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This work introduces a general framework for establishing the long time accuracy for approximations of
Markovian dynamical systems on separable Banach spaces. Our results illuminate the role that a certain
uniformity in Wasserstein contraction rates for the approximating dynamics bears on long time accuracy
estimates. In particular, our approach yields weak consistency bounds on R+ while providing a means to
sidestepping a commonly occurring situation where certain higher order moment bounds are unavailable
for the approximating dynamics. Additionally, to facilitate the analytical core of our approach, we develop
a refinement of certain ‘weak Harris theorems’. This extension expands the scope of applicability of
such Wasserstein contraction estimates to a variety of interesting stochastic partial differential equation
examples involving weaker dissipation or stronger nonlinearity than would be covered by the existing
literature. As a guiding and paradigmatic example, we apply our formalism to the stochastic 2D Navier–
Stokes equations and to a semi-implicit in time and spectral Galerkin in space numerical approximation
of this system. In the case of a numerical approximation, we establish quantitative estimates on the
approximation of invariant measures as well as prove weak consistency on R+. To develop these numerical
analysis results, we provide a refinement of L2

x accuracy bounds in comparison to the existing literature,
which are results of independent interest.

Keywords: long time accuracy; weak Harris theorems; contraction in Wasserstein distance; numerical
analysis of stochastic partial differential equations; stochastic Navier–Stokes equations.

1. Introduction

Questions concerning long time accuracy under approximations for dynamical systems exhibiting
chaotic behavior are notoriously difficult. This is nevertheless a topic of wide interest particularly
given that statistical theories of turbulence in fluid dynamics can be framed in terms of observables
against invariant measures. According to this widely used paradigm such measures are connected to
the fundamental governing equations through (putative) ergodic averages and thus may be regarded
as containers for statistically robust properties of turbulent flows. Thus, from this point of view, it is
natural to ask if the essential features of these invariant measures are maintained under suitable numerical
approximations or in a variety of physically interesting singular parameter limits.

Unfortunately, the robustness of statistical properties, i.e. the verification of an ergodic hypothesis,
for solutions of deterministic models such as the Navier–Stokes equations and its many variations are
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typically far from the reach of rigorous analysis. On the other hand, certain stochastic versions of
these equations are more tractable to analyze in this regard. Moreover, such stochastic models often
retain physical relevance while providing an important motivation and a set of unique challenges that
have been driving a flurry of developments in the ergodic and mixing theory of infinite dimensional
Markov processes in recent decades. In this stochastic setting, the question of the stability of long time
statistical properties as a function of model parameters is therefore of broad interest for a diverse variety
of nonlinear, infinite dimensional, randomly stirred systems.

This work develops a novel framework for addressing such long time stability and accuracy
questions for parameter dependent Markov processes on a Polish space. Our approach leverages a
certain uniform Wasserstein contraction condition (a strong form of exponential mixing), which, as
we will illustrate on several paradigmatic examples, has a rather broad scope of applicability for
finite and infinite dimensional stochastic systems. Our results demonstrate that appropriately leveraging
uniform contraction provides an important twist on an existing vein of research concerning infinite
time stability under parameter perturbation for certain stochastic systems (Shardlow & Stuart, 2000;
Kuksin & Shirikyan, 2003; Hairer & Mattingly, 2008; Hairer & Majda, 2010; Mattingly et al., 2010;
Hairer et al., 2011; Foldes et al., 2017; Johndrow & Mattingly, 2017; Földes et al., 2019; Cerrai &
Glatt-Holtz, 2020). Here we also note that the framework in Wang (2010); Gottlieb et al. (2012) for
deterministic dynamical systems anticipate some of the developments here, including the invocation
of a uniform dissipativity condition. However, the scope of Wang (2010); Gottlieb et al. (2012) is
fundamentally limited by its inability to rule out nonuniqueness (let alone address ergodic and mixing
properties) for the long term statistics of the infinite dimensional deterministic models considered
therein.

As an important technical foundation to carry out our broad program, we develop a refinement of
the so-called ‘weak Harris approach’ to exponential mixing. This portion of our contribution builds
on the seminal works (Hairer & Mattingly, 2008; Hairer et al., 2011), which lay out a powerful
framework for addressing Wasserstein contraction. These earlier works make use of delicate norm
constructions that sidestep the need to Byzantine explicit coupling constructions. On the other hand,
the representative and natural selection of examples presented in Glatt-Holtz et al. (2017); Butkovsky
et al. (2020) demonstrates the need to refine the approach for the typical situation where models
lack certain higher order moment estimates or possess a weaker form of smoothing at small scales
or both.

A primary domain of application for our framework regards the error analysis for numerical
approximations of certain stochastic partial differential equations (SPDEs). This is an area of applied
analysis that has undergone some rapid development in the past decade; see for example Mattingly
et al. (2002); Jentzen & Kloeden (2009); Carelli & Prohl (2012); Brzeźniak et al. (2013); Bessaih
& Millet (2019, 2021) and containing references. Thus, to illustrate the scope of our approach on a
paradigmatic example, we carry out a case study of the space-time numerical approximation of the
stochastic 2D Navier–Stokes equations given by a spectral Galerkin discretization in space and a semi-
implicit Euler time discretization. In the course of our analysis, we provide some novel approximation
bounds and some significant refinements of existing finite time error bounds in comparison to the
existing literature (Carelli & Prohl, 2012; Bessaih & Millet, 2019, 2021), which are of independent
interest. Note that our general framework has also been useful for several concurrent projects. In
a recent work by the first author, Glatt-Holtz et al. (2022b), we make use of uniform contractivity
to address certain singular limit problems concerning SPDEs with diffusive memory terms. Else-
where in Glatt-Holtz et al. (2022a), we address application in bias estimation for statistical sampling
algorithms.
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1.1 The Uniform Contraction Framework for Long Time Stability

Let us now give an overview of the abstract foundation of our approach. We provide an idealized version
here so that the reader can observe the underlying simplicity of our framework. Of course, to carry out
our program in practice we will need to impose a number of technical assumptions; we refer the reader
to Theorem 2.5, Theorem 2.8 and Corollary 2.11 below for these more involved formulations.

Our departure point is to observe that, for certain stochastic Markovian systems, long time accuracy
estimates can be developed in the presence of a strong type of mixing taking the form of a contraction
estimate in a suitable Wasserstein distance. Note that such contraction estimates have been previously
exploited in a variety of specific contexts for SDEs and SPDEs and other Markovian processes (Hairer &
Mattingly, 2008; Hairer & Majda, 2010; Hairer et al., 2011; Foldes et al., 2017; Johndrow & Mattingly,
2017; Földes et al., 2019; Cerrai & Glatt-Holtz, 2020) to provide rigorous bounds on parameter
dependent invariant measures. The crucial new element here centers on suitably exploiting parameter
independent uniformity in the contraction rates.

