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Abstract

Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically 
estimate effects under the assumption that all confounders are measured. In this paper, we develop a 
sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that 
solves an optimization problem to obtain weights that directly minimizes covariate imbalance. In particular, 
we adapt a sensitivity analysis framework using the percentile bootstrap for a broad class of balancing 
weights estimators. We prove that the percentile bootstrap procedure can, with only minor modifications, 
yield valid confidence intervals for causal effects under restrictions on the level of unmeasured 
confounding. We also propose an amplification—a mapping from a one-dimensional sensitivity analysis to a 
higher dimensional sensitivity analysis—to allow for interpretable sensitivity parameters in the balancing 
weights framework. We illustrate our method through extensive real data examples.
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1 Introduction

Observational studies can be an important source of evidence about causal effects across the med-
ical and social sciences. Observational studies may be feasible in cases where randomized trials are 
not, or at least substantially less onerous to conduct at scale, but they raise challenges for analysis 
that are not present in randomized studies. As one example, consider evaluating the degree to 
which diets rich in �sh elevate blood mercury relative to diets containing little �sh. High levels 
of mercury in the blood can pose health risks; for instance, infants whose mothers had high mer-
cury levels may be at increased risk for adverse neurodevelopmental events (Mahaffey et al., 
2004). Consumption of �sh or shell�sh has been identi�ed as a major source of mercury in the 
blood (Björnberg et al., 2003). These effects could be measured by randomly assigning subjects 
to high- and low-�sh diets over long periods of time and comparing their blood mercury, but 
such experiments may be dif�cult to conduct and suffer from problems with compliance. 
Observational data describing blood mercury levels for subjects who choose to eat large or small 
amounts of �sh are more readily available, but direct comparisons between groups are subject to 
confounding if the high-�sh-diet and low-�sh-diet subjects are systematically different in other 
ways. Similarly, measuring the impact of job training programs on wages using randomized ex-
periments is expensive and dif�cult, but observational studies suffer from substantial confounding 
(LaLonde, 1986).
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In observational studies for both examples just described, some confounding may be apparent in 
the form of obvious differences in observed variables between comparison groups, and analysis 
often proceeds under a key assumption that all confounders are measured, sometimes known as 
ignorability or unconfoundedness. However, this assumption is not veri�able from observed 
data, and it is often easy to suggest unmeasured factors that may contribute at least a limited 
amount of confounding. For example, in the case of job training programs, one might wonder 
if individuals who choose to participate in job training may have higher intrinsic motivation to 
succeed than those who choose not to. A sensitivity analysis seeks to determine the magnitude 
of unobserved confounding required to alter a study’s �ndings. If a large amount of confounding 
is needed, then the study is robust, enhancing its reliability. Assessing sensitivity to unmeasured 
confounding is a critical part of the work=ow for causal inference in observational studies.

In this paper, we develop a sensitivity analysis framework for balancing weights estimators. 
Building on classical methods from survey calibration, these estimators �nd weights that minimize 
covariate imbalance between a weighted average of the observed units and a given distribution, 
such as by re-weighting control units to have a similar covariate distribution to the treated units. 
Balancing weights have become increasingly common within causal inference, with better �nite 
sample properties than traditional inverse propensity score weighting (IPW). See Section 2.2 for 
additional details and Ben-Michael et al. (2021) for a recent review.

Our proposed sensitivity analysis framework adapts the percentile bootstrap sensitivity analysis 
that Zhao et al. (2019) develop for traditional IPW. Speci�cally, for a given sensitivity parameter, 
we compute the upper and lower bounds of our estimator for each bootstrap sample and then form 
a con�dence interval using percentiles across bootstrap samples. We prove that this approach 
yields valid con�dence intervals for our proposed sensitivity analysis procedure over a broad class 
of balancing weights estimators.

To make a sensitivity analysis more interpretable, Rosenbaum and Silber (2009) introduce an 
ampli�cation of a sensitivity analysis, which is a mapping from each point in a low-dimensional 
sensitivity analysis to a set of points in a higher-dimensional sensitivity analysis that all have 
the same possible inferences. We propose a new ampli�cation that expresses the bias from con-
founding in terms of: (1) the imbalance in an unobserved covariate; and (2) the strength of the re-
lationship between the outcome and the unobserved covariate. Researchers can then relate the 
results of our ampli�cation to estimates from observed covariates. We demonstrate this approach 
via a numerical illustration and via several applications.

2 Background, notation, and review

2.1 Setup and review of marginal sensitivity model

We consider an observational study setting with independently and identically distributed data 
(Yi, Xi, Zi), i ∈ {1, . . . , n}, drawn from some joint distribution P(·) with outcome Yi ∈ R, covari-
ates Xi ∈ X , and treatment assignment Zi ∈ {0, 1}. We posit the existence of potential outcomes: 
the outcome had unit i received the treatment, Yi(1), and the outcome had unit i received the con-
trol, Yi(0) (Neyman, 1990 [1923]; Rubin, 1974). We assume stable treatment and no interference 
between units (Rubin, 1980), so the observed outcome is Yi = (1 − Zi)Yi(0) + ZiYi(1). An esti-
mand of interest is the Population Average Treatment Effect (PATE),

τ = E[Y(1) − Y(0)] = μ1 − μ0, (1) 

where μ1 = E[Y(1)] and μ0 = E[Y(0)]. To simplify the exposition, we will focus on estimating μ1; 
estimating μ0 is symmetric. We consider an alternative estimand, the Population Average 
Treatment Effect on the Treated (PATT) in Section 5 and Online Supplementary Material, 
Section SM-3 in the supplementary material.

