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In multisite trials, learning about treatment effect variation across sites is critical for
understanding where and for whom a program works. Unadjusted comparisons,
however, capture “‘compositional” differences in the distributions of unit-level
features as well as “contextual” differences in site-level features, including pos-
sible differences in program implementation. Our goal in this article is to adjust
site-level estimates for differences in the distribution of observed unit-level features:
If we can reweight (or “transport”) each site to have a common distribution of
observed unit-level covariates, the remaining treatment effect variation captures
contextual and unobserved compositional differences across sites. This allows us to
make apples-to-apples comparisons across sites, parceling out the amount of cross-
site effect variation explained by systematic differences in populations served. In
this article, we develop a framework for transporting effects using approximate
balancing weights, where the weights are chosen to directly optimize unit-level
covariate balance between each site and the common target distribution. We first
develop our approach for the general setting of transporting the effect of a single-
site trial. We then extend our method to multisite trials, assess its performance via
simulation, and use it to analyze a series of multisite trials of adult education and
vocational training programs. In our application, we find that distributional dif-
ferences are potentially masking cross-site variation. Our method is available in the
balancer R package.

Keywords: multisite trials; generalizability; transportability; balancing weights; treat-
ment effect variation
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1. Introduction

A central challenge for many questions in policy and the social sciences is to
generalize (or “transport”) results from a randomized control trial (RCT) to a
target population (Egami & Hartman, 2021; Tipton, 2014). For instance, given an
experimental evaluation of a job training program in one location, can we predict
the program’s effects in another location with different macroeconomic condi-
tions and demographic composition (Hotz et al., 2005)?

In this article, we focus on generalizing or transporting effects in the context
of multisite RCTs, where treatment assignment is randomized separately within
each of several sites. Multisite RCTs have been used to study, for example, the
effects of the Head Start program on childhood educational outcomes (Puma
et al., 2010), of welfare-to-work programs on participant earnings (Kemple &
Haimson, 1994; Riccio & Friedlander, 1992), of police body-worn camera usage
on citizen complaints (Ariel et al., 2017), and of psychoeducational interventions
on cancer patients’ emotional health (Stanton et al., 2005).

Multisite RCTs show promise in part because they can reveal how treatment
effects vary across different settings. Specifically, they can help disentangle
treatment effect variation due to “compositional” differences in sites’ distribu-
tions of observed unit-level features from variation due to other differences, such
as “contextual” differences in site-level features or unobserved compositional
differences (Rudolph et al., 2018). For instance, researchers might seek to under-
stand the relationship between site-level impacts and site-level features, like the
way the program was implemented in the site—after accounting for differences
in observed unit-level features, like baseline income and education levels (see,
e.g., Bloom et al., 2003; Bloom et al., 2020). Alternatively, researchers might
focus on the extent to which observed unit-level features explain variation in site-
level impacts (Weiss et al., 2014). There are a range of related quantities of
interest in the literature (e.g., Bloom and Weiland, 2015; Bryk and Raudenbush,
1988; Djebbari and Smith, 2008; May et al., 2014; Raudenbush et al., 2012;
Walters, 2015).

These inquiries can be interpreted statistically as special cases of transport-
ability: If we transport the treatment effect from each site to the same target
distribution of unit-level covariates, then we can attribute the change in cross-site
treatment effect variation to those covariates. And we can attribute any remaining
variation in the transported treatment effects to differences in site-level features
and unobserved unit-level features.

Many transportation and generalization methods rely on weighting estimators,
including doubly robust estimators that combine weighting and outcome model-
ing (see Egami & Hartman, 2020). Traditional inverse propensity score weight-
ing (IPW) is the workhorse method (e.g., Rudolph et al., 2018). But it can
perform poorly with many covariates or with extreme estimated propensity
scores, and it requires unit-level data in the target distribution. More recently,
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Josey, Yang, et al. (2020) instead propose using entropy balancing (Hainmueller,
2012), which finds weights that exactly balance a few covariates. But, while
promising, entropy balancing is often infeasible with even a moderate number
of covariates.

In this article, we develop a framework for transporting treatment effects
using approximate balancing weights, a method recently developed in the obser-
vational causal inference literature (Ben-Michael, Feller, et al., 2021; Hirshberg
and Wager, 2021; Zubizarreta, 2015). Our approach chooses weights to directly
optimize unit-level covariate balance between each site and the target distribu-
tion. Unlike some other estimators, this approach can accommodate high-
dimensional covariates, including higher-order interactions and kernels. And,
in some cases, it can target an arbitrary covariate distribution without requiring
unit-level data.

We first develop our approach for the general task of transporting the treat-
ment effect from a single site; we view this as an important contribution in and of
itself. We then adapt it to our motivating special case of decomposing treatment
effect variation in multisite RCTs.' To decompose treatment effect variation, we
first transport every site’s treatment effect to a common target distribution of
unit-level covariates. We can then descriptively analyze the cross-site variation
in these transported treatment effects, net of differences in unit-level covariates.
This problem formulation is quite flexible and does not require the strong multi-
level linear modeling assumptions commonly used in these kinds of analyses
(e.g., Bloom et al., 2003). At the same time, this more general formulation
highlights that the underlying substantive questions are very difficult to address
empirically: As we show in simulations, in all but the largest multisite trials, the
sample size and number of sites are insufficient to draw meaningful conclusions
(see also Weiss et al., 2017).

We apply our approach to an unusually large collection of seminal studies on
welfare-to-work policies that offered job training and adult education to eligible
people between 1988 and 1994. Specifically, we re-examine three separate multi-
site experiments: Project GAIN, Project Independence (PI), and the National
Evaluation of Welfare-to-Work Strategies (NEWWS). Project GAIN provided
basic education to those who needed remediation in math or language skills, as
well as job-search assistance, unpaid work experience, and referrals for postse-
condary education and vocational training. PI focused on low-cost job-search
strategies and limited access to basic education. NEWWS consisted of six dif-
ferent programs focused on training and education. Together, these studies con-
stitute a large multisite experiment, with 59 sites across seven states, totaling
69,399 participants. Within each site, participants were randomly assigned either
to receive or to be barred from receiving the job training and adult education
offered by the welfare-to-work program. The primary outcomes were employ-
ment status and earnings two years after random assignment. For each partici-
pant, we also observe 23 pretreatment covariates, including earnings prior to
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FIGURE 1. Distributions of the marginal prevalence of selected binary covariates across
the 59 sites of the multisite welfare-to-work experiments analyzed in this article. The
covariates are distributed differently across sites. For example, each site in Project
Independence had a greater proportion of welfare applicants than any site in the other
two multisite experiments.

randomization, number of dependent children, and high school completion.
As Figure 1 shows, these covariates are distributed differently in each site and
across the three experiments as a whole. As a result, direct comparisons of
treatment effects across individual sites and the overall experiments might be
difficult to interpret.

We therefore use our method to transport the treatment effects from the 59
sites to the same target covariate distribution. After reweighting, the estimated
cross-site variation in average treatment effects (ATEs) is in fact larger for the
transported estimates than for the unadjusted estimates. This suggests that dif-
ferences in the sites’ observed distributional makeup do not drive, and in fact
could mask, differences in the overall efficacy of treatment at these sites. More-
over, while the unadjusted estimates suggest much larger impacts in GAIN sites
than in PI sites, the adjusted estimates largely reverse this trend.

The remainder of this article is organized as follows. Section 2 establishes the
basic setting for our problem, identifies our estimand, and distinguishes our work
from recent literature. Section 3 introduces our proposed estimator based on
approximate balancing weights. Section 4 shows how our setup and proposed
estimators naturally extend to multisite RCTs and sketches our framework for
decomposing treatment effect variation in this context. Section 5 compares our
proposed estimator to other standard estimators via simulation. Section 6 applies
our method to investigate treatment effect variation in the welfare-to-work
experiments. Section 7 concludes. We provide an R package, balancer, to
make our methods readily available to interested practitioners.