Suppose that {Pθ
t }t≥0 is a collection of Markov transition operators defined on a Polish space (X, ρ)

parameterized by θ ∈ Θ . These operators act on Borel probability measures ν and observables ϕ as

νPθ
t (du) :=

∫
Pθ

t (v, du)ν(dv), Pθ
t ϕ(u) :=

∫
ϕ(v)Pθ

t (u, dv),

respectively. Let us suppose that for some θ0, corresponding to the ‘true’ or ‘limiting’ dynamics of
interest, we have Wasserstein contraction. Namely, for any t ≥ 0

W
(
µPθ0

t , µ̃Pθ0
t

)
≤ C0 e−κtW (µ, µ̃), (1.1)

for any Borel probability measure µ, µ̃, where C0, κ > 0 are constants independent of µ, µ̃ and t ≥ 0.
Here, as in e.g. Villani (2008), W is the Wasserstein distance corresponding to ρ, i.e.

W (ν1, ν2) = inf
Γ ∈C (ν1,ν2)

∫
ρ(u, ũ)Γ (du, dũ), (1.2)

with C (ν1, ν2) denoting all of the couplings of ν1 and ν2. Note that such Wasserstein contraction
estimates can be obtained using the so-called ‘weak Harris approach’ developed in Hairer & Mattingly
(2008); Hairer et al. (2011), which we refine for our purposes here in Theorem 2.1 below.

Suppose now that for every θ ∈ Θ we have a corresponding measure µθ , which is invariant under
{Pθ

t }t≥0, namely µθ Pθ
t = µθ for any t ≥ 0. We then make the following simple observation. Exploiting

invariance, the triangle inequality and the contraction estimate (1.1), we have

W (µθ0
, µθ ) = W

(
µθ0

Pθ0
t , µθ Pθ

t

)
≤ W

(
µθ0

Pθ0
t , µθ Pθ0

t

)
+ W

(
µθ Pθ0

t , µθ Pθ
t

)

≤ C0 e−κtW (µθ0
, µθ ) + W

(
µθ Pθ0

t , µθ Pθ
t

)
, (1.3)
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which holds for any θ ∈ Θ and any t ≥ 0. Thus, by selecting t∗ such that, say, C0 e−κt∗ ≤ 1/2, we can
rearrange the above expression and obtain

W (µθ0
, µθ ) ≤ 2W

(
µθ Pθ0

t∗ , µθ Pθ
t∗

)
. (1.4)

Thus, we obtain a bound that reduces the question of long time accuracy in the sense of invariant statistics
to a certain finite time error estimate and alongside suitable θ -uniform moment bound on µθ .

To make this significance of (1.4) a bit more concrete, we recall that W possesses a desirable
Lipschitz structure. For example, if for each u ∈ X, we can find a coupling, uθ0

(t, u), uθ (t, u) of

Pθ0
t (u, ·), Pθ

t (u, ·) such that

Eρ(uθ0
(t, u), uθ (t, u)) ≤ eC̃0tf (u)gθ0

(θ), (1.5)

where gθ0
is a (bounded) function on Θ , then basic properties of W lead to

W
(
µθ Pθ0

t∗ , µθ Pθ
t∗

)
≤ eC̃0t∗gθ0

(θ)

∫
f (u)µθ (du). (1.6)

Hence, we obtain from (1.4) that

W (µθ0
, µθ ) ≤ 2eC̃0t∗gθ0

(θ)

∫
f (u)µθ (du). (1.7)

Of course obtaining (1.1) and then providing suitable qualitative estimates for W (µθPθ0
t∗ , µθ Pθ

t∗) to
leverage via (1.4) as in (1.5)–(1.7) represents a bespoke and nontrivial mathematical challenge for each
of specific works mentioned previously, Hairer & Mattingly (2008); Hairer et al. (2011); Foldes et al.
(2017); Johndrow & Mattingly (2017); Földes et al. (2019); Cerrai & Glatt-Holtz (2020). Furthermore,
we emphasize for what follows that in order to exploit (1.7) we must obtain a uniform bound on∫

f (u)µθ (du) as a function of θ .
This work develops a different and seemingly novel variation on the reduction in (1.1), (1.4). Suppose

that, instead of (1.1), we impose the stronger uniform contraction assumption

W
(
µPθ

t , µ̃Pθ
t

)
≤ C e−κtW (µ, µ̃), (1.8)

where, to emphasize, the constants C, κ > 0 are now supposed to be independent of the parameter θ ∈ Θ .
In comparison to (1.3), we now proceed as

W (µθ0
, µθ ) ≤W

(
µθ0

Pθ0
t , µθ0

Pθ
t

)
+ W

(
µθ0

Pθ
t , µθ Pθ

t

)
≤ W

(
µθ0

Pθ0
t , µθ0

Pθ
t

)
+ C0 e−κtW (µθ0

, µθ ),

(1.9)

so that, by again choosing t∗ such that

C0 e−κt∗ ≤ 1/2, (1.10)
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we now find

W (µθ0
, µθ ) ≤ 2W

(
µθ0

Pθ0
t∗ , µθ0

Pθ
t∗

)
. (1.11)

This seemingly innocent difference in comparison to (1.4) trades uniformity in the contraction rate for a
single moment bound on the limit system. Indeed, under (1.5), we obtain

W (µθ0
, µθ ) ≤ 2eC̃0t∗gθ0

(θ)

∫
f (u)µθ0

(du), (1.12)

so that we trade the requirement (1.8) for the uniform bound supθ∈Θ

∫
f (u)µθ (du).

This difference between (1.12) and (1.7) turns out to sometimes be an indispensable trade off. We
exploit it for the questions of numerical accuracy we consider here as well as other situations of interest
as in the concurrent work (Glatt-Holtz et al., 2022b). Specifically, as we will describe in further detail
immediately below, for our applications here θ ̸= θ0 represents a numerical approximation parameter for
the stochastic Navier–Stokes equations. These numerical approximations destroy (or complicate) certain
crucial Lyapunov structures, namely we lack the availability of moments for µθ when θ ̸= θ0 as would
be needed in (1.7). In any case we refer to Theorem 2.5, which is framed in a context applicable to a
slightly weaker form of the uniform contraction estimates (1.8) required for our applications.

