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In a pilot program during the 2016—-17 admissions cycle, the University
of California, Berkeley invited many applicants for freshman admission to
submit letters of recommendation. This proved controversial within the uni-
versity, with concerns that this change would further disadvantage applicants
from disadvantaged groups. To inform this debate, we use this pilot as the
basis for an observational study of the impact of submitting letters of recom-
mendation on subsequent admission, with the goal of estimating how impacts
vary across predefined subgroups. Understanding this variation is challeng-
ing in an observational setting because estimated impacts reflect both actual
treatment effect variation and differences in covariate balance across groups.
To address this, we develop balancing weights that directly optimize for “lo-
cal balance” within subgroups while maintaining global covariate balance
between treated and control units. Applying this approach to the UC Berke-
ley pilot study yields excellent local and global balance, unlike more tradi-
tional weighting methods, which fail to balance covariates within subgroups.
We find that the impact of letters of recommendation increases with applicant
strength. However, we find little average difference for applicants from disad-
vantaged groups, although this result is more mixed. In the end we conclude
that soliciting letters of recommendation from a broader pool of applicants
would not meaningfully change the composition of admitted undergraduates.

1. Introduction and motivation. In a pilot program during the 2016—17 admissions cy-
cle, the University of California, Berkeley invited many applicants for freshman admission
to submit letters of recommendation (LORSs) as part of their applications. UC Berkeley had
(and has) a “holistic review”” admissions process, which attempts to examine the whole appli-
cant, taking account of any contextual factors and obstacles overcome without overreliance
on quantitative measures, like SAT scores (Hout (2005)). Unlike other highly selective uni-
versities, however, UC Berkeley had not routinely asked applicants to submit letters from
teachers and guidance counselors.

The new approach proved controversial within the university. The LORs were intended to
help identify students from nontraditional backgrounds who might otherwise be overlooked
(UC Berkeley (2017)). But there was also legitimate concern that applicants from disadvan-
taged backgrounds might not have access to adults who could write strong letters and that the
use of letters would further disadvantage these students (Chalfant (2017)).

In this paper we use the Berkeley pilot as the basis for an observational study of the impact
of submitting letters of recommendation on subsequent admission. Our goal is to assess how
impacts vary across predefined subgroups in order to inform the debate over the Berkeley
policy and similar debates at other universities.

Assessing such heterogeneity is difficult in nonrandomized studies like this because vari-
ation in estimated impacts reflects both actual treatment effect variation and differences in
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covariate balance across groups. Existing approaches, such as balancing weights and tradi-
tional inverse propensity score weighting (IPW), face a curse of dimensionality when es-
timating subgroup effects: balancing all covariate-by-subgroup interactions is difficult, and
fully interacted models can over-fit.

To address this, we develop a balancing weights approach tailored to estimating hetero-
geneous treatment effects in the UC Berkeley LOR pilot study. Specifically, we present a
convex optimization problem that finds weights that directly target the level of local imbal-
ance within each subgroup—ensuring approximate local covariate balance—while guaran-
teeing exact global covariate balance between the treated and control samples. The resulting
weights control the estimation error of subgroup-specific effects, allowing us to better isolate
treatment effect variation. This proposal also has a dual representation as inverse propen-
sity weighting with a hierarchical propensity score model. Finally, we propose combining
weighting with an outcome model to adjust for any remaining imbalance, analogous to bias
correction for matching.

We then use this approach to assess heterogeneity in the impacts of letters of recommen-
dation during the 2016 UC Berkeley undergraduate admissions cycle. Based on the Berkeley
policy debate, we focus on variation in the effect on admissions rates by Berkeley’s pre-
ferred markers of student disadvantage (such as being low income or from a low-scoring
high school) and by applicant strength, estimated using data from the prior year’s admissions
cycle. We first show that the proposed weights indeed yield excellent local and global balance,
while traditional propensity score weighting methods yield poor local balance. We then find
evidence that the impact of letters increases with the applicant’s predicted strength. Appli-
cants who are very unlikely to be admitted see little benefit from letters of recommendation,
while applicants on the cusp of acceptance see a larger, positive impact.

The evidence on the differential effects across student groups is more mixed. Overall, the
point estimates for disadvantaged and nondisadvantaged applicants are close to each other.
However, these estimates are noisy and mask important variation by applicant strength. For
applicants with the strongest quantifiable credentials, we estimate larger impacts for nondis-
advantaged applicants, though these estimates are sensitive to augmentation with an outcome
model. For all other applicants, we estimate the reverse: larger impacts for disadvantaged
than nondisadvantaged applicants. Since student disadvantage is correlated with applicant
strength, this leads to a Simpson’s Paradox-type pattern for subgroup effects (Bickel, Ham-
mel and O’connell (1975), VanderWeele and Knol (2011)): there is a slightly larger point
estimate for nondisadvantaged applicants pooled across applicant strength but larger point
estimates for disadvantaged applicants within most levels of applicant strength.

We also conduct extensive robustness and sensitivity checks, detailed in Appendix A. In
addition to alternative estimators and sample definitions, we conduct a formal sensitivity
analysis for violations of the assumption of no unmeasured confounding, adapting a proposal
from Soriano et al. (2020). We also explore an alternative approach that instead leverages
unique features of the UC Berkeley pilot study, which included an additional review without
the letters of recommendation for a sample of 10,000 applicants. Finally, we conduct a simple
simulation exercise to project the impact of a policy requiring letters of recommendation for
all applicants, finding minimal effects on the demographic composition of admitted students.
Overall, our conclusions are similar across a range of approaches. Thus, we believe our anal-
ysis is a reasonable first look at this question, albeit best understood alongside studies that
also examine the content of the letters (Rothstein (2022)).

The paper proceeds as follows. In the next section we introduce the letter of recommenda-
tion pilot program at UC Berkeley. Section 3 introduces the problem setup and notation and
discusses related work. Section 4 proposes and analyzes the approximate balancing weights
approach. Section 5 presents empirical results on the effect of letters of recommendation.
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Section 6 concludes with a discussion about possible extensions. The Supplementary Mate-
rial includes additional analyses and theoretical discussion as well as an extensive simulation
study (Ben-Michael, Feller and Rothstein (2023)).

2. A pilot program for letters of recommendation. There is a longstanding policy
debate around the relative roles of quantitative and qualitative measures, including letters of
recommendation, in selective undergraduate admissions; see, for example, Bowen and Bok
(1996), Rothstein (2004), Karabel (2005), Bleemer (2022). LORs have the potential to offer
insight into aspects of the applicant not captured by the available quantitative information or
by the essays that applicants submit (Kuncel, Kochevar and Ones (2014)). At the same time,
letters from applicants from disadvantaged backgrounds or underresourced high schools may
be less informative or prejudicial against the applicant, due, for example, to poor writing or
grammar or to lower status of the letter writer (Schmader, Whitehead and Wysocki (2007)).
A related concern arises in admissions essays: Alvero et al. (2021) find that essay text is
strongly predictive of family income.