2. Setup
2.1. Estimand and Assumptions

We first consider a single-site RCT with a binary treatment, turning to multi-
site RCTs in Section 4. Of the »n units in the experiment, n; are assigned to
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treatment and n, are assigned to control. Let Z; € {0, 1} be a binary treatment
indicator for the ith unit. In addition to treatment assignment, we observe for each
unit a vector of d pretreatment unit-level covariates X; and the unit’s posttreat-
ment outcome Y;. We adopt the potential outcomes framework and the stable
unit treatment value assumption (i.e., there is no interference between units and
only one form of treatment); see Neyman (1923) for their introduction and
Rosenbaum (2009) for an overview. Under this framework, each unit has a
potential outcome under treatment ¥;(1) and a potential outcome under control
¥:(0), with observed outcome Y; = Z;¥;(1) + (1 — Z;)¥;(0). Additionally, we
assume that the units in the experiment are independently and identically dis-
tributed (i.i.d.) according to some distribution P: {X;, Z;, ¥;(0), ¥;(1)} 2 p for
i=1,...,n

Throughout this article, we use several conditional expectations defined over
the experimental population’s distribution P. First, we denote the propensity
score for the experimental population as e(x) := Ep(Z|X = x). To simplify nota-
tion, we assume that this is some constant © known by design, but our results
extend readily to nonconstant propensity scores. Second, we denote the prog-
nostic score, the expected control potential outcome conditioned on the observed
covariates, as mo(x) := Ep{Y(0)|X = x}. Analogously, we denote the expected
potential outcome under treatment conditioned on the observed covariates as
my(x) := Ep{Y(1)|X = x}. Finally, we denote the conditional ATE (CATE)
function as

() == Ep{¥(1) — Y(0)|X =x}.

In terms of 1(-), the ATE in our experimental population is
v = Ep{¥(1) - Y(0)} = BplEn{Y (1) — Y(0)X}] = Ep{x(xX)} = jrc)dP(x). (1)

We seek to characterize what the ATE in our site would be if it had some other
distribution of subjects. Let P* denote the distribution of some target population;
the experimental population can but need not be a subset of this target population.
Our primary estimand is then

o = Bp [Ep{Y(1) - Y(O)IX}] = Bp {1(X)} = jr(-)dP* (x). 2)

The inner expectation in (2) is taken over the experimental population’s
distribution of potential outcomes conditioned on X = x—that is, it is simply our
CATE function t(-). The outer expectation in Equation 2 is taken over the target
population’s distribution of observed covariates, P*.

We make t* our estimand because it can help us understand treatment effect
variation across different populations. Because the CATE function t(x) in both t
and t* is the same, we can attribute any difference between t and t* to differ-
ences in the observed covariate distributions, P and P*. And, as we show when
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we extend our setup to multisite RCTs in Section 4, analogous reasoning in the
opposite direction—comparing ATEs defined by integrating different CATE
functions over the same distribution of observed unit-level covariates—can help
isolate differences in treatment effects due to site-level or unobserved unit-level
covariate differences between sites.

In addition to the foundational assumptions stated at the start of this section,
we make three assumptions that together identify t*. We assume that treatment is
randomized, that the probability of treatment is strictly between 0 and 1, and that
the target distribution of observed covariates overlaps with the experimental
distribution of observed covariates.

Assumption 1 (Randomization): Each unit’s treatment assignment is independent
of its potential outcomes given observed unit-level covariates: Y(0), Y (1) 1L
Z|X for {X,Z,Y(0),Y(1)}~P.

Assumption 2 (Positivity of Treatment Assignment): If x satisfies p(x) > 0, then
0<e(x) <l

Assumption 3 (Overlap): The target distribution of observed covariates is absolutely
continuous with respect to the experimental distribution of observed covariates:

P (x) <p(x).

Assumption 3 requires that the target distribution of observed covariates have
zero density (probability) everywhere that the experimental distribution of
observed covariates has zero density (probability). This is analogous to the over-
lap condition commonly invoked in observational causal inference. Without it or
some other modeling assumption, the CATE at covariate values observable in the
target population but not in the experimental population cannot be identified.

One advantage of the framework we have established thus far is that the
assumptions involved are fairly light. Randomization and positivity of treatment
assignment are typically satisfied by design in RCTs. And the target population
can be chosen to satisfy absolute continuity, although this can be more difficult in
high dimensions (see, e.g., D’Amour et al., 2021, for discussion of issues that can
arise). Under Assumptions 1-3, t* can be identified by

T = EP‘{EP(Y‘Z = le) - EP(Y|Z = OaX)}

zv (1-2)Y dP" 3y 3)
Pl ex) T—e(x)( apP

where % (x) denotes the Radon—Nikodym derivative of the target distribution

relative to the sample distribution, which generalizes the likelihood ratio of

observing covariates x under the target and experimental distributions. Special
dp*

cases include when all covariates are discrete, in which case 4z (x) is the ratio

of the probabilities of observing covariates X = x in both distributions, and
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when all covariates are continuous, in which case it is the ratio of density
functions.

Throughout this article, we rely only on Assumptions 1 to 3 or, in Section 4,
their extensions to multisite RCTs. However, we pause here to note that other
work often invokes some form of the following assumption as well (Dahabreh
et al., 2019).

Assumption 4 (Mean Generalizability of Treatment Effects): For all x satisfying
p(x) >0,

Ep-{Y(1) — Y(0)] X =x} = Bp{¥(1) — ¥(0)| X =x}.

Assumption 4 implies that the CATE function is the same in both the experi-
mental population and the target population wherever the target covariate distri-
bution has positive density. A common variation of this assumption is that units’
potential outcomes are independent of the population to which they belong,
conditional on covariates (Allcott, 2015; Flores & Mitnik, 2013; Hotz et al.,
2005). Under Assumption 4, our estimand t* is equivalent to the ATE in the
target population T* := Ep-{Y (1) — Y(0)} = Ep-[Ep-{Y (1) — Y(0)|X }]. This is
a standard estimand in the transportability and generalizability literature.

However, we do not use Assumption 4, nor do we make T our estimand,
because doing so would essentially assume away the phenomenon we seek to
isolate. We seek to develop a realistic account of the extent to which observed
unit-level covariate heterogeneity explains treatment effect variation across
populations relative to other possible factors. But Assumption 4 assumes already
that observed unit-level covariate heterogeneity explains all of it. Put differently,
Assumption 4 enables externally valid generalization of the within-experiment
ATE to the target population. Nie et al. (2021) assess sensitivity to this assump-
tion for an estimation approach similar to ours.

2.2. Related Work

This article builds on a growing literature on the transportability and general-
izability of treatment effects. For the most part, the setup and assumptions estab-
lished in Section 2.1 are common in this literature (see, e.g., Allcott, 2015;
Crepon et al., 2018; Dahabreh et al., 2019; Egami & Hartman, 2020; Hotz
et al., 2005; Tipton, 2014).

