the 
proof for the case when 𝐮 ∈ [𝐻1(Ω]𝑑 ∩ℜ⟂𝐿2 is similar and simpler.

To start, assume that (A.1) is not true. Then, there exists a sequence 
{𝐯𝑛} ⊂ 𝑉 such that ‖∇𝐯𝑛‖ = 1 and ‖𝜀(𝐯𝑛)‖ ≤ 1

𝑛 . From the Poincaré in-
equality, we conclude that {𝐯𝑛} is a bounded sequence in 𝐿2(Ω). Next, 
since the embedding 𝑉 = [𝐻1

𝐷(Ω)]
𝑑 ↪ 𝐿2(Ω) is compact, we conclude 

that this bounded sequence has a subsequence convergent in 𝐿2(Ω). We 
denote the subsequence again by {𝐯𝑛}. Applying (3.3) to 𝐮 = (𝐯𝑛 − 𝐯𝑚)
for sufficiently large 𝑛 and 𝑚, we find that {𝐯𝑛} is a Cauchy sequence 
in 𝑉 and hence, converges to some element 𝐯 ∈ 𝑉 . This gives ‖∇𝐯‖ = 1
and 𝜀(𝐯𝑛) → 0. Hence, 𝜀(𝐯) = 0. This implies that 𝐯 is a rigid body mo-
tion, namely, 𝐯 =𝔪𝐱 + 𝐜 ∈ℜ.

What remains is to show that if Γ𝐷 has a nonzero (𝑑−1) dimensional 
measure, then 𝐯 = 0. This will lead to a contradiction with the assump-
tion that (A.1) does not hold. Let us pick 𝐱 ∈ Γ𝐷 such that Γ𝐷 is smooth 
in a neighborhood of 𝐱. For the case of a polyhedral domain, which we 
consider here, take 𝐱 in the interior of a planar face of Γ𝐷. For any 𝐲 that 
is in this planar face, we have 𝔪(𝐱 − 𝐲) = 0. Since the face is of dimen-
sion (𝑑 − 1), it follows that 𝔪 has at least a (𝑑 − 1)-dimensional kernel. 
However, 𝔪 is antisymmetric and real, and all its nonzero eigenval-
ues are pure imaginary and are complex conjugate to each other, that 
is, the nonzero eigenvalues come in pairs. Hence, we cannot have any 
nonzero eigenvalue of 𝔪. Thus, 𝔪 = 0 and 𝐯 is a constant vector van-
ishing on Γ𝐷 . We then conclude that 𝐯 = 0 which contradicts ‖∇𝐯‖ = 1
and shows (A.1). □
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