2.1. Letters of recommendation at UC Berkeley. Historically, undergraduate admissions
at UC Berkeley were largely quantitative and mechanical, often determined by SAT scores
and high school GPA alone (see, e.g., Bleemer (2022)). This began to change in the mid-
2000s when Berkeley adopted a “holistic review” in which two separate reviewers read and
scored each application (Hout (2005)). This shifted further in the mid-2010s with a push to
consider LORs in admission, with the explicit goal of identifying students who were strong
enough to admit but were unlikely to be admitted without the additional context that LORs
provide (UC Berkeley (2017)). To explore this potential, UC Berkeley solicited LORs from a
small number of applicants in the Fall 2015 admissions cycle, expanding to a larger number
in the Fall 2016 admissions cycle.

The pilot LOR policy led to significant debate within the university. One academic senate
committee, following an inquiry into the “intended and unintended consequences of the in-
terim pilot admissions policy, especially for underrepresented minority students,” concluded
that “the burden of proof rests on those who want to implement the new letters of recommen-
dation policy, and should include a test of statistical significance demonstrating measurable
impact on increasing diversity in undergraduate admissions” (UC Berkeley (2017)). The UC
system-wide faculty senate was concerned that “LLORs conflict with UC principles of ac-
cess and fairness, because students attending under-resourced schools or from disadvantaged
backgrounds will find it more difficult to obtain high-quality letters, and could be disadvan-
taged by a LOR requirement” (Chalfant (2017)). Ultimately, the faculty senate limited the
use of LORs following the pilot—though before any results were available.

Our goal is to conduct an impact analysis for the effect of LORs on undergraduate ad-
missions from the UC Berkeley pilot study, especially regarding how impacts vary across
key student subgroups. To the best of our knowledge, this type of impact estimate is the first
of its kind: the policy change at UC Berkeley is unique. In a companion paper, Rothstein
(2022) uses natural language processing methods to understand the role of letter content in
admissions. Unlike in our paper, Rothstein (2022) restricts his analysis to a subset of 10,000
applications that received additional review after admissions decisions were made; we discuss
this alternative approach in Appendix A. Finally, in an internal UC Berkeley report, Rothstein
(2017) discusses key implementation details and explores alternative research designs.

2.2. UC Berkeley pilot study. Our analysis focuses on applicants for undergraduate ad-
missions to UC Berkeley in the 2016 admissions cycle. Specifically, we restrict the pool of
applicants to nonathlete California residents who applied for freshman admission to either
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the College of Letters and Science or the College of Engineering. There were 40,541 such
applicants, 11,143 of whom submitted LORs. We examine the impacts for applicants who
both were invited to and subsequently did submit LORs; we consider alternative approaches
in Section 5 and Appendix A.

Our primary interest is in estimating treatment effects of LORs separately for students
who are and are not from groups underrepresented among admitted students. We follow the
university in defining an underrepresented (or “URM?”) applicant as one who is a low-income
student, a student from a low-performing high school, a first-generation college student, or a
student from an underrepresented racial or ethnic group (Black, Hispanic, or American Indian
or Alaskaln Native). Based on this definition, 55% of applicants in our sample are categorized
as URM.

2.3. Selection into treatment. Selection into submitting letters was a two-step process:
A subset of students were invited to provide letters, and then invited applicants did or did not
submit them. The selection of students to be invited was embedded in the application review
process and depended on the initial application review. UC Berkeley uses a two-reader eval-
uation system. Each reader scores applicants on a three-point scale, as “No,” “Possible,” or
“Yes.”” In the LOR pilot, any applicant who received a “Possible” score from the first reader
was invited to submit letters. In addition, due to concerns that the first readers’ scores would
not be available in time to be useful, an index of student- and school-level characteristics
was generated, and applicants with high levels of the index were invited as well.> When sub-
mitted, letters were made available to the second reader for possible consideration, with the
instruction that applicants’ scores should not be harmed either by the absence of letters or by
the content of letters if submitted.

Of our sample of 40,451 applicants, 14,596 were invited to submit letters, and 11,143
(76% of those invited) eventually submitted them. No applicant submitted a letter who was
not invited to. Because the “treatment” of interest is the inclusion of letters in the reader
evaluation, we include the 3453 applicants who were invited but did not submit LORs as part
of the possible comparison group; we consider alternative definitions in Appendix A.2.

We assume that submission of LORs is effectively random conditional on the first reader
score and on both student- and school-level covariates (Assumption 1 below). In particular,
the interaction between the covariates and the first reader score plays an important role in the
overall selection mechanism, as applicants who received a score of “No” or “Yes” from the
first reader could still have been asked to submit an LOR based on their individual and school
information. Figure 1 shows covariate imbalance for several key covariates (measured as the
absolute difference in means divided by the pooled standard deviation) for applicants who
submitted LORs vs. those who did not.* We see that there are large imbalances in observable
applicant characteristics, most notably average school income, GPA, the number of honors

126% are low-income, 37% from low-performing schools; 23% are first generation, and 28% are from under-
represented racial or ethnic groups; there is substantial overlap among these categories.

2Application decisions are based on the combination of these two scores and the major to which a student has
applied. In the most selective majors (e.g., mechanical engineering), an applicant typically must receive two “Yes”
scores to be admitted, while in others a single “Yes” is sufficient.

3The index was generated from a logistic regression fit to data from the prior year’s admissions cycle, predicting
whether an applicant received a “Possible” score (vs. either a “No” or a “Yes”). Applicants with predicted proba-
bilities from this model greater than 50% were invited to submit LORs. Because we observe all of the explanatory
variables used in the index, this selection depends only on observable covariates. A small share of applicants with
low predicted probabilities received first reads after January 12, 2017, the last date that LOR invitations were sent,
and were not invited even if they received ‘“Possible” scores.

4The full set of student-level variables we include in our analysis are: weighted and unweighted GPA, GPA
percentile within school, parental income and education, SAT composite score and math score, the number of
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FI1G. 1. Absolute difference in means, standardized by the pooled standard deviation, between applicants sub-
mitting and not submitting LORs for several key covariates. By design, applicants submitting LORs dispropor-
tionately have a “Possible” score from the first reader (70% of treated applicants vs. 4% of untreated applicants).

and AP classes taken, and SAT score. There were also large imbalances in first reader scores
(not shown in Figure 1): 70% of applicants that submitted LORs had “Possible” scores, com-
pared to only 4% of those who did not. There is a smaller imbalance in URM status, with
61% of those submitting LORs classified as URMs vs. 53% of those who did not submit. Our
statistical goal is to adjust for these differences in observable characteristics between appli-
cants who do and do not submit LORs. However, differences in unobservable characteristics
across applicants, for example, in conscientiousness, may bias our effects, likely upward. To
account for this possibility, we assess the sensitivity of our results to unmeasured confound-
ing variables in Appendix A.3.

2.4. Heterogeneity across application strength. The admissions office provided us with a
univariate summary of the large number of applicant- and school-level characteristics, which
we refer to as the Admissibility Index (Al). This is computed as the prediction from a logistic
regression fit to admissions data from the prior year (2015), using linear terms for the ad-
missions variables without interactions.” Overall, we view the Al as a useful, albeit simple, a
priori measure of applicant strength and seek to adjust for it in our main analysis.°

Figure 2 shows the Al distribution for the 2016 applicant cohort, broken out by URM sta-
tus and LOR submission. There are several features of this distribution that have important
implications for our analysis. First, applicants across nearly the full Al support submitted
LORs. This is primarily because applicants who received ‘“Possible” scores from the first

honors courses and percentage out of the total available, number of AP courses, ethnic group, first generation
college student status, and fee waiver status. The school level variables we control for are: average SAT reading,
writing, and math scores, average ACT score, average parental income, percent of students taking AP classes, and
the school Academic Performance Index (API) evaluated through California’s accountability tests. For students
that did not submit an SAT score but did submit an ACT score, we imputed the SAT score via the College Board’s
SAT to ACT concordance table. For the 992 applicants with neither an SAT nor an ACT score, we impute the SAT
score as the average among applicants from the school.

