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Fractional vector calculus is the building block of the fractional partial differential equations that model non-
local or long-range phenomena, e.g., anomalous diffusion, fractional electromagnetism, and fractional advection-
dispersion. In this work, we reformulate a type of fractional vector calculus that uses Caputo fractional partial
derivatives and discretize this reformulation using discrete exterior calculus on a cubical complex in the structure-
preserving way, meaning that the continuous-level properties curl” grad® = 0 and div” curl” = 0 hold exactly on
the discrete level. We discuss important properties of our fractional discrete exterior derivatives and verify
their second-order convergence in the root mean square error numerically. Our proposed discretization has

the potential to provide accurate and stable numerical solutions to fractional partial differential equations and
exactly preserve fundamental physics laws on the discrete level regardless of the mesh size.

1. Introduction

Fractional calculus generalizes the integer order integration and
differentiation to non-integer order. Unlike standard derivatives and in-
tegrals, fractional derivatives and integrals are non-local operators, en-
abling them to model long-range dependence. In this work, we focus on
fractional vector calculus (FVC), which analogously extends the vector
calculus to fractional order. Fractional calculus and FVC are widely used
in fractional partial differential equations (FPDEs), which recently have
a wide range of new scientific and engineering applications. For ex-
ample, fractional diffusion equations model anomalous diffusion [1-5],
fractional Maxwell’s equations generalize Maxwell’s equations to frac-
tional order [6-8], fractional advection-dispersion equations describe
subsurface transport [9-12], fractional Laplacians are used in image
processing [13], fractional differential equations are used in finance
[14], and a fractional gradient has been used for fractional backpropa-
gation in training neural networks [15].

There are various definitions of FVC, each with their own strengths
and weaknesses. Many approaches use a fractional partial derivative
in each coordinate direction to construct a fractional nabla operator.
Other approaches use an anisotropic mixture of fractional directional

derivatives in each direction via an integral, while still other approaches
use an isotropic mixture of function values throughout Euclidean space
to define the operators.

Due to the complexity of FPDEs, the solutions cannot usually be
computed symbolically, so numerical approximations are essential for
solving them. Various finite-element and finite-difference methods have
been developed for the discretization of FVC to be used in solving these
FPDEs, with techniques including finite-difference methods [16], the
discretization of fractional directional derivatives [17,18,10], spectral
decompositions [19] and physics-informed neural networks [10].

When solving PDEs and FPDEs numerically, some consideration
must be given to computational efficiency (i.e., how much time or
computer memory is required), as well as the accuracy of the solu-
tion obtained (i.e., how close the numerical approximation is to the
true solution). Another property that is often desirable is to have cho-
sen continuous-level properties of the model be satisfied exactly in
its discretization. Such discretizations are termed structure-preserving.
One possible structure to preserve is to preserve the de Rham exact
sequence, which essentially means preserving the vector calculus iden-
tities curlgrad f = 0 and divcurl F = 0 exactly in the discretization. The
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de Rham exact sequence plays an important role in many physical laws,
such as incompressibility and Gauss’s law of magnetism.

One way to preserve this de Rham exact sequence is by using
discrete exterior calculus (DEC). DEC is a computational toolkit that
creates discrete operators and definitions that are analogous to the cor-
responding operators from multivariate calculus. It has recently been
gaining popularity as a tool for developing numerical methods for solv-
ing PDEs in computational simulations, such as mechanics problems
[20], Lie advection [21], and computational fluid dynamics [22]. In ad-
dition to being used as a structure-preserving finite-element method,
DEC is also widely used in other areas such as computer graphics appli-
cations [23] and geometry processing applications [24].

In DEC, the discrete exterior derivative operator, D s 18 the discrete ver-
sion of grad, curl, and div for p=0, p=1, and p = 2, respectively. D,
is a n,; X n, matrix, where n, is the number of p-cells in the com-
plex (for more detail, see Section 2.3). DEC preserves the de Rham
exact sequence because the discrete exterior derivative operators sat-
isfy D, D, =0 for p > 0, which is the discrete version of curlgrad f =0
and divcurl F =0 for p=0 and p = 1, respectively.

Many types of fractional vector calculus possess an analogous exact
sequence curl® grad® f =0 and div® curl* F = 0. However, to the best of
our knowledge, no discretization of FPDEs or FVC preserves this exact
sequence. Additionally, despite the usefulness of DEC and the applica-
bility of fractional calculus and fractional vector calculus, there is rarely
any work on formulating a fractional discrete exterior calculus (FDEC),
which generalizes DEC to a fractional order.

To the best of our knowledge, the only existing work on FDEC is
[25], which considered the following “two-sided” fractional Caputo
derivative of order a € (0, 1) of a function f € C'[a,b] in 1D:

P 1 '@
D“ﬂﬁ'_rﬂ—a) /'|X—TWdT
[a.b]\{x}

@

[25] then defined a fractional discrete exterior derivative by discretizing
(1), and then generalizing the resultant discrete operator to higher di-
mensions. This results in the following n,,, x n, matrix,

l-a
Wp+| DP’

D% =
P
where Wl+ € R"+1*"+1 s a straightforward generalization of the dis-
cretization of the fractional integration of order 1 — « present in (1)
to higher dimensions. ([Dg is a discretization of (1) when the complex
is one-dimensional.) Unfortunately, the FDEC introduced in [25] does
not satisfy the fractional generalization of the property D,,,;D, =0, i.e.,
IDZH[D;‘ # 0. Therefore, even if it is a discretization of some type of
FVC, it cannot possibly be a discretization that preserves a fractional
de Rham exact sequence. Furthermore, in [25], since the FDEC in the
higher dimensional case is obtained directly from the 1D case, it is
not clear whether it is indeed a discretization of any FVC anymore in
higher dimensions, which may limit its potential in numerical simula-
tions involving FPDEs in higher dimensions. Indeed, while numerical
experiments verified the expected result that Djj converges to D* in one
dimension, convergence in higher dimensions was not shown; although
the authors compared Dj to a 2-sided Caputo gradient field of a scalar-
valued function in 2-d, convergence with decreasing mesh size was not
shown in this case. This is understandable, since due to their definition
of the fractional discrete exterior derivative, one would not expect that

Dg should converge to this fractional gradient field.

