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In multisite trials, learning about treatment effect variation across sites is critical for

understanding where and for whom a program works. Unadjusted comparisons,

however, capture “compositional” differences in the distributions of unit-level

features as well as “contextual” differences in site-level features, including pos-

sible differences in program implementation. Our goal in this article is to adjust

site-level estimates for differences in the distribution of observed unit-level features:

If we can reweight (or “transport”) each site to have a common distribution of

observed unit-level covariates, the remaining treatment effect variation captures

contextual and unobserved compositional differences across sites. This allows us to

make apples-to-apples comparisons across sites, parceling out the amount of cross-

site effect variation explained by systematic differences in populations served. In

this article, we develop a framework for transporting effects using approximate

balancing weights, where the weights are chosen to directly optimize unit-level

covariate balance between each site and the common target distribution. We first

develop our approach for the general setting of transporting the effect of a single-

site trial. We then extend our method to multisite trials, assess its performance via

simulation, and use it to analyze a series of multisite trials of adult education and

vocational training programs. In our application, we find that distributional dif-

ferences are potentially masking cross-site variation. Our method is available in the

balancer R package.
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1. Introduction

A central challenge for many questions in policy and the social sciences is to

generalize (or “transport”) results from a randomized control trial (RCT) to a

target population (Egami & Hartman, 2021; Tipton, 2014). For instance, given an

experimental evaluation of a job training program in one location, can we predict

the program’s effects in another location with different macroeconomic condi-

tions and demographic composition (Hotz et al., 2005)?

In this article, we focus on generalizing or transporting effects in the context

of multisite RCTs, where treatment assignment is randomized separately within

each of several sites. Multisite RCTs have been used to study, for example, the

effects of the Head Start program on childhood educational outcomes (Puma

et al., 2010), of welfare-to-work programs on participant earnings (Kemple &

Haimson, 1994; Riccio & Friedlander, 1992), of police body-worn camera usage

on citizen complaints (Ariel et al., 2017), and of psychoeducational interventions

on cancer patients’ emotional health (Stanton et al., 2005).

Multisite RCTs show promise in part because they can reveal how treatment

effects vary across different settings. Specifically, they can help disentangle

treatment effect variation due to “compositional” differences in sites’ distribu-

tions of observed unit-level features from variation due to other differences, such

as “contextual” differences in site-level features or unobserved compositional

differences (Rudolph et al., 2018). For instance, researchers might seek to under-

stand the relationship between site-level impacts and site-level features, like the

way the program was implemented in the site—after accounting for differences

in observed unit-level features, like baseline income and education levels (see,

e.g., Bloom et al., 2003; Bloom et al., 2020). Alternatively, researchers might

focus on the extent to which observed unit-level features explain variation in site-

level impacts (Weiss et al., 2014). There are a range of related quantities of

interest in the literature (e.g., Bloom and Weiland, 2015; Bryk and Raudenbush,

1988; Djebbari and Smith, 2008; May et al., 2014; Raudenbush et al., 2012;

Walters, 2015).

These inquiries can be interpreted statistically as special cases of transport-

ability: If we transport the treatment effect from each site to the same target

distribution of unit-level covariates, then we can attribute the change in cross-site

treatment effect variation to those covariates. And we can attribute any remaining

variation in the transported treatment effects to differences in site-level features

and unobserved unit-level features.

Many transportation and generalization methods rely on weighting estimators,

including doubly robust estimators that combine weighting and outcome model-

ing (see Egami & Hartman, 2020). Traditional inverse propensity score weight-

ing (IPW) is the workhorse method (e.g., Rudolph et al., 2018). But it can

perform poorly with many covariates or with extreme estimated propensity

scores, and it requires unit-level data in the target distribution. More recently,

Lu et al.

421



Josey, Yang, et al. (2020) instead propose using entropy balancing (Hainmueller,

2012), which finds weights that exactly balance a few covariates. But, while

promising, entropy balancing is often infeasible with even a moderate number

of covariates.

In this article, we develop a framework for transporting treatment effects

using approximate balancing weights, a method recently developed in the obser-

vational causal inference literature (Ben-Michael, Feller, et al., 2021; Hirshberg

and Wager, 2021; Zubizarreta, 2015). Our approach chooses weights to directly

optimize unit-level covariate balance between each site and the target distribu-

tion. Unlike some other estimators, this approach can accommodate high-

dimensional covariates, including higher-order interactions and kernels. And,

in some cases, it can target an arbitrary covariate distribution without requiring

unit-level data.

We first develop our approach for the general task of transporting the treat-

ment effect from a single site; we view this as an important contribution in and of

itself. We then adapt it to our motivating special case of decomposing treatment

effect variation in multisite RCTs.1 To decompose treatment effect variation, we

first transport every site’s treatment effect to a common target distribution of

unit-level covariates. We can then descriptively analyze the cross-site variation

in these transported treatment effects, net of differences in unit-level covariates.

This problem formulation is quite flexible and does not require the strong multi-

level linear modeling assumptions commonly used in these kinds of analyses

(e.g., Bloom et al., 2003). At the same time, this more general formulation

highlights that the underlying substantive questions are very difficult to address

empirically: As we show in simulations, in all but the largest multisite trials, the

sample size and number of sites are insufficient to draw meaningful conclusions

(see also Weiss et al., 2017).

We apply our approach to an unusually large collection of seminal studies on

welfare-to-work policies that offered job training and adult education to eligible

people between 1988 and 1994. Specifically, we re-examine three separate multi-

site experiments: Project GAIN, Project Independence (PI), and the National

Evaluation of Welfare-to-Work Strategies (NEWWS). Project GAIN provided

basic education to those who needed remediation in math or language skills, as

well as job-search assistance, unpaid work experience, and referrals for postse-

condary education and vocational training. PI focused on low-cost job-search

strategies and limited access to basic education. NEWWS consisted of six dif-

ferent programs focused on training and education. Together, these studies con-

stitute a large multisite experiment, with 59 sites across seven states, totaling

69,399 participants. Within each site, participants were randomly assigned either

to receive or to be barred from receiving the job training and adult education

offered by the welfare-to-work program. The primary outcomes were employ-

ment status and earnings two years after random assignment. For each partici-

pant, we also observe 23 pretreatment covariates, including earnings prior to
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randomization, number of dependent children, and high school completion.

As Figure 1 shows, these covariates are distributed differently in each site and

across the three experiments as a whole. As a result, direct comparisons of

treatment effects across individual sites and the overall experiments might be

difficult to interpret.

We therefore use our method to transport the treatment effects from the 59

sites to the same target covariate distribution. After reweighting, the estimated

cross-site variation in average treatment effects (ATEs) is in fact larger for the

transported estimates than for the unadjusted estimates. This suggests that dif-

ferences in the sites’ observed distributional makeup do not drive, and in fact

could mask, differences in the overall efficacy of treatment at these sites. More-

over, while the unadjusted estimates suggest much larger impacts in GAIN sites

than in PI sites, the adjusted estimates largely reverse this trend.

The remainder of this article is organized as follows. Section 2 establishes the

basic setting for our problem, identifies our estimand, and distinguishes our work

from recent literature. Section 3 introduces our proposed estimator based on

approximate balancing weights. Section 4 shows how our setup and proposed

estimators naturally extend to multisite RCTs and sketches our framework for

decomposing treatment effect variation in this context. Section 5 compares our

proposed estimator to other standard estimators via simulation. Section 6 applies

our method to investigate treatment effect variation in the welfare-to-work

experiments. Section 7 concludes. We provide an R package, balancer, to

make our methods readily available to interested practitioners.