Leaving this consideration aside, the uniform contraction assumption (1.8) combined with finite time
error estimate bounds as in (1.5) leads to other desirable long time approximation estimates. Indeed with
(1.8) and invoking invariance we obtain the bound

W
(
µPθ

t , µPθ0
t

)
≤ W

(
µPθ

t , µθ Pθ
t

)
+ W (µθ , µθ0

) + W
(
µθ0

Pθ0
t , µPθ0

t

)

≤ C0 e−κt
(
W (µ, µθ ) + W (µ, µθ0

)
)

+ W
(
µθ , µθ0

)

≤ C0 e−κtW
(
µ, µθ0

)
+ (1 + C0)W

(
µθ , µθ0

)
,

for any ‘initial’ distribution µ. Hence, with this bound and (1.12), valid under (1.4) and (1.5), we obtain

W
(
µPθ

t , µPθ0
t

)

≤ min
{

C0 e−κtW
(
µ, µθ0

)
+ 2(1 + C0) eC̃0t∗

∫
f (u)µθ0

(du) gθ0
(θ), eC̃0t

∫
f (u)µ(du) gθ0

(θ)

}
,

valid for any t ≥ 0, where we recall that t∗ > 0 is given as in (1.10). Hence, optimizing appropriately
over t ≥ 0 in this bound we conclude

sup
t≥0

W
(
µPθ

t , µPθ0
t

)
≤ C

(
W (µ, µθ0

) +
∫

f (u)µθ0
(du) +

∫
f (u)µ(du)

)
gθ0

(θ)η, (1.13)

where C, η > 0 are independent of µ and θ .
Note that, in the numerical analysis context of interest here, this bound, (1.13), immediately yields

a weak order approximation estimate valid on the entire time interval [0, ∞). The operational version
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of (1.13) formulated in order to address our nonlinear SPDE applications is formulated in Theorem 2.8
and in Corollary 2.11, which make explicit the connection with weak order convergence in stochastic
numerical analysis.

1.2 Contributions to the weak Harris approach for Wasserstein contraction

Of course the elegant simplicity of the above discussion obscures a number of bedeviling technical
challenges that one must address in order to carry out this program in practice. One challenge is to
establish (uniform) Wasserstein contraction bounds as in (1.1) and in (1.8). For this purpose that we
develop Theorem 2.1 below, which provides general criteria for such contraction estimates. This is a
result that has independent interest for a variety of infinite dimensional contexts as highlighted by the
recent contributions (Glatt-Holtz et al., 2017; Butkovsky et al., 2020; Glatt-Holtz et al., 2021).

As previously mentioned, Theorem 2.1 provides a new variation on the so-called ‘weak Harris
approach’ developed in Hairer & Mattingly (2008); Hairer et al. (2011). This weak Harris approach
builds on a wide and well developed literature on mixing rates for Markov chains; see e.g. Da Prato &
Zabczyk (1996); Meyn & Tweedie (2009); Douc et al. (2018); Kulik (2018) for a systematic presentation.
The classical Harris theorems date back to the 1950s by building on Doeblin’s coupling approach to
address mixing in unbounded phase spaces. The key is to appropriately incorporate the role of Lyapunov
structure to facilitate coupling at ‘large scales’. Typically, in this literature mixing occurs in a total
variation (TV) topology or other related ‘strong topologies’ on probability measures; see Hairer &
Mattingly (2011b) for a recent treatment close to our setting. This use of a total variation topology
highlights a limitation of the classical Harris approach: it turns out to be ill-adapted to infinite dimensional
contexts where measures tend to be mutually singular as exemplified by the Feldman–Hajek theorem (see
e.g. Da Prato & Zabczyk, 2014, Theorem 2.25).

More recent variations on this Harris approach, largely developed in an extended body of literature
in the SPDE context starting from Bricmont et al. (2002); Hairer (2002); Kuksin & Shirikyan (2002);
Mattingly (2002), address mixing in Wasserstein (or the closely related dual-Lipschitz) distance.
Wasserstein distance reflects a weak topology that sidesteps the issue of mutually singular laws arising in
infinite dimensional stochastic systems. A distinguished contribution of the works (Hairer & Mattingly,
2008; Hairer et al., 2011) in this literature is to provide a contraction (or a so-called ‘spectral-gap’)
estimate as in (1.1) as suits our needs here. As in the earlier literature, these results are based on natural
conditions leading to couplings that synchronize two point dynamics at large, intermediate and small
scales, through Lyapunov structure, irreducibility and smoothing properties, respectively. However, an
elegant feature of Hairer & Mattingly (2008); Hairer et al. (2011) in this wider mixing literature is the
identification of a particular class of metrics (or pseudo-metrics) on the phase space that are carefully
tailored to account for the three different mechanisms acting at different scales that drive the coupling.
This ‘norm approach’ thus avoids Byzantine explicit coupling constructions yielding a flexible approach
for applications while producing elegant, transparent proofs.

The approach (Hairer & Mattingly, 2008; Hairer et al., 2011) is well adapted to the 2D randomly
forced Navier–Stokes on compact domains in the absence of boundaries and as well as several other
reaction-diffusion type models of interest. However, a crucial requirement in Hairer & Mattingly (2008);
Hairer et al. (2011) appears to be stronger than can be expected for a rich variety of interesting SPDE
examples involving weaker dissipation and/or stronger nonlinearity as illustrated in Glatt-Holtz et al.
(2017); Butkovsky et al. (2020); Glatt-Holtz et al. (2021), e.g. the 2D Navier–Stokes equations (NSE)
on a bounded domain, the 2D hydrostatic NSE, the fractionally dissipative Euler model, the damped
Euler–Voigt equations, a damped nonlinear wave equation and the damped Korteweg–De Vries equation,
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under suitable stochastic forcing terms and boundary conditions. Indeed, Hairer & Mattingly (2008)
develops their theory around a certain geodesic metric that is adapted to a quadratic exponential Lyapunov
structure, namely V(u) = exp(α|u|2) for some α > 0. It turns out that this geodesic metric approach
involves the use of a certain gradient bound on the Markovian dynamics closely related to the so-called
‘asymptotic strong Feller’ (ASF) condition introduced earlier in Hairer & Mattingly (2006). While the
pseudo-metric structures considered later in Hairer et al. (2011) are in various ways more flexible,
including in terms of its requirement on the Lyapunov structure, Hairer et al. (2011) still ultimately
relies on these same ASF type gradient bound on the Markov semigroup. To summarize, the existing
works (Hairer & Mattingly, 2008; Hairer et al., 2011) require a significant degree of uniformity across
the phase space in contraction rates when two point dynamics are in close proximity. This is rather more
than can be hoped for in a variety of interesting situations.