SThese variables include those in Figure 1 as well as disaggregated SAT scores, parental education, and an
indicator if less than 5% of students from the high school apply to UC Berkeley. Notably, the AI does not include
ethnic group or race information. About 15% of students in the data used to train the Al model submitted LORs
in an earlier iteration of the UC Berkeley pilot; the Al does not include any information on whether students
submitted LORs.

6Unf0rtunately, the AI cannot be used to impute counterfactuals on its own. The model used to generate the
Al did not include interactions and, in particular, did not account for differences in admissions outcomes across
applicants to different colleges within the university. As we show in Appendix Figure D.1, while the Al has decent
calibration for the overall sample, it is miscalibrated for engineering applicants and high admissibility letters and
science applicants, both URM and non-URM.
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FI1G. 2. Distribution of the “admissibility index”—an a priori estimate of applicant strength—for the 2016 UC
Berkeley application cohort, separated into URM and non-URM, and those that submitted letters vs. those that
did not.

readers come from a wide range of admissibility levels. This will allow us to estimate hetero-
geneous effects across the full distribution with more precision for applicants with lower Als.
Second, because the admissions model disproportionately predicted that URM students had
high chances of receiving “Possible” scores, many more URM applicants were invited to sub-
mit letters than non-URM applicants, and so our estimates for URM applicants will be more
precise than those for non-URM applicants. Third, at higher Al levels, large shares of appli-
cants submitted LORs, leaving few comparison observations. This will make it challenging
to form balanced comparison groups for high-Al applicants who submit letters.

From Figure 2 we know that the distribution of Al varies between URM and non-URM
applicants, and so apparent differences in estimated average effects between the two groups
may be due to compositional differences. Therefore, in the subsequent sections we will focus
on estimating effects within subgroups, defined by both URM status and the Al To do this,
we define subgroups by creating four (nonequally-sized) strata of the Al: <5%, 5%—10%,
10%-20%, and >20%. Interacting with URM status, this leads to eight nonoverlapping sub-
groups; we will marginalize over these to estimate the other subgroup effects above. Ap-
pendix Table D.1 shows the total number of applicants in each of the eight groups, along
with the proportion submitting letters of recommendation. As we discuss in Section 5, we
will further divide each of these subgroups by first-reader score and college to ensure exact
balance on these important covariates.

3. Treatment effect variation in observational studies.

3.1. Setup and estimands. We now describe the letter of recommendation study as an
observational study where for each applicant i =1, ..., n, we observe applicant and school
level-covariates X; € X, a group indicator G; € {1, ..., K} denoting a predefined subgroup
of interest; a binary indicator for submitting a letter of recommendation W; € {0, 1}, and
whether the applicant is admitted, which we denote as Y; € {0, 1}. Let njg and ng represent
the number of treated and control units in subgroup G; = g, respectively. We assume that,
for each applicant, (X;, G;, W;, Y;) are sampled i.i.d. from some distribution P(-). Following
the potential outcomes framework, we assume SUTVA and posit two potential outcomes
Y;(0) and Y; (1) for each applicant i, corresponding to i’s outcome if that applicant submits a
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letter of recommendation or not, respectively; the observed outcome is ¥; = W;Y;(1) 4+ (1 —
W)Y (0).

Importantly, this assumption rules out interference between applicants; that is, we assume
that the availability of LORs for one student does not affect any other student’s admission
probability. While this assumption cannot strictly hold in our setting—there are more appli-
cants than admissions slots—we view this as a reasonable working assumption. UC Berkeley
admitted nearly 19,000 students for Fall 2017 in a relatively mechanistic way with mini-
mal coordination across application readers. We discuss this further in Appendix B and also
formalize the relevant no interference assumption.

In this study we are interested in estimating two types of effects. First, we wish to estimate
the overall Average Treatment Effect on the Treated (ATT), the treatment effect for applicants
who submit letters,

T=E[Y(1) = Y(0) | W =1] = i1 — po.

where we denote wy =E[Y (1) | W = 1] and uo = E[Y (0) | W = 1]. Second, for each sub-
group G; = g, we would like to estimate the Conditional ATT (CATT),

(M) T =E[Y(1) = Y(0) | G=g. W = 1] = 11, — ptog.

where similarly we denote 1 =E[Y(1) |G=g, W =1]and o, =E[Y(0) |G=¢g, W =
1].

Estimating f1, is relatively straightforward: we can simply use the average outcome for
treated units in group g, j1| ¢ = i ZG,:g W;Y;. However, estimating (o, is more difficult
due to confounding; we focus much of our discussion on imputing this counterfactual mean
for the group of applicants who submitted letters of recommendation. To do this, we rely on
two key assumptions that together form the usual strong ignorability assumption.

ASSUMPTION 1 (Ignorability). The potential outcomes are independent of treatment,
given the covariates and subgroup,

(2) Y(1), YO LW|X,G.

ASSUMPTION 2 (One-Sided Overlap). The propensity score e(x,g)=P(W=1|X =
x,G = g) is less than 1,

3) e(X,G) < 1.

In our context, Assumption 1 says that, conditioned on the first reader score and applicant-
and school-level covariates, submission of LORs is independent of the potential admissions
outcomes. Due to the selection mechanism that we describe in Section 2.3, we believe that
this is a reasonable starting point for estimating these impacts; see Rothstein (2017) and
Appendix A.2 for alternatives. In Appendix A.3 we assess the sensitivity of our conclusions
to violations of this assumption.

Assumption 2 corresponds to assuming that no applicant would have been guaranteed to
submit a letter of recommendation. Although some applicants were guaranteed to be invited
to submit an LOR, we believe that this is a reasonable assumption for actually submitting a
letter. In Section 5.1 we assess overlap empirically.

With this setup, let mo(x, g) = E[Y(0) | X = x, G = g] be the prognostic score, the ex-
pected control outcome conditioned on covariates X and group membership G. Under As-
sumptions 1 and 2, we have the standard identification result,

e(X, G)

@ pog =Elmo(X,6) | W =1] =E| -0

Y]W:O].
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Therefore, we can obtain a plug-in estimate for g with an estimate of the prognostic score,
mo(-, ), an estimate of the propensity score, e(-,-), or an estimate of the treatment odds
themselves, %()) In our setting the large number of groups and relatively small number of
observations per group means that we cannot estimate any of these quantities precisely at the
group level. Thus, our methodological approach will focus on ways of borrowing information
across groups to improve precision while maintaining validity.

3.2. Related work. There is an extensive literature on estimating varying treatment ef-
fects in observational studies; see Anoke, Normand and Zigler (2019) and Carvalho et al.
(2019) for recent discussions. This is an active area of research, and we narrow our dis-
cussion here to methods that assess heterogeneity across predefined, discrete subgroups. In
particular, we will focus on linear weighting estimators that take a set of weights y € R" and
estimate 1o, as a weighted average of the control outcomes in the subgroup,

) /:LOgEL Z yi(l —WY;.

