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Abstract

Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically
estimate effects under the assumption that all confounders are measured. In this paper, we develop a
sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that
solves an optimization problem to obtain weights that directly minimizes covariate imbalance. In particular,
we adapt a sensitivity analysis framework using the percentile bootstrap for a broad class of balancing
weights estimators. We prove that the percentile bootstrap procedure can, with only minor modifications,
yield valid confidence intervals for causal effects under restrictions on the level of unmeasured
confounding. We also propose an amplification—a mapping from a one-dimensional sensitivity analysis to a
higher dimensional sensitivity analysis—to allow for interpretable sensitivity parameters in the balancing
weights framework. We illustrate our method through extensive real data examples.
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1 Introduction

Observational studies can be an important source of evidence about causal effects across the med-
ical and social sciences. Observational studies may be feasible in cases where randomized trials are
not, or at least substantially less onerous to conduct at scale, but they raise challenges for analysis
that are not present in randomized studies. As one example, consider evaluating the degree to
which diets rich in fish elevate blood mercury relative to diets containing little fish. High levels
of mercury in the blood can pose health risks; for instance, infants whose mothers had high mer-
cury levels may be at increased risk for adverse neurodevelopmental events (Mahaffey et al.,
2004). Consumption of fish or shellfish has been identified as a major source of mercury in the
blood (Bjornberg et al., 2003). These effects could be measured by randomly assigning subjects
to high- and low-fish diets over long periods of time and comparing their blood mercury, but
such experiments may be difficult to conduct and suffer from problems with compliance.
Observational data describing blood mercury levels for subjects who choose to eat large or small
amounts of fish are more readily available, but direct comparisons between groups are subject to
confounding if the high-fish-diet and low-fish-diet subjects are systematically different in other
ways. Similarly, measuring the impact of job training programs on wages using randomized ex-
periments is expensive and difficult, but observational studies suffer from substantial confounding
(LaLonde, 1986).
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In observational studies for both examples just described, some confounding may be apparent in
the form of obvious differences in observed variables between comparison groups, and analysis
often proceeds under a key assumption that all confounders are measured, sometimes known as
ignorability or unconfoundedness. However, this assumption is not verifiable from observed
data, and it is often easy to suggest unmeasured factors that may contribute at least a limited
amount of confounding. For example, in the case of job training programs, one might wonder
if individuals who choose to participate in job training may have higher intrinsic motivation to
succeed than those who choose not to. A sensitivity analysis seeks to determine the magnitude
of unobserved confounding required to alter a study’s findings. If a large amount of confounding
is needed, then the study is robust, enhancing its reliability. Assessing sensitivity to unmeasured
confounding is a critical part of the workflow for causal inference in observational studies.

In this paper, we develop a sensitivity analysis framework for balancing weights estimators.
Building on classical methods from survey calibration, these estimators find weights that minimize
covariate imbalance between a weighted average of the observed units and a given distribution,
such as by re-weighting control units to have a similar covariate distribution to the treated units.
Balancing weights have become increasingly common within causal inference, with better finite
sample properties than traditional inverse propensity score weighting (IPW). See Section 2.2 for
additional details and Ben-Michael et al. (2021) for a recent review.

Our proposed sensitivity analysis framework adapts the percentile bootstrap sensitivity analysis
that Zhao et al. (2019) develop for traditional IPW. Specifically, for a given sensitivity parameter,
we compute the upper and lower bounds of our estimator for each bootstrap sample and then form
a confidence interval using percentiles across bootstrap samples. We prove that this approach
yields valid confidence intervals for our proposed sensitivity analysis procedure over a broad class
of balancing weights estimators.

To make a sensitivity analysis more interpretable, Rosenbaum and Silber (2009) introduce an
amplification of a sensitivity analysis, which is a mapping from each point in a low-dimensional
sensitivity analysis to a set of points in a higher-dimensional sensitivity analysis that all have
the same possible inferences. We propose a new amplification that expresses the bias from con-
founding in terms of: (1) the imbalance in an unobserved covariate; and (2) the strength of the re-
lationship between the outcome and the unobserved covariate. Researchers can then relate the
results of our amplification to estimates from observed covariates. We demonstrate this approach
via a numerical illustration and via several applications.

2 Background, notation, and review

2.1 Setup and review of marginal sensitivity model

We consider an observational study setting with independently and identically distributed data
(Y;, Xi, Z;),i € {1, ..., n}, drawn from some joint distribution P(-) with outcome Y; € R, covari-
ates X; € X, and treatment assignment Z; € {0, 1}. We posit the existence of potential outcomes:
the outcome had unit i received the treatment, Y;(1), and the outcome had unit i received the con-
trol, Y;(0) (Neyman, 1990 [1923]; Rubin, 1974). We assume stable treatment and no interference
between units (Rubin, 1980), so the observed outcome is Y; = (1 — Z;)Y;(0) + Z;Y;(1). An esti-
mand of interest is the Population Average Treatment Effect (PATE),

v = E[Y(1) = Y(0)] =1y = sy (1)

where ¢y = E[Y(1)] and g, = E[Y(0)]. To simplify the exposition, we will focus on estimating ;3
estimating x, is symmetric. We consider an alternative estimand, the Population Average
Treatment Effect on the Treated (PATT) in Section 5 and Online Supplementary Material,
Section SM-3 in the supplementary material.

