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Comparing outcomes across hospitals, often to identify underperform-
ing hospitals, is a critical task in health services research. However, naive
comparisons of average outcomes, such as surgery complication rates, can
be misleading because hospital case mixes differ—a hospital’s overall com-
plication rate may be lower simply because the hospital serves a healthier
population overall. In this paper we develop a method of “direct standardiza-
tion” where we reweight each hospital patient population to be representative
of the overall population and then compare the weighted averages across hos-
pitals. Adapting methods from survey sampling and causal inference, we find
weights that directly control for imbalance between the hospital patient mix
and the target population, even across many patient attributes. Critically, these
balancing weights can also be tuned to preserve sample size for more pre-
cise estimates. We also derive principled measures of statistical uncertainty
and use outcome modeling and Bayesian shrinkage to increase precision and
account for variation in hospital size. We demonstrate these methods using
claims data from Pennsylvania, Florida, and New York, estimating standard-
ized hospital complication rates for general surgery patients. We conclude
with a discussion of how to detect low performing hospitals.

1. Introduction: Judging hospital quality. How can we assess quality across hospitals?
Simple comparisons of hospital-specific outcomes can be misleading: Hospitals that treat
patient populations with complex, chronic conditions will generally have worse outcomes
than hospitals that treat patients who are healthier. Thus, a hospital’s outcomes may be better
due to more effective treatments or simply because the hospital serves a healthier clientele.

Risk adjustment, also known as risk standardization, refers to a set of statistical meth-
ods that adjust for the hospital patient mix to make hospital outcomes directly comparable
(Normand and Shahian (2007)). Risk standardization is widely used to evaluate hospitals and
provide the public with information on hospital quality. For example, Medicare’s online tool,
Hospital Compare, uses risk standardization to help patients identify high-quality hospitals
(Medicare.gov (2013)). Moreover, standardized outcomes are used as quality measures that
can affect reimbursement rates for medical procedures. For example, the Medicare Access
and CHIP Reauthorization Act of 2015 (MACRA) uses standardized outcomes to measure
quality; clinicians or hospitals that do not meet performance standards can receive lower
payments (Centers for Medicare & Medicaid Services (2021)).

Risk standardization comes in two forms, often referred to as direct and indirect stan-
dardization. These two methods focus on different questions about how patient mix affects
hospital outcomes. Informally, indirect standardization asks, “How should this hospital have
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done, given the patients they serve?” Direct standardization asks, “How would this hospital
do, if given the same types of patients as everyone else?” That is, each method is focused on
a different counterfactual comparison and relies on different statistical methods.

In this paper we develop a suite of new methods for direct standardization using weighting-
based methods. In our approach we view each hospital’s patient population as a nonrepresen-
tative sample from the overall patient population. We then generate a set of weights for each
hospital, so the weighted distribution of its patients matches the overall population. We show
that this form of direct standardization accounts for systematic differences in patient popula-
tions across hospitals while maintaining precision. We also identify a bias-precision tradeoff
and find that regularizing the weights can substantially increase precision in our hospital spe-
cific estimates while only incurring what appears to be a small increase in bias in estimated
hospital quality. We then demonstrate how to use an outcome model both to reduce remain-
ing bias and to improve the precision of the hospital quality estimates even further. Finally,
we apply a Bayesian shrinkage estimator as an additional step in order to better account for
variability in the size of hospitals.

We compare our weighting-based approach to extant methods for direct standardization.
We formalize how direct standardization can be implemented via model based adjustment.
We then outline how these model-based forms of direct adjustment are prone to extrapolation
in ways that can be limited when weights are used. Next, we compare our method to “tem-
plate matching” (Silber et al. (2014a)) where an identified set of patients at each hospital are
chosen to closely match a template of patients based on a canonical list of patient character-
istics. Compared to template matching, we show substantial gains in both bias reduction and
precision.

Our paper proceeds as follows. We first discuss our application, and, in Section 2, we re-
view the two primary methods of standardization: direct and indirect. In Section 3 we outline
our approach of using balancing weights, a tool taken from the literature on causal inference
in observational studies, for direct standardization. We also derive two methods for direct
standardization. We then derive methods of variance estimation that are consistent with our
estimated weights. This section forms the core of our approach. In Section 4 we apply regres-
sion modeling to adjust for remaining imbalance and increase precision in the hospital level
estimates. We then outline how to apply a Bayesian shrinkage estimator to account for vari-
ation in hospital size and to obtain improved estimates of hospital performance. In Section 5
we evaluate our method using a simulation study, and in Section 6 we apply our methods to
claims data on general surgery. We then conclude in Section 7.

1.1. Hospital quality in PA, FL, and NY on general surgical performance. General
surgery consists of high-volume surgical procedures that are conducted in almost all hos-
pitals, including procedures such as appendectomy (removal of the appendix), cholecystec-
tomy (gall bladder), mastectomy (breast), and hernia repairs. Since deaths are rare in general
surgery, we use postoperative complications (e.g., infections and bleeds) as an indication of
a problematic surgical procedure. We assess hospital quality in general surgery by estimating
the risk-adjusted rates of such complications. This project is designed to serve as pilot work
to develop a quality measure for general surgery. Currently, quality measures have been de-
veloped for a number of different surgical specialties but exist for general surgery only within
the ambulatory surgical care setting (Centers for Medicare & Medicaid Services (2021a)).

In our analysis we use risk standardization to understand hospital quality for general surgi-
cal procedures using claims data from Pennsylvania, New York, and Florida from 2012-2013.
The data contain patient sociodemographic and clinical characteristics, including a measure
of patient frailty, an indicator for sepsis, and 31 indicators for comorbidities based on Elix-
hauser indices (Elixhauser et al. (1998)) as well as admission type (emergency, urgent, or
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FI1G. 1. Boxplots of Hospital Casemix Distributions for three covariates. Diamond represents population mean
for that covariate.

elective), type of insurance, and age. We analyze 44 general surgery operations.! We should
note that including socioeconomic and sociodemographic measures in risk adjustment anal-
yses is controversial (National Quality Forum (2014)). In our analysis we include categories
for race but no other measures of socioeconomic status.

Across the three states, we have a total of 621,667 patients in 523 hospitals with between
30 and over 8000 general surgery cases for the study period. The median number of patients
was 700. Our primary outcome of interest is a binary indicator for the development of one
or more complications after general surgery (identified using ICD-9-CM diagnosis codes).
Figure 1 displays boxplots of hospital-level proportions of three key patient characteristics:
whether a patient is African-American, whether a patient is obese (BMI > 30), and whether
the procedure was an emergency admission. All three characteristics are important predictors
of complications in the cohort. As the boxplots show, there is substantial variation in all
three attributes. For instance, only 17 percent of patients in the population are obese, while
several hospitals have patient populations in which more than half are obese. The goal of
standardization is to adjust for differences in patient mix like these, allowing us to more
directly compare outcomes across hospitals.

2. Direct risk standardization for comparing hospital outcomes. There is a large lit-
erature in statistics and health services research on statistical methods for risk adjustment via
standardization; see Normand and Shahian (2007), Normand et al. (2016) for reviews. Gen-
erally, indirect and direct standardization have been viewed as different statistical tools for

IWe restrict the patient population to those patients who had a surgical procedure included in the Agency for
Healthcare Research and Quality (AHRQ) Clinical Classifications Software (CCS). CCS categories use Interna-
tional Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM) diagnosis and procedure codes
to classify whether procedures are surgical or not (Decker et al. (2014)). We also removed any hospitals that
performed fewer than 30 procedures over the two-year period which removed 70 hospitals (out of 593) and 605
patients (out of 622,272).
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the same task. However, viewing standardization as a causal inference problem clarifies the
key differences between the two methods (Longford (2019)). In the causal inference frame-
work the hospitals are viewed as a vector of treatments, and standardized outcomes serve as
the “effect” of each hospital accounting for patient mix differences. The potential outcomes
framework can then be used to outline estimands and formally define identification condi-
tions. Notably, direct and indirect standardization target different causal estimands. Given
that indirect and direct standardization have different estimands, the two methods are not
immediately comparable, and we avoid comparing their results here.

