

Total Synthesis of Homoseongomycin Enantiomers and Evaluation of Their Optical Rotation

Greg Petruncio, Zachary Shellnutt, Lauren L. Young, Michael Girgis, Wendy K. Strangman, R. Thomas Williamson, Kylene Kehn-Hall, and Mikell Paige*

ACCESS I Metrics & More Article Recommendations Supporting Information Intramolecular optical rotary dispersion Friedel-Crafts specific rotation acylation -CO₂H D or L Pd-catalyzed ethylation wavelength Suzuki coupling homoseongomycin

ABSTRACT: A total synthesis of each homoseongomycin enantiomer was accomplished in 17 total steps (longest linear sequence = 12 steps) and 10 chromatographic purifications. Several schemes were attempted to forge the key 5-membered ring, but only a Suzuki coupling-intramolecular Friedel—Crafts acylation sequence proved viable. Challenges encountered during the optical rotation characterization of the natural product left us with two important takeaways. First, highly colored compounds like homoseongomycin that absorb near/at the sodium D-line may require optical rotation measurements at other wavelengths. Second, high dilution of such compounds to obtain measurement at the sodium D-line could result in artificially large and incorrectly assigned specific rotations. To verify the optical rotation, electronic circular dichroism spectra were acquired for both homoseongomycin enantiomers and were transformed into optical rotary dispersions via the Kramers—Kronig transform. We note the wavelength dependency on rotation, and at the sodium D-line 589 nm, we reassign the optical rotation of L-homoseongomycin from (-) to (+).

■ INTRODUCTION

L-Homoseongomycin (L-1) was isolated by the Herzon group and shown through isotope labeling to be derived from diazofluorene prelomaiviticin (2) (Figure 1). The isotopically labeled L-1 was achieved by total synthesis, which featured

Figure 1. Structures of the natural products.

fluoride-mediated fragment coupling and subsequent Heck cyclization to establish the tetracyclic scaffold. Diazo transfer furnished **2**, which was then subjected to substitution by N-acetyl-L-cysteine to yield L-1.

The precursor natural product **2** can be regarded as a homologue of the more well-known natural product prekinamycin, which serves as a precursor to cytotoxic kinamycins. This structural similarity led to the hypothesis and later confirmation that **2** acts as a biosynthetic precursor to the cytotoxic lomaiviticins.³

The absolute configuration of homoseongomycin was assumed to be the L-configuration based on comparison to

Received: May 3, 2024 Revised: June 19, 2024 Accepted: June 21, 2024 Published: June 28, 2024

Scheme 1. Total Synthesis of L- and D-Homoseongomycin

its homologue seongomycin, whose absolute configuration was determined through cleavage of the N-acetyl cysteine side chain and analysis by Marfey's method.^{1,4} The reported specific rotation of L-1 was a notably large rotation of $[\alpha]_D^{20} = -525^{\circ}$ (c = 0.001, MeOH).¹ Other compounds with comparable specific rotations include certain bicyclic ketones,⁵ paracyclophane derivatives,⁶ and natural products such as dihydroobionin B,⁷ dibrevianamide F,⁸ and falcarindiol,⁹ to name a few. Assuming that the optical rotation of L-1 was measured in a 1 dm cell, back calculation of the reported specific rotation affords a small optical rotation of -0.00525° .

■ RESULTS AND DISCUSSION

We previously demonstrated L-1 as an inhibitor of the Venezuelan equine encephalitis virus (VEEV) with low cytotoxicity toward healthy cells. 10 To facilitate a mechanistic study of L-1 on VEEV, we sought to synthesize the material starting from juglone (3), which was methylated in the presence of silver(I) oxide, to give methylated juglone in almost quantitative yield without the need for chromatography (Scheme 1). Treatment with ~ 1 equiv of bromine (Br₂) followed by triethylamine-promoted elimination gave brominated juglone 4 in 86% yield as the sole product. Of note, attempted monobromination of 3 before phenol methylation resulted in low conversion and a mixture of products. Sodium dithionite reduction of 4 in a biphasic solvent system followed by methylation with methyl p-toluenesulfonate (MeOTs) afforded masked quinone 5 in 46% yield over two steps. Finally, Suzuki-Miyaura borylation gave pinacol boronate 6 in 87% yield. Synthesis of the other fragment commenced with Pd-catalyzed ethylation of aldehyde 7, which installed the ethyl side chain of 1 in 94% yield. 11 Aldehyde 8 was then protected as methyl ether to give 9 in 78% yield. Interestingly, the Pdcatalyzed ethylation reaction proceeded with a much higher yield in the presence of an unprotected phenol than that in the presence of a methyl ether.