A common set of identi�cation assumptions in this setting, known as strong ignorability, as-
sumes that conditioning on the covariates X suf�ciently removes confounding between treatment 
Z and the potential outcomes Y(0), Y(1), and that treatment assignment is not deterministic given 
X (Rosenbaum & Rubin, 1983b).

Assumption 1 (Ignorability). Y(0), Y(1)⫫Z ∣ X.
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Assumption 2 (Overlap). The propensity score π(x) ≡ P(Z = 1 ∣ X = x) satis�es 0 < 

π(x) < 1 for all x ∈ X .

Under Assumptions 1 and 2, we can non-parametrically identify μ1, solely with the outcomes 
from units receiving treatment,

μ1 = E
ZY

π(X)

ÿ ÿ
. (2) 

In an observational setting, the researcher does not know the true treatment assignment mechan-
ism, π(x, y) ≡ P(Z = 1 ∣ X = x, Y(1) = y), which in general can depend on both the covariates X 
and the potential outcomes Y(1) and Y(0). A rich literature assesses the sensitivity of estimates 
to violations of the ignorability assumption. This approach dates back at least to Corn�eld 
et al. (1959), who conducted a formal sensitivity analysis of the effect of smoking on lung cancer. 
More recent examples of sensitivity analysis include Rosenbaum and Rubin (1983a), Rosenbaum 
(2002), VanderWeele and Ding (2017), Franks et al. (2019), Tudball et al. (2019), Cinelli and 
Hazlett (2020), Fogarty (2020), Huang (2022), and Huang and Pimentel (2022). See Hong 
et al. (2021) for a recent discussion of weighting-based sensitivity methods.

We adopt the marginal sensitivity model proposed originally by Tan (2006) and further devel-
oped by Zhao et al. (2019) and Dorn and Guo (2021) for traditional IPW weights. Following these 
authors, we split the problem into two parts: sensitivity for the mean of the treated potential out-
comes and sensitivity for the mean of the control potential outcomes; without loss of generality, we 
consider the mean for the treated potential outcomes. Since unbiased estimation of E[Y(1)] re-
quires knowledge only of π(x, y) = P(Z = 1 ∣ X = x, Y(1) = y) rather than the full propensity score 
that also conditions on Y(0), we can rewrite Assumption 1 as π(x, y) = π(x). For details on com-
bining sensitivity analyses for E[Y(1)] and E[Y(0)] into a single sensitivity analysis for the ATE, 
see Section 5 from Zhao et al. (2019).

The marginal sensitivity model relaxes the ignorability assumption so that the odds ratio be-
tween the two conditional probabilities π(x) and π(x, y) is bounded.

Assumption 3 (Marginal sensitivity model). For Λ ≥ 1, the true propensity score satis�es

π(x, y) ∈ E(Λ) = {π(x, y) ∈ (0, 1) : Λ−1 ≤ OR(π(x), π(x, y)) ≤ Λ}, 

where OR(p1, p2) =
p1/(1−p1)
p2/(1−p2) is the odds ratio.1

Here, Λ is a sensitivity parameter, quantifying the difference between the true propensity score 
π(x, y) and the probability of treatment given X = x, π(x); when Λ = 1, the two probabilities are 
equivalent, and Assumption 1 holds. If, for example, Λ = 2, Assumption 3 constrains the odds ra-
tio between π(x) and π(x, y) to be between 12 and 2.

Again following Zhao et al. (2019), we will consider an equivalent characterization of the set 
E(Λ) in terms of the log odds ratio h(x, y) = log OR(π(x), π(x, y)),

H(Λ) = {h :X × R ³ R : 6h6∞ ≤ log Λ}, (3) 

where 6h6∞ = supx∈X ,y∈R
|h(x, y)| is the supremum norm. Rearranging the de�nition of h(x, y) to 

be log π(x, y)
1−π(x, y) = log π(x)

1−π(x) − h(x, y) and applying the inverse logit transformation, we can write the 

true propensity score under a particular sensitivity model h as

π(h)(x, y) = 1 +
1

π(x)
− 1

ÿ ÿ
eh(x,y)

ÿ ÿ−1

. (4) 

1 Zhao et al. (2019) introduce an extension to the marginal sensitivity model that they call the parametric marginal 
sensitivity model. The parametric marginal sensitivity model replaces π(x) with the best parametric approximation to 
π(x), πβ(x) and compares π(x, y) to πβ(x) so that the sensitivity analysis addresses both model misspeci�cation and unob-
served confounding.

J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 4                                                          709



Zhao et al. (2019) refer to π(h)(x, y) as the shifted propensity score. Then, for a particular 
h ∈ H(Λ), we can write the shifted estimand as

μ(h)
1 = E

Z

π(h)(X, Y(1))

ÿ ÿ−1

E
ZY

π(h)(X, Y(1))

ÿ ÿ
. (5) 

Under the marginal sensitivity model in Assumption 3, we then have a non-parametric partial 

identi�cation bound, infh∈H(Λ) μ(h)
1 ≤ μ1 ≤ suph∈H(Λ) μ(h)

1 .
The bound just given depends on population quantities that must be estimated, and in practice it 

is important to take sampling uncertainty into account. Zhao et al. (2019) use the percentile boot-
strap to build con�dence intervals that cover this partial identi�cation set, under the assumption 
that the weights are constructed using IPW.