2. Setup

2.1. Estimand and Assumptions

We first consider a single-site RCT with a binary treatment, turning to multi-

site RCTs in Section 4. Of the n units in the experiment, n1 are assigned to

FIGURE 1. Distributions of the marginal prevalence of selected binary covariates across

the 59 sites of the multisite welfare-to-work experiments analyzed in this article. The

covariates are distributed differently across sites. For example, each site in Project

Independence had a greater proportion of welfare applicants than any site in the other

two multisite experiments.
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treatment and n0 are assigned to control. Let Zi 2 f0; 1g be a binary treatment

indicator for the ith unit. In addition to treatment assignment, we observe for each

unit a vector of d pretreatment unit-level covariates Xi and the unit’s posttreat-

ment outcome Yi. We adopt the potential outcomes framework and the stable

unit treatment value assumption (i.e., there is no interference between units and

only one form of treatment); see Neyman (1923) for their introduction and

Rosenbaum (2009) for an overview. Under this framework, each unit has a

potential outcome under treatment Yið1Þ and a potential outcome under control

Yið0Þ, with observed outcome Yi ¼ ZiYið1Þ þ ð1� ZiÞYið0Þ. Additionally, we
assume that the units in the experiment are independently and identically dis-

tributed (i.i.d.) according to some distribution P: fXi; Zi; Yið0Þ;Yið1Þg*
i:i:d :

P for

i ¼ 1; . . . ; n.
Throughout this article, we use several conditional expectations defined over

the experimental population’s distribution P. First, we denote the propensity

score for the experimental population as eðxÞ :¼ EPðZjX ¼ xÞ. To simplify nota-

tion, we assume that this is some constant p known by design, but our results

extend readily to nonconstant propensity scores. Second, we denote the prog-

nostic score, the expected control potential outcome conditioned on the observed

covariates, as m0ðxÞ :¼ EPfY ð0ÞjX ¼ xg. Analogously, we denote the expected
potential outcome under treatment conditioned on the observed covariates as

m1ðxÞ :¼ EP Y ð1ÞjX ¼ xf g. Finally, we denote the conditional ATE (CATE)

function as

tð�Þ :¼ EP Y ð1Þ � Y ð0ÞjX ¼ xf g:

In terms of tð�Þ, the ATE in our experimental population is

t :¼ EP Y ð1Þ � Y ð0Þf g ¼ EP½EP Y ð1Þ � Y ð0ÞjXf g� ¼ EP tðX Þf g ¼

ð
tð�ÞdPðxÞ: ð1Þ

We seek to characterize what the ATE in our site would be if it had some other

distribution of subjects. Let P� denote the distribution of some target population;

the experimental population can but need not be a subset of this target population.

Our primary estimand is then

t� :¼ EP� ½EP Y ð1Þ � Y ð0ÞjXf g� ¼ EP� tðX Þf g ¼

ð
tð�ÞdP�ðxÞ: ð2Þ

The inner expectation in (2) is taken over the experimental population’s

distribution of potential outcomes conditioned on X = x—that is, it is simply our

CATE function tð�Þ. The outer expectation in Equation 2 is taken over the target
population’s distribution of observed covariates, P�.

We make t� our estimand because it can help us understand treatment effect

variation across different populations. Because the CATE function tðxÞ in both t

and t� is the same, we can attribute any difference between t and t� to differ-

ences in the observed covariate distributions, P and P�. And, as we show when
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we extend our setup to multisite RCTs in Section 4, analogous reasoning in the

opposite direction—comparing ATEs defined by integrating different CATE

functions over the same distribution of observed unit-level covariates—can help

isolate differences in treatment effects due to site-level or unobserved unit-level

covariate differences between sites.

In addition to the foundational assumptions stated at the start of this section,

we make three assumptions that together identify t�. We assume that treatment is

randomized, that the probability of treatment is strictly between 0 and 1, and that

the target distribution of observed covariates overlaps with the experimental

distribution of observed covariates.

Assumption 1 (Randomization): Each unit’s treatment assignment is independent

of its potential outcomes given observed unit-level covariates: Y ð0Þ; Y ð1Þv
ZjX for fX ; Z; Y ð0Þ; Y ð1Þg*P:

Assumption 2 (Positivity of Treatment Assignment): If x satisfies pðxÞ > 0, then

0 < eðxÞ < 1.

Assumption 3 (Overlap): The target distribution of observed covariates is absolutely

continuous with respect to the experimental distribution of observed covariates:

p�ðxÞ � pðxÞ.

Assumption 3 requires that the target distribution of observed covariates have

zero density (probability) everywhere that the experimental distribution of

observed covariates has zero density (probability). This is analogous to the over-

lap condition commonly invoked in observational causal inference. Without it or

some other modeling assumption, the CATE at covariate values observable in the

target population but not in the experimental population cannot be identified.

One advantage of the framework we have established thus far is that the

assumptions involved are fairly light. Randomization and positivity of treatment

assignment are typically satisfied by design in RCTs. And the target population

can be chosen to satisfy absolute continuity, although this can be more difficult in

high dimensions (see, e.g., D’Amour et al., 2021, for discussion of issues that can

arise). Under Assumptions 1–3, t* can be identified by

t� ¼ EP� EPðY jZ ¼ 1;X Þ � EPðY jZ ¼ 0;X Þf g

¼ EP
ZY

eðX Þ
�
ð1� ZÞY

1� eðX Þ

8
<
:

9
=
;

dP�

dP
ðX Þ

2
4

3
5; ð3Þ

where dP�

dP
ðxÞ denotes the Radon–Nikodym derivative of the target distribution

relative to the sample distribution, which generalizes the likelihood ratio of

observing covariates x under the target and experimental distributions. Special

cases include when all covariates are discrete, in which case dP�

dP
ðxÞ is the ratio

of the probabilities of observing covariates X ¼ x in both distributions, and
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when all covariates are continuous, in which case it is the ratio of density

functions.

Throughout this article, we rely only on Assumptions 1 to 3 or, in Section 4,

their extensions to multisite RCTs. However, we pause here to note that other

work often invokes some form of the following assumption as well (Dahabreh

et al., 2019).

Assumption 4 (Mean Generalizability of Treatment Effects): For all x satisfying

p�ðxÞ > 0,

EP� Y ð1Þ � Y ð0Þj X ¼ xf g ¼ EP Y ð1Þ � Y ð0Þj X ¼ xf g:

Assumption 4 implies that the CATE function is the same in both the experi-

mental population and the target population wherever the target covariate distri-

bution has positive density. A common variation of this assumption is that units’

potential outcomes are independent of the population to which they belong,

conditional on covariates (Allcott, 2015; Flores & Mitnik, 2013; Hotz et al.,

2005). Under Assumption 4, our estimand t� is equivalent to the ATE in the

target population ~t� :¼ EP� Y ð1Þ � Y ð0Þf g ¼ EP� ½EP� Y ð1Þ � Y ð0ÞjXf g�. This is
a standard estimand in the transportability and generalizability literature.

However, we do not use Assumption 4, nor do we make ~t� our estimand,

because doing so would essentially assume away the phenomenon we seek to

isolate. We seek to develop a realistic account of the extent to which observed

unit-level covariate heterogeneity explains treatment effect variation across

populations relative to other possible factors. But Assumption 4 assumes already

that observed unit-level covariate heterogeneity explains all of it. Put differently,

Assumption 4 enables externally valid generalization of the within-experiment

ATE to the target population. Nie et al. (2021) assess sensitivity to this assump-

tion for an estimation approach similar to ours.

2.2. Related Work

This article builds on a growing literature on the transportability and general-

izability of treatment effects. For the most part, the setup and assumptions estab-

lished in Section 2.1 are common in this literature (see, e.g., Allcott, 2015;

Crepon et al., 2018; Dahabreh et al., 2019; Egami & Hartman, 2020; Hotz

et al., 2005; Tipton, 2014).

However, two features of our work are worth emphasizing. First, we consider

identification and estimation of site ATEs transported to an arbitrary target

population. This target population can be finite or infinite. And it can but need

not contain the experimental population. By contrast, previous work mostly

focuses on transportation to an observed, finite target population of units and

specifies whether the target population contains the experimental population or

not (Dahabreh et al., 2020; Dahabreh et al., 2019; Hotz et al., 2005). Second, as
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we note above, we seek to identify and estimate t� rather than ~t�. So we do not

require Assumption 4, which is often quite strong and difficult to verify in practice.