1.1. Contributions

Our goal in this work is to define an FDEC that does not suffer
the abovementioned problems. Namely, we want our FDEC operators
to (1) be direct discretizations of a type of FVC that possesses the
exact sequence curl® grad® = 0 and div® curl* = 0, and (2) be structure-
preserving, by having the corresponding exact sequence DZ 1Dy =0.
Both of these properties are achieved by rewriting the operators from
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a type of FVC that does have the exact sequence (namely, one defined
by a fractional nabla operator) as compositions of fractional integration
and exterior derivatives on the continuous level, and then discretizing
these composite operators using DEC on a regular cubical complex. This
results in the following fractional discrete exterior derivative operators,
O<a<l,

a _pl-a —
DZ =1 p=0,1,2,

RERUR)
where the matrix I]}]“’ is a discretization of p-dimensional fractional in-
tegration of order 1 — « on the p-cells.

By discretizing a type of FVC, these operators can be implemented in
software and open doors for numerically solving FPDEs. Furthermore,
since our approach is structure-preserving — satisfying the continuous-
level properties curl® grad® = 0 and div® curl” = 0 exactly on the discrete
level — our proposed FDEC operators have high accuracy in discretiz-
ing the corresponding continuous operators and behave similarly even
at coarse mesh sizes, and can potentially increase the fidelity of nu-
merical solutions to FPDEs. In addition, unlike the usual dense matrices
obtained from discretizing the fractional derivatives, the matrices in-
volved in our discretization are relatively sparse, which enables fast
computations. Finally, since these operators are extensions of DEC, they
can provide fractional generalizations of applications that use DEC.

1.2. Outline

An outline of the paper is as follows. In Section 2, we recall frac-
tional calculus, fractional vector calculus, and discrete exterior calculus.
In Section 3, we present and prove our reformulation of Tarasov’s FVC
and describe its discretization. In Section 4, we show the convergence
of our FDEC to Tarasov’s FVC numerically, and finally we summarize
our work and suggest possible future work in Section 5.

2. Preliminaries

In this section, we briefly recall fractional calculus first, and then
introduce the fractional vector calculus and discrete exterior calculus,
which are the building blocks of our FDEC.

2.1. Fractional calculus

First, we discuss fractional calculus. There are many different defi-
nitions. This paper focuses on the Riemann-Liouville fractional integral
and the Caputo and Riemann-Liouville fractional derivatives. Rather
than defining the usual fractional integrals and derivatives, below we
define “partial” fractional integrals and derivatives of a scalar-valued
function of multiple variables, f : Q > R, where Q = [xr'nin,xllmx] X e X
x oxp ] CR™ This generalizes the usual definitions, in the sense
that if m = 1, then these definitions reduce to the usual one-dimensional
definitions. Furthermore, definitions of partial fractional integrals and
derivatives that are essentially the same as the ones we will define can

be found in [26].

2.1.1. Fractional integrals and derivatives

For a real number « > 0 and a real-valued function g : [a,b] — R, the
left-sided Riemann-Liouville fractional integral of order « is defined as
follows:

alﬁ[X’]g(x')=ﬁ/ﬁg(x/) (@a<x<b)

where I'(-) denotes the gamma function. Similarly, the left-sided
Riemann-Liouville partial fractional integral with respect to coordinate
x/ from a to b of order a of a function f : Q — R is defined as follows:

! . / 1 i—1 1 j+1
RIS Ve IS VIC e e I )
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Also, we define
1 .
IS f(x, . x™) -=X‘fm - x,[x 1f.

Next, we recall the left-sided Riemann-Liouville derivative and the left-
sided Caputo derivative. If we let D, denote the nth partial derivative
with respect to coordinate x/ (we drép the superscript when n = 1), then
the left-sided Riemann-Liouville fractional partial derivative of f with
respect to coordinate x/ at a point (x!,...,x") of order a >0 is defined
as, forn=|a] +1,

RLDn(f = p" " af

xJ " xi

f(x X Xt
(xj_x/)] (n—a)

Ximin

Naturally, RLD’;Jf = Dfdf ifkeNy:={0,1,2,... }.

Similarly, for 0 < a ¢ N, the left-sided Caputo fractional partial
derivative with respect to coordinate x/ of order « is defined as, for
n=la]+1,

m
X )dx’.

F(n - a)

C P
DY f 1=

D" f(x',
F(n -a) / (x/

min

I)’:j_"’D::jf

x0T ! )t X

dx'.

_ x/)l—(n—a)

Otherwise, for integer orders, we define CD’;J. f = D)’; ffora=keN,.

2.1.2. Fractional calculus identities

Here we will present some identities involving the fractional deriva-
tives and integrals defined above that will be used in this work. The first
such identity is named the “fundamental theorem of fractional calculus”
(FTEC) by [6], which generalizes the fundamental theorem of calculus
to fractional order. Only the first part of the FTFC will be presented,
since the other part is not necessary for the results of this paper.

The first part of the FTFC states that both the Caputo and Riemann-
Liouville derivatives are left inverse operators of the Riemann-Liouville
integration operator from the left. This generalizes the well-known for-

mula —f f(Odt = f(x).