A common set of identification assumptions in this setting, known as strong ignorability, as-
sumes that conditioning on the covariates X sufficiently removes confounding between treatment
Z and the potential outcomes Y(0), Y(1), and that treatment assignment is not deterministic given
X (Rosenbaum & Rubin, 1983Db).

Assumption 1 (Ignorability). Y(0), Y(1)LZ | X.
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Assumption 2 (Overlap). The propensity score m(x)=P(Z=1|X=x) satisfies 0<
m(x)<1forallx € X.

Under Assumptions 1 and 2, we can non-parametrically identify u,, solely with the outcomes
from units receiving treatment,
zY
= [E[—] @)

2(X)

In an observational setting, the researcher does not know the true treatment assignment mechan-
ism, z(x,y) = P(Z=1| X=x, Y(1) =y), which in general can depend on both the covariates X
and the potential outcomes Y(1) and Y(0). A rich literature assesses the sensitivity of estimates
to violations of the ignorability assumption. This approach dates back at least to Cornfield
et al. (1959), who conducted a formal sensitivity analysis of the effect of smoking on lung cancer.
More recent examples of sensitivity analysis include Rosenbaum and Rubin (1983a), Rosenbaum
(2002), VanderWeele and Ding (2017), Franks et al. (2019), Tudball et al. (2019), Cinelli and
Hazlett (2020), Fogarty (2020), Huang (2022), and Huang and Pimentel (2022). See Hong
et al. (2021) for a recent discussion of weighting-based sensitivity methods.

We adopt the marginal sensitivity model proposed originally by Tan (2006) and further devel-
oped by Zhao et al. (2019) and Dorn and Guo (2021) for traditional IPW weights. Following these
authors, we split the problem into two parts: sensitivity for the mean of the treated potential out-
comes and sensitivity for the mean of the control potential outcomes; without loss of generality, we
consider the mean for the treated potential outcomes. Since unbiased estimation of E[Y(1)] re-
quires knowledge only of z(x, y) = P(Z =1 | X =x, Y(1) = y) rather than the full propensity score
that also conditions on Y(0), we can rewrite Assumption 1 as z(x, y) = n(x). For details on com-
bining sensitivity analyses for E[Y(1)] and E[Y(0)] into a single sensitivity analysis for the ATE,
see Section 5 from Zhao et al. (2019).

The marginal sensitivity model relaxes the ignorability assumption so that the odds ratio be-
tween the two conditional probabilities z(x) and #(x, y) is bounded.

Assumption 3 (Marginal sensitivity model). For A > 1, the true propensity score satisfies

m(x, y) € E(A) = (a(x, ) € (0, 1): A™' < OR(z(x), (x, y)) < Al,

where OR(p1, p2) = pl//(l_pl) is the odds ratio."

p2/(1-p2)

Here, A is a sensitivity parameter, quantifying the difference between the true propensity score
n(x, y) and the probability of treatment given X = x, z(x); when A = 1, the two probabilities are
equivalent, and Assumption 1 holds. If, for example, A = 2, Assumption 3 constrains the odds ra-
tio between 7(x) and z(x, y) to be between 1 and 2.

Again following Zhao et al. (2019), we will consider an equivalent characterization of the set
E(A) in terms of the log odds ratio h(x, y) = log OR(x(x), =(x, v)),

HA) ={h: XxR— R:|[h]l., <logAl, (3)

where ||/l = sup,c .y er 14(x, y)| is the supremum norm. Rearranging the definition of h(x, y) to
mx,y) (x)

1-n(x,y) — 1-n(x)

true propensity score under a particular sensitivity model » as

-1
aP(x, y) = [1 + (% - 1) e”‘x’”] : (4)

Zhao et al. (2019) introduce an extension to the marginal sensitivity model that they call the parametric marginal
sensitivity model. The parametric marginal sensitivity model replaces z(x) with the best parametric approximation to
7(x), mp(x) and compares 7(x, y) to ms(x) so that the sensitivity analysis addresses both model misspecification and unob-
served confounding.

be log log — h(x, y) and applying the inverse logit transformation, we can write the

1
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Zhao et al. (2019) refer to z'")(x, y) as the shifted propensity score. Then, for a particular
h € H(A), we can write the shifted estimand as

-1
b _ Z zZY
“ ‘[E[ﬂh)(x, Y(l)J [E[:r“ﬂ(x, Y(l)J' ©)

Under the marginal sensitivity model in Assumption 3 we then have a non-parametric partial

identification bound, infj,ecya :“1 ) < My < SUPpeqya ,u1 .

The bound just given depends on population quantltles that must be estimated, and in practice it
is important to take sampling uncertainty into account. Zhao et al. (2019) use the percentile boot-
strap to build confidence intervals that cover this partial identification set, under the assumption
that the weights are constructed using IPW.