Despite these two differences, we can naturally adapt standard estimators for

~t� to estimate t� in our present setup. These estimators plug in estimates of the

terms that identify t� in Equation 3. They generally mirror standard outcome-

modeling and IPW estimators from the observational causal inference literature

(see Ackerman et al., 2019; Egami & Hartman, 2020, for recent discussion). For

example, if the conditional mean outcome model mzðxÞ :¼ EP Y ðzÞjX ¼ xf g is

correctly specified for z 2 f0; 1g, then the outcome-modeling estimator

t̂�om :¼ EP� m̂1ðX Þ � m̂0ðX Þf g; ð4Þ

is consistent for t� (see, e.g., Kern et al., 2016). Additionally, the IPW estimator

t̂�ipw :¼
1

n

Xn

i¼1

ddP�

dP
ðXiÞ

Zi
p
Yi �

1� Zi
1� p

Yi

� �
; ð5Þ

is consistent for t� if cdP�

dP
ðxÞ, the estimated ratio of the density of P� to the

density of P, is correctly specified. When both the experimental and target

populations are finite, we can estimate cdP�

dP
ðxÞ as follows. Let E 2 f0; 1g indicate

inclusion in the experimental population and T 2 f0; 1g indicate inclusion in the
target population. By Bayes’ rule, the change in measure is

dP�

dP
ðxÞ ¼

p�ðxÞ

pðxÞ
¼

PrðT ¼ 1jX ¼ xÞ

PrðE ¼ 1jX ¼ xÞ

PrðE ¼ 1Þ

PrðT ¼ 1Þ
: ð6Þ

We can then separately estimate the conditional probabilities in Equation 6.

See Dahabreh et al. (2020) and Westreich et al. (2017) for analogous discussion

in a similar setting. Finally, the doubly robust estimator

t̂�dr :¼
1

n

Xn

i¼1

ddP�

dP
ðXiÞ

Zi
p

Yi � m̂1ðXiÞf g þ EP� m̂1ðX Þf g;

" #

�
1

n

Xn

i¼1

ddP�

dP
ðXiÞ

1� Zi
1� p

Yi � m̂0ðXiÞf g þ EP� m̂0ðX Þf g

" #
ð7Þ

is consistent for t� if either the outcome model or the change-of-measure model

is correctly specified. Targeted maximum likelihood estimators for transported

site effects (Rudolph & van der Laan, 2017) can similarly be adapted to our

setup, but we do not discuss them at length.

IPW and outcome-modeling estimators, however, face well-known limita-

tions. IPWmight not achieve adequate finite-sample balance between the experi-

mental and target populations (Ben-Michael, Feller, et al., 2021). This can occur

when, for example, the conditional probability models are misspecified or when

there is poor overlap. This problem can become particularly acute because the

conditional probability estimates are inverted, as in Equation 6. Small errors in
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estimating the conditional probabilities can produce large errors in the resulting

effect estimate when inverted (Kang & Schafer, 2007). For this same reason,

IPW can be unstable, with a few units given extremely large weights and thereby

dominating the analysis (Robins et al., 2007). To be sure, these problems can

arise in other weighting methods, including the one we propose using. But IPW

offers only indirect, usually ad hoc remedies. Typically, an analyst who uses IPW

iteratively fits different conditional probability models until one achieves ade-

quate balance (Ben-Michael, Feller, et al., 2021; Harvey et al., 2017), with no

clear guidance on what changes are best (Imbens & Wooldridge, 2009). The

analyst may also trim or threshold the estimated probabilities afterward. See

Crump et al., 2009; Ma & Wang, 2020; Yang & Ding, 2018, for recent advances

in trimming IPW probability estimates.)

Like IPW, outcome modeling can depend heavily on model specification

and the outsize influence of individual units (but see Kern et al., 2016, for

evidence in favor of outcome modeling). While these vulnerabilities can be

checked, their remedies are again usually indirect and ad hoc. Unlike IPW,

outcome modeling is also prone to extrapolation: Estimates produced by

outcome modeling are not necessarily sample-bounded in the sense of Robins

et al. (2007) but instead can lie outside the support of the data (Chattopad-

hyay et al., 2020). Outcome models that rely on extrapolation can be sensi-

tive to small changes in specification as a result, and this sensitivity is not

typically reflected in the accompanying uncertainty quantification (Imbens,

2015; King & Zeng, 2006).

Our proposed weighting approach draws on the recent literature on

approximate balancing weights in observational causal inference (see, e.g.,

Athey et al., 2018; Hirshberg & Wager, 2021; Zubizarreta, 2015). Ben-

Michael, Feller, et al. (2021) give a recent review. These methods find

weights that minimize a measure of covariate imbalance between two groups

of units, typically between treated and control units in observational studies.

A special case of this approach called entropy balancing (Hainmueller, 2012)

arises when the weights can achieve exact balance in the covariates. In a set

of papers closely aligned with ours, Josey, Berkowitz, et al. (2021) and

Josey, Yang, et al. (2022) propose adapting entropy balancing to transport

treatment effects. These papers offer an important conceptual advance rela-

tive to transportation methods that rely on traditional IPW, often producing

better finite-sample performance and a smoother workflow. (See also Nie

et al., 2021, who incorporate sensitivity analysis into a related framework.)

However, weights that achieve exact balance are often infeasible in practice,

even with a moderate number of covariates. Thus, our proposed approach

extends their framework to allow for approximate balance, following a sug-

gestion in the conclusion of Josey, Berkowitz, et al. (2021). Finally, for a

related setting, Crepon et al. (2018) propose using outcome modeling for

dimension reduction and then entropy balancing for transportation. It is
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straightforward to adapt their approach to use approximate balancing

weights, as proposed here, rather than entropy balancing.

3. Weighting Estimators for Transported Site ATEs

We propose estimating t� via a linear weighting estimator t̂� with weights

ĝ 2 R
n:

t̂� :¼
1

n

Xn

i¼1

ĝi
Zi
p
Yi �

1

n

Xn

i¼1

ĝi
1� Zi
1� p

Yi ¼
1

n

Xn

i¼1

ĝi
Zi � p

pð1� pÞ
Yi : ð8Þ

Recall that we assume for clarity of exposition that the propensity score is

constant: eðXiÞ ¼ p. This is satisfied by design in many simple experimental

setups. The methods we propose in this section can be extended readily to non-

constant propensity scores by substituting eðXiÞfor p:
We want to choose weights that optimize the performance of t̂� as an esti-

mator for t� by some metric. In this article, we specifically consider choosing

weights to minimize the estimation error given by t̂� � t�, adapting arguments

and estimators from Athey et al. (2018) and Hirshberg and Wager (2021)

designed for observational studies to estimate transported effects. We discuss

in Section 3.1 one way of decomposing this estimation error. Then, we show in

Section 3.2 how we can use convex optimization to choose weights that minimize

in a controlled way the constituent parts of the decomposed estimation error.

3.1. Estimation Error Decomposition

First, we decompose the estimation error t̂� � t� into three terms: (1) covari-

ate imbalance between treated and control units in the experimental population,

(2) covariate imbalance between treated units in the experimental population and

the target population, and (3) error due to noise. Doing so yields

t̂� � t� ¼
1

n

Xn

i¼1

ĝ i
Zi � p

pð1� pÞ
m0ðXiÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
imbalance in m0ð�Þ

þ
1

np

Xn

i¼1

ĝ iZitðXiÞ � EP�ftðX Þg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
imbalance in tð�Þ

þ
1

n

Xn

i¼1

ĝi
Zi � p

pð1� pÞ
Ei

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise

;

ð9Þ

where Ei :¼ Yi � m0ðXiÞ � ZitðXiÞ. The first term in Equation 9 is the imbalance

in the expected control potential outcome m0ð�Þ within the study. It is largely

controlled by design via treatment randomization; if the weights ĝ are uniform,

then this term will be zero in expectation by Assumption 1. However, any

particular experiment will likely have some chance imbalance. In Section 3.2,

we propose choosing weights ĝ that adjust for this in a manner similar to regres-

sion adjustment or poststratification (Lin, 2013; Miratrix et al., 2011). The sec-

ond term in Equation 9 measures the discrepancy between the CATE averaged

over our reweighted sample and our estimand. We are primarily interested in

Lu et al.

429



controlling this term. The final term in Equation 9 arises from noise in the out-

comes and is related to the variance of the estimator.