Lemma 1. Let f : Q C R™ — R be continuous and let « > 0. Then at any
point (x!,....x"eQandany j=1,...,m

RL _ c -

DYI%f=f and “DYI%f=].
Proof. Since f is continuous, it is continuous in each variable sepa-
rately. Then the first equality follows from Lemma 2.4 on page 74 and

Lemma 2.9 (b) on page 77 of [26], and the second equality follows from
Lemma 2.21, part (a) on page 95 of [26]. []

We also have the following result which will be used later:

Lemma 2. Let f : Q C R™ - R be continuous and let « € (0,1). Then at
any point (x',...,x"YeQand any j=1,...,m

RL _
l:j DZ =1
Proof. The proof uses the FTFC (Lemma 1) presented above:

RL _ rl— _Cpl-ajyl- —
15REpe f= 15D I f =D f=f. O
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The third identity that we will present is that the Riemann-Liouville
fractional integral satisfies the so-called semigroup property:

Lemma 3 (Theorem 2.2, [27]). Let f : Q C R™ — R be continuous and let

a>0, f>0. Thenforany j=1,...,mand any a,b € [xj mM] with a < b,
R NS = XS

2.2. Fractional vector calculus

There are various approaches to defining FVC. Many approaches are
similar to the integral order: use the standard basis of the vector space
V and represent the fractional gradient of a scalar function f on V by
an n-tuple of the one-dimensional partial fractional derivatives along
the coordinate axes. These operators are referred to as standard basis
directional. Other approaches use an anisotropic mixture of fractional
directional derivatives in each direction via an integral, and these op-
erators are referred to as directional. Yet a third approach is to use
an isotropic mixture of the function values throughout R” to define
the operators, and these operators are referred to as isotropic (termed
“Cartesian” in [28]). Standard basis directional operators are special
cases of directional operators [12,11], and isotropic operators are also
special cases of directional operators [28].

2.2.1. Tarasov’s fractional vector calculus

In [6], FVC operators using the one-dimensional (left-sided) Caputo
derivative are defined. Considering a parallelepiped Q = [xmm xl Ix
[xfnin ﬁm] X [xmln max], Tarasov’s FVC (T-FVC) is based on the follow-
ing generalization of the nabla operator to fractional order « > 0:

v i=¢ CD:1 +e2CDZ2 +e3ch3. (2)

For a scalar-valued function f and vector-valued function F, the T-FVC
operators are then defined as,

._cC _cC . _cC
grad".;f.— Vef, curll F:=%"V*xF, le;(.F =“V*.F. 3)

A property of the T-FVC operators is that they satisfy fractional gener-
alizations of Green’s, Stokes’, and Gauss’s theorem, which use fractional
line and surface integrals, see [6] for details.

Another important property of the operators defined above, which
is necessary for our goal to make structure-preserving FDEC operators,
is that they satisfy

=0, 4

which are generalizations of the identities from vector calculus curl grad
=0 and divcurl = 0. Property (4) is the main reason we choose to dis-
cretize the T-FVC operators. We plan to retain these properties on the
discrete level to produce structure-preserving FDEC operators. This is
feasible via rewriting these operators, and the details will be discussed
later in Section 3.

curly gradz. =0 and divy curly

2.2.2. Other fractional vector calculus

From the fractional nabla operator (2), we can see that the T-FVC
operators are standard basis directional. In [29], another standard ba-
sis directional fractional vector calculus was introduced. Different from
Tarasov’s work, both left-sided and right-sided FVC operators were in-
troduced. In addition, each coordinate can have different fractional
orders, which makes their FVC framework more flexible. This is done
by introducing left-sided and right-sided fractional nabla operators first
and then defining two sets of fractional gradient, curl, and divergence
operators accordingly in the same manner as the T-FVC operators.

An anisotropic, directional FVC was first present in [12]. The au-
thors defined a fractional integration using a mixing measure, a positive
finite measure on the set of unit vectors. This considers the relative
strength of the dispersion in each radial direction and, hence, intro-
duces anisotropy. The fractional gradient is defined by taking the usual
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gradient and then the fractional integral. On the other hand, the frac-
tional curl and divergence operators are defined in a reverse order, i.e.,
taking the fractional integral first and then the usual curl and diver-
gence. [12] and [11] point out that if the mixing measure is a point
mass at each coordinate, the T-FVC gradient is a special case of the
directional gradient defined in [12]. In addition, [11] further gener-
alized the FVC in [12] by allowing the fractional order to vary by
direction.

As for isotropic FVC, there is generally a single kind of isotropic
fractional vector calculus that appears repeatedly in the literature, for
example, Refs. [30-32], and can take on various functional forms which
are all equivalent. Generally, authors only define a fractional gradient,
but in [32], a fractional divergence is also defined. [32] points out that
due to the construction, FVC constructed using the standard basis direc-
tional approach depends on the chosen coordinate system, which could
be a drawback since the resulting FVC operators do not transform un-
der rotations. [32] introduces an isotropic FVC that satisfies specific
transformation rules for translation, rotation, and scaling, and they also
generalize the definitions to any real-number fractional order. Unfor-
tunately, although a fractional gradient and divergence are defined, a
fractional curl is currently missing from isotropic FVC.

Nonlocal vector calculus is any type of generalization of vector calcu-
lus that uses an integral with a kernel around the point to make vector
calculus nonlocal. [28] presents a unified framework for nonlocal vec-
tor calculus, of which isotropic FVC is a special case. In addition, the
authors prove that the directional and isotropic fractional gradients and
divergences are equivalent up to constants if the mixing measure is con-
stant.

Finally, although we only consider the T-FVC in this paper (which
is a special case of directional FVC), we believe our approach can be
generalized to more general cases, which is a subject of our ongoing
work and will be reported in the future.

2.3. Discrete exterior calculus

Since our discretization of FVC employs DEC, we give a short de-
scription of DEC following the methodology developed in [33-36].

Let us start with exterior calculus, which is essentially a general-
ization of vector calculus to more than three dimensions. Scalar and
vector fields from vector calculus are replaced with p-forms. From a ge-
ometric perspective, a differential p-form can be viewed as an oriented
p-dimensional density [37]. We denote a p-form as w” and the space of
p-forms as AP. If we define §,,, :={J =(i}.....i,) 1 | <ij <ip <<, <
m}, then the p-forms {dx’} J€S,,, SPan the space of differential p-forms,
where we denote dx’ :=dx't A Adx'» = )\;c; dx. Thus, any p-form
can be written as

wl = Z ajdxj,

JES pm

where each a; is a scalar-valued function of the coordinates. The exte-
rior derivative, an important operation on differential forms, is denoted
as d,: AP > AP*L In 3D, we have d, = grad, d; = curl, and d, = div.
The capstone of exterior calculus is Stokes’s theorem, which is a gen-
eralization of the fundamental theorem of calculus. It states that under
relatively mild smoothness requirements on a compact oriented (p + 1)-
dimensional manifold S with boundary 95,