We go beyond Zhao et al. (2019)’s work in two important ways. In Section 3, we show that the
percentile bootstrap strategy for constructing confidence intervals is valid for the broader class of
balancing weights, not just IPW. This requires a different proof strategy than the one based on
Z-estimation used by Zhao et al. (2019) in order to handle balancing weight estimators that
achieve approximate (rather than exact) balance on covariates, such as the stable balancing
weights of Zubizarreta (2015). In Section 4, we then introduce an amplification that allows us
to better interpret and calibrate marginal sensitivity analyses.

2.2 Weighting estimators under strong ignorability
We estimate u, via a weighted average of treated units’ outcomes using weights 5(X),

Under strong ignorability (Assumptions 1 and 2), traditional Inverse Propensity Score \X/eighting
(IPW) first models the propensity score, #(x), directly and then sets weights to be $(X;) = Evel X . Thus,
iy is a plug-in version of Equation (2). This approach can perform poorly in moderate to hlgh di-
mensions or when there is poor overlap and either 7(x) or #(x) is near 0 or 1 (Kang & Schafer,
2007).

Balancing weights, by contrast, directly optimize for covariate balance; recent proposals include
Athey et al. (2018); Hainmueller (2012); Hirshberg et al. (2019); Tan (2020); Wang and
Zubizarreta (2019); Zubizarreta (2015) and have a long history in survey calibration for non-
response (Deville & Sarndal, 1992; Deville et al., 1993). See Chattopadhyay et al. (2020) and
Ben-Michael et al. (2021) for recent reviews.

Most balancing weight estimators attempt to control the imbalance between the weighted
treated sample and the full sample in some transformation of the covariates ¢: X — R?. For ex-
ample, Zubizarreta (2015) proposes stable balancing weights (SBWs) that find weights $(X)
that solve

)r(m% | Zy( dP,,
"1
YX)e (7)

subject to ] Zy(X)$(X) — ¢(X)dP,|| ,< 4 p(X) >0,

where P, is the empirical distribution corresponding to a sample of size # from joint distribution
P(-). These are the weights of minimum variance that guarantee approximate balance: that the
worst imbalance in ¢, the transformed covariates, is less than some hyper-parameter A. There
are many other choices of both the penalty on the weights and the measure of imbalance.” For in-
stance, in low dimensions, setting 4 = 0 guarantees exact balance on the covariates ¢(X;). Here, we

Other possibilities include soft balance penalties rather than hard constraints (e.g., Ben-Michael et al., 2023; Keele
et al., 2023) and non-parametric measures of balance (e.g., Hirshberg et al., 2019).
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focus on the more common case in which achieving exact balance is infeasible; in that case, the
particular choice of penalty function is less important.

The balancing weights procedure is connected to the modeled IPW approach above through the
Lagrangian dual formulation of optimization problem (7). The imbalance in the d transformations
of the covariates induces a set of Lagrange multipliers # € R?, and the Lagrangian dual is

min| Z[g- g(X)]} - f- (X)dP,+ AL, (8)
PeR R,—/ )
balancing loss regularization

where [x], = max {0, x}. The weights are recovered from the dual solution as (X;) = [8 - ¢(X;)],.
As Zhao (2019) and Wang and Zubizarreta (2019) show, this is a regularized M-estimator of the
propensity score when it is of the form =[B" - ¢(x)], for some true f*. Therefore, we can view

B* - ¢(x) as a natural parameter for the propensrcy score; different penalty functions will induce dif-
ferent link functions, see Wang and Zubizarreta (2019). Similarly, different measures of balance
will induce different forms of regularization on the propensity score parameters. In the succeeding
sections, we will use this dual connection to show that the percentile bootstrap sensitivity proced-
ure proposed by Zhao et al. (2019) for traditional IPW estimators in the marginal sensitivity model
is valid with balancing weight estimators.

3 Sensitivity analysis for balancing weights estimators

We now outline our procedure for extending the percentile bootstrap sensitivity analysis to balan-
cing weights. We introduce the shifted balancing weights estimator, detail the bootstrap sampling
procedure, and describe how to efficiently compute the confidence intervals. Key to constructing
the confidence intervals for the partial identification set will be to construct intervals for each sen-
sitivity model / in the collection of sensitivity models H(A) in Equation (3). Each b represents a
particular deviation from ignorability that remains in the set defined by the marginal sensitivity
model. We show that the percentile bootstrap yields valid confidence intervals for each sensitivity
model in H(A), resulting in a valid interval for the partial identification set. While the procedure
for constructing confidence intervals given the weights computed in each bootstrap sample is the
same as that in Zhao et al. (2019), our result allows for the weights to be constructed by more gen-
eral methods. We provide guidance for interpreting our sensitivity analysis procedure in Section 4.

To construct the confidence intervals, we first consider the case where we know the log odds
function h(x, y) € H(A). With b, we can shift the balancing weights estimator for the shifted esti-
mand ;" as

ﬂ%“=< (X, Yi(1 ) Z (X, Yi(1)Ys, (9)
Z=1 =1

where 9P (X;, Yi(1)) = 1 + (3(X,) — 1) e?XYiD) for j € {i: Z; = 1} are the shifted balancing weights.
Note that there is no requirement for the shifted balancing weights to balance the transformed co-
variates ¢. We then take B bootstrap samples of size # without conditioning on treatment assign-
ment—so the number of units in the treatment and control groups may vary from sample to
sample—and re-estimate the weights in each sample by solving the balancing weight optimization
problem (7) using the bootstrapped data.