Theorem 2.1 provides our new take on the weak Harris approach. Its main advantage over these
previous formulations consists in sidestepping the need for a gradient bound. Our approach builds
on machinery introduced recently in Butkovsky et al. (2020), which provides a powerful and user
friendly toolbox for addressing exponential mixing by confronting the representative gallery of SPDE
examples introduced in Glatt-Holtz et al. (2017). Our result here may be seen to be a sort of intermediate
formulation of the topology for contraction, laying between Hairer & Mattingly (2008) and Hairer et al.
(2011), and focusing specifically on V(u) = exp(α|u|2). This intermediate formulation then has the
advantage of allowing us to treat the gallery of examples from Glatt-Holtz et al. (2017); Butkovsky
et al. (2020). Note that our pseudo-metric does not maintain a generalized triangle inequality due to
the underlying Lyapunov structure around V(u) = exp(α|u|2) as would be strictly required for bounds
like (1.3), (1.9). Instead, taking advantage of a stronger ‘super-Lyapunov’ structure for V , we provide a
‘contraction-like’ condition (see (2.7), (2.8)), which is strong enough to then follow the general stream
of argumentation leading to our reduction bounds (1.12), (1.13).

The list of problems in Glatt-Holtz et al. (2017); Butkovsky et al. (2020) include, notably, the
2D stochastic Navier–Stokes equations on a bounded domain subject to the usual nonslip boundary
condition. We provide complete details regarding Wasserstein contraction for this case below in
Section 4, which we believe illustrates the full significance for Theorem 2.1 in applications. We refer
to Remark 4.6 below, which provides technical level comparison of our Theorem 2.1 to the results in
Hairer & Mattingly (2008) and in Hairer et al. (2011).

1.3 Results for the numerical approximation of the stochastic Navier–Stokes equations

As already alluded to above, our immediate goal is to demonstrate the efficacy of the abstract
formalism developed in Section 2 for the numerical analysis of certain classes of nonlinear SPDEs.
As a paradigmatic model problem, we carry out a detailed study of a fully discrete numerical scheme
to approximate the 2D stochastic Navier–Stokes equations (SNSE) in the presence of spatially smooth,
but sufficiently rich (or more precisely ‘essentially elliptic’ in the terminology of e.g. Mattingly, 2003)
stochastic forcing structure under periodic boundary conditions.

Our main result that we preview immediately below as Theorem 1.1 adds to an extensive body of
research on the numerical analysis of stochastic dynamical systems. However, the literature on long time
numerical approximation for SPDEs is scant, and, to the best of our knowledge, there is no previous
literature on the stochastic Navier–Stokes or other such ‘strongly nonlinear’ equations in this regard.
To summarize, our primary contribution in comparison to the existing numerical analysis literature is
to provide rigorous approximation bounds on invariant measures and to establish weak convergence
estimates, à la (1.18), on an infinite time horizon for the stochastic Navier–Stokes equations. This usage
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of our abstract framework lays out an approach that would apply to the numerical analysis of a number of
other strongly nonlinear infinite dimensional systems seemingly out of reach of the previously existing
approaches, one that follow a very different set of methodologies in comparison to the extant literature.

Let us be more concrete. For our numerical application, we consider the 2D Navier–Stokes equations
on the torus T2 so that we can work with the convenient vorticity formulation

dξ + (−ν∆ξ + u · ∇ξ) dt =
d∑

k=1

σk dWk = σ dW, u = K ∗ ξ . (1.14)

Here K is the Biot–Savart operator, which uniquely recovers the divergence free vector field u from ξ

(so that ξ = ∇⊥ · u). The physical parameter ν > 0 represents the kinematic viscosity of the fluid. The
system is driven by a white in time and spatially smooth Gaussian process σ dW = ∑d

k=1 σk dWk, where
W = (W1, W2, . . . , Wd) is a collection of i.i.d. Brownian motions on a probability space (Ω , F ,P), and
σ1, . . . , σd are (spatially) mean free elements of L2(T2). For simplicity, we consider initially spatially
mean free fields ξ0 = ξ(0), a condition maintained by its evolution ξ(t), t > 0, in (1.14) so long as the
noise itself is mean free.

As numerical approximation of (1.14), we consider a spectral Galerkin discretization in space and a
semi-implicit Euler time discretization, given by

ξn
N,δ = ξn−1

N,δ + δ
[
ν∆ξn

N,δ − ΠN

(
un−1

N,δ · ∇ξn
N,δ

)]
+

√
δ

d∑

k=1

ΠNσkη
k
n, for n ≥ 1, (1.15)

where the numerical discretization parameters are the size of the time step δ > 0, and N ≥ 1 the
degree of spectral (spatial) approximation. The operator ΠN denotes a low-Fourier mode projector, i.e.
the projection operator onto the space spanned by the first N eigenfunctions of ‘−∆’ under periodic
boundary conditions. As previously, un−1

N,δ = K ∗ ξn−1
N,δ . Here

√
δηk

n have the laws of increments of the
Brownian motions Wk, so that ηk

n is generated by a sequence of i.i.d. standard Gaussian random variables.
For both (1.14) and (1.15), we work under the simplifying assumption, the so-called ‘essentially-

elliptic case’, where we suppose a certain nondegeneracy condition that noise excitation acts directly on
some number of low Fourier modes, namely

span{σ1, . . . , σd} ⊃ ΠKL2(T2) (1.16)

for K = K(ν,
∑d

k=1 |σk|2L2), see (3.29) in Theorem 3.9 below for the precise condition on K. This
condition on K is a standard assumption in the SNSE literature, cf. Mattingly (2003); Kuksin & Shirikyan
(2012); Glatt-Holtz et al. (2017). Indeed, this noise structure is convenient because we are able to
establish a discretization uniform contraction à la (1.8) as fits our formalism. We expect our results
to still hold under a more spatially degenerate noise setting, where in particular K does not depend on
the viscosity ν or the size of σ , but proving this conjecture would require significantly more technical
effort, see Section 1.4 below.

Our main numerical result is given here in a heuristic formulation as follows. We note that the orders
of convergence with respect to δ, N in (1.17) and (1.18) may not be optimal, as we discuss with more
details further below within the literature review section.
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Theorem 1.1 Consider (1.14) and (1.15) under the suitable nondegeneracy condition (1.16) that the
stochastic perturbation acts directly on sufficiently many low frequencies (depending only on ν > 0 and
|σ |2L2 = ∑

k |σk|2L2 ). Then (1.14) has a unique statistically invariant state µ∗, and (1.15) has a unique

statistically invariant state µN,δ
∗ for any N ≥ 1, δ > 0. Moreover, for any sufficiently regular observable

ϕ : L2(T2) → R, we have the bound

∣∣∣∣

∫
ϕ(ξ ′)µN,δ

∗ (dξ ′) −
∫

ϕ(ξ ′)µ∗(dξ ′)
∣∣∣∣ ≤ Cϕ(δr1 + N−r2) (1.17)

for some r1 = r1(ν, |σ |2) > 0, r2 = r2(ν, |σ |2) > 0, which do not depend on ϕ and where Cϕ , r1, r2 are
all δ, N-independent.

