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Fractional vector calculus is the building block of the fractional partial differential equations that model non-
local or long-range phenomena, e.g., anomalous diffusion, fractional electromagnetism, and fractional advection-
dispersion. In this work, we reformulate a type of fractional vector calculus that uses Caputo fractional partial 
derivatives and discretize this reformulation using discrete exterior calculus on a cubical complex in the structure-
preserving way, meaning that the continuous-level properties curl𝛼 grad𝛼 = 𝟎 and div𝛼 curl𝛼 = 0 hold exactly on 
the discrete level. We discuss important properties of our fractional discrete exterior derivatives and verify 
their second-order convergence in the root mean square error numerically. Our proposed discretization has 
the potential to provide accurate and stable numerical solutions to fractional partial differential equations and 
exactly preserve fundamental physics laws on the discrete level regardless of the mesh size.

1. Introduction

Fractional calculus generalizes the integer order integration and 
differentiation to non-integer order. Unlike standard derivatives and in-
tegrals, fractional derivatives and integrals are non-local operators, en-
abling them to model long-range dependence. In this work, we focus on 
fractional vector calculus (FVC), which analogously extends the vector 
calculus to fractional order. Fractional calculus and FVC are widely used 
in fractional partial differential equations (FPDEs), which recently have 
a wide range of new scientific and engineering applications. For ex-
ample, fractional diffusion equations model anomalous diffusion [1–5], 
fractional Maxwell’s equations generalize Maxwell’s equations to frac-
tional order [6–8], fractional advection-dispersion equations describe 
subsurface transport [9–12], fractional Laplacians are used in image 
processing [13], fractional differential equations are used in finance 
[14], and a fractional gradient has been used for fractional backpropa-
gation in training neural networks [15].

There are various definitions of FVC, each with their own strengths 
and weaknesses. Many approaches use a fractional partial derivative 
in each coordinate direction to construct a fractional nabla operator. 
Other approaches use an anisotropic mixture of fractional directional 

The code (and data) in this article has been certified as Reproducible by Code Ocean: https://codeocean .com/. More information on the Reproducibility Badge 
Initiative is available at https://www .elsevier .com /physical -sciences -and -engineering /computer -science /journals.
* Corresponding author.
E-mail addresses: Alon.Jacobson@tufts.edu (A. Jacobson), Xiaozhe.Hu@tufts.edu (X. Hu).

derivatives in each direction via an integral, while still other approaches 
use an isotropic mixture of function values throughout Euclidean space 
to define the operators.

Due to the complexity of FPDEs, the solutions cannot usually be 
computed symbolically, so numerical approximations are essential for 
solving them. Various finite-element and finite-difference methods have 
been developed for the discretization of FVC to be used in solving these 
FPDEs, with techniques including finite-difference methods [16], the 
discretization of fractional directional derivatives [17,18,10], spectral 
decompositions [19] and physics-informed neural networks [10].

When solving PDEs and FPDEs numerically, some consideration 
must be given to computational efficiency (i.e., how much time or 
computer memory is required), as well as the accuracy of the solu-
tion obtained (i.e., how close the numerical approximation is to the 
true solution). Another property that is often desirable is to have cho-
sen continuous-level properties of the model be satisfied exactly in 
its discretization. Such discretizations are termed structure-preserving. 
One possible structure to preserve is to preserve the de Rham exact 
sequence, which essentially means preserving the vector calculus iden-
tities curl grad𝑓 = 𝟎 and div curl𝑭 = 0 exactly in the discretization. The 
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de Rham exact sequence plays an important role in many physical laws, 
such as incompressibility and Gauss’s law of magnetism.

One way to preserve this de Rham exact sequence is by using 
discrete exterior calculus (DEC). DEC is a computational toolkit that 
creates discrete operators and definitions that are analogous to the cor-
responding operators from multivariate calculus. It has recently been 
gaining popularity as a tool for developing numerical methods for solv-
ing PDEs in computational simulations, such as mechanics problems 
[20], Lie advection [21], and computational fluid dynamics [22]. In ad-
dition to being used as a structure-preserving finite-element method, 
DEC is also widely used in other areas such as computer graphics appli-
cations [23] and geometry processing applications [24].

In DEC, the discrete exterior derivative operator, 𝔻𝑝, is the discrete ver-
sion of grad, curl, and div for 𝑝 = 0, 𝑝 = 1, and 𝑝 = 2, respectively. 𝔻𝑝
is a 𝑛𝑝+1 × 𝑛𝑝 matrix, where 𝑛𝑝 is the number of 𝑝-cells in the com-
plex (for more detail, see Section 2.3). DEC preserves the de Rham 
exact sequence because the discrete exterior derivative operators sat-
isfy 𝔻𝑝+1𝔻𝑝 = 0 for 𝑝 ≥ 0, which is the discrete version of curl grad𝑓 = 𝟎
and div curl𝑭 = 0 for 𝑝 = 0 and 𝑝 = 1, respectively.

Many types of fractional vector calculus possess an analogous exact 
sequence curl𝛼 grad𝛼 𝑓 = 𝟎 and div𝛼 curl𝛼 𝑭 = 0. However, to the best of 
our knowledge, no discretization of FPDEs or FVC preserves this exact 
sequence. Additionally, despite the usefulness of DEC and the applica-
bility of fractional calculus and fractional vector calculus, there is rarely 
any work on formulating a fractional discrete exterior calculus (FDEC), 
which generalizes DEC to a fractional order.

To the best of our knowledge, the only existing work on FDEC is 
[25], which considered the following “two-sided” fractional Caputo 
derivative of order 𝛼 ∈ (0, 1) of a function 𝑓 ∈ 𝐶1[𝑎, 𝑏] in 1D:

𝐷𝛼𝑓 (𝑥) ∶= 1
Γ(1− 𝛼) ∫

[𝑎,𝑏]⧵{𝑥}

𝑓 ′(𝜏)
|𝑥− 𝜏|𝛼 𝑑𝜏. (1)

[25] then defined a fractional discrete exterior derivative by discretizing 
(1), and then generalizing the resultant discrete operator to higher di-
mensions. This results in the following 𝑛𝑝+1 × 𝑛𝑝 matrix,

𝔻𝛼
𝑝 =𝑊 1−𝛼

𝑝+1 𝔻𝑝,

where 𝑊 1−𝛼
𝑝+1 ∈ ℝ𝑛𝑝+1×𝑛𝑝+1 is a straightforward generalization of the dis-

cretization of the fractional integration of order 1 − 𝛼 present in (1)
to higher dimensions. (𝔻𝛼

0 is a discretization of (1) when the complex 
is one-dimensional.) Unfortunately, the FDEC introduced in [25] does 
not satisfy the fractional generalization of the property 𝔻𝑝+1𝔻𝑝 = 0, i.e., 
𝔻𝛼
𝑝+1𝔻

𝛼
𝑝 ≠ 0. Therefore, even if it is a discretization of some type of 

FVC, it cannot possibly be a discretization that preserves a fractional 
de Rham exact sequence. Furthermore, in [25], since the FDEC in the 
higher dimensional case is obtained directly from the 1D case, it is 
not clear whether it is indeed a discretization of any FVC anymore in 
higher dimensions, which may limit its potential in numerical simula-
tions involving FPDEs in higher dimensions. Indeed, while numerical 
experiments verified the expected result that 𝔻𝛼

0 converges to 𝐷𝛼 in one 
dimension, convergence in higher dimensions was not shown; although 
the authors compared 𝔻𝛼

0 to a 2-sided Caputo gradient field of a scalar-valued function in 2-d, convergence with decreasing mesh size was not 
shown in this case. This is understandable, since due to their definition 
of the fractional discrete exterior derivative, one would not expect that 
𝔻𝛼
0 should converge to this fractional gradient field.

1.1. Contributions

Our goal in this work is to define an FDEC that does not suffer 
the abovementioned problems. Namely, we want our FDEC operators 
to (1) be direct discretizations of a type of FVC that possesses the 
exact sequence curl𝛼 grad𝛼 = 𝟎 and div𝛼 curl𝛼 = 0, and (2) be structure-
preserving, by having the corresponding exact sequence 𝔻𝛼

𝑝+1𝔻
𝛼
𝑝 = 0. 

Both of these properties are achieved by rewriting the operators from 

a type of FVC that does have the exact sequence (namely, one defined 
by a fractional nabla operator) as compositions of fractional integration 
and exterior derivatives on the continuous level, and then discretizing 
these composite operators using DEC on a regular cubical complex. This 
results in the following fractional discrete exterior derivative operators,

𝔻𝛼
𝑝 = 𝕀1−𝛼𝑝+1 𝔻𝑝 (𝕀1−𝛼𝑝 )−1, 𝑝 = 0,1,2, 0 < 𝛼 < 1,

where the matrix 𝕀1−𝛼𝑝 is a discretization of 𝑝-dimensional fractional in-
tegration of order 1 − 𝛼 on the 𝑝-cells.

By discretizing a type of FVC, these operators can be implemented in 
software and open doors for numerically solving FPDEs. Furthermore, 
since our approach is structure-preserving – satisfying the continuous-
level properties curl𝛼 grad𝛼 = 𝟎 and div𝛼 curl𝛼 = 0 exactly on the discrete 
level – our proposed FDEC operators have high accuracy in discretiz-
ing the corresponding continuous operators and behave similarly even 
at coarse mesh sizes, and can potentially increase the fidelity of nu-
merical solutions to FPDEs. In addition, unlike the usual dense matrices 
obtained from discretizing the fractional derivatives, the matrices in-
volved in our discretization are relatively sparse, which enables fast 
computations. Finally, since these operators are extensions of DEC, they 
can provide fractional generalizations of applications that use DEC.

1.2. Outline

An outline of the paper is as follows. In Section 2, we recall frac-
tional calculus, fractional vector calculus, and discrete exterior calculus. 
In Section 3, we present and prove our reformulation of Tarasov’s FVC 
and describe its discretization. In Section 4, we show the convergence 
of our FDEC to Tarasov’s FVC numerically, and finally we summarize 
our work and suggest possible future work in Section 5.

2. Preliminaries

In this section, we briefly recall fractional calculus first, and then 
introduce the fractional vector calculus and discrete exterior calculus, 
which are the building blocks of our FDEC.