/dpwp=/wp, o €A,

S 28

(5)

DEC is a discrete analog of exterior calculus. A p-cell, i.e., a cell of
order p, denoted by ¢”, may be represented as an ordered set of vertices
comprising a convex p-polytope. For example, the 0- 1-, 2-, and 3-cells
are called nodes, edges, faces, and volumes, respectively. A cell complex
of dimension n, or an n-complex, is a collection of cells of order at most
n that obeys certain properties regarding how the cells are connected
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to each other. We denote the number of p-cells in the complex as n,,.
Each p-cell is oriented and may have one of two possible orientations. A
node (0-cell) has two orientations, “sourceness” or “sinkness”. The ori-
entation of an edge (1-cell) corresponds to a notion of direction, the
orientation of a face (2-cell) corresponds to a notion of clockwise/coun-
terclockwise, and the orientation of a volume (3-cell) corresponds to a
notion of outward/inward.

A p-chain 7, represents a domain of integration, and is a formal sum
of the p-cells with coefficients in Z, i.e., 7, = ZZ . a;6?, o7 € C, and
a; € Z, where we denote the vector space of p-chains as C,. Note that
the set of p-cells forms a basis for C,. Without confusion, we abuse the
notation and also use a vector representation, i.e., T,=lay,... a,,F]T. In
addition, a p-cochain, also known as a discrete p-form, is a linear map c¢”
from C, to R. The vector space of p-cochains is denoted C?. The natural
pairing of a p-cochain ¢” and a p-chain 7, is defined as

np

= Z a,-c”(af).

i=1

np
Ie?.z,] :=c(z,)=¢ <z a,-af)

i=1
Therefore, we can identify a p-cochain as a vector ¢’ = [c”(o—f ) AU
c/’(af,’p )IT, which implies that [[¢?,7,] = (¢”)Tz,.

Now we introduce the coboundary operators or discrete exterior deriva-
tive operators, D, : C? — Ccrt! for 0 < p<n—1, which are the discrete
versions of the exterior derivatives d, : A? — A?*! and can be repre-
sented as incidence matrices D, € R"+1*"» which are defined as

0  if o} is not on the boundary of o/ H
D)) +1 if 0';.’ is coherent with the induced orientation of af“,
,])=
D
-1 if af is not coherent with the induced orientation
of 6t

1
Furthermore, we denote the boundary operator as 9, : C, — C,_;, which
satisfies D, = apTH.
An important property of the coboundary and boundary operators is
that D,, D, =0 and 9,.,d,,, =0, for 0 < p <n—2. In addition, the DEC
version of Stokes’ theorem can be stated as follows:

[Dye?. 71 ] =", 0p11 75111 (6)
Let R, : A” — C? be the p-th de Rham map, which is defined as, for
P € AP and 7, € C), [R,0”,7,] = (R,0F)(z,) := frpa)". Using (5) and
(6), we have that for any o” € A? and 7,,,; € Cy,

[['DpRpa)p’ Tp+II| = IIR[)COP, ap+1 Tp+1ﬂ

= / o’ = / d,0f = [R,1d,0F,7,,,],

Op+1Tp+1 Tp+l

which implies

DR, =R, 1dp

and the following commutative diagram,

dﬁ
AP —5 APH

[, e

Dﬁ
cr — crtl

which essentially says that D, is the discretization of d,. For exam-
ple, in 3D, Dy, D,, and D, are discretizations of the gradient, the curl,
and the divergence, respectively. In addition, such a discretization is
structure-preserving since we have d, ;d, =0 on the continuous level
and D,,,D, =0 on the discrete level. In Section 3, we define our FDEC
operators to be structure-preserving as well, satisfying the analogous

property that IDZ D5 =0.
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Finally, we introduce the following generalized incidence matrix
Dy_, € R"*" for 2<q <n,

0 if (7;.) is not on the boundary
. . q
DO—»q(h/) = of O-i’
T, 3026, 00! o4 Dy(k,j) if 67 is on the boundary of o,
and define D,_, := D,. Here we use the notation do} to denote the

boundary of aiq which consists of all the p-cells, 0 < p < g — 1, that are on
the boundary of o‘?. In 3D, the edge-node, face-node, and volume-node
incidence matrices, D_,, Dy_,,, and Dy_,3, are useful for our discretiza-
tion.

3. Fractional discrete exterior calculus via reformulation

This section describes the main result of this work, namely, the dis-
cretization of T-FVC via DEC. In Section 3.1, we show an equivalent
way to write Tarasov’s FVC, which is suitable for discretization using
DEC. Our discretization of T-FVC using DEC is then described in detail
in Section 3.2.

3.1. Reformulation and equivalence

In this section, we define a Caputo fractional exterior derivative of
order « that is equivalent to T-FVC in 3D, and then reformulate this
fractional exterior derivative into a form which can be easily discretized
using DEC. Again, we mainly focus on the case 0 < a < 1 to keep the
presentation simple and comment that our results hold for general a >
0. To avoid confusion, we use g > 0 to denote a fractional integration
or differentiation order that is not necessarily 1 — a or a. In addition,
although we use exterior calculus notations mainly in this section, we
confine our discussion on the region Q = [xmm maX] X X [xm xp 1C
R™ and leave the general manifold case for future work.

In the following lemma, we present some properties of the fractional
partial integrals and the partial Riemann-Liouville fractional derivatives
introduced in Section 2.1. Those properties are useful for the reformu-
lation.

