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Cognitive flexibility as the shifting of brain network flows

by flexible neural representations

Michael W Cole”

Our ability to overcome habitual responses in favor of goal-
driven novel responses depends on frontoparietal cognitive
control networks (CCNs). Recent and ongoing work is revealing
the brain network and information processes that allow CCNs
to generate cognitive flexibility. First, working memory
processes necessary for flexible maintenance and manipulation
of goal-relevant representations were recently found to depend
on short-term network plasticity (in contrast to persistent
activity) within CCN regions. Second, compositional (i.e.
abstract and reusable) rule representations maintained within
CCNs have been found to reroute network activity flows from
stimulus to response, enabling flexible behavior. Together,
these findings suggest cognitive flexibility is enhanced by CCN-
coordinated network mechanisms, utilizing compositional reuse
of neural representations and network flows to flexibly
accomplish task goals.
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Introduction

Here, I define cognitive flexibility broadly, as the ability
to effectively pursue a wide variety of possible task
goals, especially when overcoming habitual/automatic
responses to do so [1]. As an example of highly flexible
cognition, [ will frequently return to rapid instructed
task learning (also termed zero-shot learning), which is
the ability to learn and perform novel tasks immediately
upon instruction [2,3]. This article will end with the
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conclusion that cognitive flexibility is likely generated
by shifts in brain network activity flows, driven by
flexible goal-relevant neurocognitive representations.
How will T get us to this conclusion? The story begins
with a recent shift in perspective toward a network view
of cognitive control and the role of distributed networks
in generating cognitive flexibility.

A brief history of cognitive control networks
and their role in cognitive flexibility

Decades of research has established lateral prefrontal
cortex as essential for cognitive control — the core set of
abilities (e.g. working memory and inhibition [1]) un-
derlying cognitive flexibility. This evidence comes pri-
marily from human lesion studies [2] and non-human
primate studies [3]. While there had been occasional
reports of similar effects distal from lateral prefrontal
cortex, two recent innovations increased acceptance in
the field that nerworks are responsible for cognitive con-
trol abilities. These innovations were both methodolo-
gical and theoretical.

First, neuroimaging matured past its focus on single re-
gions, acknowledging distributed patterns of functional
specialization throughout the brain. This broader focus
resulted in evidence for a ‘multiple demand’ network — a
set of regions involved in a wide variety of cognitive con-
trol-related functions — constituting the core of the cog-
nitive control networks (CCNs) [4,5]. Importantly, these
networks’ involvement in a variety of functions has been
thought to demonstrate their contribution to cognitive
flexibility, especially the ability to flexibly perform a wide
variety of possible tasks [6,7]. The assumption that these
multiple- demand regions formed one or more network
was subsequently corroborated by brain connectivity ap-
proaches, such as resting-state functional connectivity [5,8],
ensuring these coactivation patterns were indeed brain
networks. While the list of CCNs varies somewhat by atlas,
most atlases include the frontoparietal network, the sal-
ience/cingulo-opercular network, and the dorsal attention
network. Figure 1 shows a human brain atlas defined using
resting-state functional connectivity [9].

A second innovation that supported a shift toward a
network view of cognitive flexibility involved human
lesion studies. These studies switched from single-pa-
tient reports to systematic multipatient mapping of le-
sion locations to cognitive abilities. This shift has
revealed the causal contribution of distributed sets of
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Figure 1
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CCNs. (a) Anatomical location of CCNs in the human cortex, parcellated into regions based on [10]. Yellow regions are part of the frontoparietal control
network, purple regions are part of the cingulo-opercular network, and green regions are part of the dorsal attention network. Defined using resting-
state functional connectivity by [9]. (b) All functional networks as defined by [9]. (c) A resting-state functional connectivity matrix (region by region),
based on multiple-regression functional connectivity, which reduces causal confounds in functional connectivity estimation relative to the standard
pairwise Pearson correlation approach [11]. The regions were ordered based on network affiliation. The CCNs are highlighted with arrows.