Then, for every b € H(A), we can construct a confidence interval for #1 using the percentile
bootstrap as

[69,09]= 2 i8). (i)

Qa([f{(g)) is the a-percentile of ,LT{(Z) in the bootstrap distribution made up of the B bootstrap sam-

ples and /le(Z) is the shifted balancing weights estimator (9) using bootstrap sample b € {1, ..., B}.
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Note, * in ,&’{(Z) indicates that it is an estimate from bootstrap data and b is used as an index for the
B bootstrap samples. The following theorem states that [L”), U] is an asymptotically valid con-

fidence interval for ,u(lh) with at least (1 — a)-coverage under high-level assumptions outlined in the
Online supplementary material on how well the balancing weights estimate the propensity scores.

Theorem 1  Under Online Supplementary Material, Assumption 1, for every h € H(A),

lim sup Po(,u(]h) <L®y< %

n—oo

and

lim sup IP’O(,u(]h) > UMy < g,
where Py denotes the probability under the joint distribution of the data P(-).
The probability statements apply under both the conditions on the inverse

probabilities and the outcomes in Online Supplementary Material,
Assumption 1 and the marginal sensitivity model (3).

Since each of the confidence intervals [L""), U] are valid, we can use the Union Method to com-
bine them into a single valid confidence interval [L"™°" U"™M°"] for u; under Assumption 3, where

punon _ ¢ L(h), pumon _ sup U, (11)
heH(A) heM(A)

Finding [L"™°" Umion] would require conducting a grid search over the space of log-odds func-
tions H(A) and computing percentile bootstrap confidence intervals at each point; this is compu-
tationally infeasible. Instead, we can obtain a confidence interval [L, U] for £, by using generalized
minimax and maximin inequalities as

L,U]=|Q«l inf A*"”), _o| sup ) |. 12
L, U] |:Q2<he7-l(/\)lul’b Q1 heHB\)ﬂl’b (12)

Zhao et al. (2019) show that this interval will be conservative, in the sense of being too wide, since
L < Lwion gnd U > Union, In fact, Dorn and Guo (2021) show that this can be overly conservative;
see Sections 5.2 and 6 for further discussion.

The extrema of the point estimates can be solved efficiently using Proposition 2 from Zhao et al.
(2019) by the following linear fractional programming problem:

> Zi(1+r3(X) - 1])Y;
~(h) — =1
reR™ 4 n (13)

Zz,-(l +r[3(X;) - 1])

subject to rie[A™, Al forallie(l, ..., n},

where r; = OR{x(X;), (X, Yi(1))} are the decision variables. The procedure to obtain confidence
interval [L, U] is then

Step1  Obtain B bootstrap samples of the data of size 7 without conditioning on treatment
assignment.
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Step2  For each bootstrap sample b =1, ..., B, re-estimate the weights and compute the
extrema inf,ez(a) ,[[;(Z) and suppey(a) ,&T(Z) under the collection of sensitivity models
H(A) by solving (13).

Step 3  Obtain valid confidence intervals for sensitivity analysis

. ~x(h ~x(h
L:Q%( E1nf ﬂl(b))’ U=0Qi¢ ;,2;8\)#?(’1’) . (14)

Replacing $(X;) in Equation (13) with the inverse of propensity scores estimated by a generalized
linear model recovers the procedure from Zhao et al. (2019). As in Zhao et al. (2019), the added
computational cost for additional values of A is minimal since they do not require a researcher to
draw additional bootstrap samples nor re-estimate the weights.

Finally, a researcher must compute a sensitivity value for a given study; see Rosenbaum (2002)
for extensive discussion. Suppose the confidence interval for PATE under ignorability (A = 1) does
not contain zero, indicating a statistically significant effect. As A increases, allowing for stronger
violations of ignorability, the confidence interval will widen and eventually cross zero. Of particu-
lar interest then is the minimum value of A for which the confidence interval contains zero; we de-
note this value as A*.> Thus, we can interpret A* as a necessary difference in the odds ratio between
the probability of treatment with and without conditioning on the treated potential outcome for
which we no longer observe a significant treatment effect. This represents the degree of confound-
ing required to change a study’s causal conclusions, with larger values of A* representing more ro-
bust estimates.

Sensitivity analysis may also be useful in cases where the confidence interval under A = 1 is very
small and includes zero, indicating no large effect in any direction or bioequivalence in the sense
discussed by Brown et al. (1995). In this setting, a researcher may obtain a sensitivity value A* by
defining a minimal effect size 1 > 0 of practical interest and repeating the sensitivity analysis for
larger and larger values of A until the confidence interval includes either —: or 1, revealing the de-
gree of confounding needed to mask a practically important effect. For examples of such sensitivity
analyses, see Pimentel et al. (2015) and Pimentel and Kelz (2020).