2.1. Fractional calculus

First, we discuss fractional calculus. There are many different defi-
nitions. This paper focuses on the Riemann-Liouville fractional integral 
and the Caputo and Riemann-Liouville fractional derivatives. Rather 
than defining the usual fractional integrals and derivatives, below we 
define “partial” fractional integrals and derivatives of a scalar-valued 
function of multiple variables, 𝑓 ∶ Ω → ℝ, where Ω = [𝑥1min, 𝑥

1
max] ×⋯ ×

[𝑥𝑚min, 𝑥
𝑚
max] ⊂ ℝ𝑚. This generalizes the usual definitions, in the sense 

that if 𝑚 = 1, then these definitions reduce to the usual one-dimensional 
definitions. Furthermore, definitions of partial fractional integrals and 
derivatives that are essentially the same as the ones we will define can 
be found in [26].

2.1.1. Fractional integrals and derivatives
For a real number 𝛼 > 0 and a real-valued function 𝑔 ∶ [𝑎, 𝑏] →ℝ, the 

left-sided Riemann-Liouville fractional integral of order 𝛼 is defined as 
follows:

𝑎𝐼𝛼𝑥 [𝑥
′]𝑔(𝑥′) = 1

Γ(𝛼)

𝑥

∫
𝑎

𝑑𝑥′

(𝑥− 𝑥′)1−𝛼
𝑔(𝑥′) (𝑎 ≤ 𝑥 ≤ 𝑏)

where Γ(⋅) denotes the gamma function. Similarly, the left-sided 
Riemann-Liouville partial fractional integral with respect to coordinate 
𝑥𝑗 from 𝑎 to 𝑏 of order 𝛼 of a function 𝑓 ∶ Ω →ℝ is defined as follows:

𝑎𝐼𝛼𝑏,𝑥𝑗 [𝑥
′]𝑓 ∶= 𝑎𝐼𝛼𝑏 [𝑥

′]𝑓 (𝑥1,… ,𝑥𝑗−1,𝑥′,𝑥𝑗+1,… ,𝑥𝑚)
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= 1
Γ(𝛼)

𝑏

∫
𝑎

𝑓 (𝑥1,… ,𝑥𝑗−1,𝑥′,𝑥𝑗+1,… ,𝑥𝑚)
(𝑏− 𝑥′)1−𝛼

𝑑𝑥′, (𝑥𝑗min ≤ 𝑎 ≤ 𝑏 ≤ 𝑥𝑗max).

Also, we define

𝐼𝛼𝑥𝑗 𝑓 (𝑥
1,… ,𝑥𝑚) ∶= 𝑥𝑗min

𝐼𝛼𝑥𝑗 ,𝑥𝑗 [𝑥
′]𝑓 .

Next, we recall the left-sided Riemann-Liouville derivative and the left-
sided Caputo derivative. If we let 𝐷𝑛

𝑥𝑗 denote the 𝑛th partial derivative 
with respect to coordinate 𝑥𝑗 (we drop the superscript when 𝑛 = 1), then 
the left-sided Riemann-Liouville fractional partial derivative of 𝑓 with 
respect to coordinate 𝑥𝑗 at a point (𝑥1, … , 𝑥𝑚) of order 𝛼 ≥ 0 is defined 
as, for 𝑛 = ⌊𝛼⌋ + 1,
𝑅𝐿𝐷𝛼

𝑥𝑗 𝑓 ∶=𝐷𝑛
𝑥𝑗 𝐼

𝑛−𝛼
𝑥𝑗 𝑓

= 1
Γ(𝑛− 𝛼)

( 𝜕
𝜕𝑥𝑗

)𝑛
𝑥𝑗

∫
𝑥𝑗min

𝑓 (𝑥1,… ,𝑥𝑗−1,𝑥′,𝑥𝑗+1,… ,𝑥𝑚)
(𝑥𝑗 − 𝑥′)1−(𝑛−𝛼)

𝑑𝑥′.

Naturally, 𝑅𝐿𝐷𝑘
𝑥𝑗 𝑓 =𝐷𝑘

𝑥𝑗 𝑓 if 𝑘 ∈ℕ0 ∶= {0, 1, 2, … }.
Similarly, for 0 < 𝛼 ∉ ℕ0, the left-sided Caputo fractional partial 

derivative with respect to coordinate 𝑥𝑗 of order 𝛼 is defined as, for 
𝑛 = ⌊𝛼⌋ + 1,
𝐶𝐷𝛼

𝑥𝑗 𝑓 ∶= 𝐼𝑛−𝛼𝑥𝑗 𝐷𝑛
𝑥𝑗 𝑓

= 1
Γ(𝑛− 𝛼)

𝑥𝑗

∫
𝑥𝑗min

𝐷𝑛
𝑥𝑗 𝑓 (𝑥

1,… ,𝑥𝑗−1,𝑥′,𝑥𝑗+1,… ,𝑥𝑚)
(𝑥𝑗 − 𝑥′)1−(𝑛−𝛼)

𝑑𝑥′.

Otherwise, for integer orders, we define 𝐶𝐷𝑘
𝑥𝑗 𝑓 ∶=𝐷𝑘

𝑥𝑗 𝑓 for 𝛼 = 𝑘 ∈ℕ0.

2.1.2. Fractional calculus identities
Here we will present some identities involving the fractional deriva-

tives and integrals defined above that will be used in this work. The first 
such identity is named the “fundamental theorem of fractional calculus” 
(FTFC) by [6], which generalizes the fundamental theorem of calculus 
to fractional order. Only the first part of the FTFC will be presented, 
since the other part is not necessary for the results of this paper.

The first part of the FTFC states that both the Caputo and Riemann-
Liouville derivatives are left inverse operators of the Riemann-Liouville 
integration operator from the left. This generalizes the well-known for-
mula 𝑑

𝑑𝑥 ∫ 𝑥
𝑎 𝑓 (𝑡) 𝑑𝑡 = 𝑓 (𝑥).

Lemma 1. Let 𝑓 ∶ Ω ⊂ ℝ𝑚 → ℝ be continuous and let 𝛼 > 0. Then at any 
point (𝑥1, … , 𝑥𝑚) ∈Ω and any 𝑗 = 1, … , 𝑚,
𝑅𝐿𝐷𝛼

𝑥𝑗 𝐼
𝛼
𝑥𝑗 𝑓 = 𝑓 and 𝐶𝐷𝛼

𝑥𝑗 𝐼
𝛼
𝑥𝑗 𝑓 = 𝑓 .

Proof. Since 𝑓 is continuous, it is continuous in each variable sepa-
rately. Then the first equality follows from Lemma 2.4 on page 74 and 
Lemma 2.9 (b) on page 77 of [26], and the second equality follows from 
Lemma 2.21, part (a) on page 95 of [26]. □

We also have the following result which will be used later:

Lemma 2. Let 𝑓 ∶ Ω ⊂ ℝ𝑚 → ℝ be continuous and let 𝛼 ∈ (0, 1). Then at 
any point (𝑥1, … , 𝑥𝑚) ∈Ω and any 𝑗 = 1, … , 𝑚,

𝐼𝛼𝑥𝑗
𝑅𝐿𝐷𝛼

𝑥𝑗 𝑓 = 𝑓 .

Proof. The proof uses the FTFC (Lemma 1) presented above:

𝐼𝛼𝑥𝑗
𝑅𝐿𝐷𝛼

𝑥𝑗 𝑓 = 𝐼𝛼𝑥𝑗𝐷𝑥𝑗 𝐼1−𝛼𝑥𝑗 𝑓 = 𝐶𝐷1−𝛼
𝑥𝑗 𝐼1−𝛼𝑥𝑗 𝑓 = 𝑓 . □

The third identity that we will present is that the Riemann-Liouville 
fractional integral satisfies the so-called semigroup property:

Lemma 3 (Theorem 2.2, [27]). Let 𝑓 ∶ Ω ⊂ℝ𝑚 →ℝ be continuous and let 
𝛼 > 0, 𝛽 > 0. Then for any 𝑗 = 1, … , 𝑚 and any 𝑎, 𝑏 ∈ [𝑥𝑗min, 𝑥

𝑗
max] with 𝑎 ≤ 𝑏,

𝑎𝐼𝛼𝑏 [𝑥
′]𝑎𝐼

𝛽
𝑥′ ,𝑥𝑗 [𝑥

′′]𝑓 = 𝑎𝐼
𝛼+𝛽
𝑏,𝑥𝑗 [𝑥

′]𝑓 .

2.2. Fractional vector calculus

There are various approaches to defining FVC. Many approaches are 
similar to the integral order: use the standard basis of the vector space 
𝑉 and represent the fractional gradient of a scalar function 𝑓 on 𝑉 by 
an 𝑛-tuple of the one-dimensional partial fractional derivatives along 
the coordinate axes. These operators are referred to as standard basis 
directional. Other approaches use an anisotropic mixture of fractional 
directional derivatives in each direction via an integral, and these op-
erators are referred to as directional. Yet a third approach is to use 
an isotropic mixture of the function values throughout ℝ𝑛 to define 
the operators, and these operators are referred to as isotropic (termed 
“Cartesian” in [28]). Standard basis directional operators are special 
cases of directional operators [12,11], and isotropic operators are also 
special cases of directional operators [28].

2.2.1. Tarasov’s fractional vector calculus
In [6], FVC operators using the one-dimensional (left-sided) Caputo 

derivative are defined. Considering a parallelepiped Ω = [𝑥1min, 𝑥
1
max] ×

[𝑥2min, 𝑥
2
max] × [𝑥3min, 𝑥

3
max], Tarasov’s FVC (T-FVC) is based on the follow-

ing generalization of the nabla operator to fractional order 𝛼 > 0:
𝐶∇𝛼 ∶= 𝐞1 𝐶𝐷𝛼

𝑥1
+ 𝐞2 𝐶𝐷𝛼

𝑥2
+ 𝐞3 𝐶𝐷𝛼

𝑥3
. (2)

For a scalar-valued function 𝑓 and vector-valued function 𝑭 , the T-FVC 
operators are then defined as,

grad𝛼𝑇 𝑓 ∶= 𝐶∇𝛼𝑓 , curl𝛼𝑇 𝑭 ∶= 𝐶∇𝛼 × 𝑭 , div𝛼𝑇 𝑭 ∶= 𝐶∇𝛼 ⋅ 𝑭 . (3)
A property of the T-FVC operators is that they satisfy fractional gener-
alizations of Green’s, Stokes’, and Gauss’s theorem, which use fractional 
line and surface integrals, see [6] for details.