brain regions (rather than single regions) to cognitive
control abilities [6] (but see [12]). For example, a recent
study by Jiang et al. [13] used a database of lesion lo-
cations and cognitive scores to map emotion regulation
ability. Emotion regulation can be considered an ex-
pression of cognitive control in the domain of emotion,
and can be thought of as a form of cognitive flexibility.
Jiang et al. found that a CCN, including the ventrolateral
prefrontal cortex, was causally responsible for emotion

regulation abilities. This CCN contrasted with a CCN
connected with dorsolateral prefrontal cortex, which
showed no such relationship. Thus, while CCNs overlap
with a ‘multiple demand’ network [14-16], there is still
some specialization among CCNs. Together, these
findings support the existence of multiple CCNs that
jointly support the remarkable ability of humans (and
some other species) to flexibly pursue a variety of pos-
sible task goals.
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Connectivity-based explanations for (activity-
silent) working memory

"The ability to maintain goals that differ from habitual/au-
tomatic behaviors is central to cognitive flexibility. Also
important for flexibility is the ability to manipulate re-
presentations (e.g. perform mental arithmetic) in the ser-
vice of goals. These abilities are made possible by working
memory — the active maintenance and/or manipulation of
goal-relevant information. In some sense, all cognitive
control processes (and therefore cognitive flexibility)
follow from the human brain’s fundamental capacity for
working memory [1]. Put simply, cognitive flexibility —
the flexible pursuit of task goals — would not be possible
without active maintenance of goal-relevant information
(sometimes termed ‘context’) in working memory. With
respect to this article’s central thesis — that cognitive
flexibility is generated by activity flow shifts driven by
flexible representations — working memory is required to
maintain these flexible goal-relevant representations so
they can eventually be implemented as activity flow shifts.

Classically, sustained activity in the lateral prefrontal cortex
has been considered the primary neural mechanism un-
derlying working memory [17]. Yet, just like other cogni-
tive control abilities, this view is giving way to considering
distributed CCNs as the basis for working memory [18]. As
this shift was beginning, however, it was also revealed that
working memory can be maintained in some situations
without sustained activity, based on multiunit lateral pre-
frontal cortical activity in non-human primates [19] and
whole-brain electroencephalography (EEG) activity in
humans [20,21]. Specifically, engaging in a secondary task
(i.e. experiencing robust distractors) during a working
memory delay can make the activity coding for working
memory content drop to baseline levels.

A recent theoretical account suggested that long-term
memory encoding fills this gap [22], and therefore may
be the true basis of cognitive flexibility rather than
working memory. After all, the hippocampus is capable
of rapidly encoding complex information in synaptic
weights (i.e. long-term connectivity changes) that can
easily span working memory delays in an activity-silent
manner. This compelling theoretical account led to a
clever behavioral study to test this hypothesis [23]
(Figure 2a). The core insight driving this study was that
a key advantage of working memory is reduced proactive
interference (PI) relative to long-term memory. This
prediction was leveraged into a group manipulation, in
which one group of participants had stimuli reused
across trials (to cause PI), whereas the other group saw
new stimuli on each trial.

Briefly, across four experiments, Oberauer and Awh [23]
found that PI had no effect on working memory per-
formance (Figure 2b). This was the case across multiple
stimulus types and even with a secondary task

Brain connectivity supports cognitive flexibility Cole 3

manipulation known to induce activity-silent working
memory. This suggested that long-term memory en-
coding, which is more prone to PI, is unlikely to explain
activity-silent working memory. Importantly, however,
when the working memory set size exceeded working
memory capacity (four items), PI did have an effect.
Thus, long-term memory plays a role in working
memory, but only when working memory capacity has
been exceeded. This suggests cognitive flexibility is
likely enhanced by long-range network interactions with
the hippocampus, utilizing long-term memory mechan-
isms when working memory capacity is exceeded.