In the clinical literature, however, the choice between the two methods has largely been
a function of convenience. Under direct standardization the investigator adjusts the hospital
case mix to match a target distribution. This allows the analyst to target the differences be-
tween hospital covariate distributions and the population covariate distributions (George et al.
(2017)). Direct standardization methods, however, have seen limited use in medical applica-
tions. Direct standardization methods have traditionally been viewed as too limited, since
it was assumed that they could only adjust for a few patient-level variables (Iezzoni (2012,
p. 347)).

Indirect standardization has been much more widely used for risk adjustment, since a
widely understood model based estimation method has made it much easier to incorporate
larger numbers of patient level covariates (Iezzoni (2012, p. 347)). Under indirect standard-
ization, observed outcomes for patients are compared to expected outcomes derived from a
statistical model fit to the larger patient population (Fleiss, Levin and Paik (2003), Iezzoni
(2012), Kitagawa (1955), Silber, Rosenbaum and Ross (1995), Silber et al. (2016a)). Typ-
ically, an outcome is regressed on patient characteristics via a (generalized) linear model
using the entire patient population. This risk adjustment model is used to predict outcomes
for patients in a specific hospital. The average of these predictions then serves as the ex-
pected outcome for the provider, which is then compared to the observed outcomes in the
same hospital. Commonly, this comparison is computed as the ratio of observed to expected
outcomes or O/E ratio. Most research on statistical methods for indirect standardization has
focused on the model used for risk adjustment; early work used classical linear or generalized
linear models, but regression models with random effects are now standard (Iezzoni (2012)).
The Centers for Medicare Hospital Compare tool, for example, is based on a random effects
model (Krumholz et al. (2006)).

Contrary to perceptions in the medical literature, direct standardization can also be im-
plemented via regression models to allow for rich specifications. For example, regression-
based methods for direct standardization have seen widespread use in education. Goldstein
and Spiegelhalter (1996) provide one early, informal description of model-based direct stan-
dardization for education data, and McCaffrey et al. (2004) describe direct standardization
in the context of value-added modeling. Recently, template matching was developed as a
form of direct standardization that can risk adjust for many patient level covariates while
also relaxing the stronger functional form assumptions required for regression (Silber et al.
(2014a, 2014b, 2016b)). Template matching also makes the goals of hospital standardization
clear and focuses the researcher’s attention on important considerations, such as whether the
covariates are sufficient to justify an attempt at standardization. Under template matching,
the investigator seeks to understand how different hospitals would perform with patients sim-
ilar to a sample (“template”) of patients. For each hospital, matching methods are used to
find a subset of patients that are highly comparable to the template. Hospital quality is then
evaluated based on this matched set.

Below, we develop several new additions to the literature on direct standardization. We first
develop a weighting-based approach to direct standardization. Then, we demonstrate how di-
rect standardization can be implemented using model based methods, such as modeling the
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hospital assignment process or regression modeling of the outcome, and link these meth-
ods to the weighting approach. We describe how model-based methods may be particularly
sensitive to model misspecification due to extrapolation. We also outline how our weighting-
based approach can be combined with outcome modeling. Finally, we can also combine the
weighting-based method with a shrinkage estimator to better account for variation in hospital
size.

3. Direct standardization via approximate balancing weights. We now develop a
weighting method for direct standardization which solves a convex optimization problem
to simultaneously optimize for balance and effective sample size. First, we review weighting
methods. Next, we outline notation and assumptions and then turn to specific implementation
details.

3.1. Review: Balancing weights. Weighting methods have a long history in survey sam-
pling and causal inference (Horvitz and Thompson (1952), Lohr (2010), Robins and Rot-
nitzky (1995)). The goal is to weight target groups to have a similar distribution on a given
set of covariates. The reweighted groups can then be directly compared on some outcome of
interest, since the reweighted groups are comparable on baseline characteristics. If we were
only interested in balancing a small number of patient characteristics, we could directly apply
classical calibration approaches from survey sampling (see, e.g., Deming and Stephan (1940),
Deville and Sirndal (1992), Deville, Siarndal and Sautory (1993)). In this case the resulting
weights would achieve exact balance where the reweighted and target covariate averages are
equal.

In our setting, however, we need to find weights that balance a large number of patient
characteristics and comorbidities, so achieving exact balance is infeasible, especially for
smaller hospitals. One alternative is to use a traditional inverse probability weighting (IPW)
estimator which is widely used to estimate treatment effects (Imbens (2004), Robins, Her-
nan and Brumback (2000)). This approach can be somewhat unstable, however, resulting in
reweighted samples that still are not well balanced. To avoid such issues, we build on recent
advances in the causal inference literature where analysts use approximate balancing weights
that are designed to directly target covariate balance in the estimation process. This class of
weighting methods solve a convex optimization problem to find a set of weights that tar-
get a specific loss function (Hainmueller (2011), Zubizarreta (2015)); see Ben-Michael et al.
(2021) for a recent review of these weighting methods.

3.2. Hospitals as nonrepresentative samples. In our data we observe i = 1,...,n pa-
tients nested in hospitals j =1, ..., J, with patient hospital indicator Z; € {1, ..., J} and
n; patients in each hospital.? For each patient, we observe a vector of background covari-
ates X; € R¥. We also observe an outcome Y; which, in our data, is a binary indicator for a
postoperative complication. The primary statistical problem is that the distribution of patient-
and surgery-level characteristics vary across hospitals—p(x | Z = j) # p(x | Z = ') for
J # j'—so the difference between the average outcomes between two hospitals reflect both
differences in hospital quality and differences in the distribution of patient attributes.

Formally, we denote the expected value of our outcome, given observed covariates x and
hospital j, as mj(x) =E[Y | X =x, Z = j]. We can think of m ;(x) as a “quality surface”

2In principle, each observation is a patient-surgery pair. Since we focus only on one surgery per patient, we
ignore this complication in our exposition.
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of the hospital: it describes our expected outcome for hospital j when serving a patient with
characteristics x. The expected overall average outcome in hospital j is then

pj:JE[Y|Z:j]:/mj(x)dP(x|Z=j).

This quantity is easily estimated by the raw mean of hospital j, Yj- = % > z,=j Yi. However,
these estimates are not directly comparable: even if two hospitals, j and j’, have identical
quality surfaces, mj(x) =m(x), pj, and p; may differ if they average the quality surfaces
over different distributions.

Risk adjustment aims to remove this dependence between the patient and surgery char-
acteristics of a hospital and its overall assessed outcome. We do this by considering a set
of hospital estimands that each take the expectation of m ;(x) over a common distribution
X ~ P*,

(1) W mej(x)dP*(x).

These p; are more directly comparable, as we have removed systematic differences across
distributions. Here, we focus on one simple estimand—the empirical distribution of the co-
variates across all hospitals. This gives

n
(2) l/«j=%zmj(xi)-
i=1

We can view this direct standardization estimand as the expected outcome of hospital j if its
patient mix were the same as the full population of patients. Importantly, estimands for direct
standardization differ from estimands under indirect standardization. Equation (2) examines
how hospital performance differs from expected across a canonical distribution of patient
characteristics. By contrast, indirect standardization examines how each hospital differs from
expected (given the model) for those patients that hospital already serves.

An important question is how to interpret risk-adjusted differences in outcomes across hos-
pitals. One can view risk-adjusted quality measures as being informative of hospital quality
without giving them a causal interpretation. With additional assumptions, however, a causal
interpretation is possible (Longford (2019)). Specifically, we would need to assume that dif-
ferences in hospital patient mix are fully captured by X which implies that unobserved dif-
ferences in patient mix do not contribute to the estimates. This assumption would be violated
if the patient mix at some hospitals was significantly at higher risk for complications, but this
elevated risk was not captured by the patient level covariates. Understanding the possible role
of unobservable differences is critical if risk adjustment is the basis for targeting hospitals for
improvement efforts; see Hull (2018) for further discussion.

Even if we wish to perform a noncausal comparison of hospitals with different patient
populations, we still have to impose the additional assumption that, at least in principle, any
type of patient (as defined by X) in our reference distribution P* could receive care at any
hospital. We formalize this as an overlap assumption.

ASSUMPTION 1 (Overlap). P(Z=j|X =x)>0if P*(x) > 0.