We then attempted various aldehyde *ortho*-functionalization reactions to convert aldehyde 9 into a cross-coupling handle for coupling with either 5 or 6. One such method that was used in various total syntheses on similar substrates ^{12,13} was the Comins protocol. ¹⁴ The procedure "protects" aldehydes as α -amino alkoxides in situ, which act as directing groups for *ortho*-lithiation reactions. We subjected 9 to the Comins

protocol and trapped the lithiated species with triethyl borate $(B(OEt)_3)$. Transesterification with *N*-methyliminodiacetic acid (MIDA) in DMF afforded a MIDA boronate-functionalized aldehyde in 42% yield over 2 steps at ~50 mg scale. ¹⁵ Unfortunately, moderate scaling-up of the reaction resulted in a significant decrease in yield, and the transesterification step proved difficult to reproduce from trial-to-trial [see Supporting Information for details]. Trapping the lithiated species with other electrophiles such as iodine (I_2) or 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (*i*PrOBPin) afforded low yields and impure products, which led us to abandon the Comins protocol.

We then found that the reduction of aldehyde 9 provided a benzyl alcohol directing group that allowed for reproducible *ortho*-lithiation and trapping by I_2 [trapping with $B(OEt)_3$ under these conditions resulted in no reaction]. ^{16,17} Oxidation with PCC afforded iodinated aldehyde 10 in 55% yield over 3 steps, needing only one chromatographic purification of the final product. The 3-step sequence proved reproducible over multiple trials and was scalable. The location of the iodide in the key intermediate 10 was determined by a 2D NMR $^{13}C-^{13}C$ correlation (INADEQUATE) experiment.

With 6 and 10 in hand, Suzuki coupling using the SPhos ligand to join the sterically hindered pieces was accomplished in 81% yield. Biaryl aldehyde 11 was then oxidized to the corresponding carboxylic acid in a refluxing aqueous sodium hydroxide-hydrogen peroxide (NaOH-H₂O₂) system. Intramolecular Friedel-Crafts (IMFC) acylation was carried out with cyanuric chloride, followed by addition of Lewis acid titanium(IV) chloride (TiCl₄) in one-pot at room temperature to afford ketone 12 in 42% yield over 2 steps.

The final sequence begins with global deprotection of the methyl ethers in 12 by boron tribromide (BBr₃). Treatment of the resultant crude product with anhydrous hydrazine under refluxing conditions yielded a crude hydrazone, which upon exposure to manganese dioxide gave diazo 2 in 52% yield over 3 steps. Treatment of precursor 2 with either N-acetyl-L-cysteine or N-acetyl-D-cysteine followed by reverse phase purification afforded enantiomers L-1 and D-1 in 22-35% yield as purple solids. Overall, the total synthesis was accomplished in 17 total steps with the longest linear sequence of 12 steps and only 10 chromatographic purifications.

 1 H NMR data of synthetic L-1 were compared to several literature 1 H NMR data of natural L-1 and were found to match *after* the addition of TFA to the DMSO- d_{6} solvent. 1,10 However, this caused 13 C signals from vinylogous enol carbons C5 and C11 to resonate outside experimental error ($\Delta\delta > 3$ ppm). The C5 and C11 chemical shifts were in good agreement when synthetic L-1 was compared to seongomycin isolated by Carney [see Supporting Information for details]. HMBC and NOE correlations supported correct placement of the cysteine side chain (Figure 2) and matching HPLC retention times, and HRMS gave further confidence of the successful synthesis of L-1 and D-1.

Figure 2. HMBC and NOE correlations of 1.