Finally, (1.15) is a weakly consistent approximation of (1.14). Namely, for any such observable ϕ

and sufficiently regular ξ0 it holds that

sup
n≥0

∣∣∣Eϕ
(
ξn

N,δ(ξ0)
)

− Eϕ(ξ(nδ; ξ0))
∣∣∣ ≤ Cϕ(δr̃1 + N−r̃2), (1.18)

where ξ(t; ξ0), t ≥ 0, and ξn
N,δ(ξ0), n ∈ N, denote the solutions of (1.14) and (1.15), respectively, with

initial datum ξ0. Here again, we have that r̃1 = r̃1(ν, |σ |2) > 0, r̃2 = r̃2(ν, |σ |2) > 0 are independent of
ϕ, δ and N.

The precise and complete formulation of Theorem 1.1 is divided between Theorem 3.21 and
Theorem 3.22 below. In particular, its proof is founded on a discretization-uniform contraction bound
from Theorem 3.9 and the finite-time error estimates from Proposition 3.17 and Proposition 3.18, which
provide concrete instantiations of (1.8) and (1.5), in addition to being contributions of independent
interest for (1.14) and (1.15).

Further, we notice that (1.17) together with the contraction inequality from Theorem 3.9 can be
used to derive useful error estimates for the estimator 1

n

∑n
k=1 ϕ(ξ k

N,δ) as an approximation of the
stationary average

∫
ϕ(ξ ′)µ∗(dξ ′). Indeed, in Remark 3.24 below we sketch the main steps involved

in the derivation of the following bias estimate

∣∣∣∣∣E

(
1
n

n∑

k=1

ϕ
(
ξ k

N,δ(ξ0)
)

−
∫

ϕ(ξ ′)µ∗(dξ ′)

)∣∣∣∣∣ ≤ Cϕ

(
1
nδ

+ δr1 + N−r2

)
, (1.19)

and the mean-squared error estimate

E

⎡

⎣
∣∣∣∣∣
1
n

n∑

k=1

ϕ
(
ξ k

N,δ

)
−

∫
ϕ(ξ ′)µ∗(dξ ′)

∣∣∣∣∣

2
⎤

⎦ ≤ Cϕ

(
1
nδ

+ δ2r1 + N−2r2

)
, (1.20)

for Cϕ , r1, r2 as in (1.17). Clearly, estimates such as these have a direct significance in practical
applications where one naturally computes the time-discrete average 1

n

∑n
k=1 ϕ(ξ k

N,δ) for a certain
number n of states as a way of approximating the average of a given observable ϕ with respect to the
(typically unknown) underlying stationary distribution µ∗.
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Previous Literature, Elements of Our Analysis. There is an extensive literature on numerical analysis
of stochastic systems. Some general background on this subject in the context of SDEs can be found
in e.g. Kloeden & Platen (1992); Milstein & Tretyakov (2004), and for SPDEs we refer to Jentzen &
Kloeden (2009); Lord et al. (2014). In this community, approximation results are typically characterized
in terms of ‘strong’ and ‘weak’ convergence. The former notion of strong convergence concerns, in our
notations, bounds on the quantity |ξ j

N,δ(ξ0) − ξ(jδ; ξ0)|L2 either in mean or in probability. The latter

notion of ‘weak’ convergence involves estimates for E(φ(ξ
j
N,δ(ξ0))−φ(ξ(jδ; ξ0))) over different classes

of test functions, see e.g. Kloeden & Platen (1992). When the test functions are Lipschitz continuous
with respect to a certain notion of distance then weak convergence can be expressed in terms of bounds
on the corresponding Wasserstein distance, cf. (2.52) below. Additionally, in this latter setting strong
convergence implies weak convergence, but of course not visa-versa and typically weak rates are better
than strong rates (cf. Davie & Gaines, 2001; Debussche & Printems, 2009).

The available approaches for weak convergence are mainly centered around the following observa-
tion. Expanding E(φ(ξ

j
N,δ(ξ0))−φ(ξ(jδ; ξ0))) in a telescoping sum allows one to estimate the error using

the Kolmogorov equation associated to the limiting dynamic. These approaches require some degree of
regularity for solutions of the Kolmogorov equation. Additionally, note that one needs to show that these
estimates are uniform in j in order to address long time accuracy. This typically entails obtaining a time
decay for the corresponding solutions. A further difficulty for SPDEs is that our Kolmogorov equation is a
parabolic PDE whose ‘spatial’ variable is infinite dimensional. In the setting we are concerned with here,
due to the necessity and interest for noise acting in a limited subset of the phase space, the Kolmogorov
equation has a degenerate second-order term. Furthermore, its drift term involves an unbounded operator
and a strongly nonlinear term.

Details of the Kolmogorov approach to weak convergence vary e.g. according to the model of interest,
the type of discretization considered and the topology in which numerical convergence is established,
but frequently the estimates appear with time-interval length dependent bounds. For finite dimensional
SDEs we mention the pioneering works Milshtein (1979); Talay (1984, 1986); Milshtein (1995), which
were further refined in a significant body of work, see e.g. Talay & Tubaro (1990); Kloeden & Platen
(1992); Bally & Talay (1996); Kohatsu-Higa (2001); Szepessy et al. (2001); Clément et al. (2006) and
references therein. Analogous weak convergence results for SPDEs were more recently obtained in e.g.
Davie & Gaines (2001); Buckwar & Shardlow (2005); De Bouard & Debussche (2006); Debussche
& Printems (2009); Hausenblas (2010); Debussche (2011); Kovács et al. (2012, 2013); Wang & Gan
(2013); Andersson & Larsson (2016); Andersson et al. (2016); Wang (2016); Conus et al. (2019); Jentzen
& Kurniawan (2021) for equations that are linear or with globally Lipschitz nonlinearities, and Dörsek
(2012); Bréhier & Debussche (2018); Cui & Hong (2019); Bréhier & Goudenège (2020); Cai et al.
(2021); Cui et al. (2021) for more general nonglobally Lipschitz scenarios. Another set of works focused
on obtaining long time approximation error bounds as in (1.17), (1.19) or (1.20), for either SDEs (Talay,
1990; Shardlow & Stuart, 2000; Talay, 2002; Mattingly et al., 2010; Debussche & Faou, 2012; Abdulle
et al., 2014) or SPDEs (Bréhier, 2014; Bréhier & Kopec, 2017; Cui & Hong, 2018; Hong & Wang, 2019;
Cui et al., 2021; Bréhier, 2022).