Assumption 1 rules out the possibility that a hospital would never treat a particular type of
patient. For example, we assume no hospital treats only women and that all hospitals perform
the full range of surgeries we are investigating. As we discuss in Section 3.4, the distribution
of estimated weights is a useful diagnostic for assessing overlap in practice. We could further
restrict our estimand to a set of patients where there is overlap by restricting P*. Alternatively,
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we could consider a weaker assumption that only requires overlap on the set of covariates that
are related to the outcome and are different across hospitals. To find such variables, we could
use a double selection procedure (Belloni, Chernozhukov and Hansen (2014)). We leave a
thorough investigation of these directions to future work.

3.3. Estimating hospital means. With direct standardization we estimate the average
population outcome for hospital j, ;, with a weighted average of observed outcomes for
hospital j, using normalized weights y designed to make hospital j representative of the
target population,

3) fij= Y %Y
Zi=j

where }°; _ ;¥ = 1. In our discussion below, we only consider weights that are independent
of the outcomes.

Our setup accommodates general function classes for the quality function m(x); see
Kallus (2020), Hirshberg, Maleki and Zubizarreta (2019), and Hazlett (2020) for further dis-
cussion. To motivate our optimization problem, we impose the simplifying restriction that the
quality function m ;(x) is a linear function of some transformation of the covariates,

4 mj(x)=o;+Bj-¢d(x),

with ¢ : RY — R? and S ; € RP. The vector ¢ (x) is our basis and is how we represent the
information the covariates provide. We discuss the choice of basis for our application in
Section 6.

Given mj(x), & =Y; —aj — Bj - ¢(X;) is the residual of outcome Y; given covariates
X; and hospital Z; = j. We can then express the difference between the weighted average in
hospital j, fi; and the target estimand u ;,

5) =i =pi- (X noxo =)+ ¥ fien
Zi=j Zi=j
—_———
bias variance

with ¢ = % "_, ¢(X;) the overall population mean of the covariate vector ¢ (x). There are a
range of target populations that we might consider shifting toward. In our application we use
the population means across FL, PA, and NY as the target. However, we could instead target
the distribution of a different state or the U.S. population. Changing the target population is
done by changing ¢.

The error in (5) has two components: (1) systematic bias due to imbalance in ¢ (X;) be-
tween (reweighted) hospital j and the overall sample, and (2) idiosyncratic error due to noise.
The goal is to find weights that control both terms. For the first term in equation (5), the chal-
lenge is that the coefficients 8; are unknown. Using the Cauchy—Schwarz inequality, we can
see that controlling the imbalance in ¢ (X;) also controls the systematic bias (conditional on
X and Z2),

(6) Ela; —uj| X, Z=j1] < 1Bjll2

> Pid(X0) —¢3H2.

Zi=j

imbalance

Thus, under equation (6), reducing imbalance controls the bias regardless of the true ;.
If there were only a small number of patient characteristics, we could likely achieve exact
balance, forcing equation (6) to zero. This will not generally be feasible in settings with
a richer set of covariates and when the range of the weights are restricted. Furthermore,
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achieving this goal could come at the cost of extreme weights, which could substantially
reduce precision, as we discuss next.

For the second term in Equation (5), the challenge is that the individual ¢; are unknown.
However, we can bound the variance (conditional on X and Z) by the sum of the squared
weights,

7 Var(fij — pj | X, Z=j) =757 <xj 3. 97
Zi=j

where X; is the conditional variance-covariance matrix of hospital j’s noise terms and A is
the maximum eigenvalue of ¥ ;. This shows that we can reduce the variance by limiting the
spread of the estimated weights. That is, the more homogenous we can make the weights,
the more precise the resulting estimates. Here, we choose to penalize the sum of the squared
weights, >z _; )?l-z, though other penalties are possible; see Ben-Michael et al. (2021).

3.4. Weighting via convex optimization. We can now combine these two objectives into
the following optimization problem:

J 2
min ZHaﬁ— > mﬁ(X,-)‘ YD V?]
Y N . 2 .
j=1 Zi=j Zi=j
®) subject to Z yi =1,
Zi=]
<y, <u.

The optimization problem (8) trades off two competing terms for each hospital j: better
balance (and thus lower bias) and more homogeneous weights (and thus lower variance).?
A global hyperparameter A negotiates the tradeoff: when A is large, the optimization problem
will prioritize variance reduction and search for more uniform weights; when A is small, it
will instead prioritize bias reduction. We explore the role of A in the bias-variance tradeoff
empirically in Section 6.2.

The constraint set in equation (8) has two components. First, we constrain the weights to
sum to one within each hospital, ensuring that each hospital estimate is, in fact, a weighted
average of its outcomes. Second, we constrain the weights to have lower bound ¢ and up-
per bound u. We set the lower bound ¢ = 0 and the upper bound u = 1 so that weights are
nonnegative and do not extrapolate outside of the support of the data. Combined with the
sum-to-one constraint, this means that each individual weight y; corresponds to the fraction
of hospital Z;’s outcome dictated by unit i. These constraints also stabilize the estimate by
ensuring sample boundedness; for example, [ j» which estimates a complication rate, is al-
ways a valid proportion, /i ; € [0, 1]. In Section 3.5 below, we show that, when the weights are
unrestricted (¢ = —o00, u = 00), [i; is equivalent to a model-based standardization approach
using ridge regression.

Under this weighting approach, extreme weights will signal if the covariates for a spe-
cific hospital do not overlap with the patient population. We can target such extreme weights
using the upper bound u. Setting the upper bound to # < 1 would prevent the optimization

3Fora single hospital the objective in optimization problem (8) reduces to a special case of the minimax linear
estimation proposal from Hirshberg, Maleki and Zubizarreta (2019) with a particular choice of function class. The
above extends to the case with multiple hospitals.
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problem from putting too much weight on any single patient in a hospital. For example,
setting u = 0.2, would ensure that we do not put more than 20% of the weight on any indi-
vidual patient. As such, investigators can evaluate the overlap assumption in the estimation
process—without reference to outcomes—by inspecting extreme weights and assessing the
sensitivity of the estimates to the choice of upper bound u. Importantly, using a fixed upper
bound may substantively change the estimand for each hospital, depending on the degree of
overlap (Li, Morgan and Zaslavsky (2018)). Conversely, allowing the upper bound to change
with the sample size (along with assumptions on the propensity score) alleviates this concern
(see Athey, Imbens and Wager (2018), who use a varying bound). In our primary results we
sidestep this issue and set u = 1 (no constraint) and investigate the impact of setting u to be
less than 1 in the Supplementary Material (Keele et al. (2023a)).

The optimization problem of (8) obtains y; without using outcome information. Similar to
matching and propensity score methods in observational studies, this is a design step where
we set up our final evaluation using covariate information alone. We can then simply estimate
the adjusted hospital means by taking a weighted average of the patient outcomes, ji; =

> z,=j ViYi.

3.4.1. Dual relation to propensity score estimation. Finding weights that balance covari-
ates while controlling the variance is well known to be intimately connected with propensity
score estimation (for some examples out of many, see Hirshberg and Wager (2021), Wang and
Zubizarreta (2020), Yiu and Su (2018), Zhao (2019), Zhao and Percival (2017)). Defining the
generalized propensity score as ej(x) = P(Z = j | X = x), we can follow Hirshberg and Wa-
ger (2021) and Ben-Michael et al. (2021) and inspect the Lagrangian dual of the optimization
problem (8). The dual writes the weights as a truncated linear function of the covariates with
a dual intercept n9; and dual coefficients n;,

Yi = [’702,- + UZ,- : ¢(Xi)]+’

where [x]+ = max{0, x}. For each hospital j, the dual optimization problem includes a loss
function

1 1 2
L) = S Z}(m — [noj +nj .¢(Xi)]+>

nj Zi=,
" (1{Z; = j} 1) 1
—————|(noj +nj - X)) — — —|nj - ¢X)]_,
i:1<njej(X,-) n (r0; / ) nj Z,Z::j ej(X,-)[ / 2
where [x]_ = min{0, x}. The expected value of the dual objective L;(n) is the mean square

error between the weights for hospital j and the inverse of the propensity score %(x); the
J
second term in the objective can be viewed as a finite sample adjustment. Overall, the dual

variables are found to minimize a ridge-penalized version of the objective, separately for each

hospital

J
. A
min )+ 5115
j=1
Therefore, the balancing problem in equation (8) is dual to a propensity score estimation
problem where we estimate the inverse propensity score with a (truncated) linear model,
separate for each hospital.
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3.5. Direct standardization using parametric models. As we note above, indirect stan-
dardization via regression models has a long history but has seen much less usage for direct
standardization in health-care applications (Iezzoni (2012, p. 347)); see Centers for Medicare
& Medicaid Services (2021b) for one notable exception. Next, we formally outline methods
for model-based direct standardization and show that when the weights are unrestricted (i.e.,
¢ = —o0 and u = 00), our balancing weights approach is equivalent to using ridge regression
to estimate the quality curve. Our formalization of model-based direct standardization dif-
fers from that in McCaffrey et al. (2004), since we do not assume longitudinal data and our
derivations are with respect to our specific estimand.