The last data point needed for full characterization was the optical rotation of each enantiomer. To our surprise, we were unable to obtain any signal at concentrations (c) greater than 0.01 g/100 mL due to the strong absorbance of the sodium-D wavelength, which was supported by UV—vis spectroscopy of L-1. Only at c = 0.002 g/100 mL was the sample dilute enough for light to pass through the cell, giving an observed rotation of $\alpha = +0.004^{\circ}$ to $+0.005^{\circ}$ for L-1. This observed rotation was then converted to a specific rotation of $+200^{\circ}$ to $+250^{\circ}$, which was the opposite sign of Herzon's isolate material. Under identical conditions, D-1 gave no observed rotation, leading us to suspect that the observed rotation for L-1 was below the detection limit of the instrument and simply an artifact of instrument noise.

An underexploited application of electronic circular dichroism (ECD) is its conversion to optical rotary dispersion (ORD) via the Kramers-Kronig (KK) transform.²⁰ An experimental ECD spectrum can be used to calculate the optical rotation of a sample at wavelengths where it is highly absorbing. After acquiring ECD spectra of both L-1 and D-1, we then carried out both a software-assisted and manual KK transform using the Ohta-Ishida method as recommended by Polavarapu.²⁰ The resultant ORD spectra from both KK transform methods were in decent agreement with each other and showed that L-1 exhibits (+) rotation at standard wavelengths, such as 365, 405, 436, and 546 nm. The only discrepancy between the two methods was at 589 nm with a calculated $\left[\alpha\right]_D^{25} = +2.18^{\circ}$ for one method and -37.2° for the other. By extension, D-1 exhibits (-) rotation across the same wavelengths, as well as at 589 nm, with a calculated $[\alpha]_D^{25}$ = -36.4° and -24.6° from the two methods (Figure 3).

On the basis of these findings, we reassign L-1 as (+)-homoseongomycin and D-1 as (-)-homoseongomycin at

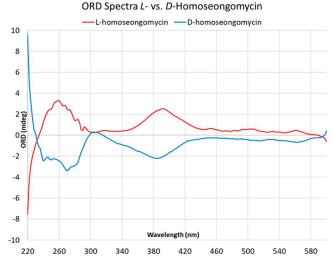


Figure 3. ORD spectra for L-1 and D-1.

589 nm, which would be valid for most wavelengths we measured. This optical rotation study left us with an important takeaway: compounds that absorb strongly near the sodium-D line like homoseongomycin may not permit experimental optical rotation at that particular wavelength, and dilution of such compounds to low enough concentrations may lead to artificially large specific rotations and potential misassignment. In these cases, an experimental ECD spectrum's conversion to an ORD via the KK transform appears to be a viable alternative. With this in mind, we include an Excel KK transform spreadsheet that uses the Ohta-Ishida method as recommended by Polavarapu to automatically generate an ORD when provided with ECD data [see Supporting Information for details. Our experience highlights the importance of measuring optical rotation measurements at several standard wavelengths (365, 405, 436, 546, 589, and 633 nm) instead of a single measurement at the sodium-D line, which is a standard practice for assessing batch-to-batch purity in the saccharide industry.²¹ In addition, recording experimental optical rotation at two or more wavelengths has been noted to improve the accuracy of absolute configuration determination via computational ORD predictions.²² Unfortunately, many academic laboratories only possess a singlewavelength polarimeter. We also note the importance of including the observed rotation α (or cell length and concentration) so other researchers can note the raw data used to generate the reported specific rotation $[\alpha]$.

CONCLUSIONS

A total synthesis of both homoseongomycin enantiomers was accomplished. The synthesis features a Suzuki coupling-IMFC acylation sequence to generate the key tetracyclic scaffold. A challenge encountered during the synthesis was the *ortho*-functionalization of an aryl aldehyde fragment. On the characterization side, the intense dark purple color of homoseongomycin prevented the acquisition of experimental optical rotation, which led us to use the KK transform to calculate the optical rotation. With this technique, we were able to provide the wavelength dependency of optical rotation for both enantiomers of homoseongomycin.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.4c04249.