However, two features of our work are worth emphasizing. First, we consider
identification and estimation of site ATEs transported to an arbitrary target
population. This target population can be finite or infinite. And it can but need
not contain the experimental population. By contrast, previous work mostly
focuses on transportation to an observed, finite target population of units and
specifies whether the target population contains the experimental population or
not (Dahabreh et al., 2020; Dahabreh et al., 2019; Hotz et al., 2005). Second, as
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we note above, we seek to identify and estimate t* rather than 7. So we do not
require Assumption 4, which is often quite strong and difficult to verify in practice.
Despite these two differences, we can naturally adapt standard estimators for
T* to estimate T* in our present setup. These estimators plug in estimates of the
terms that identify t* in Equation 3. They generally mirror standard outcome-
modeling and IPW estimators from the observational causal inference literature
(see Ackerman et al., 2019; Egami & Hartman, 2020, for recent discussion). For
example, if the conditional mean outcome model m.(x) := Ep{Y(z)|X = x} is
correctly specified for z € {0, 1}, then the outcome-modeling estimator

Tom = Bp {1 (X) — o (X)}, 4)

is consistent for T* (see, e.g., Kern et al., 2016). Additionally, the IPW estimator

" 1 ~dP* Z: 1-2
= X)Ly - =Lyt 5
N A e el (5

is consistent for t* if %(x), the estimated ratio of the density of P* to the
density of P, is correctly specified. When both the experimental and target

populations are finite, we can estimate 7 (x) as follows. Let £ € {0, 1} indicate
inclusion in the experimental population and 7' € {0, 1} indicate inclusion in the
target population. By Bayes’ rule, the change in measure is
dP*
dP

:p*(x) _ Pr(T=1X =x)Pr(E=1)
p(x) PrE=1X=x)P(T=1)

(x) (6)

We can then separately estimate the conditional probabilities in Equation 6.
See Dahabreh et al. (2020) and Westreich et al. (2017) for analogous discussion
in a similar setting. Finally, the doubly robust estimator

n

= {IZdP*mfg{Y,-mm)}wp{m]a)}l

n4= dp
1P, 1~ 7 X R
- {;;dlg X1 {Yi_mO(Xi)}"‘EP*{mO(X)}:| (7)

is consistent for t* if either the outcome model or the change-of-measure model
is correctly specified. Targeted maximum likelihood estimators for transported
site effects (Rudolph & van der Laan, 2017) can similarly be adapted to our
setup, but we do not discuss them at length.

IPW and outcome-modeling estimators, however, face well-known limita-
tions. IPW might not achieve adequate finite-sample balance between the experi-
mental and target populations (Ben-Michael, Feller, et al., 2021). This can occur
when, for example, the conditional probability models are misspecified or when
there is poor overlap. This problem can become particularly acute because the
conditional probability estimates are inverted, as in Equation 6. Small errors in
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estimating the conditional probabilities can produce large errors in the resulting
effect estimate when inverted (Kang & Schafer, 2007). For this same reason,
IPW can be unstable, with a few units given extremely large weights and thereby
dominating the analysis (Robins et al., 2007). To be sure, these problems can
arise in other weighting methods, including the one we propose using. But [IPW
offers only indirect, usually ad hoc remedies. Typically, an analyst who uses IPW
iteratively fits different conditional probability models until one achieves ade-
quate balance (Ben-Michael, Feller, et al., 2021; Harvey et al., 2017), with no
clear guidance on what changes are best (Imbens & Wooldridge, 2009). The
analyst may also trim or threshold the estimated probabilities afterward. See
Crump et al., 2009; Ma & Wang, 2020; Yang & Ding, 2018, for recent advances
in trimming IPW probability estimates.)

Like IPW, outcome modeling can depend heavily on model specification
and the outsize influence of individual units (but see Kern et al., 2016, for
evidence in favor of outcome modeling). While these vulnerabilities can be
checked, their remedies are again usually indirect and ad hoc. Unlike IPW,
outcome modeling is also prone to extrapolation: Estimates produced by
outcome modeling are not necessarily sample-bounded in the sense of Robins
et al. (2007) but instead can lie outside the support of the data (Chattopad-
hyay et al., 2020). Outcome models that rely on extrapolation can be sensi-
tive to small changes in specification as a result, and this sensitivity is not
typically reflected in the accompanying uncertainty quantification (Imbens,
2015; King & Zeng, 2006).

Our proposed weighting approach draws on the recent literature on
approximate balancing weights in observational causal inference (see, e.g.,
Athey et al., 2018; Hirshberg & Wager, 2021; Zubizarreta, 2015). Ben-
Michael, Feller, et al. (2021) give a recent review. These methods find
weights that minimize a measure of covariate imbalance between two groups
of units, typically between treated and control units in observational studies.
A special case of this approach called entropy balancing (Hainmueller, 2012)
arises when the weights can achieve exact balance in the covariates. In a set
of papers closely aligned with ours, Josey, Berkowitz, et al. (2021) and
Josey, Yang, et al. (2022) propose adapting entropy balancing to transport
treatment effects. These papers offer an important conceptual advance rela-
tive to transportation methods that rely on traditional IPW, often producing
better finite-sample performance and a smoother workflow. (See also Nie
et al., 2021, who incorporate sensitivity analysis into a related framework.)
However, weights that achieve exact balance are often infeasible in practice,
even with a moderate number of covariates. Thus, our proposed approach
extends their framework to allow for approximate balance, following a sug-
gestion in the conclusion of Josey, Berkowitz, et al. (2021). Finally, for a
related setting, Crepon et al. (2018) propose using outcome modeling for
dimension reduction and then entropy balancing for transportation. It is
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straightforward to adapt their approach to use approximate balancing
weights, as proposed here, rather than entropy balancing.

3. Weighting Estimators for Transported Site ATEs

We propose estimating t* via a linear weighting estimator ©* with weights
yeR™
e _INe Ziy 1N, 1—Z IN~, Zi—n
1 iy L . iy —= i Y;. 8
' nl.:zly'n ' nZY’lfn ' nzy'n(lfn) ' ®

i=1 i=1

Recall that we assume for clarity of exposition that the propensity score is
constant: e(X;) = m. This is satisfied by design in many simple experimental
setups. The methods we propose in this section can be extended readily to non-
constant propensity scores by substituting e(X;)for .

We want to choose weights that optimize the performance of 1* as an esti-
mator for t* by some metric. In this article, we specifically consider choosing
weights to minimize the estimation error given by 1* — t*, adapting arguments
and estimators from Athey et al. (2018) and Hirshberg and Wager (2021)
designed for observational studies to estimate transported effects. We discuss
in Section 3.1 one way of decomposing this estimation error. Then, we show in
Section 3.2 how we can use convex optimization to choose weights that minimize
in a controlled way the constituent parts of the decomposed estimation error.

3.1. Estimation Error Decomposition

First, we decompose the estimation error ©* — t* into three terms: (1) covari-
ate imbalance between treated and control units in the experimental population,
(2) covariate imbalance between treated units in the experimental population and
the target population, and (3) error due to noise. Doing so yields

n

I~ Zi— 1 v IN~. Z-—-nx
Tt = LT (X)) +— Z1(X;) — Bp {1(X =Ny, AT
Tt n;v,n(l_n)m( )+M;v, (X)) — Ep{x( )}+n;v -

imbalance in mg(-) imbalance in t(-) noise

©)

where €; := Y; — mo(X;) — Zit(X;). The first term in Equation 9 is the imbalance
in the expected control potential outcome m(-) within the study. 1t is largely
controlled by design via treatment randomization; if the weights ¥ are uniform,
then this term will be zero in expectation by Assumption 1. However, any
particular experiment will likely have some chance imbalance. In Section 3.2,
we propose choosing weights ¥ that adjust for this in a manner similar to regres-
sion adjustment or poststratification (Lin, 2013; Miratrix et al., 2011). The sec-
ond term in Equation 9 measures the discrepancy between the CATE averaged
over our reweighted sample and our estimand. We are primarily interested in
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controlling this term. The final term in Equation 9 arises from noise in the out-
comes and is related to the variance of the estimator.