If we knew the true prognostic score m0ð�Þ and CATE tð�Þ, then we could use
Equation 9 as a guide to choose weights ĝ: We would choose ĝ so that the

imbalances in m0ð�Þ and tð�Þ are both zero or close to it. But we do not know

the true prognostic score and CATE. So we posit a model class M for the

prognostic score m0ð�Þ and a model class T for the CATE tð�Þ. An example of

a model class is the set of linear models fb0 � xjb0 2 R
dg, which corresponds to

assuming that the prognostic score (or CATE) is linear in the covariates. We

consider two main sets of model classes in Section 3.3. With these model classes,

we can bound the estimation error by

jt̂� � t�j � sup
m2M

�����
1

n

Xn

i¼1

ĝi
Zi � p

pð1� pÞ
mðXiÞ

�����þ sup
t2T

�����
1

np

Xn

i¼1

ĝiZitðXiÞ � EP�ftðX Þg

�����

þ

�����
1

n

Xn

i¼1

ĝi
Zi � p

pð1� pÞ
Ei

�����: ð10Þ

This replaces the imbalance in the true prognostic score and CATE with the

worst-case imbalance across all potential prognostic scores m 2 M and CATEs

t 2 T . Doing so gives us a feasible guide for choosing the weights: If we can

place modeling restrictions on the prognostic score and the CATE, then we can

try to control the components of Equation 10. We turn to this next.

3.2. Minimizing the Worst-Case Estimation Error

To control the estimation error (Equation 9) given model classes for the

prognostic score M and the CATE T , we use convex optimization to find

weights that solve

min
g

sup
m2M

�����
1

n

Xn

i¼1

gi
Zi � p

pð1� pÞ
mðXiÞ

�����

2

þ sup
t2T

�����
1

np

Xn

i¼1

giZitðXiÞ � EP�ftðX Þg

�����

2

þ l
Xn

i¼1

g2i

�
Zi
p
þ

1� Zi
1� p

�

subject to
Xn

i¼1

Zigi ¼ n1;
Xn

i¼1

ð1� ZiÞgi ¼ n0; gi � 0:

ð11Þ

The objective in this optimization problem (Equation 11) directly targets the

upper bound on the estimation error (Equation 10). First, it optimizes external

validity by weighting treated units so that the weighted average of those units’

CATEs resembles the target distribution’s ATE t�. It does this for the worst-case

CATE function. At the same time, it maintains internal validity by weighting the

control units so that they are comparable to the weighted distribution of treated units
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with respect to the prognostic score. The final term in the objective penalizes the

weights for nonuniformity via an L2 regularization term; this is a proxy for the

variance due to noise in Equation 10. We include a regularization hyperparameter

l that controls this trade-off between better balance (lower bias) and more uniform

weights (lower variance). We discuss the choice of l in practice in Section 6.

The optimization problem (Equation 11) includes three constraints that stabilize

the estimator. The first two constrain the weights on the treated units and the control

units to sum to the number of treated units n1 and the number of control units n0,

respectively. This ensures that the estimator is robust to constant shifts in the out-

come (Ben-Michael, Feller, et al., 2021). The third constraint restricts the weights to

be nonnegative. This prohibits extrapolation from the support of the experimental

sample when estimating t� (see Ben-Michael, Feller, & Rothstein, 2021; King and

Zeng, 2006; Zubizarreta, 2015). Taken together, these constraints also ensure that the

estimator is sample-bounded in the sense that the resulting estimate is a convex

combination of observed responses (see Robins et al., 2007).

To estimate the standard error of t̂, we first estimate the conditional expected

potential outcome functions m̂1ð�Þ and m̂0ð�Þ via regularized weighted least

squares using the weights ĝ. Then, we compute the squared standard error as

V̂ ¼
1

n21

Xn

i¼1

Zi ĝ
2
i ðYi � m̂1ðXiÞÞ

2 þ
1

n20

Xn

i¼1

ð1� ZiÞĝ
2
i ðYi � m̂0ðXiÞÞ

2 : ð12Þ

The above expression for V̂ depends on the constraints on the sum of the

weights (the first two constraints in Equation 11).

Hirshberg et al. (2019) and Ben-Michael, Feller, et al. (2021) give technical

conditions for t̂� to be asymptotically normal around the true value t� and for

Equation 12 to give standard error estimates that are consistent. Following our

discussion on implementation below, we estimate the two potential outcome

models m̂1ð�Þ and m̂0ð�Þ via ridge regression.

3.3. Implementation

We implement the optimization problem in Equation 11 for two pairs of

model classes when the target distribution P� is an empirical distribution over

m units with covariates f eX 1; . . . ; eXmg, where the tildes emphasize that the target

covariates are potentially different from the experimental sample. In the first,

both m0ð�Þ and tð�Þ are linear in transformations of the observed covariates. That

is, M ¼ fb0 � f0ðxÞj k b0 k� C0g and T ¼ fbt � ftðxÞj k bt k� Ctg, where

f0ð�Þ and ftð�Þ are some specified transformations of the covariates and C0 and

Ct are nonnegative constants. In this formulation, we allow the models to use

different transformations of the covariates f0ð�Þ and ftð�Þ so that, for example,

m0ð�Þ can have more expressive transformations that create a more flexible basis

expansion while tð�Þ can be restricted to a simpler CATE function (see Hahn

et al., 2020; Künzel et al., 2019, for related discussion). By the Cauchy–Schwarz

Lu et al.

431



inequality, the special case of the optimization problem in Equation 11 when we

use the L2 norm k � k2—that is, when we seek to minimize the worst-case sum of

squared imbalances—is2

min
g

�����
1

n

Xn

i¼1

gi
Zi � p

pð1� pÞ
f0ðXiÞ

�����

2

2

þ

�����
1

np

Xn

i¼1

giZiftðXiÞ �
1

m

Xm

‘¼1

ftð eX ‘Þ

�����

2

2

þ l
Xn

i¼1

g2i
Zi
p
þ

1� Zi
1� p

0
@

1
A

subject to
Xn

i¼1

Zigi ¼ n1;
Xn

i¼1

ð1� ZiÞgi ¼ n0; gi � 0:

ð13Þ

This optimization problem is a quadratic program (QP), sowe can efficiently solve

it even with many units and high-dimensional f0ð�Þ and ftð�Þ by, for example, the

alternating direction method of multipliers (Boyd et al., 2010). Reweighting to the

target distribution requires only the average of ftð eX ‘Þ over the target distribution.
Thus, we can solve Equation 13 without knowing the full underlying distribution

f eX 1; . . . ; eXmg. This reduced data requirement can be useful in practice.

Second, we can generalize this setup using kernels; for a review, see Ben-

Michael, Feller, et al. (2021). Formally, let Hk0 and Hkt be reproducing kernel

Hilbert spaces (RKHS) with associated kernels k0 : R
d 	 R

d ! R and

kt : R
d 	 R

d ! R, where, recall, d is the dimension of X. Informally, these ker-

nels k0 and kt calculate “similarity scores” between points in the covariate space,

with potentially different measures of similarity for the two kernels. Then, we can

consider the model classes for the prognostic score and the CATE to be M ¼

fm0ð�Þ 2 Hk0 j k m0kHk0
� 1g and T ¼ ftð�Þ 2 Hkt j k t kHkt

� 1g, respec-

tively, where k � kHk
is the RKHS norm induced by kernel k. By the reproducing

property, we can write these model classes as linear in infinite-dimensional bases,

f0ð�Þ and ftð�Þ, defined by the kernel functions k0 and kt, respectively.

The resulting specialization of Equation 11 involves the imbalances in the infini-

te-dimensional transformations of the covariates, f0ðXiÞ and ftðXiÞ. However,
we do not need to explicitly compute the imbalance in these infinite

dimensions. Instead, we can use the “kernel trick”—hf0ðxÞ;f0ðyÞi ¼ k0ðx; yÞ and
hftðxÞ;ftðyÞi ¼ ktðx; yÞ—and write the balancing weights optimization problem as

min
g

1

n2

Xn

i¼1

Xn

j¼1

gigj
Zi � p

pð1� pÞ

Zj � p

pð1� pÞ
k0ðXi;XjÞ

þ
1

n2p2

Xn

i¼1

Xn

j¼1

gigjZiZjktðXi;XjÞ � 2
1

nmp

Xn

i¼1

Xm

‘¼1

giZiktðXi; eX ‘Þ

þ l
Xn

i¼1

g2i
Zi
p
þ

1� Zi
1� p

0
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1
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subject to
Xn

i¼1

Zigi ¼ n1;
Xn

i¼1

ð1� ZiÞgi ¼ n0; gi � 0:

ð14Þ
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As above, this optimization problem is a QP.3 To compute the imbalance terms,

we only need to compute the kernel evaluations k0ðXi;XjÞ and ktðXi;XjÞ for each
pair of units in the experimental population, as well as the expected kernel evaluation

in the target distribution EP�fktðXi;X Þg for each treated experimental unit Xi.