Synthetic schemes, procedures, characterization data, spectra, raw ECD data, and manual KK transform (PDF)

KK transform spreadsheet (XLSX)

AUTHOR INFORMATION

Corresponding Author

Mikell Paige — Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia 20110, United States; Center for Molecular Engineering, George Mason University, Manassas, Virginia 20110, United States; Email: mpaige3@gmu.edu

Authors

Greg Petruncio — Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia 20110, United States; Center for Molecular Engineering, George Mason University, Manassas, Virginia 20110, United States; orcid.org/0000-0002-2527-1064

Zachary Shellnutt – Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia 20110, United States; Present Address: Department of Chemistry, Chevron Science Center, University of Pittsburgh, Pennsylvania 15260, United States

Lauren L. Young – Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia 20110, United States

Michael Girgis — Department of Bioengineering and Center for Molecular Engineering, George Mason University, Manassas, Virginia 20110, United States

Wendy K. Strangman – Department of Chemistry and Biochemistry, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States; orcid.org/0000-0002-6911-4909

R. Thomas Williamson — Department of Chemistry and Biochemistry, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States; orcid.org/0000-0001-7450-3135

Kylene Kehn-Hall — Department of Biomedical Sciences and Pathobiology, Virginia—Maryland College of Veterinary Medicine and Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.4c04249

Funding

The work was funded by the National Institutes of Health (NIH R01AI143817).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We would like to thank Kae-Jung Hwang for technical assistance with the 2D INADEQUATE NMR experiment. We thank Prasad Polavarapu for clarifications regarding the KK transform. This project was supported by resources provided

by the Office of Research Computing at George Mason University (URL: https://orc.gmu.edu).

ABBREVIATIONS

VEEV venezuelan equine encephalitis virus

KK Kramers-Kronig

ECD electronic circular dichroism

LLS longest linear sequence

ORD optical rotary dispersion

IMFC intramolecular Friedel-Crafts acylation

REFERENCES

(1) Woo, C. M.; Gholap, S. L.; Herzon, S. B. Insights into Lomaiviticin Biosynthesis. Isolation and Structure Elucidation of (–)-Homoseongomycin. *J. Nat. Prod.* **2013**, *76* (7), 1238–1241.

(2) Woo, C. M.; Lu, L.; Gholap, S. L.; Smith, D. R.; Herzon, S. B. Development of a Convergent Entry to the Diazofluorene Antitumor Antibiotics: Enantioselective Synthesis of Kinamycin F. *J. Am. Chem. Soc.* **2010**, *1*32 (8), 2540–2541.

(3) Janso, J. E.; Haltli, B. A.; Eustáquio, A. S.; Kulowski, K.; Waldman, A. J.; Zha, L.; Nakamura, H.; Bernan, V. S.; He, H.; Carter, G. T.; Koehn, F. E.; Balskus, E. P. Discovery of the Lomaiviticin Biosynthetic Gene Cluster in Salinispora Pacifica. *Tetrahedron* **2014**, 70 (27–28), 4156–4164.

(4) Carney, J. R.; Hong, S.-T.; Gould, S. J. Seongomycin: A New Sulfur-Containing Benzo[b]Fluorene Derived from Genes Clustered with Those for Kinamycin Biosynthesis. *Tetrahedron Lett.* **1997**, 38 (18), 3139–3142.

(5) Lightner, D. A.; Gawronski, J. K.; Bouman, T. D. Electronic Structure of Symmetric Homoconjugated Dienes. Circular Dichroism of (1S)-2-Deuterio- and 2-Methylnorbornadiene and (1S)-2-Deuterio- and 2-Methylbicyclo[2.2.2]Octadiene. *J. Am. Chem. Soc.* **1980**, *102* (18), 5749–5754.

(6) Felder, S.; Delcourt, M.-L.; Bousquet, M. H. E.; Jacquemin, D.; Rodríguez, R.; Favereau, L.; Crassous, J.; Micouin, L.; Benedetti, E. Planar Chiral Analogues of PRODAN Based on a [2.2]-Paracyclophane Scaffold: Synthesis and Photophysical Studies. *J. Org. Chem.* **2022**, *87* (1), 147–158.

(7) Hashimoto, K.; Kimura, K.; Ishida, K.; Morita, E.; Tanaka, K.; Hashimoto, M. HIV-1 Integrase Inhibitor, Dihydroobionin B, and the Investigation of Its Extraordinary Specific Rotation. *J. Nat. Prod.* **2023**, 86 (9), 2139–2144.