If rapid connectivity changes in the hippocampus are
unlikely to explain activity-silent working memory, what
plausible mechanisms are left? Kozachkov et al. [24]
used computational modeling combined with empirical
multiunit recording to test the hypothesis that short-
term synaptic plasticity — brief connectivity changes
within a CCN region (lateral prefrontal cortex) — could
explain activity-silent working memory (Figure 2¢). A
series of computational models were tested, with direct
comparison to non-human primate lateral prefrontal
cortex multiunit activity during working memory task
performance. They found that the models including a
calcium-dependent short-term plasticity mechanism
best matched the multiunit activity data. This contrasted
with the more traditional working memory models that
represented working memory content using persistent
activity patterns within a recurrent neural network.
Notably, both types of networks could perform working
memory tasks in the presence of distractors, but only the
short-term plasticity network did so with activity-silent
delay periods. Further, they found that the short-term
plasticity models were more robust to network de-
gradation, suggesting some advantages of short-term
plasticity that were potentially selected for by evolution.

Adding additional nuance to the role of network pro-
cesses in working memory, two recent studies demon-
strate that the hippocampus supports working memory
even at small memory loads [25,26]. The first study used
lesions to find that dorsal hippocampus supports spatial
working memory in rats [25]. The second study found
that human hippocampal lesion patients had impaired
working memory [26]. This study went further, however,
using location—color pairings (similar to Figure 2a but
using spatial locations rather than objects) to show that
the working memory impairment was a deficit in the
precision or fidelity of the working memory content (e.g.
forgetting the exact color associated with a location). An
additional functional magnetic resonance imaging
(fMRI) experiment with healthy humans showed hip-
pocampal activity was associated with working memory
precision. In combination with the Figure 2b results,
these studies suggest that the hippocampus is able to
somehow support working memory without increasing
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Figure 2
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Evidence for short-term synaptic plasticity (a network mechanism within CCN regions) underlying activity-silent working memory. (a) The working
memory paradigm used by [23], in which the color of the previously encoded item indicated on the last screen needed to be selected from a
continuous color wheel. Set size varied from 1 to 8 across trials, with most prior evidence suggesting visual working memory capacity is approximately
4 items. Pl between trials was higher in one group (high PI) than the other group (low PI), since items were reused with distinct colors across trials in the
high-PI group. Long-term memory was expected to involve more PI, given that long-term memory content is (by definition) maintained longer and
therefore more likely to interfere with future trials. (b) Working memory performance errors increased with set size, but differentiated between high-
and low- PI groups only at the higher set sizes. This is consistent with long-term memory only being used for set sizes beyond working memory
capacity (4 items). This suggests standard working memory does not utilize long-term memory, as previously hypothesized by others [22]. (c) A recent
computational modeling study that directly compared model mechanisms to non-human primate prefrontal cortex activity [24] found evidence that
activity-silent working memory involves short-term synaptic plasticity (i.e. transient within-prefrontal cortex connectivity changes). The working
memory encoding neural activity trajectory (black lines) does not contain information after encoding (the endpoints do not differ by condition), whereas

the connectivity patterns (purple lines) do contain information (the endpoints differ by condition).

PI, at least at low working memory loads. It will be
important for future studies to investigate what this
mechanism could be (e.g. short-term network plasticity
within the hippocampus).

Together, these results suggest a nuanced account of the
role of network processes in supporting cognitive flex-
ibility: short-term synaptic plasticity within CCNs typi-
cally maintains goal-relevant representations. However,
this is supplemented by long-range network interactions
with the hippocampus, enhancing working memory
precision and capacity. Further, it appears that this
strategy at high working memory loads has the side ef-
fect of increasing information interference/conflict,
likely reducing cognitive flexibility at higher working
memory loads (relative to lower working memory loads).

Flexible network activity flows as the basis for
cognitive flexibility

Once a goal representation has been loaded into working
memory, how does it get implemented as behavior? As a

matter of logic, the information maintained within CCNs
(e.g. lateral prefrontal cortex) must directly or indirectly
influence neural activity in primary motor cortex, such
that the goal can be achieved via action. For example,
when someone driving a car (with the goal of getting
safely to a destination) approaches an intersection, the
color red should trigger one foot-related motor response,
whereas a green light should trigger another. These
neural episodes, as with many situations in everyday life,
involve the flexible/context-dependent flow of activity
from the sensory cortex to motor cortex. Thus, network
activity flow shifts between brain regions are central to
the story of cognitive control and cognitive flexibility.