4 Amplifying, interpreting, and calibrating sensitivity parameters

In this section, we provide guidance for interpreting the main sensitivity parameter A* by ‘ampli-
fying’ the sensitivity analyses into a constraint on the product of: (1) the level of remaining imbal-
ance in confounders after weighting; and (2) the strength of the relationship between the
confounders and the treated potential outcome.

In order for a confounder to bias causal effect estimates, it must be associated with both the
treatment and the outcome. An ‘amplification’ enhances a sensitivity analysis’s interpretability
by allowing a researcher to instead interpret the results of the sensitivity analysis in terms of
two parameters: one controlling the confounder’s relationship with the treatment and the other
controlling its relationship with the outcome (Rosenbaum & Silber, 2009). Under the marginal
sensitivity model in Assumption 3, the parameter A controls how far the propensity score condi-
tioned on only observed covariates z(x) can be from an oracle propensity score that includes the
treated potential outcome 7(x, y). This odds ratio bound can be difficult to reason about in applied
analyses. To aid interpretation, we propose an amplification that expresses the results of our pro-
cedure in terms of the imbalance in confounders and the strength of the relationship between the
confounders and the treated potential outcome.

For our amplification, we will use U € R to represent a latent unmeasured confounding vari-
able, standardized to have mean zero and variance 1.* We then consider a working model for

Similar to the robustness value with g = 1 from Cinelli and Hazlett (2020), researchers can also consider the min-
imum value of A for which the point estimate interval contains zero. The point estimate interval can be computed by solv-
ing (13) using the full observed data for a particular value of A.

4 Dorn and Guo (2021) similarly consider a general unobserved confounder U, of which U = Y(1) is a special case.
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the conditional expectation of the treated potential outcome, decomposing it into a term involving
the observed covariates X and a linear term for the unmeasured confounder U,

E[Y(1) | X=x, U=u]=f(x)+p, - u. (15)

This model merely serves as a guide to interpretation, rather than being a true relationship that we
are assuming in the primary causal analysis, and is in fact general. As one extreme case, we can
consider a situation in which f(x) = E[Y(1)] and the unmeasured confounder U is a standardized

version of the treated potential outcome itself, U = %m)l”; in this case 8, is simply equal to the

standard deviation of Y(1). More generally, if some of the variation in Y(1) can be explained by
observed covariates and by pure additive noise uncorrelated with treatment, 8, describes the
amount of additional systematic variation contributed by unobserved confounders. Specifically,
B, is the difference in expected Y(1) associated with a one-standard-deviation difference in U while
holding covariates fixed. If one is concerned about multiple unobserved confounders, one may also
view U as the one-dimensional function of these confounders that best explains the variance in
Y(1)’s conditional expectation under model (15).

With this model in place, we can decompose the difference between the true expected value of
treated potential outcomes y; and the IPW estimand—i.e., the bias—into (i) the strength of the
unmeasured confounder U in predicting Y(1) beyond the observed covariates, f,, and (ii) the im-
balance in U, 6,

ZY ZU
E[Y(1)] - E[m} =4, <[E[U] - [E|:71|> .

Note that here we have used the property that E[f(X)] = E[Zf(X)/=(X)] for all functions f.
Now, we can use the partial identification of gx; under the marginal sensitivity model in
Assumption 3 to find upper and lower bounds for this product under the sensitivity value A*,

zZY zZY
inf 4" —E|Z|<8 .6, < ) gl 22|,
i Ty | S P 0o sup i =R g

These are population-level bounds for the highest and lowest possible bias 8, - 8,. To construct
finite-sample versions of these bounds, we bound the bias as the maximum of the absolute values
of the highest and lowest possible differences in the estimated values,

}. (16)

Recall that 2; (6) is a weighted average of treated units’ outcomes using weights (X).

The constrained relationship between the 8, and J,, allows us to reason about potential un-
observed confounders. To understand this relationship, we compute a curve that maps the val-
ue of the bias to different combinations of §, and g, for enhanced interpretation. For example,
(6u, B,) = (1.5, 2) and (d,, B,) = (1, 3) are both consistent with a bias of 3. Reading off this curve
allows the researchers to see that for an unmeasured confounder with any given strength in pre-
dicting the treated potential outcome beyond the observed covariates, there must be at least
some level of imbalance after weighting to induce bias. To explain a given amount of unmeas-
ured confounding bias, an unmeasured confounder strongly predictive of potential outcomes
(after controlling for observed covariates) need only be mildly imbalanced after weighting.
Conversely, an unmeasured confounder with weak predictive strength must be highly imbal-
anced even after the observed covariates are approximately balanced by the estimated weights.
In Section 5, we illustrate our sensitivity analysis procedure and how our amplification can pro-
duce more interpretable results.

A

NG
sup A" = fiy
heH(A*)

inf A" i,
heH(A*)

b
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5 Numerical examples

We now illustrate the sensitivity analysis and amplification procedures using two real data exam-
ples. We consider the situation in which a researcher uses balancing weights to estimate the
Population Average Treatment Effect on the Treated (PATT) of a treatment on an outcome of
interest; see Online Supplementary Material, Section SM-3 for an overview of the PATT in our
setting. Based on domain knowledge, the researcher believes that the set of observed covariates
includes most factors associated with the treatment assignment and the outcome, while leaving
open the possibility that there remain relevant unobserved covariates.