We go beyond Zhao et al. (2019)’s work in two important ways. In Section 3, we show that the 
percentile bootstrap strategy for constructing con�dence intervals is valid for the broader class of 
balancing weights, not just IPW. This requires a different proof strategy than the one based on 
Z-estimation used by Zhao et al. (2019) in order to handle balancing weight estimators that 
achieve approximate (rather than exact) balance on covariates, such as the stable balancing 
weights of Zubizarreta (2015). In Section 4, we then introduce an ampli�cation that allows us 
to better interpret and calibrate marginal sensitivity analyses.

2.2 Weighting estimators under strong ignorability

We estimate μ1 via a weighted average of treated units’ outcomes using weights γ̂(X),

μ̂1 =
ÿn

i=1

Ziγ̂(Xi)ÿn
i=1 Ziγ̂(Xi)

Yi. (6) 

Under strong ignorability (Assumptions 1 and 2), traditional Inverse Propensity Score Weighting 

(IPW) �rst models the propensity score, π̂(x), directly and then sets weights to be ̂γ(Xi) = 1
π̂(Xi)

. Thus, 

μ̂1 is a plug-in version of Equation (2). This approach can perform poorly in moderate to high di-
mensions or when there is poor overlap and either π(x) or π̂(x) is near 0 or 1 (Kang & Schafer, 
2007).

Balancing weights, by contrast, directly optimize for covariate balance; recent proposals include 
Athey et al. (2018); Hainmueller (2012); Hirshberg et al. (2019); Tan (2020); Wang and 
Zubizarreta (2019); Zubizarreta (2015) and have a long history in survey calibration for non- 
response (Deville & Särndal, 1992; Deville et al., 1993). See Chattopadhyay et al. (2020) and 
Ben-Michael et al. (2021) for recent reviews.

Most balancing weight estimators attempt to control the imbalance between the weighted 
treated sample and the full sample in some transformation of the covariates ϕ :X ³ R

d. For ex-
ample, Zubizarreta (2015) proposes stable balancing weights (SBWs) that �nd weights γ̂(X) 
that solve

min
γ(X)∈R

n1
∫ Zγ(X)2 dPn

subject to ∫ Zγ(X)ϕ(X) − ϕ(X) dPn

ÿÿ ÿÿ
∞

≤ λ γ(X) ≥ 0,

(7) 

where Pn is the empirical distribution corresponding to a sample of size n from joint distribution 
P(·). These are the weights of minimum variance that guarantee approximate balance: that the 
worst imbalance in ϕ, the transformed covariates, is less than some hyper-parameter λ. There 
are many other choices of both the penalty on the weights and the measure of imbalance.2 For in-
stance, in low dimensions, setting λ = 0 guarantees exact balance on the covariates ϕ(Xi). Here, we 

2 Other possibilities include soft balance penalties rather than hard constraints (e.g., Ben-Michael et al., 2023; Keele 
et al., 2023) and non-parametric measures of balance (e.g., Hirshberg et al., 2019).
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focus on the more common case in which achieving exact balance is infeasible; in that case, the 
particular choice of penalty function is less important.

The balancing weights procedure is connected to the modeled IPW approach above through the 
Lagrangian dual formulation of optimization problem (7). The imbalance in the d transformations 
of the covariates induces a set of Lagrange multipliers β ∈ R

d, and the Lagrangian dual is

min
β∈R

d
∫ Z β · ϕ(X)
ÿ ÿ2

+
− β · ϕ(X) dPnÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ

balancing loss

+ λ6β61ÿÿÿÿÿÿ
regularization

, (8) 

where [x]+ = max {0, x}. The weights are recovered from the dual solution as γ̂(Xi) = [β̂ · ϕ(Xi)]+. 
As Zhao (2019) and Wang and Zubizarreta (2019) show, this is a regularized M-estimator of the 

propensity score when it is of the form 1
π(x) = [β7 · ϕ(x)]+ for some true β7. Therefore, we can view 

β7 · ϕ(x) as a natural parameter for the propensity score; different penalty functions will induce dif-
ferent link functions, see Wang and Zubizarreta (2019). Similarly, different measures of balance 
will induce different forms of regularization on the propensity score parameters. In the succeeding 
sections, we will use this dual connection to show that the percentile bootstrap sensitivity proced-
ure proposed by Zhao et al. (2019) for traditional IPW estimators in the marginal sensitivity model 
is valid with balancing weight estimators.

3 Sensitivity analysis for balancing weights estimators

We now outline our procedure for extending the percentile bootstrap sensitivity analysis to balan-
cing weights. We introduce the shifted balancing weights estimator, detail the bootstrap sampling 
procedure, and describe how to ef�ciently compute the con�dence intervals. Key to constructing 
the con�dence intervals for the partial identi�cation set will be to construct intervals for each sen-
sitivity model h in the collection of sensitivity models H(Λ) in Equation (3). Each h represents a 
particular deviation from ignorability that remains in the set de�ned by the marginal sensitivity 
model. We show that the percentile bootstrap yields valid con�dence intervals for each sensitivity 
model in H(Λ), resulting in a valid interval for the partial identi�cation set. While the procedure 
for constructing con�dence intervals given the weights computed in each bootstrap sample is the 
same as that in Zhao et al. (2019), our result allows for the weights to be constructed by more gen-
eral methods. We provide guidance for interpreting our sensitivity analysis procedure in Section 4.