If we knew the true prognostic score my(-) and CATE 1(-), then we could use
Equation 9 as a guide to choose weights ¥: We would choose ¥ so that the
imbalances in mg(-) and t(-) are both zero or close to it. But we do not know
the true prognostic score and CATE. So we posit a model class M for the
prognostic score mg(-) and a model class 7 for the CATE 1(-). An example of
amodel class is the set of linear models {B, - x|B, € R?}, which corresponds to
assuming that the prognostic score (or CATE) is linear in the covariates. We
consider two main sets of model classes in Section 3.3. With these model classes,
we can bound the estimation error by

n

. " 1 ~ Zi—T
T -1 < sup |~ L
| |_,,,€/I\),1 n;%n(l—n) m(X)

1 ~ Zl'—TE )
nZYin(l _n)€, ’

This replaces the imbalance in the true prognostic score and CATE with the
worst-case imbalance across all potential prognostic scores m € M and CATEs
T € 7. Doing so gives us a feasible guide for choosing the weights: If we can
place modeling restrictions on the prognostic score and the CATE, then we can
try to control the components of Equation 10. We turn to this next.

+ sup
€T

L szr —Ep {1(X)}

(10)

3.2. Minimizing the Worst-Case Estimation Error

To control the estimation error (Equation 9) given model classes for the
prognostic score M and the CATE 7, we use convex optimization to find
weights that solve

min  sup Vi)
in - sup Z —
Z —Ep 3 i (11)
| LSz 00| 750 (%4 1=2)

subject to ZZ,—V,- =ny, Z(l —Z)y; =no, v;>0.
i=1 i=1

The objective in this optimization problem (Equation 11) directly targets the
upper bound on the estimation error (Equation 10). First, it optimizes external
validity by weighting treated units so that the weighted average of those units’
CATE:s resembles the target distribution’s ATE t*. It does this for the worst-case
CATE function. At the same time, it maintains internal validity by weighting the
control units so that they are comparable to the weighted distribution of treated units
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with respect to the prognostic score. The final term in the objective penalizes the
weights for nonuniformity via an L regularization term; this is a proxy for the
variance due to noise in Equation 10. We include a regularization hyperparameter
A that controls this trade-off between better balance (lower bias) and more uniform
weights (lower variance). We discuss the choice of A in practice in Section 6.

The optimization problem (Equation 11) includes three constraints that stabilize
the estimator. The first two constrain the weights on the treated units and the control
units to sum to the number of treated units »; and the number of control units 7,
respectively. This ensures that the estimator is robust to constant shifts in the out-
come (Ben-Michael, Feller, et al., 2021). The third constraint restricts the weights to
be nonnegative. This prohibits extrapolation from the support of the experimental
sample when estimating T* (see Ben-Michael, Feller, & Rothstein, 2021; King and
Zeng, 2006; Zubizarreta, 2015). Taken together, these constraints also ensure that the
estimator is sample-bounded in the sense that the resulting estimate is a convex
combination of observed responses (see Robins et al., 2007).

To estimate the standard error of T, we first estimate the conditional expected
potential outcome functions sz(-) and mig(-) via regularized weighted least
squares using the weights ¥. Then, we compute the squared standard error as

n n
= e A= i) (1 - 2N () (12)

The above expression for ¥ depends on the constraints on the sum of the
weights (the first two constraints in Equation 11).

Hirshberg et al. (2019) and Ben-Michael, Feller, et al. (2021) give technical
conditions for 1" to be asymptotically normal around the true value t* and for
Equation 12 to give standard error estimates that are consistent. Following our
discussion on implementation below, we estimate the two potential outcome
models 771 (-) and ¢ (-) via ridge regression.

3.3. Implementation

We implement the optimization problem in Equation 11 for two pairs of
model classes when the target distribution P* is an empirical distribution over
m units with covariates {)F(v ¢ m }» where the tildes emphasize that the target
covariates are potentially different from the experimental sample. In the first,
both mq(-) and t(-) are linear in transformations of the observed covariates. That
is, M= {Bo- do(x)| | Bo < Co} and T ={B. - &-(x)[ || B: [[< Cc}, where
o (+) and ¢, (-) are some specified transformations of the covariates and C and
C: are nonnegative constants. In this formulation, we allow the models to use
different transformations of the covariates ¢ (-) and ¢.(-) so that, for example,
my(+) can have more expressive transformations that create a more flexible basis
expansion while t(-) can be restricted to a simpler CATE function (see Hahn
et al., 2020; Kiinzel et al., 2019, for related discussion). By the Cauchy—Schwarz
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inequality, the special case of the optimization problem in Equation 11 when we
use the L” norm || - ||,—that is, when we seek to minimize the worst-case sum of

squared imbalances—is”
—Z
+ XZY ( n)

(13)

2
1 n 1 m -
==Y viZido (%) — de»(X;
S mi3

n
subject to ZZ,»V,- =ny, Z(l —Z)v; =no, v;>0.

i=1 i=1

This optimization problem is a quadratic program (QP), so we can efficiently solve
it even with many units and high-dimensional ¢ (-) and ¢.(-) by, for example, the
alternating direction method of multipliers (Boyd et al., 2010). Reweighting to the
target distribution requires only the average of (I)T()? ¢) over the target distribution.
Thus, we can solve Equation 13 without knowing the full underlying distribution
{Xv e X, n |- This reduced data requirement can be useful in practice.

Second, we can generalize this setup using kernels; for a review, see Ben-
Michael, Feller, et al. (2021). Formally, let H;, and Hj, be reproducing kernel
Hilbert spaces (RKHS) with associated kernels ky:R? x R - R and
ke : RY x RY — R, where, recall, d is the dimension of X. Informally, these ker-
nels &y and &, calculate “similarity scores” between points in the covariate space,
with potentially different measures of similarity for the two kernels. Then, we can
consider the model classes for the prognostic score and the CATE to be M =
{mo(-) € Hi | | mollw, <1} and T ={1(-) € Hy| | 7 I, <1}, respec-
tively, where || - ||%, is the RKHS norm induced by kernel £. By the reproducing
property, we can write these model classes as linear in infinite-dimensional bases,
¢o(+) and ¢, (+), defined by the kernel functions &y and k., respectively.

The resulting specialization of Equation 11 involves the imbalances in the infini-
te-dimensional transformations of the covariates, ¢,(X;) and ¢.(X;). However,
we do not need to explicitly compute the imbalance in these infinite
dimensions. Instead, we can use the “kernel trick”—(¢(x), & (»)) = ko(x,y) and
(d:(x), & (1)) = ke(x,y)—and write the balancing weights optimization problem as

min ZZZY,, e L0

i=1 j=

nom

n? nzZZYIY/ZZk X)) = 2722“{12/( (X;, X¢)

i=1 j= i=1 (=1

- Z 1-27
A 2 E d
* ;y’ (n+1n)

subject to ZZy, =ny, 2 (1-2Z)y;=no, v,>0.
=1
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As above, this optimization problem is a QP.?> To compute the imbalance terms,
we only need to compute the kernel evaluations ko(X;, X;) and & (X;, X;) for each
pair of units in the experimental population, as well as the expected kernel evaluation
in the target distribution Ep: {k;(X;, X)} for each treated experimental unit X;.

The kernel functions are the key determinants of this second approach. From
one view, they define the model classes for m((-) and t(-). From another view,
they define the transformations of the covariates we seek to balance. While this is
a nonparametric approach, it is not a panacea and can still be subject to model
misspecification. In our simulations in Section 5, we consider the commonly
used radial basis function (RBF) kernel k(x,x') = exp(—|jx — ¥||*) (see, e.g.,
Hastie et al., 2009, § 5.8 and § 12.3).4 Although popular, this choice of kernel
still makes fairly strong assumptions on the model class, namely that the models
are infinitely differentiable and hence very smooth. Thus, this kernel can lead to
model misspecification and get the error bound in Equation 10 wrong if, for
example, the true model is not so smooth. In addition, the kernel-based approach
has a higher data requirement than the finite-basis-expansion approach: Unlike in
Equation 13, the full set of unit-level covariates in the target population
{)? 1,...,)?,,,} is needed in Equation 14 to compute the kernel evaluations
between the treated units and the target population, - (X;, X/).