Mg Gi=g
Many estimators take this form; we focus on design-based approaches that do not use out-
come information in constructing the estimators (Rubin (2008)); see Hill (2011), Kiinzel et al.
(2019), Carvalho et al. (2019), Nie and Wager (2021), Hahn, Murray and Carvalho (2020) for
discussions of approaches that instead focus on outcome modeling.

3.2.1. Methods based on estimated propensity scores. A canonical approach in this set-
ting is inverse propensity weighting (IPW) estimators for o, (see Green and Stuart (2014),
Griffin et al. (2022)). Traditionally, this proceeds in two steps: first, estimate the propensity
score é(x, g), for example, via logistic regression; second, estimate Mog, as in equation (5),

: : 5 _e(Xi,Gi)
with weights y; = 6%, .G’
. 1 e(Xi, Gj)
(6) Hog = — —Y;,
Mgy —0.G,=g | —€(Xis Gi)

where these are “odds of treatment” weights to target the ATT. A natural approach to estimat-
ing e(X;, G;), recognizing that G; is discrete, is to estimate a logistic model for treatment
separately for each group or, equivalently, with full interactions between G; and (possibly
transformed) covariates ¢ (X;) € R” using some transformation function ¢ : R? — R”,

(7 logit(e(x, g)) = ag + Bg - ¢ (x).

Due to the high-dimensional nature of the problem, it is often infeasible to estimate equation
(7) without any regularization: the treated and control units might be completely separated,
particularly when some groups are small. Classical propensity score modeling with random
effects is one common solution but can be numerically unstable in settings similar to this
(Zubizarreta and Keele (2017)). Other possible solutions in high dimensions include L' pe-
nalization (Lee, Nguyen and Stuart (2021)), hierarchical Bayesian modeling (Li, Zaslavsky
and Landrum (2013)), and generalized boosted models (McCaffrey, Ridgeway and Morral
(2004)). In addition, Dong et al. (2020) propose a stochastic search algorithm to estimate a
similar model when the number of subgroups is large, and Li, Morgan and Zaslavsky (2018)
and Yang et al. (2021) propose overlap weights, which upweight regions of greater overlap.
Under suitable assumptions and conditions, methods utilizing the estimated propensity
score will converge to the true ATT asymptotically. However, in high-dimensional settings
with a moderate number of subgroups, these methods can often fail to achieve good covariate
balance in the sample of interest; as we show in Section 5.1, these methods fail to balance



IMPACT OF LETTERS OF RECOMMENDATION 2851

covariates in the UC Berkeley LOR study. The key issue is that traditional IPW methods
focus on estimating the propensity score itself (i.e., the conditional probability of treatment)
rather than finding weights that achieve good in-sample covariate balance.

3.2.2. Balancing weights. Unlike traditional IPW, balancing weights estimators instead
find weights that directly target in-sample balance. One example is the stable balancing
weights (SBW) proposal from Zubizarreta (2015), which finds the minimum variance weights
that achieve a user-defined level of covariate balance in transformed covariates ¢ (X;) € R”,

: 2
min
in Iy 13

®)

1 1
subject to  max|— Y ¢;j(Xj)—— > J/i¢j(Xi)' =4é
U " wi—o
Z yi=1 and y; >0 foralli,
W; =0

for weights y, typically constrained to the simplex as we have written, allowable covariate im-
balance 8, and a transformation function ¢ : R? — R? giving transformations of the covari-
ates ¢;(-), j =1,..., p. These methods have a long history in calibrated survey weighting
(see, e.g., Deville, Sdrndal and Sautory (1993)) and have recently been extensively studied in
the observational study context (e.g., Zubizarreta (2015), Athey, Imbens and Wager (2018),
Hirshberg, Maleki and Zubizarreta (2019), Hazlett (2020)). They have also been shown to
estimate the propensity score with a loss function designed to achieve good balance (Wang
and Zubizarreta (2020)).

While balancing weights typically achieve better balance than the traditional IPW meth-
ods above, we must take special care to use them appropriately when estimating subgroup
treatment effects. As we will show in Section 5.1, designing balancing weights estimators
without explicitly incorporating the subgroup structure also fails to balance covariates within
subgroups in the LOR study. We turn to designing such weights in the next section.

4. Balancing weights for treatment effect variation. We now describe a specialization
of balancing weights that minimizes the bias for estimating both the overall treatment effect
and the subgroup-specific treatment effects. This approach incorporates the subgroup struc-
ture into the balance measure and optimizes for the “local balance” within each subgroup.
First, we show that the error for the subgroup treatment effect estimate is bounded by the
level of local imbalance within the subgroup. Furthermore, the error for estimating the over-
all ATT depends on both the global balance and the local balance within each subgroup. We
then describe a convex optimization problem to minimize the level of imbalance within each
subgroup while ensuring exact global balance in the full sample. Next, we connect the pro-
cedure to IPW with a hierarchical propensity score model, using the procedure’s Lagrangian
dual formulation. We conclude by describing how to augment the weighting estimate with an
outcome model.

4.1. Subgroup effects. We initially consider the role of local imbalance in estimating
subgroup treatment effects. This is the subgroup-specific specialization of standard results in
balancing weights; see Ben-Michael et al. (2021) for a recent review. We will compare the
estimate [log tO flog = i ZGi:g Wimo(X;, g), our best approximation to 1o, if we knew
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the true prognostic score. Deﬁnmg the residual &; = Y; — mo(X;, G;), the error is

N - . 1
Rog — fog = — Z pi(l— Wpmo(Xi, g) — — > Wimo(Xi. g)
Mg Gi=g Mg G=¢

biasg

€))

+ — Z (11— Wl)ylgl .
Mg Gi=¢

noise

Since the weights y are design-based (Rubin (2008)), they will be independent of the out-

comes, and the noise term will be mean-zero and have variance proportional to the sum of the

squared weights n% 2 Gi=g (1 — Wi))7,-2-7 At the same time, the conditional bias term, bias,,
g

depends on the imbalance in the true prognostic score mo(X;, G;). The idea is to bound this
imbalance by the worst-case imbalance in all functions m in a model class M. While the
setup is general, we describe the approach, assuming that the prognostic score within each
subgroup is a linear function of transformed covariates ¢ (X;) € R? with L?-bounded coeffi-
cients; that is, M = {mo(x, g) = ng - ¢ (x) | [Ingll2 < C}. We can then bound the bias by the
level of local imbalance within the subgroup via the Cauchy—Schwarz inequality,

(10) Ibias,| <CH— 3 yz<1—W>q><X)—n— X wio (X»H2

local imbalance

Based on equation (10), we could control local bias solely by controlling local imbalance.
This approach would be reasonable if we were solely interested in subgroup impacts. In
practice, however, we are also interested in overall effects and aggregated subgroup effects.