Another important property of the operators defined above, which 
is necessary for our goal to make structure-preserving FDEC operators, 
is that they satisfy

curl𝛼𝑇 grad𝛼𝑇 = 𝟎 and div𝛼𝑇 curl𝛼𝑇 = 0, (4)
which are generalizations of the identities from vector calculus curl grad
= 𝟎 and div curl = 0. Property (4) is the main reason we choose to dis-
cretize the T-FVC operators. We plan to retain these properties on the 
discrete level to produce structure-preserving FDEC operators. This is 
feasible via rewriting these operators, and the details will be discussed 
later in Section 3.

2.2.2. Other fractional vector calculus
From the fractional nabla operator (2), we can see that the T-FVC 

operators are standard basis directional. In [29], another standard ba-
sis directional fractional vector calculus was introduced. Different from 
Tarasov’s work, both left-sided and right-sided FVC operators were in-
troduced. In addition, each coordinate can have different fractional 
orders, which makes their FVC framework more flexible. This is done 
by introducing left-sided and right-sided fractional nabla operators first 
and then defining two sets of fractional gradient, curl, and divergence 
operators accordingly in the same manner as the T-FVC operators.

An anisotropic, directional FVC was first present in [12]. The au-
thors defined a fractional integration using a mixing measure, a positive 
finite measure on the set of unit vectors. This considers the relative 
strength of the dispersion in each radial direction and, hence, intro-
duces anisotropy. The fractional gradient is defined by taking the usual 
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gradient and then the fractional integral. On the other hand, the frac-
tional curl and divergence operators are defined in a reverse order, i.e., 
taking the fractional integral first and then the usual curl and diver-
gence. [12] and [11] point out that if the mixing measure is a point 
mass at each coordinate, the T-FVC gradient is a special case of the 
directional gradient defined in [12]. In addition, [11] further gener-
alized the FVC in [12] by allowing the fractional order to vary by 
direction.

As for isotropic FVC, there is generally a single kind of isotropic 
fractional vector calculus that appears repeatedly in the literature, for 
example, Refs. [30–32], and can take on various functional forms which 
are all equivalent. Generally, authors only define a fractional gradient, 
but in [32], a fractional divergence is also defined. [32] points out that 
due to the construction, FVC constructed using the standard basis direc-
tional approach depends on the chosen coordinate system, which could 
be a drawback since the resulting FVC operators do not transform un-
der rotations. [32] introduces an isotropic FVC that satisfies specific 
transformation rules for translation, rotation, and scaling, and they also 
generalize the definitions to any real-number fractional order. Unfor-
tunately, although a fractional gradient and divergence are defined, a 
fractional curl is currently missing from isotropic FVC.

Nonlocal vector calculus is any type of generalization of vector calcu-
lus that uses an integral with a kernel around the point to make vector 
calculus nonlocal. [28] presents a unified framework for nonlocal vec-
tor calculus, of which isotropic FVC is a special case. In addition, the 
authors prove that the directional and isotropic fractional gradients and 
divergences are equivalent up to constants if the mixing measure is con-
stant.

Finally, although we only consider the T-FVC in this paper (which 
is a special case of directional FVC), we believe our approach can be 
generalized to more general cases, which is a subject of our ongoing 
work and will be reported in the future.

2.3. Discrete exterior calculus

Since our discretization of FVC employs DEC, we give a short de-
scription of DEC following the methodology developed in [33–36].

Let us start with exterior calculus, which is essentially a general-
ization of vector calculus to more than three dimensions. Scalar and 
vector fields from vector calculus are replaced with 𝑝-forms. From a ge-
ometric perspective, a differential 𝑝-form can be viewed as an oriented 
𝑝-dimensional density [37]. We denote a 𝑝-form as 𝜔𝑝 and the space of 
𝑝-forms as Λ𝑝. If we define 𝔍𝑝,𝑚 ∶= {𝐽 = (𝑖1, … , 𝑖𝑝) ∶ 1 ≤ 𝑖1 < 𝑖2 <⋯ < 𝑖𝑝 ≤
𝑚}, then the 𝑝-forms {𝑑𝑥𝐽}𝐽∈𝔍𝑝,𝑚

span the space of differential 𝑝-forms, 
where we denote 𝑑𝑥𝐽 ∶= 𝑑𝑥𝑖1 ∧⋯ ∧ 𝑑𝑥𝑖𝑝 =⋀

𝑖∈𝐽 𝑑𝑥𝑖. Thus, any 𝑝-form 
can be written as

𝜔𝑝 =
∑

𝐽∈𝔍𝑝,𝑚

𝑎𝐽 𝑑𝑥𝐽 ,

where each 𝑎𝐽 is a scalar-valued function of the coordinates. The exte-
rior derivative, an important operation on differential forms, is denoted 
as 𝑑𝑝 ∶ Λ𝑝 → Λ𝑝+1. In 3D, we have 𝑑0 = grad, 𝑑1 = curl, and 𝑑2 = div. 
The capstone of exterior calculus is Stokes’s theorem, which is a gen-
eralization of the fundamental theorem of calculus. It states that under 
relatively mild smoothness requirements on a compact oriented (𝑝 + 1)-
dimensional manifold  with boundary 𝜕 ,
∫

𝑑𝑝 𝜔𝑝 = ∫
𝜕

𝜔𝑝, 𝜔𝑝 ∈ Λ𝑝. (5)

DEC is a discrete analog of exterior calculus. A 𝑝-cell, i.e., a cell of 
order 𝑝, denoted by 𝜎𝑝, may be represented as an ordered set of vertices 
comprising a convex 𝑝-polytope. For example, the 0- 1-, 2-, and 3-cells 
are called nodes, edges, faces, and volumes, respectively. A cell complex 
of dimension 𝑛, or an 𝑛-complex, is a collection of cells of order at most 
𝑛 that obeys certain properties regarding how the cells are connected 

to each other. We denote the number of 𝑝-cells in the complex as 𝑛𝑝. 
Each 𝑝-cell is oriented and may have one of two possible orientations. A 
node (0-cell) has two orientations, “sourceness” or “sinkness”. The ori-
entation of an edge (1-cell) corresponds to a notion of direction, the 
orientation of a face (2-cell) corresponds to a notion of clockwise/coun-
terclockwise, and the orientation of a volume (3-cell) corresponds to a 
notion of outward/inward.

A 𝑝-chain 𝝉𝑝 represents a domain of integration, and is a formal sum 
of the 𝑝-cells with coefficients in ℤ, i.e., 𝝉𝑝 =

∑𝑛𝑝
𝑖=1 𝑎𝑖𝜎

𝑝
𝑖 , 𝜎𝑝𝑖 ∈ 𝐶𝑝 and 

𝑎𝑖 ∈ ℤ, where we denote the vector space of 𝑝-chains as 𝐶𝑝. Note that 
the set of 𝑝-cells forms a basis for 𝐶𝑝. Without confusion, we abuse the 
notation and also use a vector representation, i.e., 𝝉𝑝 = [𝑎1, … 𝑎𝑛𝑝 ]

⊤. In 
addition, a 𝑝-cochain, also known as a discrete 𝑝-form, is a linear map 𝐜𝑝
from 𝐶𝑝 to ℝ. The vector space of 𝑝-cochains is denoted 𝐶𝑝. The natural 
pairing of a 𝑝-cochain 𝐜𝑝 and a 𝑝-chain 𝝉𝑝 is defined as

!𝐜𝑝,𝝉𝑝" ∶= 𝐜𝑝(𝝉𝑝) = 𝐜𝑝
( 𝑛𝑝∑

𝑖=1
𝑎𝑖𝜎

𝑝
𝑖

)
=

𝑛𝑝∑
𝑖=1

𝑎𝑖𝐜𝑝(𝜎
𝑝
𝑖 ).

Therefore, we can identify a 𝑝-cochain as a vector 𝐜𝑝 = [𝐜𝑝(𝜎𝑝1), … ,
𝐜𝑝(𝜎𝑝𝑛𝑝 )]

⊤, which implies that !𝐜𝑝, 𝝉𝑝" = (𝐜𝑝)⊤𝝉𝑝.
Now we introduce the coboundary operators or discrete exterior deriva-

tive operators, 𝔻𝑝 ∶ 𝐶𝑝 → 𝐶𝑝+1 for 0 ≤ 𝑝 ≤ 𝑛 − 1, which are the discrete 
versions of the exterior derivatives 𝑑𝑝 ∶ Λ𝑝 → Λ𝑝+1, and can be repre-
sented as incidence matrices 𝔻𝑝 ∈ℝ𝑛𝑝+1×𝑛𝑝 which are defined as

𝔻𝑝(𝑖, 𝑗) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 if 𝜎𝑝𝑗 is not on the boundary of 𝜎𝑝+1𝑖 ,
+1 if 𝜎𝑝𝑗 is coherent with the induced orientation of 𝜎𝑝+1𝑖 ,
−1 if 𝜎𝑝𝑗 is not coherent with the induced orientation

of 𝜎𝑝+1𝑖 .