4. Extension to Multisite RCT's

In this section, we extend our proposal to multisite RCTs. We begin with the
formal setup and then turn to substantive questions we can address using the
adjusted estimates.

4.1. Setup

Consider a multisite RCT with » total units across J sites, in which the #; units
in site j are separately randomized with probability of treatment ;. To extend our
framework to this setting, we simply repeat the analysis in Sections 2 and 3
separately for each of the J sites. Our estimand for the jth site is the ATE in the
site if its population had the same distribution of observed unit-level covariates as
the target population:

ﬁ:EpmﬁﬂmfY@ﬂ&S:ﬂhﬂm{mﬂmmeXﬂ:Jq@dﬁ&%

(15)

where S € {1,...,J} indicates the unit’s site membership, m.(x) :=
Ep{Y(z)|X = x,S =} is the conditional mean potential outcome function in
the jth site, and t;(x) = m1;(x) — mq;(x) is the CATE in the jth site. If Assump-
tions 1-3 hold within each site, then 7} is identifiable as in Equation 3 for each

je{l,....J}.
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Our weighting approach to estimating t* in the single-site setting can be
directly applied to estimate t; for any j € {1,...,J}: We simply treat the units
in the jth site as the experimental population and ignore units in other sites. We
thus refer to our weighting estimator in this multisite context as %;. By sequen-
tially solving Equation 11 for each j € {1,...,J}, we can obtain the weights ¥
that define our weighting estimators 17, .. ., 1. The standard outcome-modeling,
IPW, and doubly robust estimators from Section 2.2 can similarly be extended to
this multisite setting by restricting attention only to the units from the site of
interest j.

4.2. Using the Adjusted Estimates

We now turn to the substantive questions we can address given the unadjusted
site-level ATEs 11,..., 1, and the adjusted site-level ATEs t7,...,1). A large
and diverse literature seeks to understand how compositional and contextual
differences across sites contribute to treatment effect variation; examples include
Dehejia (2003), Bloom et al. (2003), Bloom and Weiland (2015), Bryk and
Raudenbush (1988), Djebbari and Smith (2008), May et al. (2014), Raudenbush
et al. (2012), Weiss et al. (2014), Walters (2015), and Crepon et al. (2018). We
focus on three main sets of inquiries: (1) comparing adjusted estimates across
sites, (2) examining the distribution of adjusted estimates, and (3) comparing
adjusted and unadjusted estimates.

4.2.1 Comparing adjusted estimates across sites. As we discuss above, the most
immediate application of this framework is to compare adjusted estimates across
sites, often with the goal of identifying better-performing programs; prominent
examples in the context of job training and adult education include Bloom et al.
(2003), Hotz et al. (2005), Dehejia (2003), and Crepon et al. (2018). Comparing
unadjusted impacts between two sites captures a myriad of differences, including
differences in the populations served. However, adjusting for observable unit-
level differences allows for more direct apples-to-apples comparisons between
sites, even if many other differences remain. In particular, using the adjusted site-
level estimates to identify sites of interest avoids inadvertently identifying sites
based on their idiosyncratic (observed) population characteristics. For example,
in our results in Section 6, the unadjusted estimates suggest much larger impacts in
GAIN sites than in PI sites, but the adjusted estimates largely reverse this trend.

Finally, while we do not explore this here, the adjusted site-level estimates can
also be inputs into site-level regressions and other models that seek to explain
differences across sites. Using the adjusted site-level estimates removes variation
due to distributional differences in observed unit-level covariates and thus
reduces the possibility of reporting spurious relationships between site-level
covariates and the site ATEs.
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4.2.2. Understanding the distribution of adjusted estimates. A more general goal
is to understand the cross-site distribution in the adjusted estimates, which has
important implications for policy and research (see Weiss et al., 2017, for a
thorough discussion of cross-site variation).

One measure of the distribution is the variance of the ATEs across sites. Let 0
be the variance of 1y, . . ., T, and let 0" be the variance of 7, . . ., T}. We can then
compare 0 and 6™ to understand how individual characteristics relate to cross-site
differences in aggregate. For example, even if a program has a positive estimated
effect overall, substantial cross-site variation introduces policy risk for local
decision-makers. This is especially true if such variation is difficult to predict.
Understanding 0%, the variation in adjusted site-level impacts, therefore gives
policymakers a sense of this risk. 6 is also important for research design and
assessing generalizability: If there is little variation in the adjusted estimates,
then researchers can be more confident in generalizing from the purposive sam-
ple to new sites (see Tipton, 2014). See Online Appendix A for how we estimate
0 and 0" using meta-analytic techniques.

4.2.3. Comparing adjusted and unadjusted estimates. Finally, we can compare
the adjusted and unadjusted site-level estimates to quantify the level of cross-site
variation explained by distributional differences in unit-level covariates. We can
view this as the natural multisite extension to the literature on decomposing
treatment effect variation in randomized trials (see, e.g., Ding et al., 2019; Djeb-
bari & Smith, 2008; Schochet et al., 2014).

We can directly compare 6 and 0%, the cross-site variances of the unadjusted
and adjusted estimates, respectively, with a pseudo-R*> measure of

2.
R =175 (16)

This R* measure approximates the amount of site-level variability attributable
to observed unit-level covariates. This is only a pseudo-R” measure since varia-
bility might actually increase after transportation (0* > 0) if differences in
observed unit-level covariate distributions mask variability due to differences
in site-level features. An increase in variability could be a noteworthy finding. In
fact, we find such an increase in our empirical application.

The R?, 0, and 0" values can help inform the design of future studies, espe-
cially when selecting representative sites for a generalizable experiment (Tipton,
2014). In particular, if unit-level covariates explain very little of the cross-site
variation, then taking those covariates into account when selecting sites is less
imperative (see Tipton et al., 2019).

We caution that comparisons of t; to 1 reveal the influence of sites’ distribu-
tions of observed unit-level covariates on the sites’ ATEs. They do not necessa-
rily reveal the influence of the covariates themselves on individual treatment
effects, as a standard analysis of heterogeneous treatment effects in a single-site
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study might. For example, 7; and t; can be similar even when some unit-level
covariates strongly moderate the treatment effect for individual units. And they
can be different even though all the unit-level covariates only weakly influence
the treatment effect for individual units. For intuition on this, consider a linear
treatment effect model for site j where the CATE is linear in observed unit-level
covariates with coefficient vector ;. We can decompose the difference between
7; and T} as

1 -1 =B {BX|S =) — Ep (X)}.

This expression shows that the magnitude of t; — 17 depends on several
factors. Even if the magnitudes of B; are large, the difference 1; — 17 can be
small if these coefficients effectively cancel each other out or if the differences in
the sites’ covariate averages are small. Conversely, if the magnitudes of f; are
small, the difference between estimates can still be large if there are substantial
differences in the sites’ covariate averages.

5. Simulation Study

In this section, we examine the behavior of our proposed estimators and
compare them to outcome-modeling, IPW, and doubly robust estimators via
simulation. We base our simulations on data from the welfare-to-work experi-
ments analyzed by Bloom et al. (2003), introduced in Section 1. In these experi-
ments, treated units were given adult education and job training through the
welfare-to-work program, while untreated units were not. Our outcome of inter-
est is log earnings in dollars; for units with zero earnings, we add US$100 before
logging to avoid undefined outcomes.

We generate data for our simulations using this dataset as follows. First, we
define the CATE 1;(-) in the jth site to be a linear function of a subset of our unit-
level covariates X—prior log earnings; indicators for whether prior earnings
were zero, between zero and US$2,500, between US$2,500 and US$7,500, or
greater than US$7,500; indicators for being less than 25 years old, between 25
and 34 years old, between 35 and 44 years old, or greater than 44 years old; an
indicator for having a child younger than 6 years old; an indicator for applying
for welfare; and an indicator for receiving welfare continuously for the past
year—with an intercept term specific to the multisite experiment to which the
Jjth site belongs. We base the coefficients in the CATE function on the coeffi-
cients on the interactions between treatment and covariates in a linear regression
of the outcome on treatment and covariates in the actual experimental data. See
Online Appendix B for the precise coefficient values and additional details.