As previously mentioned, our approach for proving Theorem 1.1 is instead based on the uniform
Wasserstein contraction framework described above. Namely, by establishing a uniform Wasserstein
contraction estimate as in (1.8) together with a finite-time error estimate as in (1.5). Regarding the latter,
our bound is in fact given in terms of the strong discretization error in Lp(Ω; L∞

loc,tL
2
x) for a sufficiently

small p, which is estimated from Proposition 3.17 and Proposition 3.18 below. Clearly, this approach
is most likely not guaranteeing an optimal weak convergence rate in (1.18). Indeed, as we previously
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mentioned, it is generally expected that the weak order of convergence is larger than the strong order, and
many of the references on weak convergence results mentioned above focused precisely on establishing
this order improvement.

However, we emphasize that the main advantage of our approach lies in yielding a uniform in time
weak error estimate, (1.18), in addition to providing long time error estimates for approximations of the
limiting stationary distribution, i.e. (1.17), (1.19), (1.20). Notably, these are the first results of such type to
be established for the stochastic Navier–Stokes equations. Previous works on numerical approximations
for the SNSE focused on strong convergence in either probability (Carelli & Prohl, 2012; Bessaih et al.,
2014; Hausenblas & Randrianasolo, 2019; Breit & Dodgson, 2021; Breit & Prohl, 2022) or in mean
(Dörsek, 2012; Brzeźniak et al., 2013; Bessaih & Millet, 2019, 2021; Milstein & Tretyakov, 2021;
Bessaih & Millet, 2022) for various space or time discretizations and noise types, but always for bounds
on finite time windows [0, T] with exponentially growing constants as a function of T > 0.

Regarding the strong error bound implied by Proposition 3.17 and Proposition 3.18, we notice that
it is given more explicitly, for sufficiently regular starting point ξ0, as

E

[

sup
j≤J

∣∣∣ξ j
N,δ(ξ0) − ξ(jδ; ξ0)

∣∣∣
p

L2

]

≤ C
[
δp̃p + N− p

2

]
(1.21)

for any J ∈ N, p̃ ∈ (0, 1/2), and for p > 0 sufficiently small depending only on the viscosity parameter
ν and |σ |2L2 = ∑

k |σk|2L2 , where C = C(p, p̃, J) is a positive constant. This bound yields a strong
convergence for the scheme (1.15) with respect to the topology in L∞

loc,tL
2
x , and with rates (almost) 1/2

in time and 1 in space (N ∼ h−2 for a spatial grid with cell edge length h), see also Printems (2001,
Definition 2.6). Additionally, as ν grows large, p can be almost 2. This temporal convergence rate is
optimal due to 1/2-Hölder time regularity of the solution, which is in turn implied by the regularity
of the underlying stochastic forcing term. Optimal rates for other types of numerical approximations
or noise terms for the 2D SNSE were also achieved in previous works under the velocity formulation,
particularly Bessaih et al. (2014); Breit & Dodgson (2021); Breit & Prohl (2022) regarding convergence
in probability, and Bessaih & Millet (2022) concerning strong L2(Ω) convergence under a suitable
smallness assumption on the noise. In relation to these recent results, we expect our method of proof
for deriving (1.21) to be of independent interest. See more details in Section 3.3 below.

1.4 Outlook and future work

A number of avenues for future development suggest themselves as an outgrowth of the work here.
Firstly, the model problems suggested in Glatt-Holtz et al. (2017); Butkovsky et al. (2020); Glatt-Holtz
et al. (2021) provide a set of interesting challenges for numerical analysis. Here note that, while the
results in Section 4 provide a first step toward addressing the case of 2D stochastic Navier–Stokes on
a domain with boundaries, subtle details remain to complete the analogous program to the one that we
fulfilled in the periodic setting in Section 3. Note furthermore that Section 3 addresses just one of a variety
of possible numerical approximations of governing equations, and indeed each of the model equations
in Glatt-Holtz et al. (2017); Butkovsky et al. (2020); Glatt-Holtz et al. (2021) would be expected to have
their own bespoke natural approximation schemes. Another challenge for numerical accuracy would be
to address the fully hypo-elliptic case. Here, to obtain a uniform rate of contraction one would presumably
need to develop a discrete time analogue of the infinite dimensional Malliavin calculus based approaches
developed in Hairer & Mattingly (2006, 2011a); Földes et al. (2015); Kuksin et al. (2020). Of course,
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other interesting parameter limit problems outside of numerical approximation may be addressed from
our formalism as in our concurrent work (Glatt-Holtz et al., 2022b).

Finally, it is notable that abstract frameworks developed in Section 2 have a scope of applicability
reaching far beyond the SPDE models that we have focused on here. As already identified in Johndrow
& Mattingly (2017), one may leverage the type of contractivity obtained from weak Harris results
as a means of bias estimation in a variety of applications in computational statistics. Our upcoming
contribution (Glatt-Holtz et al., 2022a) expands on this insight particularly leveraging the use of
uniformity identified here.

Organization

The rest of this manuscript is organized as follows. In Section 2 we present our main abstract results,
namely our Wasserstein contraction criteria in Section 2.2 followed by our parameter convergence/
stability at time ∞ given in Section 2.3. Section 3 presents our first application concerning the numerical
analysis of a fully discrete scheme for the stochastic Navier–Stokes equations. Finally, Section 4 presents
contraction estimates for the stochastic Navier–Stokes equations on a bounded domain.

2. Abstract results

Before presenting our general results in Section 2.2 and Section 2.3, we briefly recall in Section 2.1 some
standard definitions regarding Markov processes and the Wasserstein distance on spaces of probability
measures. For more details, we refer to e.g. Da Prato & Zabczyk (1996); Villani (2008).

2.1 Preliminaries

Let X be a Polish space. Throughout this manuscript, we denote by B(X) the σ -algebra of Borel subsets
of X, and by Pr(X) the corresponding space of Borel probability measures, which we will often simply
refer to as probability measures. We also denote by Mb(X) the family of all real-valued, bounded and
Borel-measurable functions on X. Moreover, we fix the notation R+ for the interval [0, ∞).

We recall that P : X × B(X) → [0, 1] is a Markov kernel if P(·, O) is measurable for each fixed
O ∈ B(X), and P(u, ·) is a probability measure for each fixed u ∈ X. For any measure µ ∈ Pr(X), we
recall that its dual action on a Markov kernel P is given by

µP(O) :=
∫

X
P(u, O)µ(du), O ∈ B(X).