One natural model-based approach is to estimate the quality curve m ;(x) directly. Given
an estimated 71 (-), we can estimate the adjusted hospital mean by averaging the patient-
specific predictions across the full population with 0‘” = 1 i—1m;(X;). A straightforward
way to model the quality curve is to use the followmg ﬁxed eﬂects regression model:

mj(x)=a;+p-¢(x),

where the o; are J hospital fixed effects (implemented via indicator variables) and ¢ (x)
remains the matrix of patient level covariates. Taken literally, this model assumes that each
hospital has a constant shift in patient outcomes, regardless of patient type. If we construct
¢(x) so it is zero-centered with respect to the target population, «; is then the predicted
outcomes for a “typical” patient, with average covariate values, at hospital j. In other words,
under this model all hospitals are standardized to a singular common patient type of “the
average person.” We refer to this as fixed effect direct standardization (FEDR).

The FEDR model can lead to biased estimates, however, if the true covariate-outcome
relationship differs by hospital. In particular, consider the separate linear quality curve model
in equation (4), where for unit i in hospital j, the outcome is ¥; = o + B; - ¢(X;) + &
where the B; vary. With centered covariates, ¢=0and u; ji= a ;- Then, the estimates &;, ,3
obtained via FEDR will satisfy ¥; = &; + f¢;, with ¢; = m ZZ,‘:J ¢ (X;). This gives an

overall estimation error (including bias) for the standardized hospital quality estimate of
©) A —pj=aj—aj=Y;—B-¢j—a;j=(8;—B) - +&j,
where &; = n_,- > z,=j€i- With FEDR, ,3 is targeting a weighted average of the f; across

hospitals, and the magnitude of ,3 — Bj, and thus the bias, depends on both estimation error
and the degree to which the outcome-covariate relationship of hospital j (the 8;) differs from
this fully pooled average.

An alternative to this more restrictive approach is to allow the quality curves to differ
across hospitals and directly fit the varying coefficients model in equation (4). For instance,
we can estimate the quality curve via ridge regression, finding intercepts &; and coefficients

,3 ; for each hospital that solve separate ridge regressions,

(10) mmX: S (Vi —aj— B -d(XD)* + 418513

/ln’Z =j

In this case the estimate of the adjusted mean for hospital j is the prediction for the average
covariate value, which for centered covariates is again the estimated fixed effect,

t A h I A
At =a;+pj-p=a;.
However, now the estimation error depends on the error in the hospital-specific coefficients,

(11) A — =B —Bj) $j +5j.
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The difference between B; and the overall average B has been removed. In other words, if
we can consistently estimate the components of the model then the outcome-based standard-
ization estimate will be consistent.

While we have motivated this ridge regression approach through outcome modeling, it is,
in fact, a special case of our weighting estimator and a solution to balancing optimization
problem (8). Following Ben-Michael, Feller and Rothstein (2021), we can write the outcome
based estimate as a weighted average

’\Ollt
2 :yl is

with the weight on unit i as
Pt = —+<¢ ) (Z;+ 1D o (X)) — @),

where ;=3 _ j (D(X)— (X)) — ¢ j)’ . Furthermore, these weights are the solution
to the balancing weights problem in equation (8) where we put no bounds on the weights,
¢ = —o0 and u = 0co. We call this varying-coefficient estimation ridge-weighted direct stan-
dardization (RWDR). Our initial balancing approach is then a restricted version of RWDR
with bounds on the weights. As we discuss in Section 3.4, in our default balancing implemen-
tation we set the lower bound ¢ = 0 to avoid extrapolation. Without this constraint we allow
extrapolation from the support of the observed data, meaning we are relying on the linear
functional form of the covariate-outcome relationship to use potentially less representative
data to predict overall outcomes. We will return to this point in Section 4.1.

Model based methods for direct standardization—or, equivalently, weighting based meth-
ods that allow the weights to be negative—may be a particularly good alternative to avoiding
extrapolation by setting £ = 0 in applications with smaller samples, where the loss in effec-
tive sample size is a concern. When the weights are restricted to be nonnegative, a hospital
dissimilar to the overall population will tend to get a small number of units with large weights
in an effort to reduce bias between specific hospitals and the target population. Large weights
in turn lead to proportionally small effective sample sizes. In such circumstances some ex-
trapolation via a modeling approach may be preferable: instead of relying on a small number
of truly representative units, we leverage an assumed covariate-outcome relationship to ex-
trapolate less representative units to help predict the outcome for an overall “typical” patient.
That being said, in such circumstances we recommend fitting both approaches, as constrain-
ing the weights allows the researcher to examine each hospital to see if the estimate is being
driven by a few units with large weight. These diagnostics are less apparent with model-based
approaches as negative weights are difficult to interpret.

3.6. Variance estimation. We quantify the uncertainty of our estimated hospital means
using standard results from survey sampling. Under the assumption that individual outcomes
are independent within a hospital, the sampling variance (conditional on the weights) is

Var{ji;|y;} =Var{ > ?jYi} =Y p7Var(vi}.
Zi=] Zi=J

For each hospital we could then estimate this variance using a plug in,

/\

12 :
(12 (i 17) = |67 X7 =
"
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where we estimate the variance of the outcomes as

1
~2
O =="%3 E Yii
j Z 2 Vl 1 jyl( ij I’Lj)

and where
etf <ZV1>/ZVI _I/Z

is the effective sample size for hospital j (Lohr (2010), Potthoff, Woodbury and Manton
(1992)).% Conditioned on the weights, that is, with a fixed design, this is the Huber—White
heteroskedastic robust standard error for the weighted average and so allows heteroskeda-
siticty within hospitals. The last equality above assumes the weights sum to 1 within hospital,
given under the constraint in the optimization problem in equation (8).

If all of the hospitals in our sample were large, the individual o, estimated separately for
each hospital, would be stable. In practice, however, the 6; estimates from smaller hospi-
tals may be noisy, which will complicate subsequent adjustments, especially partial pooling
across hospitals. In particular, if a small hospital has an unusually small estimated standard
error, its point estimate will receive excessive weight when trying to estimate cross-hospital
variation. In our empirical example, for instance, some hospitals had naive estimates of O for
the standard error since they had no complications observed.

Therefore, we instead pool the individual standard deviation estimates into a global esti-
mate. Specifically, we estimate the pooled standard deviation as

ff 2
(13) Gpool = Nefone

where N°T = =2 n T is the pooled effective sample size. The pooled variance is a weighted

average of the noisy hospltal specific variance estimates. The hospital specific standard errors

eff
are then & 001/1 [n;

See Welss et al (2017) and Bloom et al. (2016) for extended discussion of this approach
for stabilizing estimates of impact variation in multisite trials; they find that the potential bias
from ignoring heteroskedasticity is small. If heteroskedasticity were a concern, we could also
merge this variance estimation step with a Bayesian model, as discussed below. For binary
outcomes we can also conduct a two-step process, where we use preliminary shrunken esti-
mates of the hospital means to recalculate hospital-specific standard errors and then refit using
those improved uncertainty estimates; see the online suppement for the results based on this
correction (Keele et al. (2023a)). In general, we found that the bias from heteroskedasticity
was minimal.

4. Extensions. We now consider two extensions to the basic weighting approach: bias
correction and partial pooling. These can be used together or separately to improve risk ad-
justment based on weighting alone.