In each of the 100 simulation repetitions, we generate a bootstrap sample of
each of the 59 sites, define the potential outcomes under control ¥;(0) to be
the observed outcomes of the bootstrapped units plus a noise term
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€~ N(0,0.5%), and generate potential outcomes under treatment Y;(1) by
adding 7;(X;) to Y;(0). We then randomize treatment assignment, keeping the
proportion of treated units in each site the same as in the original dataset, and set
the observed outcome to the corresponding potential outcome.

In each repetition, our estimands are the site ATEs transported to the overall
bootstrapped population. In other words, we seek to estimate 17, . .., T, defined
in Equation 15, where P* is the bootstrapped population of all units across all
three experiments. Note that, for any two sites k and ¢, t; and 1} differ only by
their experiment-specific intercepts since the unit-level covariates define t;(-) in
the same way for all j € {1,...,59} by design.

We estimate 17, . . ., T5, using two versions of our weighting estimator %1* The
first, which we refer to as “linear,” optimizes the weights over the class of linear
functions of X; that could define m;(-) and 7;(-), as in Equation 13. The second
version, which we refer to as “RBF,” optimizes the weights to solve Equation 14,
where the kernel function for the control potential outcomes, ko (-, -), is the RBF
kernel k(x,x’) = exp(—||x — x||*), and the kernel for the CATE, k.(-,-), is the
linear kernel k(x,x’) = x - x’; this latter kernel corresponds to a standard linear
basis, such as that implied by ridge regression. Both the linear and RBF versions
of %; require only the covariate means, not the full covariate distribution, of the

target population because they assume the CATE is linear in covariates. In this
simulation, both versions correctly specify t;(-), but the RBF version of %]* allows
a more flexible model for mg;(-) than the linear version does. Since only one
covariate is continuous, however, it is not obvious that this greater flexibility will
appreciably advantage the RBF version.

For comparison, we also estimate 17, ..., T, using the outcome-modeling,
IPW, and doubly robust estimators described in Section 2.2. For these models,
we use logistic regression to estimate Pr(S = j|X = x) and linear regression to
estimate m;(-). Finally, as a benchmark, we also compute the naive, unadjusted
difference-in-sample-means estimate of each site ATE, ¥;; — Yo forj € 1, ...,
59, to estimate 17,. .., Ts.

We ran the simulation as described above three times. Each time, we changed
the magnitude of the coefficients on the unit-level covariates defining the CATE.
Specifically, we ran the simulation with the coefficients multiplied by 1, 5, and
10. This range of magnitudes reflects the varying values the pseudo-R? of Equa-
tion 16 might take in a multisite experiment—that is, the varying degrees to
which distributional differences in observed unit-level covariates could explain
ATE heterogeneity across sites relative to other factors. For context, Table 1
provides summary statistics of the data-generating processes used in the three
versions of the simulation.

We evaluate the estimators’ performance by computing the root mean squared
error (RMSE) and bias for each of the 59 sites over the simulation repetitions.
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TABLE 1.
Summary Statistics of the Data-Generating Processes Used in the Simulations
CATE Range SD Range Avg Avg
Multiplier R? of 7;(x) of Y of T/ Y0) Y(1)/Y(0) ($)
1 .01  (=0.09,2.01) 2.29 (0.34,1.75) 6,380 2.55

18 (—042,442) 245 (1.70,3.11) 6,380 11.88
10 46  (—0.84,7.44) 296 (3.41,481) 6,380 107.73

Note. We perform the same simulation three times, each with a different multiplier on the coefficients
of the unit-level covariates that define the CATE. CATE = conditional average treatment effect.
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FIGURE 2. Mean absolute bias (top) and root mean squared error (bottom) of each estimator
over 100 repetitions of the welfare-to-work simulation. The conditional average treatment
effect is defined as a sparse linear function of unit-level covariates plus an experiment-specific
intercept term. Results for the outcome-modeling and doubly robust estimators are omitted
because they are substantially larger; see Online Appendix C for those results. Table 1 offers
summary statistics to contextualize these results.

Figure 2 shows the RMSE and mean absolute bias of each estimator, averaged
over the 59 sites. We show the RMSE and absolute bias of the outcome-modeling
and doubly robust estimators separately in Figure C.1 of Online Appendix C
because they are substantially larger than those of the estimators shown here.
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Based on our examination of individual model fits, we determined that this was
because one or both of the outcome models tends to have unstable coefficient
estimates in a handful of sites, likely due to limited sampling and multicollinear-
ity. In such cases, the outcome model struggles to stably extrapolate, as discussed
in Section 2.2, and produces extreme predicted outcomes for some units. See
Online Appendix C for details).

Although we logged the outcome, we can conceptualize these performance
metrics in terms of dollars. For example, the exponentiated bias represents how
disproportionate the estimated ratio between the treated and control potential out-
comes (in dollars) is from the true ratio. Thus, the naive estimator’s bias of about 0.25
in log earnings on average across sites in the middle panel of Figure 2 indicates that its
estimate of the ratio between treated and control potential outcomes (in dollars) was
about €% = 1.28 times the true ratio in the site after adjustment. Table 1 lists the
average control potential outcomes and the average ratio between the treated and
control potential outcomes for each simulation setup. From those values, we see that
the naive estimator’s bias of about 0.25 in log earnings corresponds to a positive bias
of about US$21,000 over the true difference of about US$69,000.

The right panels of Figure 2, where unit-level covariates explain a substantial
amount of cross-site ATE heterogeneity, illustrate the bias-variance trade-off of
regularizing our weighting estimators. Three trends in the behavior of our weighting
estimators are apparent there. First, our weighting estimators are least biased when
almost completely unregularized. Second, their RMSEs are lowest at some medium
level of regularization. Third, they reduce to the naive estimator when heavily
regularized.

The different simulation setups also show how different estimators compare. In
the left panels, where unit-level covariates explain little heterogeneity, adjustment is
unnecessary. So the naive estimator has lower bias and RMSE than the other esti-
mators, which are essentially overfitting to noise. In the middle panels, where unit-
level covariates explain more heterogeneity, IPW does as well as our weighting
estimators at reducing bias without requiring a choice of regularization, although it
comes at the cost of higher RMSE. In the right panels, where unit-level covariates
explain the most heterogeneity, the linear weighting approach can achieve lower bias
than IPW, with a much lower overall RMSE. These results indicate that the inverse
propensity weights are relatively unstable compared to the balancing weights in
these simulations due to overlap issues across sites, leading the [PW estimator to
have higher variance.

In this simulation, we find that using the RBF kernel for the prognostic score
has higher bias and RMSE than the linear approach that makes the more
restrictive assumption that the prognostic score is linear, except in very low
regularization settings where the RMSE is poor regardless. Practically, this
indicates that controlling the imbalance in the covariate means between the
treated and control groups is sufficient to control the bias. In attempting to
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control a flexible, nonparametric measure of balance instead, the RBF approach
is failing to control balance in the marginal covariates, leading to increased
bias. By the same token, the RBF weights are made more extreme to control this
nonparametric balance, leading to a higher-variance estimator without the ben-
efits of reduced bias. Based on these results, we use the linear approach in our
empirical analysis in Section 6.

To better understand how the estimators perform under a wider variety of
settings, we rerun these simulations with model misspecification and with
reduced resampling proportions. Details and results are in Online Appendix C.
Overall, we find that the performance of the IPW and balancing-weights estima-
tors predictably deteriorates but remains fairly robust. We also find that the same
trends in relative performance discussed here largely hold.