4.2. Overall treatment effect. We estimate aggregated effects by taking weighted aver-
ages of the subgroup-specific estimates; for example, we estimate (g as 1o = Z? 1 r; 1g Hog =

% > w,=o YiYi. The imbalance within each subgroup continues to play a key role in estimat-
ing this overall treatment effect, alongside global balance. To see this, we again compare to
our best estimate if we knew the prognostic score, fLg = % Z§=1 nigflog, and see that local
imbalance plays a part. The error is

ﬂo—ﬂo=ﬁ-< Zy,<1—W>¢(X>——ZW¢(X)>

1—1 i=1

1 k
(11) + LS e — ) ( ¥ - W)¢<X>——ZW¢<X))
+ Zyl(l_Wl)gla

l—l

"In the general case with heteroskedastic errors, the variance of the noise term is % 2 Gi=g )9[2 Var(g;) <
m

max; {Var(si)}n% > Gi=g 391‘2'
lg

8See Wang and Zubizarreta (2020) for the case where the prognostic score can only be approximated by a
linear function; see Hazlett (2020) for a kernel representation and Hirshberg, Maleki and Zubizarreta (2019) for a
general nonparametric treatment.
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where 7 = % Z?:l ng is the average of the model parameters across all subgroups. Again
using Cauchy—Schwarz, we see that the overall bias is controlled by the local imbalance
within each subgroup as well as the global balance across subgroups,

|bias| < [|77]]2

1 n 1 n
— > (1= Wpo(Xi) — — > Wip(X))
iz L e 2

global balance

Z Pi(1—

gGg gGg

(12)

+ Z _||77g —ill2 | —

local balance

In general, we will want to achieve both good local balance within each subgroup and good
global balance across subgroups. Ignoring local balance can incur bias by ignoring hetero-
geneity in the outcome model across subgroups, while ignoring global balance leaves poten-
tial bias reduction on the table, equation (12) shows that the relative importance of local and
global balance for estimating the overall ATT is controlled by the level of similarity in the
outcome process across groups. In the extreme case where the outcome process does not vary
across groups, that is, n, = 1 for all g, then controlling the global balance is sufficient to
control the bias. In the other extreme, where the outcome model varies substantially across
subgroups, for example, |7, — 7]|2 is large for all g, we will primarily seek to control the
local imbalance within each subgroup in order to control the bias for the ATT. Typically,
we expect that interaction terms are weaker than “main effects,” that is, ||[ne — 77ll2 < [I7]l2
(see Feller and Gelman (2015)). As a result, our goal is to find weights that prioritize global
balance while still achieving good local balance.

4.3. Optimizing for both local and global balance. 'We now describe a convex optimiza-
tion procedure to find weights that optimize for local balance, while ensuring exact global
balance across the sample. The idea is to stratify across subgroups and find approximate bal-
ancing weights within each stratum, while still constraining the overall level of balance. To
do this, we find weights p that solve the following optimization problem:

K
_ Mg
min Z[ Y veXo— ) ¢ +7 > Viz]
g=1-"G;=g,W;=0 Gi=g,W;= Gi=g,W;=0
(13)  subjectto Y yip(X)= > ¢(X)
Wi=0 Wi=1
Z yiznlg,Vg=l,...,K yi=0Vi=1,...,n
Gi=g,W;=0

The optimization problem (13) has several key components. First, following equation (10),
we try to find weights that minimize the local imbalance for each stratum defined by Gj; this
is a proxy for the stratum-specific bias. We also constrain the weights to exactly balance the
transformed covariates globally over the entire sample. Equivalently, this finds weights that
achieve exact balance marginally on the transformed covariates ¢ (X;) and only approximate
balance for the interaction terms ¢ (X;) x 1g,, placing greater priority on main effects than
interaction terms.’ Taken together, this ensures that we are minimizing the overall bias as

9We could extend the optimization problem in equation (13) to balance intermediate levels between global
balance and local balance. Incorporating additional balance constraints for each intermediate level is unwieldy
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well as the bias within each stratum. In principle, weights that exactly balance the covariates
within each stratum would also yield exact balance globally. Typically, however, the sample
sizes are too small to achieve exact balance within each stratum, and so targeting local balance
alone without the global balance constraint can fail to achieve good global balance. On the
other hand, including the exact global balance constraint guarantees global balance. As we
discuss in Section 5.1, in our study this global balance constraint improves global balance at
a small cost to local balance.

From equation (12) we can see that if there is a limited amount of heterogeneity in the
baseline outcome process across groups, the global exact balance constraint will limit the
estimation error when estimating the ATT, even if local balance is relatively poor. By contrast,
if there is more heterogeneity, local balance is a higher priority. In principle, incorporating
the global balance constraint could lead to worse local balance. However, we show in both
the simulations in Appendix C and the analysis of the LOR pilot study in Section 5 that the
global constraint leads to negligible changes in the level of local balance and the performance
of the subgroup estimators but can lead to large improvements in the global balance and
the performance of the overall estimate. Thus, there seems to be little downside in terms
of subgroup estimates from an approach that controls both local and global imbalance—but
large potential gains for overall estimates.

In Appendix B we also show that if the estimand is the difference in treatment effects
between two subgroups, there are also possible gains to balancing the difference in covariate
values across the two groups. Note that, while we choose to enforce exact global balance,
we could also limit to approximate global balance, with the relative importance of local and
global balance controlled by an additional hyperparameter set by the analyst.

The optimization problem in equation (13) also includes an L? regularization term that
penalizes the sum of the squared weights in the stratum; from equation (9) we see that this
is a proxy for the variance of the weighting estimator. For each stratum the optimization
problem includes a hyperparameter A, that negotiates the bias-variance tradeoff within that
stratum. When A, is small, the optimization prioritizes minimizing the bias through the local
imbalance; when A is large, it prioritizes minimizing the variance through the sum of the
squared weights. As a heuristic, we limit the number of hyperparameters by choosing A, = %
for a common choice of A. For larger strata where better balance is possible, this heuristic
will prioritize balance—and thus bias—over variance; for smaller strata, by contrast, this will
prioritize lower variance. We discuss selecting A in the letters of recommendation study in
Section 5.1.

Next, equation (13) incorporates two additional constraints on the weights. We include a
fine balance constraint (Rosenbaum, Ross and Silber (2007)): within each stratum the weights
sum up to the number of treated units in that stratum, n1,. Since each stratum maps to only
one subgroup, this guarantees that the weights sum to the number of treated units in each
subgroup. We also restrict the weights to be nonnegative, which stops the estimates from
extrapolating outside of the support of the control units.!? Together, these induce several
stability properties, including that the estimates are sample bounded.

Finally, we compute the variance of our estimator conditioned on the design (X1, G1, W1),
..., (Xy, Gn, Wy) or, equivalently, conditioned on the weights. The conditional variance is

R .2
(14) Var(flog | 9) = —— D (1 — Wi)p;” Var(Y)).
lg Gi=¢g

in practice, due to the proliferation of hyperparameters. Instead, we can expand the set of transformed covariates
¢ (x) to include additional interaction terms between covariates and levels of the hierarchy. We discuss this choice
in the letters of recommendation study in Section 5.