4.1. Incorporating additional bias correction. As with other methods of direct standard-
ization, the weighted estimator in Section 3.4 has the benefit of being design-based, that is,
the weights p solving the optimization problem in equation (8) are independent of the out-
comes (Rubin (2008)). There are, however, reasons to utilize outcome information in the risk

4The effective sample size is the inverse of the dispersion penalty in the balancing weights optimization problem
in equation (8).
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adjusted estimates. We now describe how to include outcome information into the hospital
level estimates.

Especially in smaller hospitals, the weighted mix of patients in hospital j may still not
quite match the target distribution. We can use an outcome model to estimate how far off
our weighted average outcome might be, and, given this remaining imbalance, we can adjust
outcomes for this remaining imbalance. Specifically, given an estimate of the quality surface,
1 j (x), for hospital j we adjust our estimated outcome as follows:

. . LI .
(14) mj= Z )/iYi‘f‘;ij(Xi)_ Z yim;(X;).
Zimj i=1 Zi—j

imbalance in 1 (-)

Analogous to bias correction for matching (Abadie and Imbens (2011), Rubin (1973)), the
bias is estimated as the imbalance in the estimated quality surface, 771 (). This bias is then
removed from the risk adjusted hospital outcome. If 71 (-) is a good estimator for the true
quality surface m ;(-), then the adjustment term in equation (14) will reduce any bias due to
remaining imbalance (see Athey, Imbens and Wager (2018), Hirshberg and Wager (2021), for
more discussion on bias-corrected balancing weights).

One obvious way to obtain 71 (-) is via least squares, with hospital-specific intercepts

but common coefficients across hospitals, 71 ;(x) = & + ,3 - ¢ (x) (Normand et al. (2016)).
This allows the model to share information on the relationship between the covariates and
the outcome, while still allowing for systematic differences in hospital quality. However,
like the linear model outlined in Section 3.5, this model is fairly restrictive. Following our
assumption on the form of the quality surface (4) as i ; = a; + ,3 j - ¢(x), we instead estimate
m j via ridge regression separately within each hospital, as in equation (10), which allows the
quality curves to differ across hospitals. More elaborate pooling procedures are possible, for
example, directly using hierarchical Bayesian modeling (George et al. (2017)).

Plugging the linear model into equation (14), the bias-corrected estimator is

(15) fj=> %Y+ B (a‘s— > ﬁ-«p(x,-))

Zi=] Zi=J

adjustment for remaining imbalance

The hospital fixed effects &; drop out due to the sum-to-one constraint, leaving us with only
the coefficients A j determining how to aggregate the imbalance in each of the components of

o (Xi).

This estimator is a special case of the general augmented minimax linear estimator pro-
posed by Hirshberg and Wager (2021), specialized to the separate linear model and this set-
ting with multiple hospitals. We can similarly view this estimator, as related to the approxi-
mate residual balancing proposal from Athey, Imbens and Wager (2018), controlling the L?>
norm imbalance and using ridge regression rather than the Lasso. Following Athey, Imbens
and Wager (2018), we can inspect the estimation error of this bias corrected estimator and
see that the bias is controlled by both the imbalance and the error in estimating 8;,

i . R i i
(16) =i =B =) (- X 7iox =) + 3 g
Zi=j

J Zl=./

Therefore, if the error in the coefficients ||/§ ;i — Bjll is smaller than the magnitude |5,
by including estimates from the outcome model we can reduce the bias arising from any
remaining imbalance. Furthermore, under additional assumptions on the propensity score,
this bias-corrected estimator can be as efficient as possible (see, e.g., Hirshberg and Wager
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(2021)). Compared to the estimation error for outcome modeling alone in equation (11), the
bias of the bias-corrected estimator depends on the product of the error in the coefficients and
the imbalance which will lead to lower bias than outcome modeling alone.

In addition, Ben-Michael, Feller and Rothstein (2021) show that this bias-corrected esti-
mator is itself a weighting estimator with weights

=i+ (5= X 70 000) (241D B XD — ).
Zi=j

So the bias correction adjusts the weights to achieve better balance by allowing for some ex-
trapolation away from the observed patient mix. Compared to only using an outcome model
for direct standardization, as in Section 3.5, bias-correcting in this manner will only extrap-
olate when necessary to achieve better balance. If it is possible to achieve good balance
without extrapolating, then the bias-corrected estimator will not extrapolate; otherwise, the
level of regularization in the outcome model will control the degree of extrapolation. This
differs from using the outcome model alone, which can extrapolate away from the support of
the data, even when an adequate solution exists that does not extrapolate; see Ben-Michael,
Feller and Rothstein (2021) for further discussion on extrapolation and bias correction.

In general, bias adjustment will be more aggressive for hospitals with larger imbalances.
This will be especially true for hospitals with smaller effective sample sizes, as there are
fewer patients available for trying to match the population distribution. The adjustments will
be smaller for hospitals with excellent balance, for example, hospitals with large patient pop-
ulations or a high degree of overlap. We also use the model to aid in estimating the variance.
Rather than using the residual ¥; — [i; when estimating the hospital-specific variance 6].2,
we use the empirical residual Y; — m j(X;). Specifically, for the separate linear model the
hospital-specific variance is

1 A
67 = ———5—— 2 (Y —a&;— B (X))’
Yzi=ivi — 172
We then use these hospital variance estimates in the overall pooled estimate 650
(13).

In sum, we can use an outcome model to incorporate additional risk adjustment into our es-
timates of hospital quality, albeit at the price of allowing for extrapolation away from the sup-
port of the data. We refer to risk adjustment using weights alone as weighted risk adjustment
and risk adjustment using both weights and additional outcome modeling as bias-corrected
risk adjustment.

ol 1N equation

4.2. Partially pooling hospital-specific estimates. Thus far, our approach estimates
hospital-specific means /i ; in relative isolation. These estimates can be unstable, especially
for the smaller hospitals and those hospitals with low effective sample size. Following stan-
dard practice in hospital quality research, we, therefore, partially pool the estimates via a
hierarchical Bayesian model (George et al. (2017), Iezzoni (2012), Normand and Shahian
(2007)). We can use this approach either with or without the bias correction step in Sec-
tion 4.1.

The important change from the no pooled estimate is that we now assume that the hospital-
specific complication rates are drawn from an underlying random effects distribution, G,

j~ N, 585),
wj~G,
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with estimated estimated standard error, §¢; = 6p001 /A /n‘j.ff. This is a “modular” Bayesian pro-

cedure that treats §¢; as known which avoids some complications that arise from estimating
hospital-specific variances in a fully Bayesian setup (Jacob et al. (2017)). Nonetheless, it is
straightforward to extend this approach to a fully Bayesian or empirical Bayes setup, such as
triple goal estimation (Paddock et al. (2006), Shen and Louis (1998)).

Partially pooling the final estimates in this manner differs from other generalized linear
mixed models used for assessing hospital quality (Normand and Shahian (2007), Normand
et al. (2016)) that partially pool parameters in the outcome model (e.g., they fit varying in-
tercept models) rather than partially pooling the estimated means themselves. We view our
approach as more transparent, since the analyst controls the level of partial pooling directly.

5. Simulation study. We conduct a simulation study to explore the benefits of addi-
tional regression adjustment compared to weighting alone. For each scenario considered, we
first generate a fixed set of J hospitals, where each hospital has a specific distribution of
patients, relationship of patient characteristics and outcomes, and overall quality score. We
then repeatedly sample patients from each hospital, generate a binary adverse effect for those
patients, and fit the resulting data using three strategies: simple averaging (no adjustment),
our weighting adjustment, and our weighting adjustment with an additional covariate adjust-
ment. We then compare the sets of resulting hospital specific quality estimates to the true
quality scores and measure variability, bias, and root-mean squared prediction error (RM-
SPE). Overall, we verify, as expected, that in contexts where hospitals serve different patient
demographics, weighting does reduce bias, but this comes at a cost of increased variance.
Regression adjustment provides additional benefit via further bias reduction. The additional
regression adjustment does not increase estimator variance as the covariates—all at the indi-
vidual level—are estimated with high precision, given the large sample size. We now provide
specific details of our model and simulation and then present the results.