To construct the con�dence intervals, we �rst consider the case where we know the log odds 
function h(x, y) ∈ H(Λ). With h, we can shift the balancing weights estimator for the shifted esti-
mand μ(h)

1 as

μ̂(h)
1 =

ÿ

Zi=1

γ̂(h)(Xi, Yi(1))

ÿ ÿ−1ÿ

Zi=1

γ̂(h)(Xi, Yi(1))Yi, (9) 

where ̂γ(h)(Xi, Yi(1)) = 1 + (γ̂(Xi) − 1) eh(Xi,Yi(1)) for i ∈ {i : Zi = 1} are the shifted balancing weights. 
Note that there is no requirement for the shifted balancing weights to balance the transformed co-
variates ϕ. We then take B bootstrap samples of size n without conditioning on treatment assign-
ment—so the number of units in the treatment and control groups may vary from sample to 
sample—and re-estimate the weights in each sample by solving the balancing weight optimization 
problem (7) using the bootstrapped data.

Then, for every h ∈ H(Λ), we can construct a con�dence interval for μ(h)
1 using the percentile 

bootstrap as

L(h), U(h)
ÿ ÿ

= Qα
2

μ̂7(h)
1,b

ÿ ÿ
, Q1−α

2
μ̂7(h)

1,b

ÿ ÿÿ ÿ
. (10) 

Qα(μ̂7(h)
1,b ) is the α-percentile of μ̂7(h)

1,b in the bootstrap distribution made up of the B bootstrap sam-

ples and μ̂7(h)
1,b is the shifted balancing weights estimator (9) using bootstrap sample b ∈ {1, . . . , B}. 
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Note, 7 in μ̂7(h)
1,b 

indicates that it is an estimate from bootstrap data and b is used as an index for the 

B bootstrap samples. The following theorem states that [L(h), U(h)] is an asymptotically valid con-

�dence interval for μ(h)
1 with at least (1 − α)-coverage under high-level assumptions outlined in the 

Online supplementary material on how well the balancing weights estimate the propensity scores.

Theorem 1 Under Online Supplementary Material, Assumption 1, for every h ∈ H(Λ),

lim sup
n³∞

P0(μ(h)
1 < L(h)) ≤

α
2 

and

lim sup
n³∞

P0(μ(h)
1 > U(h)) ≤

α
2

, 

where P0 denotes the probability under the joint distribution of the data P(·). 
The probability statements apply under both the conditions on the inverse 
probabilities and the outcomes in Online Supplementary Material, 
Assumption 1 and the marginal sensitivity model (3).

Since each of the con�dence intervals [L(h), U(h)] are valid, we can use the Union Method to com-
bine them into a single valid con�dence interval [Lunion, Uunion] for μ1 under Assumption 3, where

Lunion = inf
h∈H(Λ)

L(h), Uunion = sup
h∈H(Λ)

U(h). (11) 

Finding [Lunion, Uunion] would require conducting a grid search over the space of log-odds func-
tions H(Λ) and computing percentile bootstrap con�dence intervals at each point; this is compu-
tationally infeasible. Instead, we can obtain a con�dence interval [L, U] for μ1 by using generalized 
minimax and maximin inequalities as

L, U[ ] = Qα
2

inf
h∈H(Λ)

μ̂7(h)
1,b

ÿ ÿ
, Q1−α

2
sup

h∈H(Λ)

μ̂7(h)
1,b

ÿ ÿÿ ÿ
. (12) 

Zhao et al. (2019) show that this interval will be conservative, in the sense of being too wide, since 

L ≤ Lunion and U ≥ Uunion. In fact, Dorn and Guo (2021) show that this can be overly conservative; 
see Sections 5.2 and 6 for further discussion.

The extrema of the point estimates can be solved ef�ciently using Proposition 2 from Zhao et al. 
(2019) by the following linear fractional programming problem:

min /max
r∈R

n1
μ̂(h)

1 =

ÿn

i=1

Zi 1 + ri γ̂(Xi) − 1
ÿ ÿ( ÿ

Yi

ÿn

i=1

Zi 1 + ri γ̂(Xi) − 1
ÿ ÿ( ÿ

subject to ri ∈ [Λ−1, Λ], for all i ∈ 1, . . . , n{ },

(13) 

where ri = OR{π(Xi), π(Xi, Yi(1))} are the decision variables. The procedure to obtain con�dence 
interval [L, U] is then

Step 1 Obtain B bootstrap samples of the data of size n without conditioning on treatment 
assignment.
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Step 2 For each bootstrap sample b = 1, . . . , B, re-estimate the weights and compute the 

extrema infh∈H(Λ) μ̂7(h)
1,b 

and suph∈H(Λ) μ̂7(h)
1,b 

under the collection of sensitivity models 

H(Λ) by solving (13).

Step 3 Obtain valid con�dence intervals for sensitivity analysis

L = Qα
2

inf
h∈H(Λ)

μ̂7(h)
1,b

ÿ ÿ
, U = Q1−α

2
sup

h∈H(Λ)

μ̂7(h)
1,b

ÿ ÿ
. (14) 

Replacing ̂γ(Xi) in Equation (13) with the inverse of propensity scores estimated by a generalized 
linear model recovers the procedure from Zhao et al. (2019). As in Zhao et al. (2019), the added 
computational cost for additional values of Λ is minimal since they do not require a researcher to 
draw additional bootstrap samples nor re-estimate the weights.