5.1. Results With Smaller Site and Sample Sizes

Our main application and corresponding calibrated simulation study have
69,399 units across 59 sites. Few multisite experiments are this large. To under-
stand how the estimators discussed in this article perform in smaller multisite
experiments, we rerun the simulations above twice. In one, we resample only
34% of the sites (20 sites) and 20% of the units (13,880 units) in each repetition,
leading to roughly 700 units per site on average. In the other, we resample only
25% of the sites (15 sites) and 5% of the units (3,470 units), leading to about 230
units per site on average. We keep the relative proportion of units in each site the
same as in the full data set.

Appendix Figures C.3 and C.4 show the resulting mean absolute bias and RMSE
of the estimators for these two simulation studies. Results for the outcome-modeling
and doubly robust estimators are omitted because they are substantially larger. First,
the reduced sample size worsens the performance of all estimators as expected. But
as sample size goes down, the benefit of weighting relative to just using the naive
estimator goes down substantially as well. With smaller sample sizes, the weights
cannot achieve as much balance, so they cannot reduce bias as effectively. Thus,
consistent with other research on multisite trials (Bloom & Spybrook, 2017; Hedges
& Pigott, 2001; Raudenbush & Liu, 2000), we find that our ability to extract
information on cross-site distributions decreases as the size and number of sites
decrease. Unlike these existing results for untransported estimates, however, we
must also consider the effective sample size after transportation. This is typically
smaller than the nominal sample size, further reducing our power.

6. Empirical Application

We now apply our method to characterize treatment effect variation in the welfare-
to-work experimental data. Recall that treated subjects were offered job training and
adult education through the welfare-to-work program, while untreated subjects were
not. Our outcome of interest in this analysis is a binary indicator of employment at
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FIGURE 3. Employment rate in the treated and control group of each site two years after
randomization. Sites where the treated group has a higher employment rate than the
control group are shown in blue.

any point over the two years after treatment assignment, measured by nonzero total
earnings over those two years. Figure 3 plots the average outcome in each treatment
condition in each site. In most sites, the employment rate among treated units is
higher than among control units; estimated impacts are the differences between the
“+”s and the dots. We also see substantial heterogeneity in terms of baseline employ-
ment rates, and that the sites in the PI study generally have higher rates of employ-
ment. Pooling all sites, the average employment rate among the treated subjects was
62.9%, while the average among the control subjects was 57.6%. The standard
deviation of the 59 site ATE estimates is about 7.2 percentage points.

In many sites, assignment to welfare-to-work programs increased the prob-
ability of employment within the first two years. However, interpreting these
site-specific estimates collectively is difficult because there are several different
possible sources of treatment effect variation across sites. For example, a
welfare-to-work program might be more effective in urban sites, but it also might
be more effective for non-Hispanic White people, who are more common in rural
and suburban sites than in urban ones. A principled framework for cross-site
treatment effect comparisons is needed to disentangle these sources of variation.

We adopt the framework from Section 4. Under this framework, we first estimate
what the ATE in each site would be if all sites had the same population of subjects.
We can then attribute the remaining treatment effect variation across sites to differ-
ences in site-level or unobserved unit-level covariates. In this case, we transport the
ATE estimates to the overall population of 69,399 subjects. In Online Appendix D.3,
we also transport the ATE estimates to the population of units in the PI study for
further analysis. We transport by solving the optimization problem in Equation 13,
where ¢.(+) and ¢ () each map the 23 observed covariates to a basis that includes
the original covariates and the interactions between a covariate indicating zero prior
earnings and covariates indicating race (see Online Appendix D for more informa-
tion about these covariates). We standardize the covariates and their interactions to
have unit variance before solving Equation 13.
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FIGURE 4. Reductions in covariate imbalance and effective sample size due to weighting
with different levels of regularization. The dashed line marks the level of covariate
imbalance observed between the treated and control groups without weighting. This
imbalance is due to chance randomization alone. Regularization manages the trade-off
between covariate imbalance (bias) and effective sample size (variance).

As discussed in Section 3, we must choose the regularization parameter A in
Equation 13. To do so, we first solve Equation 13 for a range of values of A and
then compare the resulting reductions in covariate imbalance and effective sam-
ple size. Given weights ¥, we measure covariate imbalance between the treated
and control groups by computing within each site the sum of squared differences
in the treated and control groups’ weighted average covariate values, then aver-
aging over the sites:

59

Treated vs. Control Imbalance = %
=1

. 7
(g he)

n; i:S;=j

2

We also measure covariate imbalance between the treated group and the target
population by computing for each site the sum of squared differences between
the treated subjects’ weighted average covariate values and the target popula-
tion’s average covariate values, then averaging over the sites:

Treated vs. Target Imbalance = — Z Z ¥iZid.(X;) — Ep{d.(X)}

T S

2

To measure overall effective sample size, we compute Kish’s effective sample
size (Kish, 1965) in each site and then average those values over the sites.

Figure 4 shows the trade-off between imbalance reduction and effective sam-
ple size reduction. Since treatment was randomized in each site, the treated and
control groups were fairly balanced even before weighting. We therefore focus
on covariate imbalance between the treated group and the target distribution.
Setting A = 0.03 reduces covariate imbalance by 80%. The remaining imbalance
is less than the imbalance between the unweighted treated and control groups,
which, again, is due to chance randomization alone. This imbalance reduction
comes at the cost of an approximately 70% reduction in effective sample size.
Figure 5 shows in more detail the covariate imbalance in each site before and
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FIGURE 5. Root mean squared covariate imbalance between the treated group and the
control group (blue) and between the treated group and the target population (red) before
and after weighting. The covariates are standardized to have unit variance. In most sites,
the covariate imbalance between the treated and control groups before weighting (i.e.,
due to chance randomization alone) did not exceed 0.15, marked by the vertical dashed
line. In most sites, weighting brought the covariate imbalance between the treated group
and the target population within this range.
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FIGURE 6. Distribution of nonzero weights in each site (left) and effective sample size
after weighting, plotted also as a percentage of the original unweighted sample size
(right).

after weighting with A = 0.03. In most sites, the covariate imbalance between the
treated and control groups due to chance randomization alone (before weighting)
did not exceed 0.15. In only seven sites did the imbalance between the treated
group and the target population after weighting exceed that approximate thresh-
old. This indicates that weighting with A = 0.03 reduces covariate imbalance
well across the board.

To better visualize the cost of transporting the site ATE estimates in terms of
sample size, Figure 6 shows the boxplots of the distribution of weights within
each site, with weights less than 0.1% excluded. The distribution of weights in
some sites is heavily skewed, so that a few subjects are given outsize weight. This
lowers those sites’ effective sample sizes and increases the standard errors of
their transported ATE estimates. Figure 6 also plots the effective sample size of
each site as a percentage of the site’s original sample size. In most sites, the
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FIGURE 7. Point estimate and 95% confidence interval for the transported average
treatment effect (ATE; in percentage points), plotted against the untransported ATE
estimates. Points are sized by percentage effective sample size after weighting.

reduction in sample size was substantial. The median sample size before weight-
ing was 729, while the median effective sample size after weighting was 181; the
smallest effective sample size in a site was 18. Our simulation results highlight
the potential problems from such a dramatic drop in effective sample size:
Figure 2 shows that there is a point at which the cost (in terms of RMSE) of
reducing the effective sample size is greater than the benefit of reducing the bias.

Overall, PI sites had more skewed distributions of weights and lower effective
sample sizes than NEWWS and GAIN sites: This motivates our supplemental
analysis in Online Appendix D.3 that targets the population of PI subjects instead
of the overall population across all three experiments.