(8) Areal, A.; Domínguez, M.; Vendrig, P.; Alvarez, S.; Álvarez, R.; de Lera, Á. R. Total Synthesis of Homo- and Heterodimeric Bispyrrolidinoindoline Dioxopiperazine Natural Products. *J. Nat. Prod.* **2021**, *84* (6), 1725–1737.

(9) Ratnayake, A. S.; Hemscheidt, T. Olefin Cross-Metathesis as a Tool in Natural Product Degradation. The Stereochemistry of (+)-Falcarindiol. *Org. Lett.* **2002**, *4* (26), 4667–4669.

(10) Lin, S.-C.; Lehman, C. W.; Stewart, A. K.; Panny, L.; Bracci, N.; Wright, J. L. C.; Paige, M.; Strangman, W. K.; Kehn-Hall, K. Homoseongomycin, a Compound Isolated from Marine Actinomycete Bacteria K3–1, Is a Potent Inhibitor of Encephalitic Alphaviruses. *Antiviral Res.* **2021**, *191*, 105087.

(11) Wang, B.; Sun, H.-X.; Sun, Z.-H.; Lin, G.-Q. Direct B-Alkyl Suzuki—Miyaura Cross-Coupling of Trialkyl- Boranes with Aryl Bromides in the Presence of Unmasked Acidic or Basic Functions and Base-Labile Protections under Mild Non-Aqueous Conditions. *Adv. Synth. Catal.* **2009**, 351 (3), 415–422.

(12) Koyama, H.; Kamikawa, T. Total Syntheses of O4,O9-Dimethylstealthins A and C 1. J. Chem. Soc., Perkin Trans. 1998, 1 (2), 203–210.

(13) Kimura, S.; Kobayashi, S.; Kumamoto, T.; Akagi, A.; Sato, N.; Ishikawa, T. Syntheses of Prekinamycin and a Tetracyclic Quinone from Common Synthetic Intermediates. *Helv. Chim. Acta* **2011**, *94* (4), 578–591.

(14) Comins, D. L.; Brown, J. D. Ortho Metalation Directed by.Alpha.-Amino Alkoxides. J. Org. Chem. 1984, 49 (6), 1078–1083.

- (15) Grob, J. E.; Nunez, J.; Dechantsreiter, M. A.; Hamann, L. G. One-Pot Reductive Amination and Suzuki–Miyaura Cross-Coupling of Formyl Aryl and Heteroaryl MIDA Boronates in Array Format. *J. Org. Chem.* **2011**, *76* (12), 4930–4940.
- (16) Yamaguchi, S.; Tanaka, H.; Yamada, R.; Kawauchi, S.; Takahashi, T. Synthesis of a Landomycinone Skeleton via Masamune–Bergmann Cyclization. *RSC Adv.* **2014**, *4* (61), 32241–32248.
- (17) Jagot, F.; Ntsimango, S.; Ngwira, K. J.; Fernandes, M. A.; de Koning, C. B. Synthesis of Angucycline/Tetrangulol Derivatives Using Suzuki-Miyaura Cross-Coupling and Ring-Closing Carbonyl-Olefin Metathesis Reactions. *Eur. J. Org Chem.* **2022**, 2022 (24), No. e202200348.
- (18) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. Catalysts for Suzuki–Miyaura Coupling Processes: Scope and Studies of the Effect of Ligand Structure. *J. Am. Chem. Soc.* **2005**, *127* (13), 4685–4696.
- (19) Kangani, C. O.; Day, B. W. Mild, Efficient Friedel-Crafts Acylations from Carboxylic Acids Using Cyanuric Chloride and AlCl3. Org. Lett. 2008, 10 (13), 2645–2648.
- (20) Polavarapu, P. L. Kramers–Kronig Transformation for Optical Rotatory Dispersion Studies. *J. Phys. Chem. A* **2005**, *109* (32), 7013–7023.
- (21) Nelson, M. A.; Lang, B. E.; Mulloor, J.; Toman, B.; Ishikawa, M.; Kondo, Y. Certification of Standard Reference Material 17g: Sucrose Optical Rotation; National Institute of Standards and Technology, 2022.
- (22) Grauso, L.; Teta, R.; Esposito, G.; Menna, M.; Mangoni, A. Computational Prediction of Chiroptical Properties in Structure Elucidation of Natural Products. *Nat. Prod. Rep.* **2019**, 36 (7), 1005–1030