Furthermore, we denote the boundary operator as 𝜕𝑝 ∶ 𝐶𝑝 → 𝐶𝑝−1, which 
satisfies 𝔻𝑝 = 𝜕⊤𝑝+1.An important property of the coboundary and boundary operators is 
that 𝔻𝑝+1𝔻𝑝 = 0 and 𝜕𝑝+1𝜕𝑝+2 = 0, for 0 ≤ 𝑝 ≤ 𝑛 − 2. In addition, the DEC 
version of Stokes’ theorem can be stated as follows:

!𝔻𝑝𝐜𝑝,𝝉𝑝+1" = !𝐜𝑝,𝜕𝑝+1𝝉𝑝+1". (6)
Let 𝑝 ∶ Λ𝑝 → 𝐶𝑝 be the 𝑝-th de Rham map, which is defined as, for 
𝜔𝑝 ∈ Λ𝑝 and 𝝉𝑝 ∈ 𝐶𝑝, !𝑝𝜔𝑝, 𝝉𝑝" = (𝑝𝜔𝑝)(𝝉𝑝) ∶= ∫𝝉𝑝 𝜔𝑝. Using (5) and 
(6), we have that for any 𝜔𝑝 ∈ Λ𝑝 and 𝝉𝑝+1 ∈ 𝐶𝑝+1,

!𝔻𝑝𝑝𝜔𝑝,𝝉𝑝+1" = !𝑝𝜔𝑝,𝜕𝑝+1𝝉𝑝+1"

= ∫
𝜕𝑝+1𝝉𝑝+1

𝜔𝑝 = ∫
𝝉𝑝+1

𝑑𝑝𝜔𝑝 = !𝑝+1𝑑𝑝𝜔𝑝,𝝉𝑝+1",

which implies

𝔻𝑝𝑝 =𝑝+1𝑑𝑝,

and the following commutative diagram,

Λ𝑝 Λ𝑝+1

𝐶𝑝 𝐶𝑝+1

𝑑𝑝

𝑝 𝑝+1
𝔻𝑝

which essentially says that 𝔻𝑝 is the discretization of 𝑑𝑝. For exam-
ple, in 3D, 𝔻0, 𝔻1, and 𝔻2 are discretizations of the gradient, the curl, 
and the divergence, respectively. In addition, such a discretization is 
structure-preserving since we have 𝑑𝑝+1𝑑𝑝 = 0 on the continuous level 
and 𝔻𝑝+1𝔻𝑝 = 0 on the discrete level. In Section 3, we define our FDEC 
operators to be structure-preserving as well, satisfying the analogous 
property that 𝔻𝛼

𝑝+1𝔻
𝛼
𝑝 = 0.
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Finally, we introduce the following generalized incidence matrix 
𝔻0→𝑞 ∈ℝ𝑛𝑞×𝑛0 for 2 ≤ 𝑞 ≤ 𝑛,

𝔻0→𝑞(𝑖, 𝑗) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0 if 𝜎0𝑗 is not on the boundary
of 𝜎𝑞𝑖 ,

Π𝜎1𝑘∩𝜕𝜎
𝑞
𝑖 ≠∅,𝜕𝜎1𝑘∩𝜎0𝑗 ≠∅𝔻0(𝑘, 𝑗) if 𝜎0𝑗 is on the boundary of 𝜎𝑞𝑖 ,

and define 𝔻0→1 ∶= 𝔻0. Here we use the notation 𝜕𝜎𝑞𝑖 to denote the 
boundary of 𝜎𝑞𝑖 which consists of all the 𝑝-cells, 0 ≤ 𝑝 ≤ 𝑞−1, that are on 
the boundary of 𝜎𝑞𝑖 . In 3D, the edge-node, face-node, and volume-node 
incidence matrices, 𝔻0→1, 𝔻0→2, and 𝔻0→3, are useful for our discretiza-
tion.

3. Fractional discrete exterior calculus via reformulation

This section describes the main result of this work, namely, the dis-
cretization of T-FVC via DEC. In Section 3.1, we show an equivalent 
way to write Tarasov’s FVC, which is suitable for discretization using 
DEC. Our discretization of T-FVC using DEC is then described in detail 
in Section 3.2.

3.1. Reformulation and equivalence

In this section, we define a Caputo fractional exterior derivative of 
order 𝛼 that is equivalent to T-FVC in 3D, and then reformulate this 
fractional exterior derivative into a form which can be easily discretized 
using DEC. Again, we mainly focus on the case 0 < 𝛼 < 1 to keep the 
presentation simple and comment that our results hold for general 𝛼 >
0. To avoid confusion, we use 𝛽 > 0 to denote a fractional integration 
or differentiation order that is not necessarily 1 − 𝛼 or 𝛼. In addition, 
although we use exterior calculus notations mainly in this section, we 
confine our discussion on the region Ω = [𝑥1min, 𝑥

1
max] ×⋯ × [𝑥𝑚min, 𝑥

𝑚
max] ⊂

ℝ𝑚 and leave the general manifold case for future work.
In the following lemma, we present some properties of the fractional 

partial integrals and the partial Riemann-Liouville fractional derivatives 
introduced in Section 2.1. Those properties are useful for the reformu-
lation.

Lemma 4. Let 𝑓 ∶ Ω ⊆ ℝ𝑚 → ℝ, 𝑔 ∶ Ω ⊆ ℝ𝑚 → ℝ be sufficiently smooth 
scalar fields. Then the following identities hold.

𝐼𝛽𝑥𝑗 (𝑐1𝑓 + 𝑐2𝑔) = 𝑐1𝐼
𝛽
𝑥𝑗 𝑓 + 𝑐2𝐼

𝛽
𝑥𝑗 𝑔 (𝛽 > 0, 𝑐1 ∈ℝ, 𝑐2 ∈ℝ), (7)

𝐼𝛽1𝑥𝑖 𝐼
𝛽2
𝑥𝑗 𝑓 = 𝐼𝛽2𝑥𝑗 𝐼

𝛽1
𝑥𝑖 𝑓 (𝛽1 > 0,𝛽2 > 0, 𝑖 ≠ 𝑗), (8)

𝐷𝑘
𝑥𝑖 𝐼

𝛽
𝑥𝑗 𝑓 = 𝐼𝛽𝑥𝑗 𝐷

𝑘
𝑥𝑖𝑓 (𝛽 > 0,𝑘 ∈ℕ, 𝑖 ≠ 𝑗), (9)

𝐼𝛽1𝑥𝑖
𝑅𝐿𝐷𝛽2

𝑥𝑗 𝑓 = 𝑅𝐿𝐷𝛽2
𝑥𝑗 𝐼

𝛽1
𝑥𝑖 𝑓 (𝛽1 > 0,𝛽2 > 0, 𝑖 ≠ 𝑗). (10)

Proof. (7) can be easily verified by the linearity of the regular integral, 
which implies that the Riemann-Liouville fractional partial integral is 
linear. (8) is a consequence of Fubini’s theorem.

To prove (9), we use mathematical induction on 𝑘. The base case 
𝑘 = 1 can be shown using the Leibniz integral rule directly. For the 
inductive step, assume 𝐷𝑘

𝑥𝑖𝐼
𝛽
𝑥𝑗 = 𝐼𝛽𝑥𝑗𝐷

𝑘
𝑥𝑖 for some 𝑘 ∈ ℕ. Then

𝐷𝑘+1
𝑥𝑖 𝐼𝛽𝑥𝑗 =𝐷𝑥𝑖𝐷𝑘

𝑥𝑖 𝐼
𝛽
𝑥𝑗 =𝐷𝑥𝑖𝐼

𝛽
𝑥𝑗𝐷

𝑘
𝑥𝑖 = 𝐼𝛽𝑥𝑗𝐷𝑥𝑖𝐷𝑘

𝑥𝑖 = 𝐼𝛽𝑥𝑗𝐷
𝑘+1
𝑥𝑖 .

Finally, (10) follows from (8) and (9). □

Next, we define a Caputo fractional exterior derivative as follows:

Definition 1. We define the Caputo fractional exterior derivatives of 
order 𝛼 > 0, 𝑑𝛼

𝑝 ∶ Λ𝑝 →Λ𝑝+1, as

𝑑𝛼
𝑝

⎛
⎜
⎜⎝

∑
𝐽∈𝔍𝑝,𝑚

𝑎𝐽 𝑑𝑥𝐽
⎞
⎟
⎟⎠
∶=

∑
𝐽∈𝔍𝑝,𝑚

𝑚∑
𝑖=1

(
𝐶𝐷𝛼

𝑥𝑖𝑎𝐽
)
𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽 ,

where coefficients 𝑎𝐽 are real-valued functions on Ω.

Note that Definition 1 is essentially the same as the fractional ex-
terior derivative that appears in [7]. It is also similar to the fractional 
exterior derivative defined in [38], where the Riemann-Liouville, rather 
than Caputo, partial derivative is used.

Additionally, in 3D, by direct calculation and identifying 1- and 2-
forms as vector fields and 3-forms as scalar functions, we can verify that 
Definition 1 is equivalent to the T-FVC operators (3), which is summa-
rized in the following proposition.

Proposition 1. In 3D, for 𝛼 > 0, 𝑑𝛼
0 = grad𝛼𝑇 , 𝑑𝛼

1 = curl𝛼𝑇 , and 𝑑𝛼
2 = div𝛼𝑇 .

Although it is possible to show that 𝑑𝛼𝑝+1𝑑𝛼
𝑝 = 0 directly from Defini-

tion 1, here we take another approach by reformulating 𝑑𝛼𝑝 , which also 
allows us to discretize 𝑑𝛼𝑝 using DEC intuitively. To this end, first, we 
need to define the following Riemann-Liouville fractional integration 
operator of order 𝛽 > 0, 𝛽

𝑝 ∶ Λ𝑝 →Λ𝑝, for 𝑝 ≥ 1,

𝛽
𝑝

⎛
⎜
⎜⎝

∑
𝐽∈𝔍𝑝,𝑚

𝑎𝐽 𝑑𝑥𝐽
⎞
⎟
⎟⎠
∶=

∑
𝐽=(𝑖1 ,…,𝑖𝑝)∈𝔍𝑝,𝑚

(
𝐼𝛽
𝑥𝑖1

⋯𝐼𝛽
𝑥𝑖𝑝

𝑎𝐽
)
𝑑𝑥𝐽 ,

and the following Riemann-Liouville fractional differentiation operator 
of order 𝛽 > 0, 𝑅𝐿𝛽

𝑝 ∶ Λ𝑝 →Λ𝑝, for 𝑝 ≥ 1,

𝑅𝐿𝛽
𝑝

⎛
⎜
⎜⎝

∑
𝐽∈𝔍𝑝,𝑚

𝑎𝐽 𝑑𝑥𝐽
⎞
⎟
⎟⎠
∶=

∑
𝐽=(𝑖1 ,…,𝑖𝑝)∈𝔍𝑝,𝑚

(
𝑅𝐿𝐷𝛽

𝑥𝑖1
⋯𝑅𝐿𝐷𝛽

𝑥𝑖𝑝
𝑎𝐽

)
𝑑𝑥𝐽 .

For the 𝑝 = 0 case, we simply define 𝛽
0 ∶= id and 𝑅𝐿𝛽

0 ∶= id. Note 
that the iterated fractional integrals and derivatives 𝐼𝛽

𝑥𝑖1
⋯ 𝐼𝛽

𝑥𝑖𝑝
and 

𝑅𝐿𝐷𝛽
𝑥𝑖1

⋯ 𝑅𝐿𝐷𝛽
𝑥𝑖𝑝

present in these definitions have been defined in [26], 
in which the iterated fractional integrals are called “mixed Riemann-
Liouville fractional integrals with respect to a part of the variables” 
(and similarly for the iterated fractional derivative).