A measure µ ∈ Pr(X) is said to be invariant with respect to a family of Markov kernels Pt, t ≥ 0, if and
only if µPt = µ for every t ≥ 0.

Moreover, a Markovian transition function is a family of Markov kernels Pt, t ≥ 0, such that, for
each u ∈ X and O ∈ B(X), P0(u, O) = 1O (u), where 1O denotes the indicator function of O , and it
satisfies the Chapman–Kolmogorov relation

Pt+s(u, O) = PtPs(u, O) :=
∫

X
Ps(v, O)Pt(u, dv).
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Given such Markovian transition function, its associated Markov semigroup is defined as the family
of operators Pt, t ≥ 0, acting on functions ϕ ∈ Mb(X) as

Ptϕ(u) :=
∫

X
ϕ(v)Pt(u, dv), u ∈ X. (2.1)

Finally, we recall that a mapping ρ : X×X → R+ is called a distance-like function if it is symmetric,
lower semicontinuous, and satisfies that ρ(u, ũ) = 0 if and only if u = ũ, see Hairer et al. (2011,
Definition 4.3). For any such distance-like function ρ, its Wasserstein-like extension to Pr(X) is the
mapping Wρ : Pr(X) × Pr(X) → R+ ∪ {∞} defined as

Wρ(µ, µ̃) = inf
Γ ∈C (µ,µ̃)

∫

X×X
ρ(u, ũ)Γ (du, dũ), (2.2)

where C (µ, µ̃) denotes the family of all couplings of µ and µ̃, i.e. all probability measures Γ on
the product space X × X with marginals µ and µ̃. We notice that when ρ is a metric on X, then its
corresponding extension Wρ coincides with the usual Wasserstein-1 distance, Villani (2008).

2.2 Wasserstein contraction

Our first general result, Theorem 2.1 below, provides a general set of assumptions on a given Markov
semigroup that are sufficient for guaranteeing its contraction with respect to a suitable Wasserstein
distance. Our formulation is inspired by the weak Harris theorem from Hairer et al. (2011, Theorem
4.8), which yields an analogous Wasserstein contraction under three main assumptions on the Markov
semigroup. Namely, the existence of a Lyapunov function; a smallness condition for trajectories
departing from certain level sets of the Lyapunov function; and a contractivity assumption between
trajectories departing from points that are sufficiently ‘close’ to each other.

In our set of hypotheses, we focus on stochastic systems possessing an exponential Lyapunov
structure, while allowing for more flexibility regarding the contractivity requirement, see (2.5) below. In
particular, our ‘contraction’ coefficient is given as the product of a constant that is smaller than 1 with
an exponential term depending on one of the starting points. This is tailored to reflect a typical situation
in applications to SPDEs, particularly involving a dissipative structure. Indeed, this is demonstrated in
the applications to the stochastic Navier–Stokes equations in Section 3.2 and Section 4 below.

Theorem 2.1 Let X be a separable Banach space with norm ∥ · ∥. Consider an index set I that is a
subspace of R+. and take {Pt}t∈I to be a Markov semigroup on X satisfying

(A1) (Exponential Lyapunov structure) There exists a continuous function ψ : R+ → R+ with
limt→∞ ψ(t) = 0, and also α0 > 0 such that for all α ∈ (0, α0], t ∈ I and u0 ∈ X, the
following inequality holds:

Pt exp
(
α∥u0∥2

)
≤ exp

(
α
(
ψ(t)∥u0∥2 + C0

))
(2.3)

for some constant C0 > 0, which is independent of t, u0 and α.

Furthermore, we fix a collection Λ of distance-like functions ρ : X × X → [0, 1] and consider the
following set of assumptions on Λ and {Pt}t∈I :
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(A2) (Eventual ρ-smallness of bounded sets) For every M > 0 and ρ ∈ Λ there exists T1 = T1(M, ρ) >

0 and κ1 = κ1(M) ∈ (0, 1), which is independent of ρ, such that

sup
t∈I , t≥T1

Wρ(Pt(u0, ·), Pt(v0, ·)) ≤ 1 − κ1 (2.4)

for every u0, v0 ∈ X with ∥u0∥ ≤ M and ∥v0∥ ≤ M.

(A3) For every κ2 ∈ (0, 1) and for every r > 0 there exists ρ ∈ Λ for which the following holds:

(A3.i) (Eventual local ρ-contractivity) There exists T2 = T2(κ2, r) > 0 such that

sup
t∈I , t≥T2

Wρ(Pt(u0, ·), Pt(v0, ·)) ≤ κ2 exp
(

r∥u0∥2+r∥v0∥2
)
ρ(u0, v0) (2.5)

for every u0, v0 ∈ X with ρ(u0, v0) < 1.

(A3.ii) For all τ ≥ 0, there exists C = C(τ , ρ) > 0 such that

sup
t∈I , t∈[0,τ ]

Wρ(Pt(u0, ·), Pt(v0, ·)) ≤ C exp
(

r∥u0∥2+r∥v0∥2
)
ρ(u0, v0) (2.6)

for every u0, v0 ∈ X with ρ(u0, v0) < 1.

Then, under the assumptions (A1), (A2) and (A3.i) it follows that for every m ≥ 1, there exists
αm > 0 such that for each α ∈ (0, αm] there exists ρ ∈ Λ, κ ∈ (0, 1) and T > 0 for which the following
inequality holds

Wρα
(µPt, µ̃Pt) ≤ κWρα/m

(µ, µ̃) (2.7)

for every t ∈ I with t ≥ T , and for all µ, µ̃ ∈ Pr(X). Here, for each a > 0, ρa : X × X → R+ is the
distance-like function defined as

ρa(u, v) := ρ(u, v)1/2 exp(a∥u∥2 + a∥v∥2), u, v ∈ X. (2.8)

Moreover, under additionally assumption (A3.ii) it follows that for every m ≥ 1, there exists αm > 0
such that for each α ∈ (0, αm] there exists ρ ∈ Λ, T > 0 and constants C1, C2 > 0 for which it holds
that

Wρα
(µPt, µ̃Pt) ≤ C1 e−C2tWρα/m

(µ, µ̃) (2.9)

for every µ, µ̃ ∈ Pr(X) and all t ∈ I with t ≥ T . Here, the constants C1 and C2 depend only on the
parameters m, α, ρ, T , and the constants α0, C0, supt≥0 ψ from assumption (A1).