To start, we compute A*, which represents the confounding required to alter a study’s causal
conclusions. In order to compute A*, we compute confidence intervals for a grid of values of A,
starting with A =1 and then considering larger values of A. If the confidence interval corre-
sponding to A = 1 contains zero, then the effect estimate is not significant, even under ignora-
bility. If the confidence interval for A = 1 does not contain zero, increasing the value of A causes
the confidence intervals to widen and eventually cross zero for some values of A. We set A*
equal to the minimum value of A for which the confidence interval includes zero. Since the
the percentile bootstrap procedure induces randomness, this value of A* is computed with a
Monte Carlo error.

We fix the bias equal to the maximum absolute value of the upper and lower bounds on the
bias in Equation (16). This value is the maximum absolute value of bias possible under the bal-
ancing weights sensitivity model with A = A* and is therefore a level of bias required to overturn
the study’s causal conclusion. We create contour plots with curves that map the particular value
of bias to varying values of §, and 8, allowing the bias to be alternatively interpreted in terms of
two sensitivity analysis parameters. Veitch and Zaveri (2020) use the term ‘Austen plot’ to de-
scribe similar plots. We include standardized observed covariates on the contour plots, which
serve as guides for reasoning about potential unobserved covariates. Our proposed calibration
process using observed covariates is intended to provide a broad sense of plausible parameter
values, rather than an attempt to obtain precise estimates as a part of a formal benchmarking
exercise. See Section 6 for further discussion. Blue points correspond to observed covariates
with imbalance prior to weighting, while red points represent post-weighting imbalance. In
the PATT setting, the imbalance prior to weighting in a standardized covariate X can be com-

puted as ﬁz?zlzixi—%zgl(l — Z,)X;, while the post-weighting imbalance is
i i1 i

+ZZ?=12,-X,~ -3 ﬁ%& We view the post-weighting imbalance corresponding
i=17"1 i=1

i=

i)7(Xi)
to the red points as a best-case scenario for potential unobserved covariates—in general, we ex-
pect to achieve better balance in terms of the observed covariates that we directly target than
unobserved covariates. Conversely, the pre-weighting imbalance represented by the blue points
may be more in line with our expectations for unobserved covariates.

5.1 LalLonde job training experiment
We re-examine data analyzed by Lalonde (1986) from the National Supported Work
Demonstration Program (NSW), a randomized job training program. Specifically, we use the sub-
set of data from Dehejia and Wahba (1999) to form a treatment group and observational data
from the Current Population Survey-Social Security Administration file (CPS1) to form a control
group. We consider estimating the effect of the job training program on 1978 real earnings. The
covariates for each individual include their age, years of education, race, marital status, whether or
not they graduated high school, and earnings and employment status in 1974 and 1975. In total,
there are 185 treated units and 15,992 control units. e

First, we use stable balancing weights in Equation (7) to estimate PATT = $1,165 (estimated
with ¢(x) = x and 1 =0.05), which is in line with Wang and Zubizarreta (2019)’s estimate using
slightly different approximate balancing weights. We then compute A* =1.01, which indicates
that even a slight difference between the estimated and oracle weights can render the PATT esti-
mate statistically insignificant. Figure 1 shows how the range of point estimates and the 95% con-
fidence interval widen as A increases, with the confidence interval including zero for A*. The range
of point estimates is obtained by computing the extrema of the point estimates for a particular A.
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Figure 1. Sensitivity analysis results with the LaLonde data. (a) Point estimate and confidence intervals. Solid
intervals are point estimate intervals and dotted intervals are 95% confidence intervals. (b) Contour plot illustrating
amplification of the sensitivity analysis with comparison to observed variables. Each location in the plot represents a
possible unobserved confounder with parameters (3., £,) in the amplification. The contour line gives all such pairs
that result in A equal to the observed sensitivity threshold A* = 1.01. Plotted points represent observed covariates,
with y-coordinates given by absolute multiple regression coefficients in an ordinary least-squares regression of the
outcome on standardized covariates among the control group, equivalent to g, if the covariate in question were the
only omitted confounder, and with x-coordinates given by treated-control differences in standardized covariates
both before weighting (the blue ® points farther from the y-axis) and after weighting (the red @ points closer to the y-
axis). The red shaded region groups locations associated with unobserved confounders no stronger than the
observed covariates after weighting, in the sense that some convex combination of post-weighting covariate
locations is at least as far from the origin.

Figure 1 shows the contour plot for the LaLonde data, which adds concrete detail to our inter-
pretation of A*. The black contour line, representing all combinations of 8, and J, for which
A*=1.01, lies below all of the blue points, suggesting that an unobserved confounder similar
even to one of the very weakest observed confounders would be sufficient to reverse the study
results. Furthermore, the black contour line intersects the shaded red region containing post-
weighting imbalance, suggesting that even closely balanced variables like those explicitly
accounted for in the weighting algorithm could be sufficient to explain the observed effect. All
these strongly substantiate the idea that our study result could be due to very mild unobserved con-
founding and should not be trusted as a reliable qualitative statement about the true impact of this
job training program. In fact, since several red points lie above the contour line, our finding may
even be plausibly explained by residual imbalance in these observed covariates after weighting,
whether or not unobserved confounders are present.