5.1. The data generation process. We characterize each hospital with three independent

variables, ug, ui, un i Unif[—0.5, 0.5], representing latent hospital characteristics. We de-
note this set of variables as uy. These variables jointly drive four main aspects of the data
generation process: hospital size, hospital quality, hospital patient population served, and the
hospital-specific outcome-covariate relationship of the hospital’s patients. We have four pri-
mary simulation factors: «, 03, B, and aé. Conceptually, & is the average hospital quality
(i.e., is the mean hospital intercept in a linear model), controlling what proportion of the
patients at a median hospital would have a complication, and ao% is the variance of the indi-
vidual hospital-level intercepts. The relationship between the covariates and the outcome is

controlled by B and aé, with B controlling how strongly the patient level covariates predict
patient level risk on average and aﬁ% controlling the variation across hospitals in the strength
of this relationship. A nonzero aé allows different hospitals to have different relationships
between their patient covariates and outcomes. Critically, when o7 > 0, increasing f will
increase model misspecification, which should increase the bias for model-based estimates
of hospital quality.

Within each hospital j, a patient i, has a vector of seven covariates and the following
patient-level risk 7;:

(17) logit(m;) =& +a; + v (X; — X) + (B; — B)v'X;,

where v = (0.4,0.3,0.4,0.2,0.2, 0.2, 0.2) is a vector of coefficients for our seven covariates,
X;j is the demographic vector of covariates for patient i in hospital j, and X is expected
average of the X;; across the full population. The «; is the deviation of how much more (or
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less) effective hospital j is than average, and B; controls how much stronger (or weaker) the
covariate-outcome relationship is. We link the uy to a; with

aj =a+ o4 ug+uy +uz —1.5)
and
Bj=B+o0p6(uo+uy—1),

where the centering of —1.5 and —1 and scaling of 4 and 6 to make the «; and 8; centered
at zero with variances of o> and aé.

Given a set of J hospitals, we generate a sample of N = 80J patients across the hospitals,
with each hospital’s size being proportional to ug + 0.3, allowing some hospitals to be more
than four times larger than others, with an average size of 80. For each patient, we generated
covariates with varying relationships to the latent u; which induces different patient popu-
lations across the different hospitals. Our first covariate is a count, with X ~ Pois(}), with
A=1+1.5 exp_1 (ug), where exp_1 (+) is the quantile function of the exponential distribution.
Our second and third characteristics are binary indicators with X, ~ Bern(% (u1 +uy+0.5))

and X, ~ Bern(% (uo + u1 + u3)). The four additional binary covariates are not related to the
hospital characteristics and are all drawn as independent Bern(1,/2). We then calculate patient
level risks using equation (17) and, finally, patient outcomes Y;;, as Bernoulli draws with the
given 7;;. In sum, patient level covariates predict the risk of a complication; however, there
is a hospital level component that varies from hospital to hospital in a stochastic fashion.

5.2. Simulation implementation. Ineach simulation we apply the range of possible meth-
ods of direct standardization. First, we include hospital-level estimates without risk adjust-
ment. Next, we apply the two model-based methods of estimation: fixed-effect direct stan-
dardization (FEDR) and ridge-weighted direct standardization (RWDR). For these two meth-
ods we expect FEDR to display higher levels of bias but have lower variance. Recall that
RWDR is equivalent to using a separate ridge regression model to adjust each hospital case-
mix. Next, we include two weighting-based methods. First, we applied weighted risk ad-
justment. Next, we applied bias-corrected risk adjustment—weighting-based estimates com-
bined with modeling of the outcome. As we outlined in Section 4.1, we performed outcome
modeling with hospital specific ridge regression fits. We selected the ridge regression tuning
parameter via cross-validation. In the simulation we did not apply the Bayesian shrinkage
methods.

We focus on S as the primary factor of our simulation. As B gets larger, the bias in the
naive estimates of hospital quality should increase, because patient level risk will depend
to a greater extent on the covariates, causing hospitals serving different types of patients
to diverge. In our simulations we used 10 different values for B that varied from 0 to 3
in increments of 2/3. We set @ = —1 and vary o2 and oé across 0 and 1. For each set of
simulation parameters, we generate a fixed set of hospitals and repeat the simulation 1000
times, resampling the patients with each trial. We fix the hospitals in order to be able to
directly estimate the RMSPEs for the individual hospital-specific quality estimates. For each
simulation we calculated the standard error, bias, the coverage rate for the 95% confidence
interval, and RMSPE for each hospital, and then average across hospitals.

5.3. Results. Figure 2 reports results for when cro% = o*g = 1; see the online Supplemen-
tary Material for results with the full set of simulation parameters (Keele et al. (2023b)). As
expected, the unadjusted results always have higher bias than any of the direct standardization
methods. (we still have bias when 8 = 0 due to the individual 8 j varying and being correlated
with hospital size). Both FEDR and RWDR reduce bias, compared to unadjusted results, but
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FIG. 2. Average bias, standard error, and RMSPE across all hospitals and simulation runs. X -axis is § which
controls the strength of the relationship between the outcome and covariates. Baseline represents unadjusted
results.

as model misspecfication increases both of these model-based methods underperform relative
to weighting. In terms of variance, however, both model-based methods produce the lowest
variances across all scenarios. In fact, FEDR produces standard error estimates that are nearly
identical to unadjusted results.

Despite the bias reduction advantages, weighting can have a higher RMSPE than no ad-
justment when the covariates are not generally predictive (i.e., B is low); in these cases the
bias-variance trade-off of weighting is too expensive in terms of variance. We see the vari-
ance cost is essentially independent of the covariate-outcome relationship, as illustrated by
the flat SE curves. The model approaches also generally outperform weighting with respect
to RMSPE given this variance cost. The model adjustment on top of weighting appears to be
essentially free: the standard error plot shows no increase in variance for bias-corrected risk
adjustment relative to weighting alone, and bias is further reduced, making model adjusted
bias correction the lowest bias approach overall. This reduction in bias—with no correspond-
ing increase in variance—provides an overall reduction in RMSPE from model adjustment.
For the higher 8, RMSPE reduction for bias-corrected risk adjustment is a bit more than 10%
than for weighting alone. Depending on the purpose of our estimates, we may choose to re-
duce bias over reducing overall RMSPE. For example, remaining bias can undermine efforts
to estimate cross-hospital variation, as the bias, if it is not systematic across hospitals, would
be counted as hospital variation.

Bias also seriously undermines coverage, as shown by Figure 3. We see both weighting
methods generally maintain nominal coverage across all the simulation scenarios. By con-
trast, the smaller variances produced by the model-based methods come at a significant cost:
they produce confidence intervals that generally fail to cover the truth.

6. Hospital performance on postoperative complication in general surgical perfor-
mance.

6.1. Setup. We now apply our approach to estimate risk-adjusted complication rates for
general surgery patients in Pennsylvania, New York, and Florida. Our first step is to build
¢ (x), the basis for assessing covariate imbalance; we set this to be a standardized version
of the full set of covariates. Standardizing is important because dimensions of ¢ (x) with
high variances will implicitly receive greater weight in the optimization problem. For binary
covariates with estimated proportion p > 0.05, we standardize by subtracting the mean and
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FIG. 3. Coverage of 95% confidence intervals across B which controls the strength of the relationship between
the outcome and covariates. Baseline represents unadjusted hospital level results.

dividing by the standard deviation. For binary variables with rare outcomes, p < 0.05, we
standardize by +/0.05 - 0.95 instead of /p(1 — p) which prevents extremely rare covariates
from receiving too much weight in the optimization process. For continuous covariates, we
standardize by subtracting the mean and dividing by the standard deviation. We also augment
our ¢ (x) with one aggregate measure: in our context, many of our covariates are indicators
for relatively rare comorbidities, and matching on all of them separately may be difficult.
We, therefore, add a key summary measure of this risk, the number of total comorbidities for
each patient, and include this as an additional covariate in ¢ (x). Our setup is general and, in
principle, we could generate a richer basis.

To assess the performance of our weighting procedure, we focus on the increase in pre-
cision and reduction in bias. For precision, we calculate the implied effective sample size,
n‘;’.ff. For bias we calculate the improvement in (weighted) covariate imbalance by hospital.