Finally, a researcher must compute a sensitivity value for a given study; see Rosenbaum (2002)
for extensive discussion. Suppose the con�dence interval for PATE under ignorability (Λ = 1) does 
not contain zero, indicating a statistically signi�cant effect. As Λ increases, allowing for stronger 
violations of ignorability, the con�dence interval will widen and eventually cross zero. Of particu-
lar interest then is the minimum value of Λ for which the con�dence interval contains zero; we de-
note this value as Λ7.3 Thus, we can interpret Λ7 as a necessary difference in the odds ratio between 
the probability of treatment with and without conditioning on the treated potential outcome for 
which we no longer observe a signi�cant treatment effect. This represents the degree of confound-
ing required to change a study’s causal conclusions, with larger values of Λ7 representing more ro-
bust estimates.

Sensitivity analysis may also be useful in cases where the con�dence interval under Λ = 1 is very 
small and includes zero, indicating no large effect in any direction or bioequivalence in the sense 
discussed by Brown et al. (1995). In this setting, a researcher may obtain a sensitivity value Λ7 by 
de�ning a minimal effect size ι > 0 of practical interest and repeating the sensitivity analysis for 
larger and larger values of Λ until the con�dence interval includes either −ι or ι, revealing the de-
gree of confounding needed to mask a practically important effect. For examples of such sensitivity 
analyses, see Pimentel et al. (2015) and Pimentel and Kelz (2020).

4 Amplifying, interpreting, and calibrating sensitivity parameters

In this section, we provide guidance for interpreting the main sensitivity parameter Λ7 by ‘ampli-
fying’ the sensitivity analyses into a constraint on the product of: (1) the level of remaining imbal-
ance in confounders after weighting; and (2) the strength of the relationship between the 
confounders and the treated potential outcome.

In order for a confounder to bias causal effect estimates, it must be associated with both the 
treatment and the outcome. An ‘ampli�cation’ enhances a sensitivity analysis’s interpretability 
by allowing a researcher to instead interpret the results of the sensitivity analysis in terms of 
two parameters: one controlling the confounder’s relationship with the treatment and the other 
controlling its relationship with the outcome (Rosenbaum & Silber, 2009). Under the marginal 
sensitivity model in Assumption 3, the parameter Λ controls how far the propensity score condi-
tioned on only observed covariates π(x) can be from an oracle propensity score that includes the 
treated potential outcome π(x, y). This odds ratio bound can be dif�cult to reason about in applied 
analyses. To aid interpretation, we propose an ampli�cation that expresses the results of our pro-
cedure in terms of the imbalance in confounders and the strength of the relationship between the 
confounders and the treated potential outcome.

For our ampli�cation, we will use U ∈ R to represent a latent unmeasured confounding vari-
able, standardized to have mean zero and variance 1.4 We then consider a working model for 

3 Similar to the robustness value with q = 1 from Cinelli and Hazlett (2020), researchers can also consider the min-
imum value of Λ for which the point estimate interval contains zero. The point estimate interval can be computed by solv-
ing (13) using the full observed data for a particular value of Λ.

4 Dorn and Guo (2021) similarly consider a general unobserved confounder U, of which U = Y(1) is a special case.
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the conditional expectation of the treated potential outcome, decomposing it into a term involving 
the observed covariates X and a linear term for the unmeasured confounder U,

E[Y(1) ∣ X = x, U = u] = f (x) + βu · u. (15) 

This model merely serves as a guide to interpretation, rather than being a true relationship that we 
are assuming in the primary causal analysis, and is in fact general. As one extreme case, we can 
consider a situation in which f (x) = E[Y(1)] and the unmeasured confounder U is a standardized 

version of the treated potential outcome itself, U =
Y(1)−E[Y(1)]

sd(Y(1)) ; in this case βu is simply equal to the 

standard deviation of Y(1). More generally, if some of the variation in Y(1) can be explained by 
observed covariates and by pure additive noise uncorrelated with treatment, βu describes the 
amount of additional systematic variation contributed by unobserved confounders. Speci�cally, 
βu is the difference in expected Y(1) associated with a one-standard-deviation difference in U while 
holding covariates �xed. If one is concerned about multiple unobserved confounders, one may also 
view U as the one-dimensional function of these confounders that best explains the variance in 
Y(1)’s conditional expectation under model (15).

With this model in place, we can decompose the difference between the true expected value of 
treated potential outcomes μ1 and the IPW estimand—i.e., the bias—into (i) the strength of the 
unmeasured confounder U in predicting Y(1) beyond the observed covariates, βu, and (ii) the im-
balance in U, δu,

E[Y(1)] − E
ZY

π(X)

ÿ ÿ
= βu · E U[ ] − E

ZU

π(X)

ÿ ÿÿ ÿ

ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
δu

.

Note that here we have used the property that E[f (X)] = E[Zf (X)/π(X)] for all functions f.
Now, we can use the partial identi�cation of μ1 under the marginal sensitivity model in 

Assumption 3 to �nd upper and lower bounds for this product under the sensitivity value Λ7,

inf
h∈H(Λ7)

μ(h)
1 − E

ZY

π(X)

ÿ ÿ
≤ βu · δu ≤ sup

h∈H(Λ7)

μ(h)
1 − E

ZY

π(X)

ÿ ÿ
.