Lemma 4. Let f : QCR" - R, g : QCR"” - R be sufficiently smooth
scalar fields. Then the following identities hold.

e fran=cl’ f+al’ s (>0,¢ R ER), )
DB r=121001 (8 >0.8,>0.i#)), ®)
k 1B »_ 1P pk ..
DIl =10 Dk f (B>0.keN,i# ), ©
IMRLDP p = RLDP [P (5 > 0.5, > 0.1 # )). (10)

Proof. (7) can be easily verified by the linearity of the regular integral,
which implies that the Riemann-Liouville fractional partial integral is
linear. (8) is a consequence of Fubini’s theorem.
To prove (9), we use mathematical induction on k. The base case
k =1 can be shown using the Leibniz integral rule directly. For the
inductive step, assume D’;V. 1 f =1 f ; D)’;. for some k € N. Then
DL
x! x/

—D.D1P =D 1P DE =P DDk — P pk+l
= D51 =Dy 1) D}, =1’ D, DY =17 DK

Finally, (10) follows from (8) and (9). [
Next, we define a Caputo fractional exterior derivative as follows:

Definition 1. We define the Caputo fractional exterior derivatives of
order a >0, dy : A? — AP as

2 i (CD:I.aJ) dx' Adx’,

JET pm i=1

d; Z aydx’

JESpm
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where coefficients a; are real-valued functions on Q.

Note that Definition 1 is essentially the same as the fractional ex-
terior derivative that appears in [7]. It is also similar to the fractional
exterior derivative defined in [38], where the Riemann-Liouville, rather
than Caputo, partial derivative is used.

Additionally, in 3D, by direct calculation and identifying 1- and 2-
forms as vector fields and 3-forms as scalar functions, we can verify that
Definition 1 is equivalent to the T-FVC operators (3), which is summa-
rized in the following proposition.

Proposition 1. In 3D, for a > 0, dg = grady, df = curly, and ds = divy.

Although it is possible to show that d;‘ di=0 directly from Defini-
tion 1, here we take another approach by reformulatmg dy, which also
allows us to discretize dl’j using DEC intuitively. To this end, first, we
need to define the following Riemann-Liouville fractional integration
operator of order g > 0, If TAP > AP for p>1,

Iﬁ, aj>dxl,
xp

and the following Riemann-Liouville fractional differentiation operator
of order >0, RLDY : AP — A7, for p> 1,

Ig Z adeJ = Z (If"l

Je:}p,m J=(i; ,,A.,ip)e{}p_m

RL J |-
Dg Z aydx” | =

RLpp .
X1
Jesp'm J=(iy,..., i,,)ES,,,,,,

RLDﬂi a1>dxj.
x'p

id. Note

B

xp

RLpf , Present in these definitions have been defined in [26],
i

For the p =0 case, we simply define Ig :=id and RLDg =

that the iterated fractional integrals and derivatives lﬁ,.] - I" and
RLpA .. y
g
in w)lcﬁch the iterated fractional integrals are called “mixed Riemann-
Liouville fractional integrals with respect to a part of the variables”
(and similarly for the iterated fractional derivative).
Using 7, and ®“D}~*, we can reformulate d7 as follows.

Theorem 1. Let 0 < a < 1. Then d® =T!-% 4 RLpl-a,
P p+tl P )4

Proof. If p=0, then by definition, RLD(l)‘“ =id, thus ;;f‘ d, RLD},“’ =
1 11“’ dy. Taking a O-form, i.e., a scalar field, f/ : R™ — R, we have,

I1™"dof =1,7* Y (D f)dx' = Y (I7*D,; frdx'
i=1 i=1
= 2 (CD% rdx' = df f.
i=1

If p> 1, then for a p-form o = aydx’, we have

Zjed

RLyl—a p _ RL pl-a ,, RL pl-a J
d," Dl o =d, ¥, (®D; D' %a; ) dx

Jesp'm
m
Z Z (DXIRLDlaa .._RLDl;an) dxi Adx”
X

TES =1 x

Z Z (DxiRLDli—amRLDli—an> dx' Adx”,

x'1 x'p

JEFpmi€(l..

where we use the fact that dx' Adx’ =0 if i € J in the last step. Finally,
applying I 1- o from the left, we obtain

I-a RLla
1) wa, D)

Ili—alli—rx_..Ilfan’RLlea.._RLDIfan dxiAde
x X' x'p X' x'p
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2 Z<II anJl @ 11 aRLDI @ RLDI;an) dxi Adx”
JEFpm i=1 ¥

§
JET pm

=d%’
p

(CDa,Ili—aRLDli—a IlfaRLleaaj) dxi Adx?
xI X' x'1 x'p x'p

<CD“, aJ> dx' Adx?
X'

This completes the proof. []

Remark. Following the same argument, Theorem 1 can be generalized
to any 0 < a ¢ N by using high-order analogues of the exterior deriva-
tives.

From Lemma 1 and (10), we can easily verify *‘D)=7 )~ = id.
Thus,

p+1

From Proposition 1 and Theorem 1, we have the following corollary
which reformulates the T-FVC operators. Such a reformulation enables
us to discretize T-FVC using the DEC framework.

Corollary 1. In 3D, for 0 < a < 1, we have

1

grady = 111_" grad, curly =17,7" curl RLD{"“

@ _ gl=a ;i RLpyl—a
,leT—I3 div D2 .

3.2. Definition of FDEC by discretization

In this section, we discretize the fractional exterior derivatives d¢
in 3D to produce the corresponding FDEC operators DY, p=0,1,2.
Our discrete exterior derivative is defined as the composition of the
discretizations of each of the three composite operators in our re-
formulated fractional exterior derivative, dy = 1! Tvd, RLD‘ @, First,
as explained in Section 2.3, the dlscretlzatlon otg is D,. Next we
need to discretize Iﬁ AP - AP and RLDﬂ AP — AP. Naturally, their
discretizations should map p-cochains to p-cochains, i.e., matrices of
size n, x n, . Furthermore, noting that RLDﬂ Zﬂ id, we use a matrix

I] € R” *np » CP — CP (which will be defined later) as the discretization

of Zﬁ , while RLDﬁ is discretized by (I]Iﬁ,) l e R : CP - CP in or-
der to enforce the structure-preserving property. The resultant discrete
exterior derivative is hence defined as D% =1 ;‘I’ D,( 11,‘")‘1.

Our discretization was done on a 3D regular cubical complex as
shown in Fig. 1. It is obtained by dividing the parallelepiped that the
discretized d* operators are defined on, Q = [Xins Xmax] X Wmins Ymax] X
[Zmin» Zmax > iNto cuboids. Specifically, the division is x;, = x; <x, -+ <
xnx+l = Xmax> Ymin = Y1 < Y20 < yny+1 = Ymax> and Zmin = 2] < 23 <
Z, +1 = Zmax, Fespectively (see Fig. 1).