For each hospital we calculate ¢(X),, the unadjusted covariate means, and mh,w’ the
weighted means, using the weights from our procedure. Next, we regress Y; on ¢ (X;) to ob-
tain a vector of regression coefficients 7 which give us variable importance weights. Using
these estimates, the initial approximated bias is Aj, = (¢ (X),, — ¢ (X))'#, and the final bias is
Apyw =(@(X)p — (X ))'7 for each hospital 4. The first quantity is the estimated bias due
to baseline differences in case mix; the second is the estimated remaining bias due to case
mix after weighting. Using these two quantities, we then calculate the percent bias reduction
(PBR),

1 1
PBR:lOO%x[— |Anwl /= |Ah|]
2 el

This measure describes the estimated change in bias, due to risk standardization, while also
accounting for the strength of the association between the different covariates and the out-
comes.
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FI1G. 4. Estimated bias-variance tradeoff as a function of A values. Each dot represents the estimated percent
bias reduction and average effective size for balancing weights with different values of . The comparable values
for template matching are shown in the bottom left, suggesting large gains in both bias reduction and effective
sample size from using the proposed weighting approach relative to template matching.

6.2. The bias-variance tradeoff and the role of A. An important tuning parameter in our
approach is A, the global hyperparameter that controls the bias-variance tradeoff: when A is
large, the optimization problem prioritizes variance reduction and searches for more uniform
weights; when A is small, it instead prioritizes bias reduction, allowing extreme weights that
can reduce nS" for each hospital. To investigate the role of A, we estimated weights for each
of a series of A values ranging between 0 and 3.5. For each A value we computed the av-
erage PBR and average effective sample size across all hospitals. In this analysis we focus
on risk adjustment via weighting alone. We also set © = 1 (no constraint) which does not
limit the amount of weight assigned to any one patient. In the Supplementary Material, we
present results for an analysis with u = 0.2 and found the results were unchanged (Keele
et al. (2023a)).

Figure 4 summarizes the results and demonstrates the trade-off between bias reduction
and effective sample size. When A = 0 (no attempt to control variance), the estimated percent
bias reduction is 80% relative to the unadjusted estimate with an average effective sample
size less than 200. While this bias reduction is large, we cannot achieve perfect balance,
especially for smaller hospitals. Conversely, when A = 3.5, bias reduction is approximately
47%, but the average effective sample size is nearly 1000, an increase of more than a factor of
3. The results in Figure 4 suggest a value for A around 0.05, which decreases bias reduction
from our maximum possible of 80% by approximately three percentage points but essentially
doubles the average effective sample size.

As a comparison, we also implemented a template match. Following Silber et al. (2014a),
we first created a template by taking 500 random samples from the patient population, each
with a sample size of 300. Of these 500 random samples we selected the sample with the
smallest discrepancy between the random sample and the overall population means; this set
of 300 patients serves as the template. Next, we matched patients from each hospital to the
template, using optimal match with refined covariate balance. This approach is an extension
of fine or near-fine balance designed to balance the joint distribution of many nominal covari-
ates (Pimentel et al. (2015)). In the match we employed both a propensity score caliper and
optimal subsetting. For each hospital we optimally match individual patients to patients in
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the template, dropping template patients that have no match within a given caliper. For each
match, therefore, we can obtain up to 300 matched pairs, the size of the template; the number
of matched pairs may be smaller, however, if only a subset of patients are comparable. The
patients selected from each hospital serve as the risk adjusted population for that hospital, and
the subsequent risk adjusted measure of complications is the proportion of complications in
that matched sample. For the template match we also calculate the PBR and average sample
size across hospitals. We did not discard hospitals where the matches were poor, as was im-
plemented in Silber et al. (2014b). We did this to measure the performance of both methods
across all hospitals in the sample.

Figure 4 shows that template matching, which does not directly minimize imbalance, does
not have comparable performance: bias reduction is under 50%, less than some of the most
regularized A considered, and the average effective sample size is less than 300, only slightly
above the fully unregularized A = 0; see the Supplementary Material for more detailed results
from this analysis (Keele et al. (2023a)).

We next compared the estimated outcomes and estimated standard errors for A = 0 and
A = 0.05, estimating average bias reduction and average effective sample size for these two
scenarios. When A = 0, the bias reduction was 86.8% with an average effective sample size
of 195. When A = 0.05, the bias reduction was 79% with an average effective sample size
of 438. Overall, these results suggest that there are gains from selecting a value for A larger
than O: with a small increase in A, we lost little in terms of bias reduction while more than
doubling the effective sample size.

The results from this analysis raise the question of how users should select a value for A
in applied clinical research. While we do not yet have a data-driven approach for selecting
A, the approach we use here seems reasonable for assessing the bias-variance trade-off. More
specifically, users can start with A = 0 as a reference point, since this will maximally reduce
bias. Users can then estimate additional fits with larger A values to find the point where bias
increases are modest but effective sample size is maximized. Importantly, such choices can
be done without respect to outcome information and, therefore, in a principled way.

Finally, we demonstrate how the weights affect the distribution of covariates at the hospital
level. Figure 5 shows box plots of hospital means before and after weighting (when A = 0.05)
for the three key covariates shown in Figure 1. After weighting, the distributions of hospital
means are clearly much closer to the population means, though some variation remains. Af-
ter weighting, the distributions of hospital means are clearly much closer to the population

Method
B3 Unweighted
E3 Weighted

Proportion of Characteristic
]

Obesity Emergency Admission
Select Covariates

FIG. 5. Boxplots of hospital casemix distributions for three covariates before and after weighting when
X = 0.05. Diamond represents population mean for that covariate.
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means. For some hospitals, however, there is still some amount of bias that is not eliminated
by weighting. These residual imbalances motivate the use of further outcome modeling for
additional bias reduction. Moreover, if used in a quality comparison setting, we might elect
to remove such hospitals from further cross-hospital outcome comparisons, given that these
hospitals do not appear to be directly comparable, even after adjustment via weighting. One
area for future investigation is to develop a metric for identifying (and possibly removing)
hospitals that are outliers in terms of imbalance after weighting.

6.3. The role of risk adjustment on hospital quality. We now focus more directly on
how risk adjustment alters hospital level outcomes. To that end, we examine the effects
of weighted risk adjustment and then explore the utility of the additional bias-correction
step. Figure 6 shows the proportion of complications for each hospital before risk adjustment
against the proportion of complications after weighted risk adjustment.’ Hospitals close to
the 45-degree line saw little change; hospitals off the line were changed more. Generally,
weighted-risk adjustment induces relatively small changes, although several smaller hospitals
changed quite a bit. The nonparametric trend line shows that, in the middle of the distribution,
risk adjustment tends to move complication rates up.

Adjustment under the outcome model should also improve the precision of our estimates,
depending on the model’s predictive power. We calculated an R? value for our model by
comparing the pooled variances of weighted risk adjustment to that of bias-corrected risk
adjustment. Specifically, we compare the overall pooled estimate 85001 in equation (13) from

04

Sample Size
50
100
250
500
1500
3000

Weighted Risk Adjustment

00 01 02 03
Unadjusted Complications

FI1G. 6. Scatterplot of the proportion of complications before risk adjustment against estimates after weighted
risk adjustment. Dashed line is a loess fit.

5 Figure 6 reflects both actual variation as well as measurement error; we focus on accounting for measurement
error with the shrinkage estimator below.
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weighting alone 6*\%eighted pool L0 the pooled estimate with bias-correction 65 comected pool
1 - 5v2veighted pool /c}bZials corrected pool 0.32. We find that model adjustment, on average, re-
moved 32% of the variation within hospital. This variance reduction will lead to more precise
standard errors due to removing variation that we can predict by specific case characteristics.

Next, we investigate two hospitals where risk standardization resulted in large changes in
the estimated complication rates. Hospital A had more than 500 general surgery patients,®
with an unadjusted complication percentage of 6.7%, well below the sample average of
13.5%. After we apply the weights, the risk-adjusted complication percentage increases to
16%, above the sample average. Looking at this hospital’s case mix makes this shift clear.
The average age of the general surgery patients in this hospital is 51, somewhat low com-
pared to the overall population of 55, and these patients typically have only a single, pre-
existing medical condition. Moreover, only 15% of the patients at this hospital are admitted
for urgent procedures. Hospital A confirms the value of risk adjustment: due to a relatively
healthy patient population, hospital A appears to have a low complication percentage; once
we risk adjust to match the population as a whole, the estimated complication percentage is
much higher.