The kernel functions are the key determinants of this second approach. From

one view, they define the model classes for m0ð�Þ and tð�Þ. From another view,

they define the transformations of the covariates we seek to balance. While this is

a nonparametric approach, it is not a panacea and can still be subject to model

misspecification. In our simulations in Section 5, we consider the commonly

used radial basis function (RBF) kernel kðx; x0Þ ¼ expð�kx� x0k2Þ (see, e.g.,

Hastie et al., 2009, § 5.8 and § 12.3).4 Although popular, this choice of kernel

still makes fairly strong assumptions on the model class, namely that the models

are infinitely differentiable and hence very smooth. Thus, this kernel can lead to

model misspecification and get the error bound in Equation 10 wrong if, for

example, the true model is not so smooth. In addition, the kernel-based approach

has a higher data requirement than the finite-basis-expansion approach: Unlike in

Equation 13, the full set of unit-level covariates in the target population

f eX 1; . . . ; eXmg is needed in Equation 14 to compute the kernel evaluations

between the treated units and the target population, ktðXi; eX ‘Þ.

4. Extension to Multisite RCTs

In this section, we extend our proposal to multisite RCTs. We begin with the

formal setup and then turn to substantive questions we can address using the

adjusted estimates.

4.1. Setup

Consider a multisite RCT with n total units across J sites, in which the nj units

in site j are separately randomized with probability of treatment pj. To extend our

framework to this setting, we simply repeat the analysis in Sections 2 and 3

separately for each of the J sites. Our estimand for the jth site is the ATE in the

site if its population had the same distribution of observed unit-level covariates as

the target population:

t�j :¼ EP� ½EP Y ð1Þ � Y ð0ÞjX ; S ¼ jf g� ¼ EP� m1jðX Þ � m0jðX Þ
	 


¼

ð
tjðxÞ dP

�ðxÞ;

ð15Þ

where S 2 f1; . . . ; Jg indicates the unit’s site membership, mzjðxÞ :¼
EP Y ðzÞjX ¼ x; S ¼ jf g is the conditional mean potential outcome function in

the jth site, and tjðxÞ ¼ m1jðxÞ � m0jðxÞ is the CATE in the jth site. If Assump-

tions 1–3 hold within each site, then t�j is identifiable as in Equation 3 for each

j 2 f1; . . . ; Jg.

Lu et al.

433



Our weighting approach to estimating t� in the single-site setting can be

directly applied to estimate t�j for any j 2 f1; . . . ; Jg: We simply treat the units

in the jth site as the experimental population and ignore units in other sites. We

thus refer to our weighting estimator in this multisite context as t̂�j . By sequen-

tially solving Equation 11 for each j 2 f1; . . . ; Jg, we can obtain the weights ĝ

that define our weighting estimators t̂�1; . . . ; t̂
�
J . The standard outcome-modeling,

IPW, and doubly robust estimators from Section 2.2 can similarly be extended to

this multisite setting by restricting attention only to the units from the site of

interest j.

4.2. Using the Adjusted Estimates

We now turn to the substantive questions we can address given the unadjusted

site-level ATEs t1 ; . . . ; tJ and the adjusted site-level ATEs t�1; . . . ; t
�
J . A large

and diverse literature seeks to understand how compositional and contextual

differences across sites contribute to treatment effect variation; examples include

Dehejia (2003), Bloom et al. (2003), Bloom and Weiland (2015), Bryk and

Raudenbush (1988), Djebbari and Smith (2008), May et al. (2014), Raudenbush

et al. (2012), Weiss et al. (2014), Walters (2015), and Crepon et al. (2018). We

focus on three main sets of inquiries: (1) comparing adjusted estimates across

sites, (2) examining the distribution of adjusted estimates, and (3) comparing

adjusted and unadjusted estimates.

4.2.1 Comparing adjusted estimates across sites. As we discuss above, the most

immediate application of this framework is to compare adjusted estimates across

sites, often with the goal of identifying better-performing programs; prominent

examples in the context of job training and adult education include Bloom et al.

(2003), Hotz et al. (2005), Dehejia (2003), and Crepon et al. (2018). Comparing

unadjusted impacts between two sites captures a myriad of differences, including

differences in the populations served. However, adjusting for observable unit-

level differences allows for more direct apples-to-apples comparisons between

sites, even if many other differences remain. In particular, using the adjusted site-

level estimates to identify sites of interest avoids inadvertently identifying sites

based on their idiosyncratic (observed) population characteristics. For example,

in our results in Section 6, the unadjusted estimates suggest much larger impacts in

GAIN sites than in PI sites, but the adjusted estimates largely reverse this trend.

Finally, while we do not explore this here, the adjusted site-level estimates can

also be inputs into site-level regressions and other models that seek to explain

differences across sites. Using the adjusted site-level estimates removes variation

due to distributional differences in observed unit-level covariates and thus

reduces the possibility of reporting spurious relationships between site-level

covariates and the site ATEs.
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4.2.2. Understanding the distribution of adjusted estimates. A more general goal

is to understand the cross-site distribution in the adjusted estimates, which has

important implications for policy and research (see Weiss et al., 2017, for a

thorough discussion of cross-site variation).

One measure of the distribution is the variance of the ATEs across sites. Let y

be the variance of t1; . . . ; tJ , and let y
� be the variance of t�1; . . . ; t

�
J . We can then

compare y and y� to understand how individual characteristics relate to cross-site

differences in aggregate. For example, even if a program has a positive estimated

effect overall, substantial cross-site variation introduces policy risk for local

decision-makers. This is especially true if such variation is difficult to predict.

Understanding y�, the variation in adjusted site-level impacts, therefore gives

policymakers a sense of this risk. y� is also important for research design and

assessing generalizability: If there is little variation in the adjusted estimates,

then researchers can be more confident in generalizing from the purposive sam-

ple to new sites (see Tipton, 2014). See Online Appendix A for how we estimate

y and y� using meta-analytic techniques.

4.2.3. Comparing adjusted and unadjusted estimates. Finally, we can compare

the adjusted and unadjusted site-level estimates to quantify the level of cross-site

variation explained by distributional differences in unit-level covariates. We can

view this as the natural multisite extension to the literature on decomposing

treatment effect variation in randomized trials (see, e.g., Ding et al., 2019; Djeb-

bari & Smith, 2008; Schochet et al., 2014).

We can directly compare y and y�, the cross-site variances of the unadjusted

and adjusted estimates, respectively, with a pseudo-R2 measure of

R2
:¼ 1�

y�

y
: ð16Þ

This R2 measure approximates the amount of site-level variability attributable

to observed unit-level covariates. This is only a pseudo-R2 measure since varia-

bility might actually increase after transportation (y� > y) if differences in

observed unit-level covariate distributions mask variability due to differences

in site-level features. An increase in variability could be a noteworthy finding. In

fact, we find such an increase in our empirical application.

The R2, y, and y� values can help inform the design of future studies, espe-

cially when selecting representative sites for a generalizable experiment (Tipton,

2014). In particular, if unit-level covariates explain very little of the cross-site

variation, then taking those covariates into account when selecting sites is less

imperative (see Tipton et al., 2019).

We caution that comparisons of tj to t�j reveal the influence of sites’ distribu-

tions of observed unit-level covariates on the sites’ ATEs. They do not necessa-

rily reveal the influence of the covariates themselves on individual treatment

effects, as a standard analysis of heterogeneous treatment effects in a single-site
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study might. For example, tj and t�j can be similar even when some unit-level

covariates strongly moderate the treatment effect for individual units. And they

can be different even though all the unit-level covariates only weakly influence

the treatment effect for individual units. For intuition on this, consider a linear

treatment effect model for site j where the CATE is linear in observed unit-level

covariates with coefficient vector bj. We can decompose the difference between

tj and t�j as

tj � t�j ¼ bj � EðX jS ¼ jÞ � EP�ðX Þf g:

This expression shows that the magnitude of tj � t�j depends on several

factors. Even if the magnitudes of bj are large, the difference tj � t�j can be

small if these coefficients effectively cancel each other out or if the differences in

the sites’ covariate averages are small. Conversely, if the magnitudes of bj are

small, the difference between estimates can still be large if there are substantial

differences in the sites’ covariate averages.