What neural mechanisms might account for the network
activity flow shifts necessary to flexibly implement goals
maintained in working memory? It may appear that ra-
pidly flexible network changes are necessary for such
context-dependent activity flow shifts. However, pre-
vious learning could have gradually set connectivity
patterns such that distinct activity patterns from
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different stimulus inputs (e.g. a red vs. a green light)
could lead to differential activity flows to distinct por-
tions of motor cortex. Thus, static connectivity pathways
have the potential to support highly flexible ac-
tivity flows.

Consistent with this, a series of studies has shown that
simulating the flow of activity using a static connectivity
graph — structural connectivity or resting-state functional
connectivity — is sufficient to predict task-condition-spe-
cific activations across a wide variety of brain regions
[27-30]. Notably, these studies included multiple cognitive
control tasks involving extensive cognitive flexibility.
Further, a recent study using a single static network ar-
chitecture (estimated using resting-state functional con-
nectivity) showed that complex context-dependent
behavior requiring extensive cognitive flexibility could be
generated based on interactions between CCN activity
flows and sensory input activity flows [31] (Figure 3).

Briefly, this fMRI study began by localizing brain regions
representing all task-relevant information, including sen-
sory stimulus and flexible task rule representations, their
interaction (conjunctions), and motor response re-
presentations (Figure 3a). Resting-state functional con-
nectivity was then fit (using multiple regression) between
these brain regions (I'igure 3b), estimating what can be
thought of as the brain’s equivalent of artificial neural
networks’ connectivity weights. Finally, these pieces
were put together, with flexible task rule representations
and sensory inputs flowing into conjunction regions,
which in turn flowed into motor response regions. The
motor response activity patterns were then decoded, de-
monstrating that the model performed a variety of com-
plex tasks above chance. Thus, the network flow
dynamics generated by differential activity pattern inputs
were sufficient to drive flexible cognitive behavior, with
no need for flexible network changes. Notably, however,
the model’s behavior was not perfect, suggesting addi-
tional mechanisms (such as flexible network changes)
may be necessary to achieve full human-level cognitive
flexibility.

Further evidence that only static connectivity is suffi-
cient to generate (at least basic) cognitive flexibility
comes from a recent study suggesting each CCN re-
gion’s functionality is defined by its unique connectivity
pattern [32]. This study specifically showed that each
CCN region’s unique set of flexible task rule re-
presentations could be predicted based on that region’s
unique brain-wide static connectivity pattern. Together
with the study illustrated in Figure 3, this study supports
the notion that most task-evoked neural dynamics —
even those involved in cognitive flexibility — originate
from activity flowing over static network connections.

Brain connectivity supports cognitive flexibility Cole 5

Is static connectivity all there is? A long literature has
established that — despite overall similarity across states
— functional connectivity can change depending on the
task state [33,34]. A recent study went further, showing
that using task-state functional connectivity from a given
task (rather than resting-state functional connectivity)
significantly improved activity flow predictions of task-
evoked activations throughout the brain [27]. Thus, ac-
tivity flows can shift either due to differential input ac-
tivity patterns (as in Figure 3) or due to task-state
functional connectivity changes. With regard to cogni-
tive flexibility, it has been shown that these task-state
functional connectivity changes likely play an important
role during complex tasks requiring cognitive flexibility,
with CCNs systematically shifting their global con-
nectivity patterns depending on which task set is cur-
rently being utilized [35,36]. These results suggest that,
despite contributing the minority of connectivity var-
iance in most cases, task-state functional connectivity
changes likely play an important role in the activity flow
changes necessary for flexible cognition.