10Without this constraint the optimization problem is equivalent to fitting a hierarchical ridge regression outcome
model. For additional discussion, see Ben-Michael, Feller and Hartman (2021).
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Using the ith residual to estimate Var(Y;) yields the empirical sandwich estimator for the
treatment effect

— . . 1 . 1 . .
(15) Var(fiig — fog | 9)=— Y WilYi — L)+ — > (1 — Wp)P2(¥: — fiog)’,
lg Gi=g Mg Gi=g

where, as above, (i1, is the average outcome for applicants in subgroup g who submit LORs.
This is the fixed-design Huber—White heteroskedastic robust standard error for the weighted
average; see Hirshberg, Maleki and Zubizarreta (2019) for discussion on asymptotic normal-
ity and semiparametric efficiency for estimators of this form.

4.4. Dual relation to partially pooled propensity score estimation. Thus far, we have
motivated the approximate balancing weights approach by appealing to the connection be-
tween local bias and local balance. We now draw on recent connections between approxi-
mate balancing weights and (calibrated) propensity score estimation through the Lagrangian
dual problem. The weights that solve optimization problem (13) correspond to estimating
the inverse propensity weights with a (truncated) linear odds function with the stratum G,
interacted with the covariates ¢ (X),'!

PW=1|X=x,G=¢g)

(1o 1—P(W:1|X:x,G:g)=[“g+ﬂg-¢(x)]+,

where [x] = max{0, x}, and the coefficients B, are partially pooled toward a global model.

To show this, we first derive the Lagrangian dual. For each stratum g, the sum-to-ni,
constraint induces a dual variable o, € R, and the local balance measure induces a dual
variable B, € R”. These dual variables are part of the balancing loss function for stratum g,

A7) L@ B = Y. fag+Be-0XD[— D (ag+Bg - d(X).

W;i=0,G;=¢ Wi=1,G;=¢

With this definition we can now state the Lagrangian dual.

PROPOSITION 1.  With Ag > 0, if a feasible solution to (13) exists, the Lagrangian dual
is

K K
. A
(18) min Y Loag, B+ D ElBe —1pl3 -
o, By Bk up —1 —1 2
£= balancing loss 5=
shrinkage to global variable
If&, Bl, el ,f:’ K are the solutions to the dual problem, then the solution to the primal problem
(13) is
(19) 7 =[ac, + B, - o (X)),

The Lagrangian dual formulation sheds additional light on the approximate balancing
weights estimator. First, we apply results on the connection between approximate balanc-
ing weights and propensity score estimation (e.g., Wang and Zubizarreta (2020), Hirshberg
and Wager (2021)). We see that this approach estimates propensity scores of the form (16),

U'The truncation arises from constraining weights to be nonnegative, and the linear odds form arises from penal-
izing the L2 norm of the weights. We can consider other penalties that will lead to different forms; In particular,
with an entropy penalty the weights are linear in the log-odds; see Ben-Michael et al. (2021) for a review of the
different choices.
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which corresponds to a fully interacted propensity score model where the coefficients on ob-
served covariates vary across strata. Recall that we find approximate balancing weights for
each stratum because the number of units per stratum might be relatively small; therefore, we
should not expect to be able to estimate this fully interacted propensity score well.

The dual problem in equation (18) also includes a global dual variable g induced by
the global balance constraint in the primal problem (13). Because we enforce exact global
balance, this global model is not regularized. However, by penalizing the deviations between
the stratum-specific variables and the global variables via the L? norm, || Be — ,uﬁH%, the
dual problem partially pools the stratum-specific parameters toward a global model. Thus,
we see that the approximate balancing weights problem in equation (13) corresponds to a
hierarchical propensity score model (see, e.g., Li, Zaslavsky and Landrum (2013)), as in
Section 3.2, fit with a loss function designed to induce covariate balance.

Excluding the global constraint removes the global dual variable 1, and the dual problem
shrinks the stratum-specific variables B, toward zero without any pooling. In contrast, ignor-
ing the local balance measure by setting A, — o0 constrains the stratum-specific variables 8,
to all be equal to the global variable g, resulting in a fully pooled estimator. For intermedi-
ate values, Ag controls the level of partial pooling. When A, is large, the dual parameters are
heavily pooled toward the global model; when A, is small, the level of pooling is reduced.
By setting A, = % as above, larger strata will be pooled less than smaller strata.

4.5. Augmentation with an outcome estimator. The balancing weights we obtain via the
methods above may not achieve perfect balance, leaving the potential for bias. We can aug-
ment the balancing weights estimator with an outcome model, following similar proposals
in a variety of settings (see, e.g., Athey, Imbens and Wager (2018), Hirshberg and Wager
(2021), Ben-Michael, Feller and Rothstein (2021)). Analogous to bias correction for match-
ing (Rubin (1973)) or model-assisted estimation in survey sampling (Sédrndal, Swensson and
Wretman (2003)), the essential idea is to adjust the weighting estimator using an estimate of
the bias. Specifically, we can estimate the prognostic score mg(x, g) with a working model
mo(x, g), for example, with a flexible regression model. An estimate of the bias in group g is
then,

. 1 R 1 A
(20) bias, = — Y mo(Xi, @) —— Y. Piio(Xi,g).
Mg w,=1,6,=¢ Mg w,=0,6,=¢
This is the estimated bias due to imbalance in the prognostic score in group g after weight-
ing. With this estimate of the bias, we can explicitly bias-correct our weighting estimator,
estimating (g as

1) _
ﬁgl;g = [lLog + bias,
1 . 1 . 1 A o~
=— Y i+ |— D mXi9-—— > pimeXi, 9|
"8 W,=0.Gi=¢ g W=1.G,=¢ g W,=0.G;=¢

Thus, if the balancing weights fail to achieve good covariate balance in a given subgroup, the
working outcome model, 1 (X;, g), can further adjust for any differences; see Ben-Michael
et al. (2021) for further discussion.

5. Differential impacts of letters of recommendation. We now turn to estimating the
differential impacts of letters of recommendation on admissions decisions. We focus on the
eight subgroups defined by the interaction between URM status (two levels) and admissibility
index (four levels); see Appendix Table D.1. Due to the selection mechanism described in
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Section 2, however, it is useful to create even more fine-grained strata and then aggregate
to these eight subgroups. Specifically, we define G = 41 fine-grained strata based on URM
status, Al grouping, first reader score, and college applied to.!?> While we are not necessarily
interested in treatment effect heterogeneity across all 41 strata, this allows us to exactly match
on key covariates and then aggregate to obtain the primary subgroup effects.

Another key component in the analysis is the choice of transformation of the covariates
¢ (). Because we have divided the applicants into many highly informative strata, we choose
¢ (+) to include all of the raw covariates. Because of the importance of the admissibility index,
we also include a natural cubic spline for Al with knots at the sample quantiles. We next
include the probability of a “Possible” score predicted by the admissions model, interacted
with a binary indicator for whether it is greater than 50%. We further prioritize local balance
in the admissibility index by including in ¢ (x) the interaction between the Al, URM status,
and an indicator for admissibility subgroup; this ensures local balance in the admissibility
index at an intermediate level of the hierarchy between global balance and local balance.
Finally, we standardize each component of ¢ (X) to have mean zero and variance one. If
desired, we could also consider other transformations, such as a higher-order polynomial
transformation, using a series of basis functions for all covariates or computing inner products
via the kernel trick to allow for an infinite dimensional basis (see, e.g., Hazlett (2020), Wang
and Zubizarreta (2020), Hirshberg and Wager (2021)).