Using 1−𝛼
𝑝 and 𝑅𝐿1−𝛼

𝑝 , we can reformulate 𝑑𝛼𝑝 as follows.

Theorem 1. Let 0 < 𝛼 < 1. Then 𝑑𝛼
𝑝 = 1−𝛼

𝑝+1 𝑑𝑝
𝑅𝐿1−𝛼

𝑝 .

Proof. If 𝑝 = 0, then by definition, 𝑅𝐿1−𝛼
0 = id, thus 1−𝛼

𝑝+1 𝑑𝑝
𝑅𝐿1−𝛼

𝑝 =
1−𝛼
1 𝑑0. Taking a 0-form, i.e., a scalar field, 𝑓 ∶ℝ𝑚 →ℝ, we have,

1−𝛼
1 𝑑0𝑓 = 1−𝛼

1

𝑚∑
𝑖=1

(𝐷𝑥𝑖𝑓 )𝑑𝑥𝑖 =
𝑚∑
𝑖=1

(𝐼1−𝛼𝑥𝑖 𝐷𝑥𝑖𝑓 )𝑑𝑥𝑖

=
𝑚∑
𝑖=1

(𝐶𝐷𝛼
𝑥𝑖𝑓 )𝑑𝑥

𝑖 = 𝑑𝛼
0 𝑓 .

If 𝑝 ≥ 1, then for a 𝑝-form 𝜔𝑝 =∑
𝐽∈𝔍𝑝,𝑚

𝑎𝐽 𝑑𝑥𝐽 , we have

𝑑𝑝 𝑅𝐿1−𝛼
𝑝 𝜔𝑝 = 𝑑𝑝

∑
𝐽∈𝔍𝑝,𝑚

(
𝑅𝐿𝐷1−𝛼

𝑥𝑖1
⋯𝑅𝐿𝐷1−𝛼

𝑥𝑖𝑝
𝑎𝐽

)
𝑑𝑥𝐽

=
∑

𝐽∈𝔍𝑝,𝑚

𝑚∑
𝑖=1

(
𝐷𝑥𝑖

𝑅𝐿𝐷1−𝛼
𝑥𝑖1

⋯𝑅𝐿𝐷1−𝛼
𝑥𝑖𝑝

𝑎𝐽
)
𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽

=
∑

𝐽∈𝔍𝑝,𝑚

∑
𝑖∈{1,…,𝑚}⧵𝐽

(
𝐷𝑥𝑖

𝑅𝐿𝐷1−𝛼
𝑥𝑖1

⋯𝑅𝐿𝐷1−𝛼
𝑥𝑖𝑝

𝑎𝐽
)
𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽 ,

where we use the fact that 𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽 = 0 if 𝑖 ∈ 𝐽 in the last step. Finally, 
applying 1−𝛼

𝑝+1 from the left, we obtain

1−𝛼
𝑝+1 𝑑𝑝

𝑅𝐿1−𝛼
𝑝 𝜔𝑝

=
∑

𝐽∈𝔍𝑝,𝑚

∑
𝑖∈{1,…,𝑚}⧵𝐽

(
𝐼1−𝛼𝑥𝑖 𝐼1−𝛼

𝑥𝑖1
⋯𝐼1−𝛼

𝑥𝑖𝑝
𝐷𝑥𝑖

𝑅𝐿𝐷1−𝛼
𝑥𝑖1

⋯𝑅𝐿𝐷1−𝛼
𝑥𝑖𝑝

𝑎𝐽
)
𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽
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=
∑

𝐽∈𝔍𝑝,𝑚

𝑚∑
𝑖=1

(
𝐼1−𝛼𝑥𝑖 𝐷𝑥𝑖 𝐼1−𝛼𝑥𝑖1

⋯𝐼1−𝛼
𝑥𝑖𝑝

𝑅𝐿𝐷1−𝛼
𝑥𝑖1

⋯𝑅𝐿𝐷1−𝛼
𝑥𝑖𝑝

𝑎𝐽
)
𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽

=
∑

𝐽∈𝔍𝑝,𝑚

𝑚∑
𝑖=1

(
𝐶𝐷𝛼

𝑥𝑖 𝐼
1−𝛼
𝑥𝑖1

𝑅𝐿𝐷1−𝛼
𝑥𝑖1

⋯𝐼1−𝛼
𝑥𝑖𝑝

𝑅𝐿𝐷1−𝛼
𝑥𝑖𝑝

𝑎𝐽
)
𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽

=
∑

𝐽∈𝔍𝑝,𝑚

𝑚∑
𝑖=1

(
𝐶𝐷𝛼

𝑥𝑖𝑎𝐽
)
𝑑𝑥𝑖 ∧ 𝑑𝑥𝐽

= 𝑑𝛼
𝑝 𝜔

𝑝.

This completes the proof. □

Remark. Following the same argument, Theorem 1 can be generalized 
to any 0 < 𝛼 ∉ ℕ by using high-order analogues of the exterior deriva-
tives.

From Lemma 1 and (10), we can easily verify 𝑅𝐿1−𝛼
𝑝 1−𝛼

𝑝 = id. 
Thus,

𝑑𝛼
𝑝+1 𝑑

𝛼
𝑝 =

(1−𝛼
𝑝+2 𝑑𝑝+1

𝑅𝐿1−𝛼
𝑝+1

)(1−𝛼
𝑝+1 𝑑𝑝

𝑅𝐿1−𝛼
𝑝

)
= 1−𝛼

𝑝+2 𝑑𝑝+1𝑑𝑝
𝑅𝐿1−𝛼

𝑝 = 0.

From Proposition 1 and Theorem 1, we have the following corollary 
which reformulates the T-FVC operators. Such a reformulation enables 
us to discretize T-FVC using the DEC framework.

Corollary 1. In 3D, for 0 < 𝛼 < 1, we have

grad𝛼𝑇 = 1−𝛼
1 grad, curl𝛼𝑇 = 1−𝛼

2 curl 𝑅𝐿1−𝛼
1 , div𝛼𝑇 = 1−𝛼

3 div 𝑅𝐿1−𝛼
2 .

3.2. Definition of FDEC by discretization

In this section, we discretize the fractional exterior derivatives 𝑑𝛼𝑝
in 3D to produce the corresponding FDEC operators 𝔻𝛼

𝑝 , 𝑝 = 0, 1, 2. 
Our discrete exterior derivative is defined as the composition of the 
discretizations of each of the three composite operators in our re-
formulated fractional exterior derivative, 𝑑𝛼𝑝 = 1−𝛼

𝑝+1 𝑑𝑝
𝑅𝐿1−𝛼

𝑝 . First, 
as explained in Section 2.3, the discretization of 𝑑𝑝 is 𝔻𝑝. Next we 
need to discretize 𝛽

𝑝 ∶ Λ𝑝 → Λ𝑝 and 𝑅𝐿𝛽
𝑝 ∶ Λ𝑝 → Λ𝑝. Naturally, their 

discretizations should map 𝑝-cochains to 𝑝-cochains, i.e., matrices of 
size 𝑛𝑝 × 𝑛𝑝. Furthermore, noting that 𝑅𝐿𝛽

𝑝 𝛽
𝑝 = id, we use a matrix 

𝕀𝛽𝑝 ∈ℝ𝑛𝑝×𝑛𝑝 ∶ 𝐶𝑝 → 𝐶𝑝 (which will be defined later) as the discretization 
of 𝛽

𝑝 , while 𝑅𝐿𝛽
𝑝 is discretized by 

(
𝕀𝛽𝑝
)−1

∈ ℝ𝑛𝑝×𝑛𝑝 ∶ 𝐶𝑝 → 𝐶𝑝 in or-
der to enforce the structure-preserving property. The resultant discrete 
exterior derivative is hence defined as 𝔻𝛼

𝑝 = 𝕀1−𝛼𝑝+1 𝔻𝑝 (𝕀1−𝛼𝑝 )−1.
Our discretization was done on a 3D regular cubical complex as 

shown in Fig. 1. It is obtained by dividing the parallelepiped that the 
discretized 𝑑𝛼𝑝 operators are defined on, Ω = [𝑥min, 𝑥max] × [𝑦min, 𝑦max] ×
[𝑧min, 𝑧max], into cuboids. Specifically, the division is 𝑥min = 𝑥1 < 𝑥2⋯ <
𝑥𝑛𝑥+1 = 𝑥max, 𝑦min = 𝑦1 < 𝑦2⋯ < 𝑦𝑛𝑦+1 = 𝑦max, and 𝑧min = 𝑧1 < 𝑧2⋯ <
𝑧𝑛𝑧+1 = 𝑧max, respectively (see Fig. 1).

We only present the discretization on the cubical complex be-
cause, while constructing the 𝔻𝑝 matrices is straightforward for general 
meshes, defining the 𝕀𝛽𝑝 matrices on a general mesh is difficult and 
challenging for practical implementation. In particular, computing the 
entries in this matrix requires computing multiple fractional integrals 
through multiple mesh elements, which makes efficient implementation 
difficult in practice although it is theoretically feasible. This compu-
tation is much easier, however, when a square or cube grid is used. 
We would like to point out that, such a difficulty also arises in other 
types of discretizations for fractional derivatives and, to the best of our 
knowledge, finding an efficient method for computing those fractional 
integrals on general meshes is still an open question in the community.

We will first discuss the strategy of discretizing 𝛽
𝑝 on the cubical 

complex. We will then introduce two FDEC operators: the fractional 
discrete exterior derivative 𝔻𝛼

𝑝 , 𝑝 = 0, 1, 2, and the fractional de Rham 
map, 𝛼

𝑝 , 𝑝 = 0, 1, 2, 3, and discuss their properties.