Note that visual comparisons of the curve with the blue points and the red region should never be
taken at face value as binary statements about whether a study is robust to unmeasured confounding.
Instead, one must always account for the context of the individual variables involved. For instance,
the intersection of the curve with the red region occurs only in the upper region of the plot, because
two of the variables, real earnings in 1974 and 1975 (both time-lagged versions of the study out-
come), are highly correlated with the outcomes. It is not necessarily plausible that an unobserved con-
founder would exhibit such high outcome correlation, so intersection with the red region is perhaps
less worrying than in a setting where all the observed variables are general demographic measures less
directly tied to the observed outcome. In addition, it is important to include all potentially important
observed covariates on the plot least the red shaded region appear misleadingly small.

202 ¥snbny g0 uo Jasn (IAILOVNI) elulofeD Jo AuN AQ L ¥6€80./L0L/7/98 L /2191LE/esss/wod dnooiwapede//:sdly wolj papeojumoq



J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 4 717

(a) (b)
ey —T- 44
-1-
3 —_
3 -
-1-
—— =1
2 _1_ (<=}
[0]
|— -—
=) 4
= 35 2
(2]
Ke]
©
1 4
-4
14
—
0 + = non-Hispanic Asian
[ .
-1 0 23 % & income
1 3 55 7 0.0 0.5 1.0 15 2.0
A absolute standardized imbalance in U

Figure 2. Sensitivity analysis results with the fish diet data. (a) Point estimate and confidence intervals. Solid
intervals are point estimate intervals and dotted intervals are 95% confidence intervals. (b) Contour plot illustrating
amplification of the sensitivity analysis, with comparison to observed variables. Each location in the plot represents a
possible unobserved confounder with parameters (d,, £,) in the amplification. The contour line gives all such pairs
that result in A equal to the observed sensitivity threshold A* = 5.5. Plotted points represent observed covariates,
with y-coordinates given by absolute multiple regression coefficients in an ordinary least-squares regression of the
outcome on standardized covariates among the control group, equivalent to g, if the covariate in question were the
only omitted confounder, and with x-coordinates given by treated-control differences in standardized covariates
both before weighting (the blue @ points farther from the y-axis) and after weighting (the red @ points closer to the y-
axis). The red shaded region groups locations associated with unobserved confounders no stronger than the
observed covariates after weighting, in the sense that some convex combination of post-weighting covariate
locations is at least as far from the origin.

5.2 Fish consumption and blood mercury levels

We now examine data analyzed by Zhao et al. (2018) and Zhao et al. (2019) from the National
Health and Nutrition Examination Survey (NHANES) 2013-2014 containing information about
fish consumption and blood mercury levels. We evaluate the sensitivity of estimating the effect of
fish consumption on blood mercury levels using balancing weights. There are 234 treated units
(consumption of greater than 12 servings of fish or shellfish in the past month) and 873 control
units (zero or one servings). The outcome of interest is log, (total blood mercury), measured in mi-
crograms per liter; the covariates include gender, age, income, whether income is missing and im-
puted, race/ethnicity, education, smoking history, and the number of cigarettes smoked in the
previous month.

To start, the stable balancing weights (7) estimate of the PATT is an increase of 2.1 in log, (total
blood mercury), estimated with ¢(x) = x and 1 = 0.05; A* is approximately equal to 5.5 for the fish
consumption data. We display the sensitivity analysis results for multiple values of A in Figure 2.
We observe that the confidence interval corresponding to no confounding (A = 1) is far from zero
and that the confidence interval for A* = 5.5 just begins to cross zero.

The contour plot (Figure 2) for the fish data indicates that the causal effect estimate is robust to
all but extremely strong unobserved confounders. Here the bias curve is far above the intersection
of the dotted lines that represents the maximum strength and pre-weighting imbalance among the
observed covariates. Thus, confounding significantly stronger than the observed covariates would
be required to alter the causal conclusion. In particular, consider the most imbalanced pre-
treatment confounder, income. The large vertical gap between the associated blue dot (and indeed
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any of the blue dots) and the contour line suggests that an unobserved confounder sufficient to al-
ter the study’s conclusion would not only have to be as imbalanced as income prior to treatment,
but would simultaneously have to be a full order of magnitude more predictive of blood mercury
than any other variable measured in the study. In fact, in order to change the study’s conclusion, an
unmeasured confounder as imbalanced as income would have to have an approximately 29 times
higher g, than income. While the contour plot itself cannot rule out the possibility that such an
unmeasured confounder might exist, it imposes stringent requirements for alternative theories be-
hind the apparent causal effect.

The Lalonde data results in Figure 1 and the fish consumption data results in Figure 2 illustrate
two extremes for possible outcomes of the sensitivity analysis. In our experience, more intermedi-
ate results frequently arise also; for example, the contour line might pass above some observed co-
variates but below others. In this case especially, it is important to remember that sensitivity
analysis is not designed to provide a binary judgment about whether a study’s effect is real or
not; instead, the contour plot gives a sense for the types of unobserved confounder that might
be problematic and the types that can be safely ignored.