These are population-level bounds for the highest and lowest possible bias βu · δu. To construct 
�nite-sample versions of these bounds, we bound the bias as the maximum of the absolute values 
of the highest and lowest possible differences in the estimated values,

|βu · δu| ≤ max

ÿÿÿÿÿ inf
h∈H(Λ7)

μ̂(h)
1 − μ̂1

ÿÿÿÿÿ, sup
h∈H(Λ7)

μ̂(h)
1 − μ̂1

ÿÿÿÿÿ

ÿÿÿÿÿ

ÿ ÿ
. (16) 

Recall that μ̂1 (6) is a weighted average of treated units’ outcomes using weights γ̂(X).
The constrained relationship between the βu and δu allows us to reason about potential un-

observed confounders. To understand this relationship, we compute a curve that maps the val-
ue of the bias to different combinations of δu and βu for enhanced interpretation. For example, 
(δu, βu) = (1.5, 2) and (δu, βu) = (1, 3) are both consistent with a bias of 3. Reading off this curve 
allows the researchers to see that for an unmeasured confounder with any given strength in pre-
dicting the treated potential outcome beyond the observed covariates, there must be at least 
some level of imbalance after weighting to induce bias. To explain a given amount of unmeas-
ured confounding bias, an unmeasured confounder strongly predictive of potential outcomes 
(after controlling for observed covariates) need only be mildly imbalanced after weighting. 
Conversely, an unmeasured confounder with weak predictive strength must be highly imbal-
anced even after the observed covariates are approximately balanced by the estimated weights. 
In Section 5, we illustrate our sensitivity analysis procedure and how our ampli�cation can pro-
duce more interpretable results.
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5 Numerical examples

We now illustrate the sensitivity analysis and ampli�cation procedures using two real data exam-
ples. We consider the situation in which a researcher uses balancing weights to estimate the 
Population Average Treatment Effect on the Treated (PATT) of a treatment on an outcome of 
interest; see Online Supplementary Material, Section SM-3 for an overview of the PATT in our 
setting. Based on domain knowledge, the researcher believes that the set of observed covariates 
includes most factors associated with the treatment assignment and the outcome, while leaving 
open the possibility that there remain relevant unobserved covariates.

To start, we compute Λ7, which represents the confounding required to alter a study’s causal 
conclusions. In order to compute Λ7, we compute con�dence intervals for a grid of values of Λ, 
starting with Λ = 1 and then considering larger values of Λ. If the con�dence interval corre-
sponding to Λ = 1 contains zero, then the effect estimate is not signi�cant, even under ignora-
bility. If the con�dence interval for Λ = 1 does not contain zero, increasing the value of Λ causes 
the con�dence intervals to widen and eventually cross zero for some values of Λ. We set Λ7

equal to the minimum value of Λ for which the con�dence interval includes zero. Since the 
the percentile bootstrap procedure induces randomness, this value of Λ7 is computed with a 
Monte Carlo error.

We �x the bias equal to the maximum absolute value of the upper and lower bounds on the 
bias in Equation (16). This value is the maximum absolute value of bias possible under the bal-
ancing weights sensitivity model with Λ = Λ7 and is therefore a level of bias required to overturn 
the study’s causal conclusion. We create contour plots with curves that map the particular value 
of bias to varying values of δu and βu, allowing the bias to be alternatively interpreted in terms of 
two sensitivity analysis parameters. Veitch and Zaveri (2020) use the term ‘Austen plot’ to de-
scribe similar plots. We include standardized observed covariates on the contour plots, which 
serve as guides for reasoning about potential unobserved covariates. Our proposed calibration 
process using observed covariates is intended to provide a broad sense of plausible parameter 
values, rather than an attempt to obtain precise estimates as a part of a formal benchmarking 
exercise. See Section 6 for further discussion. Blue points correspond to observed covariates 
with imbalance prior to weighting, while red points represent post-weighting imbalance. In 
the PATT setting, the imbalance prior to weighting in a standardized covariate X can be com-

puted as 1ÿn

i=1
Zi

ÿn
i=1ZiXi − 1ÿn

i=1
(1−Zi)

ÿn
i=1(1 − Zi)Xi, while the post-weighting imbalance is 

1ÿn

i=1
Zi

ÿn
i=1ZiXi −

ÿn
i=1

(1−Zi)γ̂(Xi)ÿn

i=1
(1−Zi)γ̂(Xi)

Xi. We view the post-weighting imbalance corresponding 

to the red points as a best-case scenario for potential unobserved covariates—in general, we ex-
pect to achieve better balance in terms of the observed covariates that we directly target than 
unobserved covariates. Conversely, the pre-weighting imbalance represented by the blue points 
may be more in line with our expectations for unobserved covariates.

5.1 LaLonde job training experiment

We re-examine data analyzed by LaLonde (1986) from the National Supported Work 
Demonstration Program (NSW), a randomized job training program. Speci�cally, we use the sub-
set of data from Dehejia and Wahba (1999) to form a treatment group and observational data 
from the Current Population Survey-Social Security Administration �le (CPS1) to form a control 
group. We consider estimating the effect of the job training program on 1978 real earnings. The 
covariates for each individual include their age, years of education, race, marital status, whether or 
not they graduated high school, and earnings and employment status in 1974 and 1975. In total, 
there are 185 treated units and 15,992 control units.