Compare that to hospital B which had more than 500 general surgery patients. The un-
adjusted complication percentage is 20.7%, and the risk adjusted complication percentage is
9.6%—approximately a third lower than the percentage at hospital A. However, the patient
case mix at hospital B is much different than for hospital A. The average age of the patient at
this hospital is 63, higher than the overall average, and patients typically have around three
preexisting medical conditions. Moreover, 60% of the procedures at hospital B were urgent
admissions. Thus, once we risk adjust to match the characteristics of the population as a
whole, we find the estimated performance for hospital B actually improves.

6.4. Assessing the range of hospital quality. We next assess the variation in estimated
hospital quality and how that variation changes when we adjust hospital complication rates
to account for different patient mixes. To do this, we use the “Q statistic” approach from
meta-analysis (see, e.g., Hedges and Pigott (2001)). The Q statistic is calculated as

0= Z (:LL]

s + ‘E2

’

where [t is an estimate of the overall average outcome across hospitals (we use the simple

mean) and 72 is a hypothesized degree of cross-hospital variation in the true quality measures

i

Under the null hypothesis, Hy : T = 19, the Q statistic has an approximate X;%—l distri-
bution. We can then estimate t, using a Hodges—Lehman point estimate (corresponding to
the T with the largest p-value; here, the value where O =n — 1) and generate a confidence
interval via test inversion. We used this approach on three sets of hospital estimates: the raw
mean outcomes of the hospitals without any adjustment, the mean outcomes of the hospitals
after weighted risk adjustment, and the mean outcomes of the hospitals after both weighting
and bias correction. Results of these three analyses are summarized in Table 1. When we do
not adjust for patient characteristics, the estimated standard deviation is over five percentage

OWe cannot disclose the specific hospital size in print per our data use agreement.

7To build intuition for this estimator, notice that we can decompose the difference of i j and @, as m j—R=
(i j — #j)+ (uj — ). The two terms in the denominator correspond to uncertainty in I j — 1 j, captured by the
estimation uncertainty $¢ ;, and to uncertainty in w ; — i, captured by the structural variation in hospital quality, ©
For implementation, see the blkvar package: https://github.com/Imiratrix/blkvar/.
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TABLE 1
Estimated average and standard deviation of hospital complication rates. First column is overall average across
hospitals. The Std. Dev. is the estimated amount of variation in true complication rates across hospitals. The CI
is the confidence interval for this amount of variation. The prediction interval estimates the range of the inner
80% of hospitals, assuming normality in the complication rates. For the rows, Raw includes variation induced by
different patient mix

Estimates Grand Average Std. Dev. CI 80% Prediction Interval
Raw 13.2% 5.1% (4.9%-5.4%) 7%—20%
Weighted Risk Adjustment 13.5% 2.7% (2.4%—-2.9%) 10%-17%
Bias-corrected Risk Adjustment 13.7% 3.2% (2.9%-3.5%) 10%-17%

points. Under a Normality assumption, this suggests the complication rate for the middle 80%
of hospitals ranges from approximately 7% to 20%.

When we standardize using weighting alone, the standard deviation falls sharply to 2.7
percentage points. Relative to the raw estimates, this suggests that hospitals would have more
similar outcomes if treating similar patients. We also see that 70% of the variation in hospital
quality is explained by the mix of patients, as measured by an R? type statistic of R? =
1— GaZdj / o*rzaw.8 Finally, the estimates are largely unchanged when we also incorporate bias

correction; see the online Supplementary Material for additional results (Keele et al. (2023a)).

6.5. Results after partial pooling. As described in Section 4.2, we now use a Bayesian
hierarchical model to partially pool the hospital-specific estimates; we estimate this model
using Stan, a Bayesian software package (Carpenter et al. (2017)). We set the random effect G
as a simple Normal, G = N(«,,, rﬁ), consistent with prior work on hospital quality (Normand
and Shahian (2007), Normand et al. (2016)). For Normal G we impose a uniform prior over
the random effect standard deviation, 7, € [0, 00), and a uniform prior over the random effect
mean, which we constrain to be in the unit interval, cr;, ~ Unif[0, 1], since we focus on binary
outcomes. Results are largely unchanged with other prior choices.

Figure 7a shows the posterior means and corresponding 95% uncertainty intervals for the
set of w;, the risk-standardized hospital complication rates.” We see variation in both the
point estimates as well as the width of the hospital-specific uncertainty intervals. While there
is a large mass of hospitals in the center of the distribution, there are clearly some hospitals
with consistently above- or below-average estimated complication rates.

While the primary aim of our analysis is to produce risk standardized measure of hospital
performance, risk adjustment is also used to identify institutions that are outliers (Ridgeway
and MacDonald (2009)). For example, hospitals that are identified as underperforming may
be targeted for quality improvement efforts. The Bayesian hierarchical model we fit can be
used for this purpose. Figure 7b shows the posterior probability that each hospital is in the
highest decile—that is, the worst performing 10 percent—of (standardized) surgical compli-
cation rates. For the vast majority of hospitals, the probability of being in this “danger zone”
is quite low: 98.5% of hospitals have a less than 10% chance of being in this low-performing
group.

Some hospitals, however, are very likely to be low performing: there are nine hospitals that
have at least a 90% chance of being in this low-performing group, four of which with at least

8This is a distinct quantity from how predictive individual covariates are for the outcome, which is the R?
reported in the model adjustment section above.

9See Paddock et al. (2006) for a discussion of alternative approaches to summarizing the posterior in terms of
the “triple goals” of estimating hospital-specific means, hospital-specific ranks, and the overall distributions.
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FIG. 7. Hospital quality results after applying Bayesian shrinkage (A = 0.05).

a 99% chance. Among the hospitals with at least a 90% chance of being a low performer,
the average adjusted complication rate was 23%—relative to 13.5% overall. Moreover, the
average patient volume in this group of hospitals was over 2700 patients, suggesting that, at
least in our data, the low performing hospitals are not the lowest volume hospitals.

7. Conclusion. Methods of risk adjustment are widely used to compare the performance
of hospitals and physicians. Here, we develop a new method of direct standardization based
on weighting. We treat each hospital as a sample from the overall patient population and
find weights such that the reweighted hospital-patient mix matches the overall population.
We obtain these weights via a convex optimization problem that trades off covariate balance
and effective sample size. Finally, we applied our approach to data on general surgery in
Pennsylvania, Florida, and New York.

This approach to risk adjustment offers several critical advantages. The risk adjusted out-
puts are readily interpretable. Principled methods of variance estimation are easily adapted
from the literature on survey sampling and weighted regression. In the simulations we found
that risk adjustment via weighting substantially reduces bias compared to model based meth-
ods. In the application we further found weighting outperformed template matching in terms
of bias reduction. We also obtained large increases in effective sample size by allowing a
slight increase in possible bias. We proposed a bias-correction approach to incorporate out-
come modeling as well. Finally, our method of direct standardization can be combined with
shrinkage methods to account for the variation in hospital size when comparing hospitals to
each other and identifying high- and low-performing hospitals. Overall, the estimation pro-
cess is not computationally intensive and requires little user input outside of selecting the
penalty. Estimating a set of weights for over 600,000 patients required less than five min-
utes on a desktop computer. Template matching, by contrast, required fine tuning of over five
hundred different matches and was a much more time consuming process.

We can extend the proposed approach to allow for a richer covariate basis, including inter-
actions and higher-order terms, and to prioritize balance in some covariates (see Section 6.1).
Another strategy is to use external data to fit an outcome model and then use our approach to
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balance the predicted value from that model (D’ Amour and Franks (2019)). We expect that
this will be a fruitful direction for future work. Currently, we only use the weights to target
population level means. We could easily apply this procedure to target a specific subset of
patients, such as the average African-American patient in the population. Alternatively, the
target for balance need not be the overall patient population. We could, instead, target the pa-
tient mix of a specific hospital, a different state, or the U.S. national population. The choice of
target population is primarily a substantive question. That is, for what set of patients should
hospital be rendered comparable? For example, given that much medical administration is
overseen by state governments, it may make sense to restrict the target population to the state
in which a hospital is located. Parameter selection could also be optimized to find an optimal
tradeoff between bias reduction and effective sample size. We could also explore best practice
in terms of the application of the shrinkage methods.
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