Despite their importance, the mechanisms underlying
these task-state functional connectivities remain unclear.
One possibility emphasized by Cole et al. [27] and Ito
et al. [37] is that nonlinearities within each neural po-
pulation (e.g. a sigmoid transfer function, as used in
many neural network simulations) can account for much
of the state-dependent connectivity changes. These re-
sults were based on fMRI-based and multiunit spiking-
based functional connectivity. Another form of task-state
functional connectivity involves neural oscillations.
These functional connections are calculated using high-
temporal-resolution data (e.g. local field potential or
EEG recordings), based on phase-dependent coupling.
In a recent study involving non-human primates,
Lundqgvist and colleagues showed evidence that working
memory content is controlled by a ‘push—pull’ relation-
ship between gamma- and beta-frequency coupling [38].
Briefly, it was observed that during working memory,
encoding gamma and content-carrying spiking activity
suppressed beta activity, whereas when working
memory content was no longer needed, increased beta
activity suppressed gamma activity and the corre-
sponding content-carrying spiking activity. Further, it
was shown that this basic mechanism controlled the
spatial flows of activity between portions of lateral pre-
frontal cortex. Thus, a given neural population could be
controlled by task-state functional connectivity changes
specific to each frequency, with any of a variety of pos-
sible working memory contents flexibly stored in that
neural population. The authors suggested that this
flexible neural mechanism could facilitate flexible cog-
nitive processes, such as generalization and rapid in-
structed task learning (also termed zero-shot learning).
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Figure 3
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Generating conjunctive control representations from compositional activity flows over static (resting-state) functional connections. (a) Flexible
cognitive behavior requires the interaction (conjunction) between compositional rule and sensory representations. Ito et al. [31] constructed an
empirical neural network (ENN) model to test whether resting-state functional connectivity patterns can account for how task-evoked activity patterns
(neural representations) interact to produce conjunctive representations and subsequent behavior (motor representations). (b) Resting-state functional
connectivity was computed using multiple regression on fMRI time series as subjects rested in the scanner. Fine-grained activity patterns between
vertex patterns (fMRI voxels projected to the cortical surface) were estimated. Activity flow was then computed by multiplying the source activity
patterns with the connectivity mappings to generate target activity in downstream brain regions. (c) The full ENN model, taking sensory and
compositional rule representations as inputs (based on empirically observed task-evoked activations). Those inputs were then multiplied by the
connectivity patterns to conjunction regions to generate conjunctive representations. A nonlinearity (rectified linear function) was necessary to
produce the conjunctive representations. These generated activity patterns were then multiplied by connectivity with the primary motor cortex to
generate motor activations. These motor activations were then decoded to determine what motor response was made, with high task performance

accuracy (see far right of figure) resulting.

Notably, a recent study used intracranial EEG in hu-
mans to find similar effects of low-frequency (theta)
functional connectivity changes in the control of working
memory content [39].

The importance of control representations
(compositions and conjunctions) in the
rerouting of network activity flows underlying
flexible behavior

A series of recent studies have emphasized the im-
portance of control representations — localized activity
patterns in the brain that represent cognitive control-
relevant information — for cognitive flexibility [40-42].
These representations can be thought of as the working
memory content described in previous sections, but with
an emphasis on maintenance and implementation of the
rules necessary for flexible task performance (rather than
arbitrary stimuli). This could be something as simple as
the rule ‘A—left’ (if you see the letter A, press the left
button), or something as complex as one of the 64 tasks
used in the study shown in Figure 3, such as “if both
stimuli are vertical press your left index finger.” Re-
gardless of the complexity of the rule that the CCN
activity pattern represents, that CCN activity pattern
must somehow reroute network activity flows to flexibly
implement task-appropriate actions [31].

One set of studies has emphasized the importance of
conjunctive representations stored in CCNs for flexible
cognition. For example, Kikumoto, Mayr, and Badre [42]
showed how the nonlinear interaction of task rules, sti-
muli, and responses was important for action selection
during a context-dependent cognitive control task. Si-
milarly, Ito et al. [31] demonstrated that a nonlinear in-
teraction between task rule representations and multiple
incoming stimuli was instrumental in selecting the cor-
rect motor responses during complex content-dependent
tasks (Figure 3c). This study was unique, however, in
demonstrating not just that such conjunctive re-
presentations were present but also 1) how they were
generated and 2) how they shifted activity flows to im-
plement flexible task behavior. This involved simulating
the flow of stimulus representations and task rule re-
presentations to what Ito et al. [31] termed ‘conjunction
hubs’ — regions where stimulus and task rule

representations interacted nonlinearly. These activity
flows were simulated based on empirical task-evoked
activations in the stimulus and task rule representing
brain regions and their resting-state functional connec-
tions to conjunction hubs. Notably, simply adding the
incoming stimulus and rule-related flows was not suffi-
cient for the generation of conjunctive representations.
Instead, a nonlinearity (a rectified linearity, or threshold)
needed to be applied. After these nonlinear interactions,
the resulting activity patterns then flowed to primary
motor cortex, where they generated motor responses
consistent with accurate task performance. Thus, the
model not only demonstrated how the conjunctive re-
presentations were generated, but also how they im-
plemented cognitive flexibility via cognitive interactions
and eventual motor output (i.e. behavior).