First, we use stable balancing weights in Equation (7) to estimate ÿPATT = $1,165 (estimated 
with ϕ(x) = x and λ = 0.05), which is in line with Wang and Zubizarreta (2019)’s estimate using 
slightly different approximate balancing weights. We then compute Λ7 = 1.01, which indicates 
that even a slight difference between the estimated and oracle weights can render the PATT esti-
mate statistically insigni�cant. Figure 1 shows how the range of point estimates and the 95% con-
�dence interval widen as Λ increases, with the con�dence interval including zero for Λ7. The range 
of point estimates is obtained by computing the extrema of the point estimates for a particular Λ.
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Figure 1 shows the contour plot for the LaLonde data, which adds concrete detail to our inter-
pretation of Λ7. The black contour line, representing all combinations of βu and δu for which 
Λ7 = 1.01, lies below all of the blue points, suggesting that an unobserved confounder similar 
even to one of the very weakest observed confounders would be suf�cient to reverse the study 
results. Furthermore, the black contour line intersects the shaded red region containing post- 
weighting imbalance, suggesting that even closely balanced variables like those explicitly 
accounted for in the weighting algorithm could be suf�cient to explain the observed effect. All 
these strongly substantiate the idea that our study result could be due to very mild unobserved con-
founding and should not be trusted as a reliable qualitative statement about the true impact of this 
job training program. In fact, since several red points lie above the contour line, our �nding may 
even be plausibly explained by residual imbalance in these observed covariates after weighting, 
whether or not unobserved confounders are present.

Note that visual comparisons of the curve with the blue points and the red region should never be 
taken at face value as binary statements about whether a study is robust to unmeasured confounding. 
Instead, one must always account for the context of the individual variables involved. For instance, 
the intersection of the curve with the red region occurs only in the upper region of the plot, because 
two of the variables, real earnings in 1974 and 1975 (both time-lagged versions of the study out-
come), are highly correlated with the outcomes. It is not necessarily plausible that an unobserved con-
founder would exhibit such high outcome correlation, so intersection with the red region is perhaps 
less worrying than in a setting where all the observed variables are general demographic measures less 
directly tied to the observed outcome. In addition, it is important to include all potentially important 
observed covariates on the plot least the red shaded region appear misleadingly small.

(a) (b)

Figure 1. Sensitivity analysis results with the LaLonde data. (a) Point estimate and confidence intervals. Solid 

intervals are point estimate intervals and dotted intervals are 95% confidence intervals. (b) Contour plot illustrating 

amplification of the sensitivity analysis with comparison to observed variables. Each location in the plot represents a 

possible unobserved confounder with parameters (δu, βu) in the amplification. The contour line gives all such pairs 

that result in Λ equal to the observed sensitivity threshold Λ7 = 1.01. Plotted points represent observed covariates, 

with y-coordinates given by absolute multiple regression coefficients in an ordinary least-squares regression of the 

outcome on standardized covariates among the control group, equivalent to βu if the covariate in question were the 

only omitted confounder, and with x-coordinates given by treated-control differences in standardized covariates 

both before weighting (the blue points farther from the y-axis) and after weighting (the red points closer to the y- 

axis). The red shaded region groups locations associated with unobserved confounders no stronger than the 

observed covariates after weighting, in the sense that some convex combination of post-weighting covariate 

locations is at least as far from the origin.
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5.2 Fish consumption and blood mercury levels

We now examine data analyzed by Zhao et al. (2018) and Zhao et al. (2019) from the National 
Health and Nutrition Examination Survey (NHANES) 2013–2014 containing information about 
�sh consumption and blood mercury levels. We evaluate the sensitivity of estimating the effect of 
�sh consumption on blood mercury levels using balancing weights. There are 234 treated units 
(consumption of greater than 12 servings of �sh or shell�sh in the past month) and 873 control 
units (zero or one servings). The outcome of interest is log2(total blood mercury), measured in mi-
crograms per liter; the covariates include gender, age, income, whether income is missing and im-
puted, race/ethnicity, education, smoking history, and the number of cigarettes smoked in the 
previous month.

To start, the stable balancing weights (7) estimate of the PATT is an increase of 2.1 in log2(total 
blood mercury), estimated with ϕ(x) = x and λ = 0.05; Λ7 is approximately equal to 5.5 for the �sh 
consumption data. We display the sensitivity analysis results for multiple values of Λ in Figure 2. 
We observe that the con�dence interval corresponding to no confounding (Λ = 1) is far from zero 
and that the con�dence interval for Λ7 = 5.5 just begins to cross zero.

The contour plot (Figure 2) for the �sh data indicates that the causal effect estimate is robust to 
all but extremely strong unobserved confounders. Here the bias curve is far above the intersection 
of the dotted lines that represents the maximum strength and pre-weighting imbalance among the 
observed covariates. Thus, confounding signi�cantly stronger than the observed covariates would 
be required to alter the causal conclusion. In particular, consider the most imbalanced pre- 
treatment confounder, income. The large vertical gap between the associated blue dot (and indeed 

(a) (b)