Finally, in Figure 3, we compare the results of our sensitivity analysis in the fish consumption
data to the results of the approaches described by Zhao et al. (2019) and Dorn and Guo
(2021). As discussed above, Zhao et al. (2019) use IPW weights and otherwise conduct the sensi-
tivity analysis in an identical manner. Dorn and Guo (2021) also use IPW weights but alter the
sensitivity analysis by adding a constraint to the population version of the maximization problem
in (13) that enforces balance on certain conditional quantiles of the observed outcomes. This is
designed to ensure that that true propensity scores implied by the sensitivity model balance the ob-
served data properly in large samples (the set of shifted balancing weights over which we take ex-
trema need not do so). Figure 3 gives the expanded confidence intervals for the ATT from each
approach at three values of A. All three approaches are qualitatively similar in each case.
However, our approach based on stabilized balancing weights outperforms Zhao et al. (2019)’s
IPW approach at each A-value investigated, achieving strictly shorter intervals. This suggests
that the ability of balancing weights to achieve more precise inference than IPW in moderate sam-
ples, previously documented for settings with no unobserved confounding (Ben-Michael et al.,
2021), seems to extend to sensitivity analysis as well. The approach of Dorn and Guo (2021)
achieves narrower intervals than either of the other approaches; however, we note that Dorn
and Guo (2021)’s added constraint relies on quantile regression and hence requires the outcome
to be continuous, unlike the other two approaches. Additionally, the authors find that the quantile
balancing confidence intervals can result in under-coverage when the quantiles are correctly spe-
cified, which could suggest a setting in which our proposed sensitivity analysis procedure’s wider
intervals could be advantageous. As such, the combination of stabilized balancing weights and
sensitivity analysis appears to offer an attractive mix of generality and precision compared to ex-
isting competitors.

6 Discussion

Balancing weight estimation is a popular approach for estimating treatment effects by weighting
units to balance covariates. In this paper, we develop a framework for assessing the sensitivity of
these estimators to unmeasured confounding. We then propose an amplification for enhanced in-
terpretation and illustrate our method through real data examples.

We briefly outline potential directions for future work. First, as discussed in Section 5.2, Dorn
and Guo (2021) show that the intervals obtained from solving the linear programming problem
(13) can be overly conservative and resolve this issue by adding constraints that require balance
on certain conditional quantiles of the outcome. It seems likely that such constraints would offer
benefits for balancing weights estimators as well. We leave a thorough investigation to future
work.

Second, we could extend our framework to include augmented balancing weight estimators,
which use an outcome model to correct for bias due to inexact balance. Additionally, we could
extend our sensitivity analysis framework to balancing weights in panel data settings. For ex-
ample, we could adapt this framework to variants of the synthetic control method (Abadie &
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Figure 3. Comparison of confidence interval width after sensitivity analysis for three approaches in the fish consumption
example. We compare the intervals constructed using stabilized weights followed by our proposed sensitivity analysis
(greenintervals in the middle for each value of A) against those obtained by fitting IPW weights and conducting sensitivity
analysis as described in Zhao et al. (2019) (red intervals on the left), and against those obtained by IPW and the approach
of Dorn and Guo (2021) (blue intervals on the right), at several values of A. The Dorn & Guo bounds could not be
computed at A = 7.39 due to numerical problems encountered in fitting the required quantile regression. All three
approaches give similar results, but the balancing weights approach consistently outperforms Zhao et al. (2019)’s
approach, while Dorn and Guo (2021)’s approach in turn produces narrower intervals than the stabilized weights
approach for all values A > 1 investigated. Note that the results reported here for the Zhao et al. (2019) approach differ
slightly from the results reported for their analysis of this dataset because we focus on the ATT rather than the ATE.

Gardeazabal, 2003; Ben-Michael et al., 2018), extending proposals for sensitivity analysis from
Firpo and Possebom (2018).

Additionally, Cinelli and Hazlett (2020) point out that informal benchmarking procedures can
be misleading if used to perform an exact calibration of sensitivity analysis parameters based on
observed data. The authors argue that this occurs because the estimates of the observed covariates’
relationships with the outcomes may be impacted by unmeasured confounding. They propose a
formal benchmarking procedure to bound the strength of unmeasured confounders based on ob-
served covariates. Adapting Cinelli and Hazlett (2020)’s formal benchmarking procedure to our
setting could be a topic of future research.

Finally, we could use our framework to provide guidance in the design stage of balancing
weights estimators. When estimating treatment effects using balancing weights, researchers
must make decisions including the specific dispersion function of the weights, the particular imbal-
ance measure, and, in many cases, an acceptable level of imbalance. We could extend our sensitiv-
ity analysis procedure to help make these decisions to improve robustness and power in the
presence of unmeasured confounding. For example, we could provide insight into the trade-off be-
tween achieving better (marginal) balance on a few covariates or worse balance on a richer set of
covariates.
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