" We only present the discretization on the cubical complex be-
cause, while constructing the D, matrices is straightforward for general

meshes, defining the Hg matrices on a general mesh is difficult and
challenging for practical implementation. In particular, computing the
entries in this matrix requires computing multiple fractional integrals
through multiple mesh elements, which makes efficient implementation
difficult in practice although it is theoretically feasible. This compu-
tation is much easier, however, when a square or cube grid is used.
We would like to point out that, such a difficulty also arises in other
types of discretizations for fractional derivatives and, to the best of our
knowledge, finding an efficient method for computing those fractional
integrals on general meshes is still an open question in the community.

We will first discuss the strategy of discretizing If on the cubical
complex. We will then introduce two FDEC operators: the fractional
discrete exterior derivative ID;, p=0,1,2, and the fractional de Rham
map, RZ , p=0,1,2,3, and discuss their properties.

de, i = (1058 dpuy KDL ) (1) d, REDY ) = T8 dyyd, D) =0,
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Fig. 1. Diagram of a 3D regular cubical complex, with n, =3, n,=2, n, =2

3.2.1. Discretization of If

Next, we consider a discretization of the fractional integral operator
I{,i , p=1,2,3. We use If as an example to illustrate the general proce-
dure for discretization of 11’,] .

On the cubical complex, there are n, ,, n,,, and n,; (n,, +ny, +
n . =n;) edges are along the x, y, and z direction, respectively. Con-

sidering an x direction edge, o, = [x;,X;41]1 X y; X 2, for any 1-form

1] k
o'= f.dx + fydy+ f,dz, we apply I{i and take the integral along al.l;."k
to obtain,

A1 _ 1 ’ p
/le _X,Ix,-H[x]x]I

s IX"1fx
1x

%ijk

b 1 1 6 = 1 X 1
= L X = LI

XXX
In the last step, we used fractional integrals’ semigroup property
(Lemma 3). (11) implies that the above integral can be computed by a
signed sum of the values of the x component of 7 11+ﬁ o' on the edge’s two
incident nodes. If we write the edge-node incidence matrix Dy_,; = D,
into a block form according to edges along each direction, i.e.,

1D

(12)

Then such a signed sum can be encoded into the matrix B ,.

L1211, ap-
. Dy using a p1ecew1se constant approxi-

The main step of our discretization is to compute
proximately at the node 0'

mation on each edge. Spec1ﬁcally, on edge 0'

T w
o

il jik

k, we use the average

ol =l h c (o‘, ),wherec =R,®', to be the

lx
lj,k

| il j.k
constant approximation of ', and then have

xlli-‘f[ ,]fx: fxdx,

1 / 1
TA+p) ) -2
Xy

X/
i-1 A

= F<1+/3> / x —x'> 7 x4

XI
i-1 o

“21 T(1+p) / > —x') 7

i-1 1 1,x
¢ (o J. K Gy = x)*P - (x; - X )"

2 re+p

! —
=l | t/k‘
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Thus, if we let C! be the space of 1-cochains that uses 1-cells along the
x direction only, then the matrix form of the discrete Riemann-Liouville
fractional integral operator of the x component, I]f L€ RM¥msx : CL
Cl, is defined as

s _ 1+8y,-1
ﬂl,x = BI,XMLX \/l,x'

Here B, € R"«*" is defined in (12), V,, = d1ag(| R

and M'J’ﬂ MHﬁ ® L, 41 ® 1,41 € R™*".x where ® denotes the
standard Kronecker product 1, denotes a n x n identity matrix, and
M 11:/3 e R(tDxny js defined as follows,

O = x)HP = (x; = xp )P

e
ot p) . ifif <i,

(i), =
x )i

Repeating the same procedure for a y direction edge, o' ;.y .
[¥;>¥;+1]1X 24, and a z direction edge, 0 m =X Xy X 2, 2441], We can
define the discrete Rlemann Liouville fractlonal integral operator of the

y and z component, I]l ’ and I]f > as follows,

0, otherwise.

=Xx; X

and 1?

0, =B MV v

o 146y /-1
Ly ” =B MV
where B, , € R"»*"0 and B;, € R".=" are defined in (12), V; , =
diag(lo['}yk‘) e R"»*"y and A diag(|

larly define M:;ﬁ =1, 1 ® Mll;ﬂ ® 1, ., € R"™* "y where

a[];.zk‘) € R".z%".z, We also simi-

;- yj/)1+ﬂ - _Yj’+1)1+ﬂ

, if j <,

(m1)7),, = ) S

’ 0, otherwise,
and M’ =1, @1, 1 ® M T’ €M where

_ 1+p _ _ 145
Z Z Z Z
1y (2 — zy1) (2 = 247 41) LK <k,

GO

’ 0, otherwise.
Finally, combining [If o I]f . and [ _ we define the overall discrete

Riemann-Liouville fractional 1—form integral operator [If € R"M>m
c! - ¢! as follows,

dmg(l]

b My
V=M v )

1 .y’
where B, = diag(B, ., B, ,, B ), M; "’ = diagw "’ .M ", M}*/), and v, =
dlag(\/l.x’\/l,y\/l,z)

Analogously, to discretize If , we notice that there are n, ,,, faces par-
allel to the yz plane, n, ,, faces parallel to the xz plane, and n, ,, faces
parallel to the xy plane. So we expect the discrete fractional integral
I]lz3 to also have a diagonal block form. To discretize Ig , for any 2-form

w?