Fig. 1. Diagram of a 3D regular cubical complex, with 𝑛𝑥 = 3, 𝑛𝑦 = 2, 𝑛𝑧 = 2

3.2.1. Discretization of 𝛽
𝑝

Next, we consider a discretization of the fractional integral operator 𝛽
𝑝 , 𝑝 = 1, 2, 3. We use 𝛽

1 as an example to illustrate the general proce-
dure for discretization of 𝛽

𝑝 .
On the cubical complex, there are 𝑛1,𝑥, 𝑛1,𝑦, and 𝑛1,𝑧 (𝑛1,𝑥 + 𝑛1,𝑦 +

𝑛1,𝑧 = 𝑛1) edges are along the 𝑥, 𝑦, and 𝑧 direction, respectively. Con-
sidering an 𝑥 direction edge, 𝜎1,𝑥𝑖,𝑗,𝑘 = [𝑥𝑖, 𝑥𝑖+1] × 𝑦𝑗 × 𝑧𝑘, for any 1-form 
𝜔1 = 𝑓𝑥𝑑𝑥 + 𝑓𝑦𝑑𝑦 + 𝑓𝑧𝑑𝑧, we apply 𝛽

1 and take the integral along 𝜎1,𝑥𝑖,𝑗,𝑘to obtain,

∫
𝜎1,𝑥𝑖,𝑗,𝑘

𝛽
1𝜔

1 = 𝑥𝑖 𝐼
1
𝑥𝑖+1

[𝑥′] 𝑥1𝐼
𝛽
𝑥′ ,𝑥[𝑥

′′]𝑓𝑥

= 𝑥1𝐼
1
𝑥𝑖+1

[𝑥′] 𝑥1𝐼
𝛽
𝑥′ ,𝑥[𝑥

′′]𝑓𝑥 − 𝑥1𝐼
1
𝑥𝑖
[𝑥′] 𝑥1𝐼

𝛽
𝑥′ ,𝑥[𝑥

′′]𝑓𝑥
= 𝑥1𝐼

1+𝛽
𝑥𝑖+1 ,𝑥

[𝑥′]𝑓𝑥 − 𝑥1𝐼
1+𝛽
𝑥𝑖 ,𝑥

[𝑥′]𝑓𝑥. (11)
In the last step, we used fractional integrals’ semigroup property 
(Lemma 3). (11) implies that the above integral can be computed by a 
signed sum of the values of the 𝑥 component of 1+𝛽

1 𝜔1 on the edge’s two 
incident nodes. If we write the edge-node incidence matrix 𝔻0→1 = 𝔻0
into a block form according to edges along each direction, i.e.,

𝔻0 =
⎛
⎜
⎜⎝

𝔹1,𝑥
𝔹1,𝑦
𝔹1,𝑧

⎞
⎟
⎟⎠
. (12)

Then such a signed sum can be encoded into the matrix 𝔹1,𝑥.
The main step of our discretization is to compute 𝑥1𝐼

1+𝛽
𝑥𝑖 ,𝑥 [𝑥

′]𝑓𝑥 ap-
proximately at the node 𝜎0𝑖,𝑗,𝑘 by using a piecewise constant approxi-
mation on each edge. Specifically, on edge 𝜎1,𝑥𝑖′ ,𝑗,𝑘, we use the average 
𝜔1 ∶= |||𝜎

1,𝑥
𝑖′ ,𝑗,𝑘

|||
−1 ∫𝜎1,𝑥

𝑖′ ,𝑗,𝑘
𝜔1 = |||𝜎

1,𝑥
𝑖′ ,𝑗,𝑘

|||
−1

𝐜1(𝜎1,𝑥𝑖′ ,𝑗,𝑘), where 𝐜1 =1𝜔1, to be the 
constant approximation of 𝜔1, and then have

𝑥1𝐼
1+𝛽
𝑥𝑖 ,𝑥

[𝑥′]𝑓𝑥 =
1

Γ(1 + 𝛽)

𝑥𝑖

∫
𝑥1

1
(𝑥𝑖 − 𝑥′)−𝛽

𝑓𝑥 𝑑𝑥′

=
𝑖−1∑
𝑖′=1

1
Γ(1 + 𝛽)

𝑥𝑖′+1

∫
𝑥𝑖′

1
(𝑥𝑖 − 𝑥′)−𝛽

𝑓𝑥 𝑑𝑥′

≈
𝑖−1∑
𝑖′=1

1
Γ(1 + 𝛽)

𝑥𝑖′+1

∫
𝑥𝑖′

1
(𝑥𝑖 − 𝑥′)−𝛽

𝜔1 𝑑𝑥

=
𝑖−1∑
𝑖′=1

𝐜1(𝜎1,𝑥𝑖′ ,𝑗,𝑘)
|||𝜎

1,𝑥
𝑖′ ,𝑗,𝑘

|||

(𝑥𝑖 − 𝑥𝑖′ )1+𝛽 − (𝑥𝑖 − 𝑥𝑖′+1)1+𝛽

Γ(2 + 𝛽) .
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Thus, if we let 𝐶1
𝑥 be the space of 1-cochains that uses 1-cells along the 

𝑥 direction only, then the matrix form of the discrete Riemann-Liouville 
fractional integral operator of the 𝑥 component, 𝕀𝛽1,𝑥 ∈ ℝ𝑛1,𝑥×𝑛1,𝑥 ∶ 𝐶1

𝑥 →

𝐶1
𝑥 , is defined as

𝕀𝛽1,𝑥 ∶= 𝔹1,𝑥𝕄
1+𝛽
1,𝑥 𝕍−1

1,𝑥 .

Here 𝔹1,𝑥 ∈ ℝ𝑛1,𝑥×𝑛0 is defined in (12), 𝕍1,𝑥 = diag(|||𝜎
1,𝑥
𝑖,𝑗,𝑘

|||) ∈ ℝ𝑛1,𝑥×𝑛1,𝑥 , 
and 𝕄1+𝛽

1,𝑥 ∶= 𝑀1+𝛽
1,𝑥 ⊗ 𝐼𝑛𝑦+1 ⊗ 𝐼𝑛𝑧+1 ∈ ℝ𝑛0×𝑛1,𝑥 where ⊗ denotes the 

standard Kronecker product, 𝐼𝑛 denotes a 𝑛 × 𝑛 identity matrix, and 
𝑀1+𝛽

1,𝑥 ∈ℝ(𝑛𝑥+1)×𝑛𝑥 is defined as follows,

(
𝑀1+𝛽

1,𝑥

)
𝑖,𝑖′

=
⎧
⎪
⎨
⎪⎩

(𝑥𝑖 − 𝑥𝑖′ )1+𝛽 − (𝑥𝑖 − 𝑥𝑖′+1)1+𝛽

Γ(2 + 𝛽) , if 𝑖′ < 𝑖,

0, otherwise.

Repeating the same procedure for a 𝑦 direction edge, 𝜎1,𝑦𝑖,𝑗,𝑘 = 𝑥𝑖 ×
[𝑦𝑗 , 𝑦𝑗+1] × 𝑧𝑘, and a 𝑧 direction edge, 𝜎1,𝑧𝑖,𝑗,𝑘 = 𝑥𝑖 × 𝑦𝑗 × [𝑧𝑘, 𝑧𝑘+1], we can 
define the discrete Riemann-Liouville fractional integral operator of the 
𝑦 and 𝑧 component, 𝕀𝛽1,𝑦 and 𝕀

𝛽
1,𝑧, as follows,

𝕀𝛽1,𝑦 ∶= 𝔹1,𝑦𝕄
1+𝛽
1,𝑦 𝕍−1

1,𝑦 and 𝕀𝛽1,𝑧 ∶= 𝔹1,𝑧𝕄
1+𝛽
1,𝑧 𝕍−1

1,𝑧 ,

where 𝔹1,𝑦 ∈ ℝ𝑛1,𝑦×𝑛0 and 𝔹1,𝑧 ∈ ℝ𝑛1,𝑧×𝑛0 are defined in (12), 𝕍1,𝑦 =
diag(|||𝜎

1,𝑦
𝑖,𝑗,𝑘

|||) ∈ℝ𝑛1,𝑦×𝑛1,𝑦 , and 𝕍1,𝑧 = diag(|||𝜎
1,𝑧
𝑖,𝑗,𝑘

|||) ∈ℝ𝑛1,𝑧×𝑛1,𝑧 . We also simi-
larly define 𝕄1+𝛽

1,𝑦 ∶= 𝐼𝑛𝑥+1 ⊗𝑀1+𝛽
1,𝑦 ⊗ 𝐼𝑛𝑧+1 ∈ℝ𝑛0×𝑛1,𝑦 where

(
𝑀1+𝛽

1,𝑦

)
𝑗,𝑗′

=
⎧
⎪
⎨
⎪⎩

(𝑦𝑗 − 𝑦𝑗′ )1+𝛽 − (𝑦𝑗 − 𝑦𝑗′+1)1+𝛽

Γ(2 + 𝛽) , if 𝑗′ < 𝑗,

0, otherwise,

and 𝕄1+𝛽
1,𝑧 ∶= 𝐼𝑛𝑥+1 ⊗𝐼𝑛𝑦+1 ⊗𝑀1+𝛽

1,𝑧 ∈ℝ𝑛0×𝑛1,𝑧 where

(
𝑀1+𝛽

1,𝑧

)
𝑘,𝑘′

=
⎧
⎪
⎨
⎪⎩

(𝑧𝑘 − 𝑧𝑘′ )1+𝛽 − (𝑧𝑘 − 𝑧𝑘′+1)1+𝛽

Γ(2 + 𝛽) , if 𝑘′ < 𝑘,

0, otherwise.

Finally, combining 𝕀𝛽1,𝑥, 𝕀
𝛽
1,𝑦, and 𝕀

𝛽
1,𝑧, we define the overall discrete 

Riemann-Liouville fractional 1-form integral operator 𝕀𝛽1 ∈ ℝ𝑛1×𝑛1 ∶
𝐶1 → 𝐶1 as follows,

𝕀𝛽1 ∶= 𝔹1𝕄
1+𝛽
1 𝕍−1

1 = diag(𝕀𝛽1,𝑥, 𝕀
𝛽
1,𝑦, 𝕀

𝛽
1,𝑧),

where 𝔹1 = diag(𝔹1,𝑥, 𝔹1,𝑦, 𝔹1,𝑧), 𝕄1+𝛽
1 = diag(𝕄1+𝛽

1,𝑥 , 𝕄1+𝛽
1,𝑦 , 𝕄1+𝛽

1,𝑧 ), and 𝕍1 =
diag(𝕍1,𝑥, 𝕍1,𝑦, 𝕍1,𝑧).