5.1. Diagnostics: Local balance checks and assessing overlap. In order to estimate ef-
fects, we must first choose values of the common hyperparameter A in the optimization prob-
lem (13), where we set Ag = ”i Recall that this hyperparameter negotiates the bias-variance
tradeoff: small values of A will prioritize bias by reducing local imbalance, while higher val-
ues will prioritize variance by increasing the effective sample size. Figure 3(a) shows this
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(a) Imbalance vs effective sample size. (b) Effective sample sizes, area proportional to
A=1, 104, 108 noted. number of treated units.

FI1G. 3. (a) Imbalance measured as the square root of the objective in (13) plotted against the effective sample
size of the overall control group. (b) Effective sample size of the control group for each subgroup, with weights
104

solving equation (13) with g = g

120f the 48 possible strata, we drop seven strata where no applicants submitted a letter of recommendation.
These are non-URM applicants in both colleges in the two lowest Al strata but where the first reader assigned a
“Yes” or “No.” This accounts for ~ 2% of applicants. The remaining 41 strata have a wide range of sizes with a
few very large strata. Min: 15, p. 25: 195, median: 987, p. 75: 1038, max: 8000.
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tradeoff. We plot the square root of the local balance measure in (13) against the effective
sample size for the reweighted control group, n1/(3Xw.—o )?iz). Between A = 10° and 10%, we
see that the imbalance is relatively flat, while the overall effective sample size increases, after
which the imbalance increases quickly with A. We, therefore, select A = 10* for the results
we present.

Figure 3(b) shows the effective control group sample size for each of the primary URM and
Al subgroups, scaled by the number of applicants in the group submitting LORs. Across the
board, the URM subgroups have larger effective sample sizes than the non-URM subgroups
with particularly stark differences for the lower Al subgroups. For all non-URM subgroups,
the effective sample size is less than 250. Comparing to the sample sizes in Appendix Ta-
ble D.1, we see that the weighting approach leads to a large design effect: many applicants
who did not submit LORs are not comparable to those who did. However, lower admissibility
non-URM applicants also submitted letters at lower rates. This design effect, combined with
the smaller percentage of non-URM applicants submitting LORs, means that we should ex-
pect to have greater precision in the estimates for URM applicants than non-URM applicants.

We now assess the level of local balance within each subgroup, following the discussion
in Section 4.1. We focus on three estimators: fully- and partially-pooled balancing weights,
which solve equation (13) with A, — 00 and A, = %, respectively, and traditional IPW
with a fully-interacted propensity score model; see Appendix C for complete descriptions.
Figure 4 shows the distribution of the imbalance in each of the 51 (standardized) components
of ¢ (X). The fully interacted IPW approach has very poor balance overall, due, in part, to the
difficulty of estimating the high-dimensional propensity score model. As expected, both the
fully- and partially-pooled balancing weights achieve perfect balance overall; however, only
the partially pooled balancing weights achieve excellent local balance. Appendix Figure D.4
shows these same metrics for the no-pooled balancing weights and fixed effects IPW estima-
tors we discuss in Appendix C as well as subgroup overlap weights (Yang et al. (2021)). The
partially- and no-pooled approaches have similar global and local balance overall, but the
partially-pooled approach sacrifices a small amount of local balance for an improvement in
global balance. In contrast, both the fixed effects IPW and overlap weights approaches yield
poor local balance.
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FI1G. 4. Distribution of imbalance in each component of ¢ (X), after weighting, for partially- and fully-pooled
balancing weights and fully interacted IPW estimator.
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Finally, we assess overlap within each subgroup. A key benefit of weighting approaches is
that overlap issues manifest in the distribution of our weights y. Appendix Figure D.6 plots
the distribution of the weights over the comparison applicants by URM status and Al group,
normalized by the number of treated applicants in the subgroup. The vast majority of control
units receive zero weight and are excluded from the figure. Of the 28,556 applicants who did
not submit LORs, only 9834 (34%) receive a weight larger than 0.001. This is indicative of a
lack of “left-sided” overlap: many applicants, who did not submit a letter of recommendation,
had nearly zero odds of doing so in the pilot program. This is problematic for estimating the
overall average treatment effect but is less of a concern when we focus on estimating the
average treatment effect on the treated.

For each Al subgroup, we also see that the distribution of weights is skewed more posi-
tively for the non-URM applicants. In particular, for the lower Al non-URM subgroups we
see a nontrivial number of comparison applicants that “count for” over 1% of the reweighted
sample, with a handful of outliers that count for more than 2%. While large weights do not
necessarily affect the validity of the estimator, large weights decrease the effective sample
size, reducing the precision of our final estimates, as we see in Figure 3(b).

5.2. Treatment effect estimates. After assessing local balance and overlap, we can now
turn to estimating the differential impacts of letters of recommendation. Figure 5 shows the
ATT estimates, (i1, — flog; Appendix Figure D.7 gives the corresponding means. The stan-
dard errors are computed via the sandwich estimator in equation (15).

Overall, we estimate that LORs increased admission rates by five percentage points (pp).
We estimate a larger effect for non-URM applicants (6.2 pp) than URM applicants (4.5 pp),
though there is insufficient evidence to distinguish between the two effects. We also see a
roughly positive trend between treatment effects and the Al, potentially with a peak for the
10%—-20% group. This is driven by the very small estimated effect for applicants with Al
<5%, who are very unlikely to be accepted with or without LORs. LORs thus seem to have
a larger effect for applicants closer to the cusp of acceptance.

The right panel of Figure 5 further stratifies the subgroups, showing the effects jointly by
URM status and Al. While the point estimate for the overall increase in admission rates is
slightly larger for non-URM applicants than for URM applicants, this is mainly a composi-
tion effect. For applicants unlikely to be admitted (Al <5%), the point estimates are nearly
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FI1G. 5. Estimated treatment effects of letters of recommendation on admission £ two standard errors: overall,
by URM status, by Admissibility Index, and by URM x Al.
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identical for URM and non-URM applicants, although the URM subgroup is estimated much
more precisely. For the next two levels of the admissibility index (Al between 5% and 20%),
URM applicants have a higher estimated impact, with imprecise estimates for non-URM ap-
plicants. For the highest admissibility groups (Al >20%), non-URM applicants have larger
positive effects, though again these estimates are noisy. Since URM applicants have lower Al
on average, the overall estimate is also lower for URM applicants. We view this as a form of
Simpson’s Paradox (Bickel, Hammel and O’connell (1975), VanderWeele and Knol (2011)):
the prima facie difference between the point estimates for URM and non-URM applicants
is a result of the correlation between Al and URM status and masks differences in estimates
within admissibility groups. Furthermore, the peak in the effect for middle-tier applicants
is more pronounced for URM applicants than non-URM applicants. From Appendix Fig-
ure D.7, we see that this is primarily because high-admissibility URM applicants have very
high imputed admission rates. However, we emphasize that there is insufficient precision to
make strong claims about any of these differences between effects for URM and non-URM
applicants at any resolution.