Based on these trade-offs, we choose to optimize the weights in Equation 13
with A = 0.03. Figure 7 shows the resulting transported ATE point and 95%
confidence interval estimate in each site, plotted against the untransported ATE
estimates. We use Equation 12 to compute the standard errors of our transported
estimates. Transportation substantially changed some sites’ ATE estimates,
though most sites saw little change.

Transportation also modestly increased the estimated overall variability in site
ATEs. We estimate that the standard deviation of the true untransported ATEs is

~4
0° = 0.055, with a 95% confidence interval of [0.048, 0.075]. The corresponding

~xd
estimate for the true transported ATEs is 0° = 0.060, with a 95% confidence
interval of [0.044, 0.089]. Using our pseudo-R” measure, we estimate a negative R>
of —0.19, indicating a 19% increase in the estimated cross-site variance of impacts
after adjusting for observed unit-level covariate distributions. This point estimate
suggests that differences in the distributional makeup of the different sites could be
masking differences in the overall efficacy of treatment implementation at these
sites. That being said, the overlapping confidence intervals on both standard devia-
tions suggest that we should take the pseudo-R> point estimate as approximate.
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treatment effect after weighting, plotted against the effective sample size as a percentage
of original sample size.

Obtaining a confidence interval for the R* measure itself is complex due to the
unknown correlation structure between 0 and 0%; we leave this to future work.

Overall, the low magnitude of the R? estimate, representing the small shift from 0

to /9\*, and the low magnitudes of 0 and 0 themselves suggest that cross-site
treatment effect heterogeneity in these experiments is primarily driven by site-
level features (or unobserved unit-level features), not by systematic differences in
populations, as measured by our observed covariates, across sites. This is consis-
tent with others’ findings (e.g., Bloom et al., 2003).

Analyses such as the one presented above could affect conclusions about the
relative effectiveness of program types. Figure 8 plots the estimated overall ATE
in each experiment before and after transportation. Before transportation, treat-
ment appeared most effective in the GAIN experiment and least effective in the
PI experiment. After transporting the sites to the same target distribution of unit-
level covariates, we see some evidence that the treatment was least effective in
the NEWWS experiment, but we are not confident about this conclusion, given
the uncertainties associated with the point estimates. For example, we see in
Figure 8 a meaningful increase in the ATE estimate and associated uncertainty
for the PI experiment. Figure 9 offers another perspective on this same phenom-
enon: The weighting process gave substantial weight to only a small percentage
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of subjects in the PI experiment, and treatment affected those subjects much
differently than it affected other, unrepresentative subjects. The unrepresentative
nature of the subjects in the PI experiment compared to the overall population,
combined with the fact that PI sites were generally smaller to begin with, as
Figure 6 shows, hinders comparisons between the PI experiment and the others.
This was perhaps to be expected, given how dramatically different the PI subjects
were from the other experiments’ subjects with respect to welfare status and prior
earnings, as shown in Figure 1. A strong majority of PI subjects were welfare
applicants, but very few had received welfare continuously for the prior 12
months, and most had nonzero prior earnings. By contrast, the opposite was true
of subjects in most GAIN and NEWWS sites. See Online Appendix D.3 for the
results from transporting each site to the distribution of PI units, which in effect
assesses each site’s performance on this distinct population. We find there that
the ATE for NEWWS sites is substantially reduced, further indicating that treat-
ment effect differences across the studies are partially driven by differences in
the populations served.

7. Discussion

It is important for researchers and policymakers to understand how treatment
effects vary across contexts. Multisite trials can help develop this understanding
because the treatments are observed in a variety of settings. However, variation
in site ATEs can reflect variation in not only the populations of individuals but
also contextual and site-level characteristics. Building on the literature on treat-
ment effect generalization and transportation, we propose to estimate what the
site ATEs would be if the sites all had the same population of units. We first
develop an approximate balancing-weights procedure that transports estimates
from a single site to a given target population and show how the procedure
compares to more traditional [IPW. We then extend this to the multisite trial
setting and show via simulation that this framework is applicable to some very
large multisite trials, though power is limited in more typical settings. Applying
this method to welfare-to-work experiments that randomly provide some parti-
cipants access to job training and adult education, we find that heterogeneity in
the sites’ populations could be masking differences in how effectively the treat-
ment was implemented across sites.

There are several avenues for future work. First, the choice of target popula-
tion is critical for addressing different substantive questions. In our main anal-
ysis, we choose to reweight to the overall population. But we could instead target
all participants who were unemployed at baseline, for example. Targeting dif-
ferent populations might lead to substantively different conclusions. If there are
important and substantial interactions between unit-level and site-level attributes
in determining treatment effects, then we may wish to use several target popula-
tions and characterize the variation across the different targets. Future work
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might seek to characterize and present this variation in an interpretable and useful
way. Alternatively, we could ask a different question: For any given site j, how
would the ATE in the site change if the site had the kth site’s distribution of
observed unit-level covariates, for k € {1,...,J}? This question can be
answered by transporting the jth site’s ATE estimate to each site—that is, by
integrating the jth site’s CATE function over each site’s observed covariate
distribution. This analysis is conceptually similar to “internal benchmarking”
in the criminology literature (Ridgeway & MacDonald, 2014). Clarifying and
offering guidance on these choices is an important direction for future research.

Second, we propose to construct weights by decomposing the estimation error
principally into (1) error due to imbalance in baseline potential outcomes
between the treated and control groups and (2) error due to imbalance in the
CATE function between the treated group and the target population. But other
decompositions are possible and could lead to different forms of the weighting
optimization problem (Equation 11) with different computational and statistical
properties. Similarly, throughout this work, we have considered the unit-level
covariates of interest to be known and fixed a priori. However, different sets of
covariates will lead to different CATE functions and different transported site
treatment effects. How to decide which covariates are of interest is important for
future work (see, e.g., Egami & Hartman, 2021).

Third, the results produced by our method could inform the design of future
multisite trials. As we discuss in Section 4.2, there is interest in selecting sites
that would best enable generalization of the experimental results to a specific
target population (Tipton, 2014; Tipton et al., 2019). If certain unit-level cov-
ariates have limited value in predicting cross-site variation, as we find in our
application, then researchers can instead focus on balancing other features
during site selection. This is especially true when considering the size of the
future study.

Finally, we have focused on multisite randomized trials. A natural extension
is to multisite settings in which each “trial” is an observational study or quasi-
experiment. For instance, estimating teacher value-added modeling has a very
similar structure to the multisite trial setting. And, as in our setting, we are often
interested in adjusting for (observed) compositional differences across students
(Rothstein, 2010). One possibility is to adapt our framework, along with recent
results from Chattopadhyay et al. (2022) on generalizing observational studies,
to this setting.
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Notes

1. We emphasize here that, although the methods used for this analysis are
largely the same as those typically used for transportation or generalization,
the underlying causal assumptions are different. Unusually, we do not assume
that we observe all the unit-level covariates that explain treatment effect
heterogeneity because we have a different, more modest goal in mind. The
typical goal of generalization or transportation is to understand what the
average treatment effect observed in one setting would be in another. By
contrast, we seek to understand what the site-level estimates would be after
adjusting for observed compositional differences. The former requires that all
relevant differences be observed and accounted for. The latter does not.

2. In principle, models M and 7 have separate hyperparameters, represented by
the constants Cy and C;. Equation 13 instead has a single tuning parameter, A,
which jointly controls the bias-variance trade-off for both the outcome and
treatment models. Including a separate tuning parameter for each model is
possible but would come at the cost of greater complexity.

3. Solutions to Equations 13 and 14 can be found using the OSQP solver (Stel-
lato et al., 2020).

4. With the radial basis function kernel, the implied basis representation is the
probability density function of a multivariate isotropic Gaussian variable
centered at x. The imbalance in this basis will be high if there is little overlap
on average between the two Gaussian distributions defined by the individual
units in the two populations.
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