Figure 2. Sensitivity analysis results with the fish diet data. (a) Point estimate and confidence intervals. Solid 

intervals are point estimate intervals and dotted intervals are 95% confidence intervals. (b) Contour plot illustrating 

amplification of the sensitivity analysis, with comparison to observed variables. Each location in the plot represents a 

possible unobserved confounder with parameters (δu, βu) in the amplification. The contour line gives all such pairs 

that result in Λ equal to the observed sensitivity threshold Λ7 = 5.5. Plotted points represent observed covariates, 

with y-coordinates given by absolute multiple regression coefficients in an ordinary least-squares regression of the 

outcome on standardized covariates among the control group, equivalent to βu if the covariate in question were the 

only omitted confounder, and with x-coordinates given by treated-control differences in standardized covariates 

both before weighting (the blue points farther from the y-axis) and after weighting (the red points closer to the y- 

axis). The red shaded region groups locations associated with unobserved confounders no stronger than the 

observed covariates after weighting, in the sense that some convex combination of post-weighting covariate 

locations is at least as far from the origin.
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any of the blue dots) and the contour line suggests that an unobserved confounder suf�cient to al-
ter the study’s conclusion would not only have to be as imbalanced as income prior to treatment, 
but would simultaneously have to be a full order of magnitude more predictive of blood mercury 
than any other variable measured in the study. In fact, in order to change the study’s conclusion, an 
unmeasured confounder as imbalanced as income would have to have an approximately 29 times 
higher βu than income. While the contour plot itself cannot rule out the possibility that such an 
unmeasured confounder might exist, it imposes stringent requirements for alternative theories be-
hind the apparent causal effect.

The LaLonde data results in Figure 1 and the �sh consumption data results in Figure 2 illustrate 
two extremes for possible outcomes of the sensitivity analysis. In our experience, more intermedi-
ate results frequently arise also; for example, the contour line might pass above some observed co-
variates but below others. In this case especially, it is important to remember that sensitivity 
analysis is not designed to provide a binary judgment about whether a study’s effect is real or 
not; instead, the contour plot gives a sense for the types of unobserved confounder that might 
be problematic and the types that can be safely ignored.

Finally, in Figure 3, we compare the results of our sensitivity analysis in the �sh consumption 
data to the results of the approaches described by Zhao et al. (2019) and Dorn and Guo 
(2021). As discussed above, Zhao et al. (2019) use IPW weights and otherwise conduct the sensi-
tivity analysis in an identical manner. Dorn and Guo (2021) also use IPW weights but alter the 
sensitivity analysis by adding a constraint to the population version of the maximization problem 
in (13) that enforces balance on certain conditional quantiles of the observed outcomes. This is 
designed to ensure that that true propensity scores implied by the sensitivity model balance the ob-
served data properly in large samples (the set of shifted balancing weights over which we take ex-
trema need not do so). Figure 3 gives the expanded con�dence intervals for the ATT from each 
approach at three values of Λ. All three approaches are qualitatively similar in each case. 
However, our approach based on stabilized balancing weights outperforms Zhao et al. (2019)’s 
IPW approach at each Λ-value investigated, achieving strictly shorter intervals. This suggests 
that the ability of balancing weights to achieve more precise inference than IPW in moderate sam-
ples, previously documented for settings with no unobserved confounding (Ben-Michael et al., 
2021), seems to extend to sensitivity analysis as well. The approach of Dorn and Guo (2021)
achieves narrower intervals than either of the other approaches; however, we note that Dorn 
and Guo (2021)’s added constraint relies on quantile regression and hence requires the outcome 
to be continuous, unlike the other two approaches. Additionally, the authors �nd that the quantile 
balancing con�dence intervals can result in under-coverage when the quantiles are correctly spe-
ci�ed, which could suggest a setting in which our proposed sensitivity analysis procedure’s wider 
intervals could be advantageous. As such, the combination of stabilized balancing weights and 
sensitivity analysis appears to offer an attractive mix of generality and precision compared to ex-
isting competitors.

6 Discussion

Balancing weight estimation is a popular approach for estimating treatment effects by weighting 
units to balance covariates. In this paper, we develop a framework for assessing the sensitivity of 
these estimators to unmeasured confounding. We then propose an ampli�cation for enhanced in-
terpretation and illustrate our method through real data examples.

We brie=y outline potential directions for future work. First, as discussed in Section 5.2, Dorn 
and Guo (2021) show that the intervals obtained from solving the linear programming problem 
(13) can be overly conservative and resolve this issue by adding constraints that require balance 
on certain conditional quantiles of the outcome. It seems likely that such constraints would offer 
bene�ts for balancing weights estimators as well. We leave a thorough investigation to future 
work.

Second, we could extend our framework to include augmented balancing weight estimators, 
which use an outcome model to correct for bias due to inexact balance. Additionally, we could 
extend our sensitivity analysis framework to balancing weights in panel data settings. For ex-
ample, we could adapt this framework to variants of the synthetic control method (Abadie & 
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Gardeazabal, 2003; Ben-Michael et al., 2018), extending proposals for sensitivity analysis from 
Firpo and Possebom (2018).

Additionally, Cinelli and Hazlett (2020) point out that informal benchmarking procedures can 
be misleading if used to perform an exact calibration of sensitivity analysis parameters based on 
observed data. The authors argue that this occurs because the estimates of the observed covariates’ 
relationships with the outcomes may be impacted by unmeasured confounding. They propose a 
formal benchmarking procedure to bound the strength of unmeasured confounders based on ob-
served covariates. Adapting Cinelli and Hazlett (2020)’s formal benchmarking procedure to our 
setting could be a topic of future research.

Finally, we could use our framework to provide guidance in the design stage of balancing 
weights estimators. When estimating treatment effects using balancing weights, researchers 
must make decisions including the speci�c dispersion function of the weights, the particular imbal-
ance measure, and, in many cases, an acceptable level of imbalance. We could extend our sensitiv-
ity analysis procedure to help make these decisions to improve robustness and power in the 
presence of unmeasured confounding. For example, we could provide insight into the trade-off be-
tween achieving better (marginal) balance on a few covariates or worse balance on a richer set of 
covariates.
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