We also estimate effects separately by which college the applicant applied to. Engineering
admissions are more competitive than letters and science (L&S) admissions, and so the avail-
ability of additional context through LORs might have different effects. Appendix Figure D.9
shows the treatment effects overall, by URM status, and by Al for the two schools. We find
that effects for applicants to L&S broadly follow the same pattern we see overall. In contrast,
the effects for applicants to engineering are either substantively small or statistical indistin-
guishable from zero. This shows that the positive effects we see across the two schools are
driven by positive effects for applicants to L&S. However, for both colleges we fail to find
differential effects by URM status; although URM applicants to L&S have a higher point esti-
mate than non-URM applicants, the opposite is true in engineering. This is primarily because
there is a higher degree of uncertainty about the effects for non-URM engineering applicants.

The Appendix includes extensive robustness checks and additional analyses. We find that
the overall pattern of results is consistent across a wide range of estimators and data defi-
nitions. We also conduct a formal sensitivity analysis for violations of the ignorability as-
sumption (Assumption 1), adapting a recent proposal from Soriano et al. (2020). Using this
approach, we conclude that there would need to be substantial unmeasured confounding, of
roughly the same predictive power as the Al, to qualitatively change our conclusions.

5.3. Conclusions and policy implications. First, our overall finding that submitting LORs
indeed increases the probability of undergraduate admissions to UC Berkeley is largely un-
surprising: readers were given explicit instructions that letters should only help applicants.
That said, the point estimate of five percentage points is large relative to the expectations that
we heard from university policymakers.

More relevant for the policy debate are our estimates of treatment effect variation. Our
clearest results are for the differential impact of letters of recommendation across applicants’
a priori application strength. Treatment effects are low for applicants who are unlikely to be
accepted and—consistent with the goals of the admissions office—high for applicants on the
margin, for whom letters provide useful context, with some evidence of a dip for the highest
admissibility applicants.

At the same time, our estimates of differential impacts between URM and non-URM stu-
dents are more muddled, due to large sampling errors, and do not support strong conclusions.
Several studies have found evidence that letter writers use different language when describ-
ing different types of students with evidence, in particular, that letters written for female
applicants are weaker (Trix and Psenka (2003), Madera, Hebl and Martin (2009), Schmader,
Whitehead and Wysocki (2007)). However, Rothstein (2022) does not find large systematic
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differences in the strength of the language used in letters written for URM and non-URM
students in the UCB setting. Our point estimates of effects of letters on admissions outcomes
indicate that LORs benefit URM applicants more than they do non-URM applicants at all
but the highest academic indexes. Because non-URM applicants are overrepresented in the
high-Al category, the point estimate for the average treatment effect is larger for non-URMs;
however, there is insufficient precision to distinguish between the two groups. Thus, while
we do not find evidence of detrimental impacts on URM applicants, we also do not find a
“measurable impact on increasing diversity in undergraduate admissions,” as desired by the
academic senate committee (UC Berkeley (2017)).

We assess this question further in Appendix A.4 by conducting a simple policy simulation
to evaluate the impact of requiring LORs for all UC Berkeley applicants on the composition
of the admitted class, relative to the current policy of no LORs (see Chalfant (2017), UC
Berkeley (2017)). This addresses how the overall cap on undergraduate admissions would
combine with the differential effects of LORs. We find that a universal LOR requirement
would raise the number of admits with strong applications but would have a negligible effect
on the URM composition of admitted students.

6. Discussion. Letters of recommendation and other qualitative inputs play important
roles in selective undergraduate admissions. Using a pilot study from the 2016 undergraduate
admissions cycle at UC Berkeley, we find that submitting LORs increase the overall proba-
bility of admissions by five percentage points, relative to an estimated baseline of 17 percent.
We find strong evidence of treatment effect variation across a baseline measure of applicant
strength with larger impacts for stronger applicants. At the same time, we find no evidence
of differential effects by URM status, although this is much noisier.

Taken together, our results are mixed on the UC Berkeley LOR policy debate. Those in
favor of LORs can find some evidence in their favor, especially the larger impacts for students
at the margins of admissions. Similarly, those opposed to the policy can point to results in
support of their position, especially the possibly adverse impacts for URM applicants with
the highest baseline probability of admission. In the end, however, it is unlikely that—at least
based on this study—expanding LORs would meaningfully change the proportion of admitted
URM students. Given the small estimated impacts, it is instead likely that other parts of the
UC Berkeley admissions process, such as decisions around requiring standardized tests, will
be more important factors.

Subsequent to the period that we study, the University of California system set new
rules governing campus admissions that provided for the regular but limited use of LORs
(University of California Board of Regents (2022)). Specifically, admissions offices may
identify a small group of applicants for “Augmented Review” based on a judgment that the
initial application yields an incomplete picture of their qualifications or presents extraordi-
nary circumstances that invite further comment. Only for these applicants, no more than 15%
of the overall pool, can LORs be considered. Our results suggest that these applicants may
be helped by the inclusion of LORs, but the impact on the composition of the admitted pool
will depend importantly on who is selected for Augmented Review. These criteria suggest
that AR candidates are likely to come from middle Al ranges, suggesting that within the AR
pool, LORs will be more beneficial to URM than to non-URM applicants.

Methodologically, there are several directions for future work. First, an important limi-
tation of our approach is that subgroups are defined by discrete covariates, requiring us to
discretize important continuous measures such as the Admissibility Index. A possible exten-
sion is to adapt the recent proposal from Wang et al. (2022) to combine balancing weights
and traditional kernel weighting methods in order to estimate a conditional average treatment
effect function.
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Second, hyperparameter selection for balancing weights estimators is a key question in
practice but remains an open problem. We elect to choose the hyperparameter by explicitly
tracing out the level of balance and effective sample size as the hyperparameter changes.
However, cross-validation approaches, such as that proposed by Wang and Zubizarreta
(2020), may have better properties. This an an important avenue for future work.

Third, analogous to the issue of local balance is the issue of local overlap: if there are very
many fine-grained subgroups, it may become impossible to find weights that achieve adequate
local balance, even if we can achieve exact global balance. In extreme cases all individuals
in a subgroup might receive either treatment or control. This occurs in the LOR pilot study,
where seven strata have no applicants that submit LORs. In our analysis we can drop these
strata because we target the average treatment effect on the treated. However, we could not
do this if there were any strata where all applicants submitted LORs. In such settings with
a lack of “right-sided” local overlap within subgroups, we may consider changing the esti-
mand. For instance, we could trim the sample by dropping subgroups with limited overlap or
by changing the target estimand to the average treatment effect on the overlapping population
(Li, Morgan and Zaslavsky (2018)). We could even consider mixed estimands that shift from
the treated to overlapping populations only within subgroups with poor overlap. The weight-
ing procedure we propose can be adapted to target such estimands by incorporating weights
on the treated units as well. We leave an investigation of this to future work.

Finally, while we have developed this procedure specifically for the context of the LOR
pilot study, it can be applied more broadly. In particular, many observational studies exhibit a
grouped structure where individual units are part of groups, for example, patients belonging
to hospitals or students belonging to schools. In fact, the LOR pilot study has such a structure,
with each individual applicant enrolled in one of over 1000 high schools in California. Even
though measuring treatment effect heterogeneity across groups is not always the primary
aim for such studies, controlling both global balance across groups and local balance within
groups is key to controlling the bias for the overall treatment effect, as we have shown. We
anticipate that the weighting procedure we have developed will be readily applicable to such
settings; however, the exact form of the procedure may depend on study-specific factors.
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