5. Simulation Study

In this section, we examine the behavior of our proposed estimators and

compare them to outcome-modeling, IPW, and doubly robust estimators via

simulation. We base our simulations on data from the welfare-to-work experi-

ments analyzed by Bloom et al. (2003), introduced in Section 1. In these experi-

ments, treated units were given adult education and job training through the

welfare-to-work program, while untreated units were not. Our outcome of inter-

est is log earnings in dollars; for units with zero earnings, we add US$100 before

logging to avoid undefined outcomes.

We generate data for our simulations using this dataset as follows. First, we

define the CATE tjð�Þ in the jth site to be a linear function of a subset of our unit-
level covariates Xi—prior log earnings; indicators for whether prior earnings

were zero, between zero and US$2,500, between US$2,500 and US$7,500, or

greater than US$7,500; indicators for being less than 25 years old, between 25

and 34 years old, between 35 and 44 years old, or greater than 44 years old; an

indicator for having a child younger than 6 years old; an indicator for applying

for welfare; and an indicator for receiving welfare continuously for the past

year—with an intercept term specific to the multisite experiment to which the

jth site belongs. We base the coefficients in the CATE function on the coeffi-

cients on the interactions between treatment and covariates in a linear regression

of the outcome on treatment and covariates in the actual experimental data. See

Online Appendix B for the precise coefficient values and additional details.

In each of the 100 simulation repetitions, we generate a bootstrap sample of

each of the 59 sites, define the potential outcomes under control Yið0Þ to be

the observed outcomes of the bootstrapped units plus a noise term
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Ei
*i:i:d : Nð0; 0:52Þ, and generate potential outcomes under treatment Yið1Þ by

adding tjðXiÞ to Yið0Þ. We then randomize treatment assignment, keeping the

proportion of treated units in each site the same as in the original dataset, and set

the observed outcome to the corresponding potential outcome.

In each repetition, our estimands are the site ATEs transported to the overall

bootstrapped population. In other words, we seek to estimate t�1; . . . ; t
�
59 defined

in Equation 15, where P� is the bootstrapped population of all units across all

three experiments. Note that, for any two sites k and ‘, t�k and t�‘ differ only by

their experiment-specific intercepts since the unit-level covariates define tjð�Þ in
the same way for all j 2 f1; . . . ; 59g by design.

We estimate t�1; . . . ; t
�
59 using two versions of our weighting estimator t̂�j . The

first, which we refer to as “linear,” optimizes the weights over the class of linear

functions of Xi that could define m0jð�Þ and tjð�Þ, as in Equation 13. The second

version, which we refer to as “RBF,” optimizes the weights to solve Equation 14,

where the kernel function for the control potential outcomes, k0ð�; �Þ, is the RBF

kernel kðx; x0Þ ¼ expð�kx� x0k2Þ, and the kernel for the CATE, ktð�; �Þ, is the
linear kernel kðx; x0Þ ¼ x � x0; this latter kernel corresponds to a standard linear

basis, such as that implied by ridge regression. Both the linear and RBF versions

of t̂�j require only the covariate means, not the full covariate distribution, of the

target population because they assume the CATE is linear in covariates. In this

simulation, both versions correctly specify tjð�Þ, but the RBF version of t̂�j allows

a more flexible model for m0jð�Þ than the linear version does. Since only one

covariate is continuous, however, it is not obvious that this greater flexibility will

appreciably advantage the RBF version.

For comparison, we also estimate t�1; . . . ; t
�
59 using the outcome-modeling,

IPW, and doubly robust estimators described in Section 2.2. For these models,

we use logistic regression to estimate PrðS ¼ jjX ¼ xÞ and linear regression to

estimate mzjð�Þ. Finally, as a benchmark, we also compute the naive, unadjusted

difference-in-sample-means estimate of each site ATE, �Y j1 � �Y j0 for j 2 1, . . . ,

59, to estimate t�1; . . . ; t
�
59.

We ran the simulation as described above three times. Each time, we changed

the magnitude of the coefficients on the unit-level covariates defining the CATE.

Specifically, we ran the simulation with the coefficients multiplied by 1, 5, and

10. This range of magnitudes reflects the varying values the pseudo-R2 of Equa-

tion 16 might take in a multisite experiment—that is, the varying degrees to

which distributional differences in observed unit-level covariates could explain

ATE heterogeneity across sites relative to other factors. For context, Table 1

provides summary statistics of the data-generating processes used in the three

versions of the simulation.

We evaluate the estimators’ performance by computing the root mean squared

error (RMSE) and bias for each of the 59 sites over the simulation repetitions.
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Figure 2 shows the RMSE and mean absolute bias of each estimator, averaged

over the 59 sites. We show the RMSE and absolute bias of the outcome-modeling

and doubly robust estimators separately in Figure C.1 of Online Appendix C

because they are substantially larger than those of the estimators shown here.

FIGURE 2.Mean absolute bias (top) and root mean squared error (bottom) of each estimator

over 100 repetitions of the welfare-to-work simulation. The conditional average treatment

effect is defined as a sparse linear function of unit-level covariates plus an experiment-specific

intercept term. Results for the outcome-modeling and doubly robust estimators are omitted

because they are substantially larger; see Online Appendix C for those results. Table 1 offers

summary statistics to contextualize these results.

TABLE 1.

Summary Statistics of the Data-Generating Processes Used in the Simulations

CATE

Multiplier R2

Range

of tjðxÞ
SD

of Y

Range

of t�j

Avg

Y (0)

Avg

Y ð1Þ=Y ð0Þ ($)

1 :01 ð�0:09; 2:01Þ 2:29 ð0:34; 1:75Þ 6,380 2.55

5 :18 ð�0:42; 4:42Þ 2:45 ð1:70; 3:11Þ 6,380 11.88

10 :46 ð�0:84; 7:44Þ 2:96 ð3:41; 4:81Þ 6,380 107.73

Note.We perform the same simulation three times, each with a different multiplier on the coefficients

of the unit-level covariates that define the CATE. CATE ¼ conditional average treatment effect.
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Based on our examination of individual model fits, we determined that this was

because one or both of the outcome models tends to have unstable coefficient

estimates in a handful of sites, likely due to limited sampling and multicollinear-

ity. In such cases, the outcome model struggles to stably extrapolate, as discussed

in Section 2.2, and produces extreme predicted outcomes for some units. See

Online Appendix C for details).

Although we logged the outcome, we can conceptualize these performance

metrics in terms of dollars. For example, the exponentiated bias represents how

disproportionate the estimated ratio between the treated and control potential out-

comes (in dollars) is from the true ratio. Thus, the naive estimator’s bias of about 0.25

in log earnings on average across sites in themiddle panel of Figure 2 indicates that its

estimate of the ratio between treated and control potential outcomes (in dollars) was

about e0:25 
 1:28 times the true ratio in the site after adjustment. Table 1 lists the

average control potential outcomes and the average ratio between the treated and

control potential outcomes for each simulation setup. From those values, we see that

the naive estimator’s bias of about 0.25 in log earnings corresponds to a positive bias

of about US$21,000 over the true difference of about US$69,000.

The right panels of Figure 2, where unit-level covariates explain a substantial

amount of cross-site ATE heterogeneity, illustrate the bias-variance trade-off of

regularizing our weighting estimators. Three trends in the behavior of our weighting

estimators are apparent there. First, our weighting estimators are least biased when

almost completely unregularized. Second, their RMSEs are lowest at some medium

level of regularization. Third, they reduce to the naive estimator when heavily

regularized.

The different simulation setups also show how different estimators compare. In

the left panels, where unit-level covariates explain little heterogeneity, adjustment is

unnecessary. So the naive estimator has lower bias and RMSE than the other esti-

mators, which are essentially overfitting to noise. In the middle panels, where unit-

level covariates explain more heterogeneity, IPW does as well as our weighting

estimators at reducing bias without requiring a choice of regularization, although it

comes at the cost of higher RMSE. In the right panels, where unit-level covariates

explain the most heterogeneity, the linear weighting approach can achieve lower bias

than IPW, with a much lower overall RMSE. These results indicate that the inverse

propensity weights are relatively unstable compared to the balancing weights in

these simulations due to overlap issues across sites, leading the IPW estimator to

have higher variance.