Analogously, to discretize 𝛽
2 , we notice that there are 𝑛2,𝑦𝑧 faces par-allel to the 𝑦𝑧 plane, 𝑛2,𝑥𝑧 faces parallel to the 𝑥𝑧 plane, and 𝑛2,𝑥𝑦 faces 

parallel to the 𝑥𝑦 plane. So we expect the discrete fractional integral 
𝕀𝛽2 to also have a diagonal block form. To discretize 𝛽

2 , for any 2-form 
𝜔2, we apply 𝛽

2 and then take integration on a face. Using the average 
value of 𝜔2 on the face as a constant approximation, we can compute 
approximately the face integral, leading to the discrete fractional 2-
form integral operator. We omit the details here and directly present 
𝕀𝛽2 . First, we need the signed face-node incidence matrix 𝔻0→2 ∈ℝ𝑛2×𝑛0 , 
which has the block form

𝔻0→2 =
⎛
⎜
⎜⎝

𝔹2,𝑦𝑧
𝔹2,𝑥𝑧
𝔹2,𝑥𝑦

⎞
⎟
⎟⎠
.

Then we need matrices 𝕄1+𝛽
2,𝑦𝑧 ∈ ℝ𝑛0×𝑛2,𝑦𝑧 , 𝕄1+𝛽

2,𝑥𝑧 ∈ ℝ𝑛0×𝑛2,𝑥𝑧 , 𝕄1+𝛽
2,𝑥𝑦 ∈

ℝ𝑛0×𝑛2,𝑥𝑦 , which are the discretizations of approximately evaluating the 
𝑑𝑦 ∧ 𝑑𝑧, 𝑑𝑧 ∧ 𝑑𝑥, and 𝑑𝑥 ∧ 𝑑𝑦 components of 1+𝛽

2 𝜔2 at each node, re-
spectively. The overall discrete Riemann-Liouville fractional integral 
operator 𝕀𝛽2 ∈ℝ𝑛2×𝑛2 ∶ 𝐶2 → 𝐶2 is defined as

Table 1
Sizes and number of nonzeros of the 𝔹𝑝 and 𝕄1+𝛽

𝑝 matrices as 
function of 𝑛, 𝑛 = 𝑛𝑥 = 𝑛𝑦 = 𝑛𝑧. (𝑛0 = (𝑛 + 1)3, 𝑛1 = 3𝑛(𝑛 + 1)2 , 
𝑛2 = 3𝑛2(𝑛 + 1), and 𝑛3 = 𝑛3)

size number of nonzeros
𝑝 𝔹𝑝 𝕄1+𝛽

𝑝 𝔹𝑝 𝕄1+𝛽
𝑝

1 𝑛1 × 3𝑛0 3𝑛0 × 𝑛1 2𝑛1
3
2 𝑛(𝑛+ 1)3

2 𝑛2 × 3𝑛0 3𝑛0 × 𝑛2 4𝑛2
3
4 𝑛

2(𝑛+ 1)3

3 𝑛3 × 𝑛0 𝑛0 × 𝑛3 8𝑛3
1
8 𝑛

3(𝑛+ 1)3

𝕀𝛽2 ∶= 𝔹2𝕄
1+𝛽
2 𝕍−1

2 ,

where 𝔹2 = diag(𝔹2,𝑦𝑧, 𝔹2,𝑥𝑧, 𝔹2,𝑥𝑦), 𝕄1+𝛽
2 = diag(𝕄1+𝛽

2,𝑦𝑧, 𝕄
1+𝛽
2,𝑥𝑧, 𝕄

1+𝛽
2,𝑥𝑦), and 

𝕍2 = diag(diag(|||𝜎
2,𝑦𝑧
𝑖,𝑗,𝑘

|||), diag(
|||𝜎

2,𝑥𝑧
𝑖,𝑗,𝑘

|||), diag(
|||𝜎

2,𝑥𝑦
𝑖,𝑗,𝑘

|||)).
Finally, to discretize 𝛽

3 , note that there is only one type of vol-ume (cuboids) in the cubical complex. We no longer expect the discrete 
fractional integral 𝕀𝛽3 to have a diagonal block form. Similarly, to dis-
cretize 𝛽

3 , for any 3-form 𝜔3, we apply 𝛽
3 and then take a volume 

integration. Using the average value of 𝜔3 on the volume as a constant 
approximation, we can compute approximately the volume integral, 
leading to the discrete fractional integral on 3-forms operator. Letting 
𝕄1+𝛽

3 ∈ ℝ𝑛0×𝑛3 be the discretization of evaluating 1+𝛽
3 𝜔3 at each node, 

we define the discrete Riemann-Liouville fractional integral operator 
𝕀𝛽3 ∈ℝ𝑛3×𝑛3 ∶ 𝐶3 → 𝐶3 as

𝕀𝛽3 ∶= 𝔹3𝕄
1+𝛽
3 𝕍−1

3 ,

where 𝔹3 ∶=𝔻0→3 ∈ℝ𝑛3×𝑛0 is the signed volume-node incidence matrix 
and 𝕍3 = diag(|||𝜎

3
𝑖,𝑗,𝑘

|||).In general, our discrete Riemann-Liouville fractional integral opera-
tors are defined as

𝕀𝛽𝑝 = 𝔹𝑝𝕄1+𝛽
𝑝 𝕍−1

𝑝 , 𝑝 = 1,2,3.

We summarize the sizes and number of nonzeros of 𝔹𝑝 and 𝕄1+𝛽
𝑝 as a 

function of 𝑛, 𝑛 = 𝑛𝑥 = 𝑛𝑦 = 𝑛𝑧, in Table 1. We exclude 𝕍𝑝 because they 
are diagonal. As we can see, on the cubical complex, the matrices 𝔹𝑝
are sparse since they are constructed from incidence matrices. On the 
other hand, the matrices 𝕄1+𝛽

𝑝 become denser and denser as 𝑝 increases. 
However, they are still relatively sparse. Even for 𝑝 = 3, only 12.5% of 
the entries are nonzeros.

3.2.2. FDEC operators
After discretizing 𝛽

𝑝 , we now introduce two FDEC operators: the 
fractional discrete exterior derivative, and the fractional de Rham map. 
We first introduce the fractional discrete exterior derivative. As men-
tioned before, based on 𝑅𝐿𝛽

𝑝 𝛽
𝑝 = id on the continuous level, we simply 

define the discrete version of the 𝑅𝐿𝛽
𝑝 operator as the inverse of the 

𝕀𝛽𝑝 matrix to preserve the property on the discrete level. Based on the 
discrete versions of 𝛽

𝑝 , 𝑅𝐿𝛽
𝑝 , and 𝑑𝑝, i.e., 𝕀𝛽𝑝 , 

(
𝕀𝛽𝑝
)−1, and 𝔻𝑝, it is 

straightforward to define the FDEC operators 𝔻𝛼
𝑝 as follows.

Definition 2. The fractional discrete exterior derivative operators are 
defined as

𝔻𝛼
𝑝 ∶= 𝕀1−𝛼𝑝+1 𝔻𝑝 (𝕀1−𝛼𝑝 )−1, 𝑝 = 0,1,2, 0 < 𝛼 < 1,

where we define 𝕀1−𝛼0 ∶= 𝐼𝑛0 , i.e., an identify matrix of size 𝑛0 × 𝑛0.

From Definition 2, we can easily see that 𝔻𝛼
𝑝+1𝔻

𝛼
𝑝 = 0 because

𝔻𝛼
𝑝+1𝔻

𝛼
𝑝 = 𝕀1−𝛼𝑝+2 𝔻𝑝+1 (𝕀1−𝛼𝑝+1 )

−1 𝕀1−𝛼𝑝+1𝔻𝑝 (𝕀1−𝛼𝑝 )−1 = 𝕀1−𝛼𝑝+2 𝔻𝑝+1𝔻𝑝 (𝕀1−𝛼𝑝 )−1 = 0.
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Fig. 2. Error of discrete fractional gradient, curl, and divergence to their continuous counterparts against the number of subdivisions. Left column: 𝛼 = 0.25. Right 
column: 𝛼 = 0.9.

Remark. We can discretize 𝑅𝐿𝛽
𝑝 directly using the same method as was 

done to discretize 𝛽
𝑝 and obtain a discrete Riemann-Liouville fractional 

derivative operator,

𝑅𝐿𝔻𝛽
𝑝 = 𝔹𝑝𝕄1−𝛽

𝑝
(
𝕍𝑝
)−1 , 𝑝 = 0,1, 0 < 𝛽 < 1.

This provides two alternative ways to define the FDEC operators. The 
first one is

𝔻𝛼
𝑝 ∶= 𝕀1−𝛼𝑝+1 𝔻𝑝

𝑅𝐿𝔻1−𝛼
𝑝 .

Although this approach seems to be more natural than Definition 2, 
unfortunately, these operators do not satisfy 𝔻𝛼

𝑝+1𝔻
𝛼
𝑝 = 0 due to the 

fact that 𝑅𝐿𝔻𝛽
𝑝 𝕀

𝛽
𝑝 ≠ 𝐼𝑛𝑝 . But 𝑅𝐿𝔻

𝛽
𝑝 𝕀

𝛽
𝑝 ≈ 𝐼𝑛𝑝 as the mesh size gets smaller, which leads to 𝔻𝛼

𝑝+1𝔻
𝛼
𝑝 ≈ 0 when the mesh is refined. The second ap-

proach is

𝔻𝛼
𝑝 ∶=

(
𝑅𝐿𝔻1−𝛼

𝑝+1

)−1
𝔻𝑝

𝑅𝐿𝔻1−𝛼
𝑝 ,
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Fig. 3. Error of discrete fractional gradient, curl, and divergence to their continuous counterparts against the fractional order 𝛼. Left column: error versus 𝛼 in linear 
scale. Right column: error versus 1 − 𝛼 in log scale.

which also satisfies 𝔻𝛼
𝑝+1𝔻

𝛼
𝑝 = 0. However, we empirically observe worse 

convergence than the version we are using. This is why we decided to 
use Definition 2. We would like to thoroughly understand these three 
approaches’ approximation properties and convergence behaviors in 
our future work.

Remark. We comment that the FDEC operators defined in Definition 2
are closely related to the mimetic finite difference (MFD) method 
[39,40] since

𝔻𝛼
𝑝 = 𝕀1−𝛼𝑝+1 𝔻𝑝 (𝕀1−𝛼𝑝 )−1 =

(
𝔹𝑝+1𝕄2−𝛼

𝑝+1

) (
𝕍−1
𝑝+1𝔻𝑝 𝕍𝑝

) (
𝔹𝑝𝕄2−𝛼

𝑝

)−1

and 𝕍−1
𝑝+1𝔻𝑝 𝕍𝑝 are the MFD operators as pointed out in [41,42].