, we apply 12ﬁ and then take integration on a face. Using the average
value of @? on the face as a constant approximation, we can compute
approximately the face integral, leading to the discrete fractional 2-
form integral operator. We omit the details here and directly present
[Ig. First, we need the signed face-node incidence matrix Dy_,, € R"2*"0,

which has the block form

IBZ,yz
Do =| Bax:
BZ.xy
Then we need matrices Ml”’ € R"0*M2yz, MHﬁ € R"0*M2xz Mlzﬁy [S

R™*"2.xy  which are the dlscretlzatlons of approx1rnately evaluating the
dyAdz, dz Adx, and dx A dy components of 5 482 at each node, re-
spectively. The overall discrete Riemann-Liouvﬂle fractional integral
operator I]g eR™*™ : C? — C? is defined as

192
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Table 1
Sizes and number of nonzeros of the B, and M},*ﬂ matrices as
function of n, n=n,=n,=n,. (ny=(n+ 13, ny =3n(n+ 12,

ny, =3n*(n+ 1), and ny = n*)

size number of nonzeros

P Bp ML+/7 IHSP M[l’ﬂf

1 ny X3n, 3ny X ny 2n, %n(n+1)3
2 ny X 3ng 3ny X ny 4n, %nz(n +1)
3 ny X ny ny X ny 8ny én3(n +1)7

p._ 1444 /-1
0 =B, M,V

M+ —dlag(MHﬂ M Mty and

where B, = diag(B, ., B, ., By x)), M 2o My oM,

Vv, —dldg(dmg(l vE o) diag(|o; D, dlag(‘

Finally, to dlscretlze If s note that there is only one type of vol-
ume (cuboids) in the cubical complex. We no longer expect the discrete
fractional integral [Ié3 to have a diagonal block form. Similarly, to dis-

cretize Z3ﬂ , for any 3-form «°, we apply Z3ﬁ and then take a volume

integration. Using the average value of »* on the volume as a constant
approximation, we can compute approximately the volume integral,
leading to the discrete fractional integral on 3-forms operator. Letting
M;*ﬂ R"0*"3 be the discretization of evaluating I”ﬂ 3 at each node,
we define the discrete Riemann-Liouville fractlonal integral operator
1 e R 1 €3 - C3 as

2xz

A/k

V=M v
where B; :=D_3 € R"3*" is the signed volume-node incidence matrix
and V; = diag(|o?, )

In general, our discrete Riemann-Liouville fractional integral opera-
tors are defined as

ug :BPMW\/,;I, p=12.3.

1
We summarize the sizes and number of nonzeros of B, and M, *asa

function of n, n=n, =n,=n_, in Table 1. We exclude \/p because they
are diagonal. As we can see, on the cubical complex, the matrices B,
are sparse since they are constructed from incidence matrices. On the
other hand, the matrices M },Jrﬁ become denser and denser as p increases.
However, they are still relatively sparse. Even for p =3, only 12.5% of

the entries are nonzeros.

3.2.2. FDEC operators

After discretizing If , we now introduce two FDEC operators: the
fractional discrete exterior derivative, and the fractional de Rham map.
We first introduce the fractional discrete exterior derivative. As men-
tioned before, based on RX Dﬁ Zf =id on the continuous level, we simply
define the discrete version of the RLDﬁ operator as the inverse of the

I]ﬁ matrix to preserve the property on the discrete level. Based on the

»
straightforward to define the FDEC operators D} as follows.

-1
discrete versions of I[,’, RLDﬁ, and d,, ie., HZ, (Hﬁ> , and D,, it is

Definition 2. The fractional discrete exterior derivative operators are
defined as

D = p+,|D (1 =l p=0,1,2, 0<a<1,

where we define I](l)“’ :=1, , i.e., an identify matrix of size nj X n,.

ny?

From Definition 2, we can easily see that ID" Dy =0 because

1 =1q1 I—ay=1 _ pl— I—ay—1 _
s, DY=1 5D DD, 0™ =118, B, (1,77 =0

P+l ( p+1 p+2
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(c) Discrete fractional div error for function F'(z,y, 2)

Fig. 2. Error of discrete fractional gradient, curl, and divergence to their continuous counterparts against the number of subdivisions. Left column: a = 0.25. Right

column: a =0.9.

Remark. We can discretize RLDg directly using the same method as was
done to discretize T f and obtain a discrete Riemann-Liouville fractional
derivative operator,

— -1
Kpl=B,M,7 (V,)", p=0,1, 0<p<l.

a .__pl-a RLI-a
Dg =1 D, "D,
Although this approach seems to be more natural than Definition 2,
unfortunately, these operators do not satisfy D$+1 DY =0 due to the
fact that REDS 1) # 1, . But RLpA D 1, as the mesh size gets smaller,

which leads to DZ+ Dy~ 0 when the mesh is refined. The second ap-
proach is

This provides two alternative ways to define the FDEC operators. The

first one is

-1
@ ._ (RLpl-a RLpl-a
pg:= (M) B, RD),
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(a) Discrete fractional gradient error for function f(z,y,z), at 16 subdivisions.
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Varying 1-« (log scale)

10°

Error

108

1-a

(b) Discrete fractional curl error for function F(z,y, z), at 16 subdivisions.

o L 1 L
0 0.2 0.4 0.6 08 1
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Varyin
0.05 ing o
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o L L L
0 0.2 0.4 0.6

«
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(c) Discrete fractional divergence error for function F(z,y, z), at 8 subdivisions.

Fig. 3. Error of discrete fractional gradient, curl, and divergence to their continuous counterparts against the fractional order a. Left column: error versus « in linear

scale. Right column: error versus 1 — « in log scale.

which also satisfies I]ZDZ+1 DY = 0. However, we empirically observe worse
convergence than the version we are using. This is why we decided to
use Definition 2. We would like to thoroughly understand these three
approaches’ approximation properties and convergence behaviors in
our future work.

Remark. We comment that the FDEC operators defined in Definition 2
are closely related to the mimetic finite difference (MFD) method
[39,40] since

-1
— - I—a\—1 _ 2— -1 2—
DE =153, 05" = (B M2 ) (V1 D,V ) (BM2)
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and \/p‘+11 D,V, are the MFD operators as pointed out in [41,42].

Next, after defining the fractional discrete exterior derivative, we de-
fine a “fractional de Rham map,” as follows. Recall that in the integer
case, we have the identity D, R, =R, d,. However, in the fractional
case, IDZRP #R, +1dZ in general. To remedy this, we define the follow-
ing fractional de Rham map Ry AP = CP:

RY 1= u};“ R, RLD};“, p=0,1,2,3.