_ritically, Tto et al. [31] also demonstrated the importance
of the opposite of conjunctive representations: composi-
tional representations (Figure 3). Specifically, the rule re-
presentations used in the model were compositional, in the
sense that the rules were reused across many combinations,
composing a wide variety of context-dependent tasks (64
task sets). Notably, it was the nonlinear interaction of these
compositional representations with stimulus representa-
tions that made them functional in the sense of generating
task-implementing cognitive and motor representations.
This demonstrates the potential for both compositional
and conjunctive representations to increase cognitive
flexibility. Indeed, it suggests that the network-based in-
teraction of compositional and conjunctive representations
may be key to allowing the generalization of knowledge/
skill from previous experience (encoded in compositional
representations) to be situated within a specific novel
context via conjunctive representations.

The importance of compositional representations has
been emphasized in the artificial intelligence and artifi-
cial neural network literatures as well. For example,
Russin et al. [43] demonstrated the well-established
‘catastrophic forgetting’ effect in artificial neural net-
works, wherein learning new tasks leads to forgetting of
previously learned tasks. However, Russin et al. [43]
went on to show that adding a working memory layer to
the artificial neural network, which maintained the
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8 Cognitive Flexibility

current task context and modulated ‘hidden unit’ ac-
tivity within the network, substantially reduced cata-
strophic forgetting. This suggests that the CCN-
implemented working memory mechanisms discussed
earlier may be sufficient to avoid catastrophic forgetting,
which is the first step toward the kind of compositional
learning and transfer of compositional representations to
novel task scenarios emphasized above.

A more recent study found that standard artificial neural
networks, which have long been thought to be incapable
of extreme cognitive flexibility (e.g. rapid instructed task
learning), are able to learn and systematically implement
compositional representations (enabling rapid instructed
task learning) after all [44]. This was achieved through a
form of curriculum learning, wherein a variety of simple
tasks built out of components (e.g. ‘skip’ and ‘jump twice’
combined as ‘skip twice’) were learned and linked to ar-
bitrary instruction-like character strings. This was con-
ceptualized as meta-learning (‘learning to learn’), an
approach to training networks via systematically exposing
the network to multiple tasks to facilitate learning addi-
tional new tasks [45]. These results suggest that compo-
sitional  representations — and supposedly the
conjunctive representations needed to implement them
— are learnable within artificial neural networks given an
appropriately compositional set of training tasks. It will be
important to determine whether human development
provides such training, or if some other inductive biases
within the human brain facilitate the generation of com-
positional representations beyond training/experience.

Conclusions

Cognitive control processes and the flexible thoughts
and behaviors they enable are fundamentally brain
network processes. This has been shown by the ex-
istence of highly distributed CCNs that increase their
activity with cognitive control demands [7] and re-
present a wide variety of control-related information
[32]. Additional evidence comes from models suggesting
a central role for within-CCN short-term synaptic plas-
ticity in working memory maintenance [24], as well as
data-driven models revealing a prominent role for net-
work activity flows in generating conjunctive re-
presentations that implement context-dependent
behavior [31]. While these studies demonstrate how
fundamental brain network processes are to cognitive
control, they reveal a vast space of exciting future stu-
dies to answer the many questions left regarding the
network basis of flexible cognition. For example, despite
some evidence that nonlinear interactions play a role
[31], it remains unclear exactly how activity flow routing
(e.g. from stimulus to response) is flexibly and rapidly
updated according to task demands. More generally, the
fundamental nature of task-state functional connectivity
remains to be discovered — are such connectivity

changes due to nonlinearities, oscillations, or short-term
synaptic plasticity? — with major implications for un-
derstanding the dynamic routing of activity flows un-
derlying flexible cognitive processes.
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