In this simulation, we find that using the RBF kernel for the prognostic score

has higher bias and RMSE than the linear approach that makes the more

restrictive assumption that the prognostic score is linear, except in very low

regularization settings where the RMSE is poor regardless. Practically, this

indicates that controlling the imbalance in the covariate means between the

treated and control groups is sufficient to control the bias. In attempting to
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control a flexible, nonparametric measure of balance instead, the RBF approach

is failing to control balance in the marginal covariates, leading to increased

bias. By the same token, the RBF weights are made more extreme to control this

nonparametric balance, leading to a higher-variance estimator without the ben-

efits of reduced bias. Based on these results, we use the linear approach in our

empirical analysis in Section 6.

To better understand how the estimators perform under a wider variety of

settings, we rerun these simulations with model misspecification and with

reduced resampling proportions. Details and results are in Online Appendix C.

Overall, we find that the performance of the IPW and balancing-weights estima-

tors predictably deteriorates but remains fairly robust. We also find that the same

trends in relative performance discussed here largely hold.

5.1. Results With Smaller Site and Sample Sizes

Our main application and corresponding calibrated simulation study have

69,399 units across 59 sites. Few multisite experiments are this large. To under-

stand how the estimators discussed in this article perform in smaller multisite

experiments, we rerun the simulations above twice. In one, we resample only

34% of the sites (20 sites) and 20% of the units (13,880 units) in each repetition,

leading to roughly 700 units per site on average. In the other, we resample only

25% of the sites (15 sites) and 5% of the units (3,470 units), leading to about 230

units per site on average. We keep the relative proportion of units in each site the

same as in the full data set.

Appendix Figures C.3 and C.4 show the resulting mean absolute bias and RMSE

of the estimators for these two simulation studies. Results for the outcome-modeling

and doubly robust estimators are omitted because they are substantially larger. First,

the reduced sample size worsens the performance of all estimators as expected. But

as sample size goes down, the benefit of weighting relative to just using the naive

estimator goes down substantially as well. With smaller sample sizes, the weights

cannot achieve as much balance, so they cannot reduce bias as effectively. Thus,

consistent with other research on multisite trials (Bloom & Spybrook, 2017; Hedges

& Pigott, 2001; Raudenbush & Liu, 2000), we find that our ability to extract

information on cross-site distributions decreases as the size and number of sites

decrease. Unlike these existing results for untransported estimates, however, we

must also consider the effective sample size after transportation. This is typically

smaller than the nominal sample size, further reducing our power.

6. Empirical Application

Wenow apply our method to characterize treatment effect variation in the welfare-

to-work experimental data. Recall that treated subjects were offered job training and

adult education through the welfare-to-work program, while untreated subjects were

not. Our outcome of interest in this analysis is a binary indicator of employment at
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any point over the two years after treatment assignment, measured by nonzero total

earnings over those two years. Figure 3 plots the average outcome in each treatment

condition in each site. In most sites, the employment rate among treated units is

higher than among control units; estimated impacts are the differences between the

“þ”s and the dots.We also see substantial heterogeneity in terms of baseline employ-

ment rates, and that the sites in the PI study generally have higher rates of employ-

ment. Pooling all sites, the average employment rate among the treated subjects was

62.9%, while the average among the control subjects was 57.6%. The standard

deviation of the 59 site ATE estimates is about 7.2 percentage points.

In many sites, assignment to welfare-to-work programs increased the prob-

ability of employment within the first two years. However, interpreting these

site-specific estimates collectively is difficult because there are several different

possible sources of treatment effect variation across sites. For example, a

welfare-to-work program might be more effective in urban sites, but it also might

be more effective for non-Hispanic White people, who are more common in rural

and suburban sites than in urban ones. A principled framework for cross-site

treatment effect comparisons is needed to disentangle these sources of variation.

We adopt the framework from Section 4. Under this framework, we first estimate

what the ATE in each site would be if all sites had the same population of subjects.

We can then attribute the remaining treatment effect variation across sites to differ-

ences in site-level or unobserved unit-level covariates. In this case, we transport the

ATE estimates to the overall population of 69,399 subjects. In Online Appendix D.3,

we also transport the ATE estimates to the population of units in the PI study for

further analysis. We transport by solving the optimization problem in Equation 13,

where ftð�Þ and f0ð�Þ each map the 23 observed covariates to a basis that includes

the original covariates and the interactions between a covariate indicating zero prior

earnings and covariates indicating race (see Online Appendix D for more informa-

tion about these covariates). We standardize the covariates and their interactions to

have unit variance before solving Equation 13.

FIGURE 3. Employment rate in the treated and control group of each site two years after

randomization. Sites where the treated group has a higher employment rate than the

control group are shown in blue.
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As discussed in Section 3, we must choose the regularization parameter l in

Equation 13. To do so, we first solve Equation 13 for a range of values of l and

then compare the resulting reductions in covariate imbalance and effective sam-

ple size. Given weights ĝ, we measure covariate imbalance between the treated

and control groups by computing within each site the sum of squared differences

in the treated and control groups’ weighted average covariate values, then aver-

aging over the sites:

Treated vs: Control Imbalance ¼
1

59

X59

j¼1

�����
1

nj

X

i:Si¼j

ĝi
Zi � pj

pjð1� pjÞ
f0ðXiÞ

�����
2

:

We also measure covariate imbalance between the treated group and the target

population by computing for each site the sum of squared differences between

the treated subjects’ weighted average covariate values and the target popula-

tion’s average covariate values, then averaging over the sites:

Treated vs: Target Imbalance ¼
1

59

X59

j¼1

�����
1

njpj

X

i:Si¼j

ĝiZiftðXiÞ � EP� ftðX Þf g

�����
2

:

Tomeasure overall effective sample size, we compute Kish’s effective sample

size (Kish, 1965) in each site and then average those values over the sites.

Figure 4 shows the trade-off between imbalance reduction and effective sam-

ple size reduction. Since treatment was randomized in each site, the treated and

control groups were fairly balanced even before weighting. We therefore focus

on covariate imbalance between the treated group and the target distribution.

Setting l ¼ 0:03 reduces covariate imbalance by 80%. The remaining imbalance

is less than the imbalance between the unweighted treated and control groups,

which, again, is due to chance randomization alone. This imbalance reduction

comes at the cost of an approximately 70% reduction in effective sample size.

Figure 5 shows in more detail the covariate imbalance in each site before and

FIGURE 4. Reductions in covariate imbalance and effective sample size due to weighting

with different levels of regularization. The dashed line marks the level of covariate

imbalance observed between the treated and control groups without weighting. This

imbalance is due to chance randomization alone. Regularization manages the trade-off

between covariate imbalance (bias) and effective sample size (variance).
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after weighting with l ¼ 0:03. In most sites, the covariate imbalance between the

treated and control groups due to chance randomization alone (before weighting)

did not exceed 0.15. In only seven sites did the imbalance between the treated

group and the target population after weighting exceed that approximate thresh-

old. This indicates that weighting with l ¼ 0:03 reduces covariate imbalance

well across the board.

To better visualize the cost of transporting the site ATE estimates in terms of

sample size, Figure 6 shows the boxplots of the distribution of weights within

each site, with weights less than 0:1% excluded. The distribution of weights in

some sites is heavily skewed, so that a few subjects are given outsize weight. This

lowers those sites’ effective sample sizes and increases the standard errors of

their transported ATE estimates. Figure 6 also plots the effective sample size of

each site as a percentage of the site’s original sample size. In most sites, the

FIGURE 5. Root mean squared covariate imbalance between the treated group and the

control group (blue) and between the treated group and the target population (red) before

and after weighting. The covariates are standardized to have unit variance. In most sites,

the covariate imbalance between the treated and control groups before weighting (i.e.,

due to chance randomization alone) did not exceed 0.15, marked by the vertical dashed

line. In most sites, weighting brought the covariate imbalance between the treated group

and the target population within this range.

FIGURE 6. Distribution of nonzero weights in each site (left) and effective sample size

after weighting, plotted also as a percentage of the original unweighted sample size

(right).
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reduction in sample size was substantial. The median sample size before weight-

ing was 729, while the median effective sample size after weighting was 181; the

smallest effective sample size in a site was 18. Our simulation results highlight

the potential problems from such a dramatic drop in effective sample size:

Figure 2 shows that there is a point at which the cost (in terms of RMSE) of

reducing the effective sample size is greater than the benefit of reducing the bias.

Overall, PI sites had more skewed distributions of weights and lower effective

sample sizes than NEWWS and GAIN sites: This motivates our supplemental

analysis in Online Appendix D.3 that targets the population of PI subjects instead

of the overall population across all three experiments.