Then DI RS = R;’ 14y holds by the following direct calculation:
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Fig. 4. Numerical verification of D*  Dc? =0
p+Hl T p

-1
apa_qnl-a l-a l-a RLpl-a _jl-a RLpyl-a
DIRI=11¥D, (up ) LR, RED) =1 4D, R, "L D)
—ql-a RLpl-a _pl-a RLpyl-a yl-a RLpl-a _ pa a
=B R, d, D) =1 R, RED T g RED) e = R d.

This implies the following commuting diagram

&

AP Ly AP

lRZ l’%
Dﬂ'

cr —= crl

and suggests that, with the fractional de Rham map, the FDEC operator
DY can be viewed as an “error-free” discretization of d%, which provides
another structure-preserving property and, therefore, makes the FDEC
operators useful for preserving physics laws in numerical simulations,
e.g., fractional conservation of mass [43] and fractional Gauss’s laws
[44].

4. Numerical experiments

In this section, we numerically test the FDEC operators. The MAT-
LAB and Mathematica code is available at https://github.com/71c/
Frac-DEC. In Section 4.1, we numerically study the convergence of Dy
to d, while in Section 4.2, the property D:HIDZ =0 is verified numeri-
cally.

4.1. Convergence of our FDEC to T-FVC

In this section, we numerically study the approximation property
of the FDEC operators (Definition 2) to their continuous counterparts
(Definition 1) for p =0, 1,2. Their convergence rates are tested using a
regular cubical complex (see Fig. 1).

Recall that DZ R, # R,.1dS in general, however, we do expect that
IDZRP - R, +1dg as the number of the subdivisions increases (i.e., the
mesh size decreases). Therefore, to properly check the convergence rate,
for a given p-form w” € A?, we compute the following root mean square
(RMS) error,

RMSV!

-1
PADIR 0P = VLR L dYwP),

p+l (13)

where RMS(x) := 4/ % Y, x? for x € R". Here \/l;‘1 makes sure that
we are measuring the average error throughout space by dividing the
cochain value on a (p + 1)-cell by the volume of that (p + 1)-cell.

In Figs. 2 and 3, we plot the error (13) against the number of sub-
divisions and the fractional order a, for p=0,1,2. We use the region
Q=1[0,1]x[0,1] x [0, 1] for all plots. We use the scalar field

f(x,y,2)=—8xy’z—3cos 20 (x — 1/2) (y — D)2) + 4 (x — 1/2)> + (y — 1/2)
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as ' to test the fractional gradient, and use the vector field
)2

2sin (5x3y) +xy <z - i) +cos(2xyz) — x+ ¥’z

2
ysin(5xy+z)+3(xz— %) —3(y—%

F(x,y,z)= zcos(10xyz) + xz — y°

as ! and @ to test the fractional curl and divergence, respectively.

Fig. 2 plots the error (13) for p =0, 1,2 against the number of sub-
divisions for two values of a: « =0.25 and « = 0.9. From the plots, we
can see that the convergence is generally slower at small n, and the
convergence becomes faster approaching second-order convergence for
large n. Thus, we conjecture that our proposed FDEC operators converge
in second-order asymptotically. We can also see, at least for the frac-
tional curl and divergence, that for a = 0.25, the convergence is close to
second-order, while for « = 0.9, the convergence is slower than second-
order (at least empirically for small »). This likely means that when «
is close to 1, the asymptotic second-order convergence appears more
slowly. The theoretical study of the convergence order is a subject of
our future work.

On the other hand, Fig. 3 plots the error (13) for p=0,1,2 against
a for a fixed number of subdivisions (n =16 for p=0,1 and n =8 for
p=2). The plots in Fig. 3 deserve some explanation. On the left column
plots, the error (in linear scale) is plotted against a (in linear scale),
showing the relationship between the error and a. One can see in these
plots that the error approaches 0 as « approaches 1. This makes sense,
since we have that DJR, =R, ,;d) when a = 1. The plots on the right-
hand sides of Fig. 3 more clearly show this phenomenon: the x-axis is
1 — a, which is how far « is to 1, and it is in log scale in order to clearly
show values of 1 — « that are very close to 0, i.e., values of « that are
very close to 1. The y-axis is the error, also in log scale, resulting in a
clear linear relationship on the plot for 1 — a sufficiently small.

4.2. Numerical verification of ID;'+ Dy =0

In this section, we numerically verify DfDj =0 and DID{ =0 by
computing the errors in the same way as was done in Section 4.1. Con-
cretely, the error is calculated as

-1
RMS(V-,

D%, (DYR "))

where we used the same scalar and vector field as in Section 4.1 for
" and '. Although the operators were mathematically defined such
that D% D7 =0 holds exactly, small numerical errors are expected in
practice due to the floating point errors. This is confirmed by Fig. 4. As
we can see, for different values of «, the errors slightly increase when
the number of subdivisions increases. However, the magnitude of the
errors is of the order 10~'4, which numerically verifies that IDZ D5 =0.
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5. Conclusion and future work

In this paper, a type of fractional vector calculus was discretized on a
3D regular cubical complex using discrete exterior calculus. To do this,
Tarasov’s standard basis directional FVC operators were re-formulated
so that they could be discretized using DEC. Discretizing the reformu-
lated FVC operators led to the FDEC operators D% = I];‘;’ D, 07,
which are structure-preserving in the sense that D7 | DY =0, just as
d§+1 d;’ =0. In addition, our FDEC operators involve relatively sparse
matrices and accurately approximate the corresponding continuous op-
erators numerically with a second-order convergence rate in the RMS
error.

For future work, firstly, we would like to generalize our FDEC opera-
tors beyond cubical complexes to arbitrary cell complexes or simplicial
complexes. Secondly, besides T-FVC considered in this work, it is nat-
ural to consider other types of FVC (possibly more generally nonlocal
vector calculus) and their structure-preserving discretizations. Finally,
although our approach involves relatively sparse matrices, the spar-
sity does decrease with increasing p. Therefore, we plan to investigate
whether it is possible to compute the DY matrices in a more memory-
efficient manner for practical implementations.
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