Next, after defining the fractional discrete exterior derivative, we de-
fine a “fractional de Rham map,” as follows. Recall that in the integer 
case, we have the identity 𝔻𝑝𝑝 =𝑝+1 𝑑𝑝. However, in the fractional 
case, 𝔻𝛼

𝑝𝑝 ≠𝑝+1𝑑𝛼
𝑝 in general. To remedy this, we define the follow-

ing fractional de Rham map 𝛼
𝑝 ∶ Λ𝑝 → 𝐶𝑝:

𝛼
𝑝 ∶= 𝕀1−𝛼𝑝 𝑝

𝑅𝐿1−𝛼
𝑝 , 𝑝 = 0,1,2,3.

Then 𝔻𝛼
𝑝 𝛼

𝑝 =𝛼
𝑝+1 𝑑

𝛼
𝑝 holds by the following direct calculation:
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Fig. 4. Numerical verification of 𝔻𝛼
𝑝+1𝔻

𝛼
𝑝c𝑝 = 0

𝔻𝛼
𝑝 𝛼

𝑝 = 𝕀1−𝛼𝑝+1 𝔻𝑝

(
𝕀1−𝛼𝑝

)−1
𝕀1−𝛼𝑝 𝑝

𝑅𝐿1−𝛼
𝑝 = 𝕀1−𝛼𝑝+1 𝔻𝑝𝑝

𝑅𝐿1−𝛼
𝑝

= 𝕀1−𝛼𝑝+1 𝑝+1 𝑑𝑝 𝑅𝐿1−𝛼
𝑝 = 𝕀1−𝛼𝑝+1 𝑝+1

𝑅𝐿1−𝛼
𝑝+1 1−𝛼

𝑝+1 𝑑𝑝
𝑅𝐿1−𝛼

𝑝 =𝛼
𝑝+1 𝑑

𝛼
𝑝 .

This implies the following commuting diagram

Λ𝑝 Λ𝑝+1

𝐶𝑝 𝐶𝑝+1

𝑑𝛼𝑝

𝛼
𝑝 𝛼

𝑝+1
𝔻𝛼
𝑝

and suggests that, with the fractional de Rham map, the FDEC operator 
𝔻𝛼
𝑝 can be viewed as an “error-free” discretization of 𝑑𝛼𝑝 , which provides 

another structure-preserving property and, therefore, makes the FDEC 
operators useful for preserving physics laws in numerical simulations, 
e.g., fractional conservation of mass [43] and fractional Gauss’s laws 
[44].

4. Numerical experiments

In this section, we numerically test the FDEC operators. The MAT-
LAB and Mathematica code is available at https://github .com /71c /
Frac -DEC. In Section 4.1, we numerically study the convergence of 𝔻𝛼

𝑝
to 𝑑𝛼

𝑝 , while in Section 4.2, the property 𝔻𝛼
𝑝+1𝔻

𝛼
𝑝 = 0 is verified numeri-

cally.

4.1. Convergence of our FDEC to T-FVC

In this section, we numerically study the approximation property 
of the FDEC operators (Definition 2) to their continuous counterparts 
(Definition 1) for 𝑝 = 0, 1, 2. Their convergence rates are tested using a 
regular cubical complex (see Fig. 1).

Recall that 𝔻𝛼
𝑝𝑝 ≠ 𝑝+1𝑑𝛼

𝑝 in general, however, we do expect that 
𝔻𝛼
𝑝𝑝 → 𝑝+1𝑑𝛼

𝑝 as the number of the subdivisions increases (i.e., the 
mesh size decreases). Therefore, to properly check the convergence rate, 
for a given 𝑝-form 𝜔𝑝 ∈Λ𝑝, we compute the following root mean square 
(RMS) error,

RMS(𝕍−1
𝑝+1𝔻

𝛼
𝑝𝑝𝜔𝑝 − 𝕍−1

𝑝+1𝑝+1𝑑𝛼
𝑝 𝜔

𝑝), (13)

where RMS(𝒙) ∶=
√

1
𝑛
∑𝑛

𝑖=1 𝑥
2
𝑖 for 𝒙 ∈ ℝ𝑛. Here 𝕍−1

𝑝+1 makes sure that 
we are measuring the average error throughout space by dividing the 
cochain value on a (𝑝 + 1)-cell by the volume of that (𝑝 + 1)-cell.

In Figs. 2 and 3, we plot the error (13) against the number of sub-
divisions and the fractional order 𝛼, for 𝑝 = 0, 1, 2. We use the region 
Ω = [0, 1] × [0, 1] × [0, 1] for all plots. We use the scalar field

𝑓 (𝑥,𝑦,𝑧) = −8𝑥𝑦2𝑧− 3cos (20 (𝑥− 1∕2) (𝑦− 1)𝑧) + 4 (𝑥− 1∕2)2 + (𝑦− 1∕2)2

as 𝜔0 to test the fractional gradient, and use the vector field

𝑭 (𝑥,𝑦,𝑧) =

⎡
⎢
⎢
⎢
⎢⎣

𝑦 sin(5𝑥𝑦+ 𝑧) + 3
(
𝑥𝑧− 1

2

)2
− 3

(
𝑦− 1

2

)2

𝑧 cos(10𝑥𝑦𝑧) + 𝑥𝑧− 𝑦3

2 sin
(
5𝑥3𝑦

)
+ 𝑥𝑦

(
𝑧− 1

4

)
+ cos(2𝑥𝑦𝑧)− 𝑥+ 𝑦3𝑧

⎤
⎥
⎥
⎥
⎥⎦

as 𝜔1 and 𝜔2 to test the fractional curl and divergence, respectively.
Fig. 2 plots the error (13) for 𝑝 = 0, 1, 2 against the number of sub-

divisions for two values of 𝛼: 𝛼 = 0.25 and 𝛼 = 0.9. From the plots, we 
can see that the convergence is generally slower at small 𝑛, and the 
convergence becomes faster approaching second-order convergence for 
large 𝑛. Thus, we conjecture that our proposed FDEC operators converge 
in second-order asymptotically. We can also see, at least for the frac-
tional curl and divergence, that for 𝛼 = 0.25, the convergence is close to 
second-order, while for 𝛼 = 0.9, the convergence is slower than second-
order (at least empirically for small 𝑛). This likely means that when 𝛼
is close to 1, the asymptotic second-order convergence appears more 
slowly. The theoretical study of the convergence order is a subject of 
our future work.

On the other hand, Fig. 3 plots the error (13) for 𝑝 = 0, 1, 2 against 
𝛼 for a fixed number of subdivisions (𝑛 = 16 for 𝑝 = 0, 1 and 𝑛 = 8 for 
𝑝 = 2). The plots in Fig. 3 deserve some explanation. On the left column 
plots, the error (in linear scale) is plotted against 𝛼 (in linear scale), 
showing the relationship between the error and 𝛼. One can see in these 
plots that the error approaches 0 as 𝛼 approaches 1. This makes sense, 
since we have that 𝔻𝛼

𝑝𝑝 =𝑝+1𝑑𝛼
𝑝 when 𝛼 = 1. The plots on the right-

hand sides of Fig. 3 more clearly show this phenomenon: the 𝑥-axis is 
1 − 𝛼, which is how far 𝛼 is to 1, and it is in log scale in order to clearly 
show values of 1 − 𝛼 that are very close to 0, i.e., values of 𝛼 that are 
very close to 1. The 𝑦-axis is the error, also in log scale, resulting in a 
clear linear relationship on the plot for 1 − 𝛼 sufficiently small.

4.2. Numerical verification of 𝔻𝛼
𝑝+1𝔻

𝛼
𝑝 = 0

In this section, we numerically verify 𝔻𝛼
1𝔻

𝛼
0 = 0 and 𝔻𝛼

2𝔻
𝛼
1 = 0 by 

computing the errors in the same way as was done in Section 4.1. Con-
cretely, the error is calculated as

RMS(𝕍−1
𝑝+2𝔻

𝛼
𝑝+1(𝔻

𝛼
𝑝𝑝𝜔𝑝))

where we used the same scalar and vector field as in Section 4.1 for 
𝜔0 and 𝜔1. Although the operators were mathematically defined such 
that 𝔻𝛼

𝑝+1𝔻
𝛼
𝑝 = 0 holds exactly, small numerical errors are expected in 

practice due to the floating point errors. This is confirmed by Fig. 4. As 
we can see, for different values of 𝛼, the errors slightly increase when 
the number of subdivisions increases. However, the magnitude of the 
errors is of the order 10−14, which numerically verifies that 𝔻𝛼

𝑝+1𝔻
𝛼
𝑝 = 0.
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5. Conclusion and future work

In this paper, a type of fractional vector calculus was discretized on a 
3D regular cubical complex using discrete exterior calculus. To do this, 
Tarasov’s standard basis directional FVC operators were re-formulated 
so that they could be discretized using DEC. Discretizing the reformu-
lated FVC operators led to the FDEC operators 𝔻𝛼

𝑝 = 𝕀1−𝛼𝑝+1 𝔻𝑝 (𝕀1−𝛼𝑝 )−1, 
which are structure-preserving in the sense that 𝔻𝛼

𝑝+1𝔻
𝛼
𝑝 = 0, just as 

𝑑𝛼
𝑝+1 𝑑

𝛼
𝑝 = 0. In addition, our FDEC operators involve relatively sparse 

matrices and accurately approximate the corresponding continuous op-
erators numerically with a second-order convergence rate in the RMS 
error.

For future work, firstly, we would like to generalize our FDEC opera-
tors beyond cubical complexes to arbitrary cell complexes or simplicial 
complexes. Secondly, besides T-FVC considered in this work, it is nat-
ural to consider other types of FVC (possibly more generally nonlocal 
vector calculus) and their structure-preserving discretizations. Finally, 
although our approach involves relatively sparse matrices, the spar-
sity does decrease with increasing 𝑝. Therefore, we plan to investigate 
whether it is possible to compute the 𝔻𝛼

𝑝 matrices in a more memory-
efficient manner for practical implementations.

Data availability

We have shared the link to our code in our manuscript.
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