Based on these trade-offs, we choose to optimize the weights in Equation 13

with l ¼ 0:03. Figure 7 shows the resulting transported ATE point and 95%

confidence interval estimate in each site, plotted against the untransported ATE

estimates. We use Equation 12 to compute the standard errors of our transported

estimates. Transportation substantially changed some sites’ ATE estimates,

though most sites saw little change.

Transportation also modestly increased the estimated overall variability in site

ATEs. We estimate that the standard deviation of the true untransported ATEs is

by
1
2 ¼ 0:055, with a 95% confidence interval of [0.048, 0.075]. The corresponding

estimate for the true transported ATEs is by�1
2 ¼ 0:060, with a 95% confidence

interval of [0.044, 0.089]. Using our pseudo-R2measure, we estimate a negative R2

of�0:19, indicating a 19% increase in the estimated cross-site variance of impacts

after adjusting for observed unit-level covariate distributions. This point estimate

suggests that differences in the distributional makeup of the different sites could be

masking differences in the overall efficacy of treatment implementation at these

sites. That being said, the overlapping confidence intervals on both standard devia-

tions suggest that we should take the pseudo-R2 point estimate as approximate.

FIGURE 7. Point estimate and 95% confidence interval for the transported average

treatment effect (ATE; in percentage points), plotted against the untransported ATE

estimates. Points are sized by percentage effective sample size after weighting.
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Obtaining a confidence interval for the R2 measure itself is complex due to the

unknown correlation structure between y and y�; we leave this to future work.

Overall, the low magnitude of the R2 estimate, representing the small shift from by
to by�

, and the low magnitudes of by and by�
themselves suggest that cross-site

treatment effect heterogeneity in these experiments is primarily driven by site-

level features (or unobserved unit-level features), not by systematic differences in

populations, as measured by our observed covariates, across sites. This is consis-

tent with others’ findings (e.g., Bloom et al., 2003).

Analyses such as the one presented above could affect conclusions about the

relative effectiveness of program types. Figure 8 plots the estimated overall ATE

in each experiment before and after transportation. Before transportation, treat-

ment appeared most effective in the GAIN experiment and least effective in the

PI experiment. After transporting the sites to the same target distribution of unit-

level covariates, we see some evidence that the treatment was least effective in

the NEWWS experiment, but we are not confident about this conclusion, given

the uncertainties associated with the point estimates. For example, we see in

Figure 8 a meaningful increase in the ATE estimate and associated uncertainty

for the PI experiment. Figure 9 offers another perspective on this same phenom-

enon: The weighting process gave substantial weight to only a small percentage

FIGURE 8. Point estimate and 95% confidence interval for the average treatment effect

(in percentage points) in each experiment before and after transportation.

FIGURE 9. The absolute, percentage-point change in each site’s estimated average

treatment effect after weighting, plotted against the effective sample size as a percentage

of original sample size.
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of subjects in the PI experiment, and treatment affected those subjects much

differently than it affected other, unrepresentative subjects. The unrepresentative

nature of the subjects in the PI experiment compared to the overall population,

combined with the fact that PI sites were generally smaller to begin with, as

Figure 6 shows, hinders comparisons between the PI experiment and the others.

This was perhaps to be expected, given how dramatically different the PI subjects

were from the other experiments’ subjects with respect to welfare status and prior

earnings, as shown in Figure 1. A strong majority of PI subjects were welfare

applicants, but very few had received welfare continuously for the prior 12

months, and most had nonzero prior earnings. By contrast, the opposite was true

of subjects in most GAIN and NEWWS sites. See Online Appendix D.3 for the

results from transporting each site to the distribution of PI units, which in effect

assesses each site’s performance on this distinct population. We find there that

the ATE for NEWWS sites is substantially reduced, further indicating that treat-

ment effect differences across the studies are partially driven by differences in

the populations served.

7. Discussion

It is important for researchers and policymakers to understand how treatment

effects vary across contexts. Multisite trials can help develop this understanding

because the treatments are observed in a variety of settings. However, variation

in site ATEs can reflect variation in not only the populations of individuals but

also contextual and site-level characteristics. Building on the literature on treat-

ment effect generalization and transportation, we propose to estimate what the

site ATEs would be if the sites all had the same population of units. We first

develop an approximate balancing-weights procedure that transports estimates

from a single site to a given target population and show how the procedure

compares to more traditional IPW. We then extend this to the multisite trial

setting and show via simulation that this framework is applicable to some very

large multisite trials, though power is limited in more typical settings. Applying

this method to welfare-to-work experiments that randomly provide some parti-

cipants access to job training and adult education, we find that heterogeneity in

the sites’ populations could be masking differences in how effectively the treat-

ment was implemented across sites.

There are several avenues for future work. First, the choice of target popula-

tion is critical for addressing different substantive questions. In our main anal-

ysis, we choose to reweight to the overall population. But we could instead target

all participants who were unemployed at baseline, for example. Targeting dif-

ferent populations might lead to substantively different conclusions. If there are

important and substantial interactions between unit-level and site-level attributes

in determining treatment effects, then we may wish to use several target popula-

tions and characterize the variation across the different targets. Future work
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might seek to characterize and present this variation in an interpretable and useful

way. Alternatively, we could ask a different question: For any given site j, how

would the ATE in the site change if the site had the kth site’s distribution of

observed unit-level covariates, for k 2 f1; . . . ; Jg? This question can be

answered by transporting the jth site’s ATE estimate to each site—that is, by

integrating the jth site’s CATE function over each site’s observed covariate

distribution. This analysis is conceptually similar to “internal benchmarking”

in the criminology literature (Ridgeway & MacDonald, 2014). Clarifying and

offering guidance on these choices is an important direction for future research.

Second, we propose to construct weights by decomposing the estimation error

principally into (1) error due to imbalance in baseline potential outcomes

between the treated and control groups and (2) error due to imbalance in the

CATE function between the treated group and the target population. But other

decompositions are possible and could lead to different forms of the weighting

optimization problem (Equation 11) with different computational and statistical

properties. Similarly, throughout this work, we have considered the unit-level

covariates of interest to be known and fixed a priori. However, different sets of

covariates will lead to different CATE functions and different transported site

treatment effects. How to decide which covariates are of interest is important for

future work (see, e.g., Egami & Hartman, 2021).

Third, the results produced by our method could inform the design of future

multisite trials. As we discuss in Section 4.2, there is interest in selecting sites

that would best enable generalization of the experimental results to a specific

target population (Tipton, 2014; Tipton et al., 2019). If certain unit-level cov-

ariates have limited value in predicting cross-site variation, as we find in our

application, then researchers can instead focus on balancing other features

during site selection. This is especially true when considering the size of the

future study.

Finally, we have focused on multisite randomized trials. A natural extension

is to multisite settings in which each “trial” is an observational study or quasi-

experiment. For instance, estimating teacher value-added modeling has a very

similar structure to the multisite trial setting. And, as in our setting, we are often

interested in adjusting for (observed) compositional differences across students

(Rothstein, 2010). One possibility is to adapt our framework, along with recent

results from Chattopadhyay et al. (2022) on generalizing observational studies,

to this setting.
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Notes

1. We emphasize here that, although the methods used for this analysis are

largely the same as those typically used for transportation or generalization,

the underlying causal assumptions are different. Unusually, we do not assume

that we observe all the unit-level covariates that explain treatment effect

heterogeneity because we have a different, more modest goal in mind. The

typical goal of generalization or transportation is to understand what the

average treatment effect observed in one setting would be in another. By

contrast, we seek to understand what the site-level estimates would be after

adjusting for observed compositional differences. The former requires that all

relevant differences be observed and accounted for. The latter does not.

2. In principle, modelsM and T have separate hyperparameters, represented by

the constants C0 and Ct. Equation 13 instead has a single tuning parameter, l,

which jointly controls the bias-variance trade-off for both the outcome and

treatment models. Including a separate tuning parameter for each model is

possible but would come at the cost of greater complexity.

3. Solutions to Equations 13 and 14 can be found using the OSQP solver (Stel-

lato et al., 2020).

4. With the radial basis function kernel, the implied basis representation is the

probability density function of a multivariate isotropic Gaussian variable

centered at x. The imbalance in this basis will be high if there is little overlap

on average between the two Gaussian distributions defined by the individual

units in the two populations.
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