Remark 2.2 Note that, from the definition of ρa in (2.8), it follows immediately that, given any µ, µ̃,
we have Wρα1

(µ, µ̃) ≤ Wρα2
(µ, µ̃) for all α1, α2 ∈ R+ with α1 ≤ α2. Therefore, inequality (2.7) implies

Wρα
(µPt, µ̃Pt) ≤ κWρα/m

(µ, µ̃) ≤ κWρα
(µ, µ̃), yielding contraction for the Markov semigroup {Pt}t∈I

with respect to Wρα
in Pr(X). The additional flexibility provided by the parameter m in (2.7) will be

needed later in Theorem 2.5, specifically to deal with distance-like functions ρ satisfying a generalized
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form of triangle inequality as in (2.24), where α is multiplied by a factor γ in the right-hand side. By
choosing m appropriately, we are then able to perform the calculations leading to the crucial inequality
(2.31) below.

Proof. We start by noticing that, since each ρα is lower-semicontinuous and non-negative, it follows
from Villani (2008, Theorem 4.8) that for every µ, µ̃ ∈ P(X)

Wρα
(µPt, µ̃Pt) ≤

∫

X×X
Wρα

(Pt(u0, ·), Pt(v0, ·))Γ (du0, dv0), (2.10)

for every coupling Γ ∈ C (µ, µ̃). Therefore, to show (2.7) it suffices to obtain that for every m ≥ 1 there
exists αm > 0 such that for each α ∈ (0, αm] there exists ρ ∈ Λ, κ ∈ (0, 1) and T > 0 for which the
following holds

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ κρα/m(u0, v0) (2.11)

for every t ∈ I with t ≥ T , and every u0, v0 ∈ X.
Fix m ≥ 1 and u0, v0 ∈ X. For some fixed ρ ∈ Λ to be suitably chosen later in terms of m, α and

α0, C0 from (A1) and following similar ideas from Hairer et al. (2011, Theorem 4.8), we split the proof
into three cases:

(i) Let us first suppose that ρ(u0, v0) = 1 and ∥u0∥2 + ∥v0∥2 ≤ 6mC0, with C0 > 0 as in assumption
(A1). From the definition of Wρα

in (2.2) and Hölder’s inequality, it follows that for all t ∈ I

Wρα
(Pt(u0, ·), Pt(v0, ·))

= inf
Γ ∈C (Pt(u0,·),Pt(v0,·))

∫

X×X
ρ(u, v)1/2 exp

(
α∥u∥2 + α∥v∥2

)
Γ (du, dv)

≤ inf
Γ ∈C (Pt(u0,·),Pt(v0,·))

(∫

X×X
ρ(du, dv)Γ (du, dv)

)1/2 (∫

X×X
exp(4α∥u∥2)Γ (du, dv)

)1/4

·
(∫

X×X
exp(4α∥v∥2)Γ (du, dv)

)1/4

= Wρ(Pt(u0, ·), Pt(v0, ·))1/2
(

Pt exp
(

4α∥u0∥2
))1/4 (

Pt exp
(

4α∥v0∥2
))1/4

. (2.12)

We now invoke assumption (A2) with M := (6mC0)
1/2 to estimate the first factor in (2.12), and

assumption (A1) to estimate the last two factors, assuming α ∈ (0, α0/4]. It thus follows that for
every t ∈ I with t ≥ T1

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ (1 − κ1)

1/2 exp(2αC0) exp
(
αψ(t)

(
∥u0∥2 + ∥v0∥2)). (2.13)

Since κ1 ∈ (0, 1), we can take αm ∈ (0, α0/4] sufficiently small such that for every α ∈ (0, αm] it
holds

κ̃1 := (1 − κ1)
1/2 exp(2αC0) ≤ (1 − κ1)

1/2 exp(2αmC0) < 1. (2.14)
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Moreover, since limt→∞ ψ(t) = 0, we can take T̃1 ≥ T1 sufficiently large such that ψ(t) < 1/m
for all t ≥ T̃1, so that it follows from (2.13) that for any fixed α ∈ (0, αm] and for every t ∈ I
with t ≥ T̃1

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ κ̃1 exp

( α

m

(
∥u0∥2 + ∥v0∥2

))
= κ̃1ρα/m(u0, v0), (2.15)

where the equality follows from the assumption that ρ(u0, v0) = 1.

(ii) Next, we assume that ρ(u0, v0) = 1 and ∥u0∥2 +∥v0∥2 > 6mC0. Since ρ(u, v) ≤ 1 for all u, v ∈ X,
it follows together with Hölder’s inequality and assumption (A1) that for any fixed α ∈ (0, αm],
with αm as in (2.14), and for every t ∈ I

Wρα
(Pt(u0, ·), Pt(v0, ·)) = inf

Γ ∈C (Pt(u0,·),Pt(v0,·))

∫

X×X
ρ(u, v)1/2 exp

(
α∥u∥2 + α∥v∥2

)
Γ (du, dv)

≤
(

Pt exp
(

2α∥u0∥2
))1/2 (

Pt exp
(

2α∥v0∥2
))1/2

≤ exp(2αC0) exp
(
αψ(t)

(
∥u0∥2 + ∥v0∥2

))
. (2.16)

Notice that

exp(2αC0) = exp(−αC0) exp
( α

2m
6mC0

)
< exp(−αC0) exp

( α

2m

(
∥u0∥2 + ∥v0∥2

))
.

Thus, from (2.16), we obtain

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ exp(−αC0) exp

(( α

2m
+ αψ(t)

) (
∥u0∥2 + ∥v0∥2

))
.

Therefore, taking T̃ > 0 sufficiently large such that ψ(t) < 1/(2m) for all t ≥ T̃ , we deduce that
for all t ∈ I with t ≥ T̃

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ κ̃ exp

( α

m

(
∥u0∥2 + ∥v0∥2

))
= κ̃ρα/m(u0, v0), (2.17)

where κ̃ := exp(−αC0) < 1.

(iii) Finally, let us suppose that ρ(u0, v0) < 1. Take r := α/m, for a fixed α ∈ (0, αm], with αm ∈
(0, α0/4] as chosen in (2.14). Moreover, take κ2 ∈ (0, 1) satisfying κ2 < exp(−α0C0), with α0, C0
from assumption (A1). For these choices of r and κ2, we fix ρ ∈ Λ as being the corresponding
distance-like function for which assumption (A3) holds. Here we notice carefully that since ρ

depends on r, which depends on α, which, in its turn, as seen from (2.14), depends on κ1 from
assumption (A2), it thus follows that ρ depends on κ1. Therefore, the fact that κ1 in assumption
(A2) is independent of ρ is crucial for preventing a circular argument in the choice of ρ ∈ Λ.

Proceeding with the same estimate as in (2.12), we now invoke assumption (A3.i) to estimate
the first factor, and assumption (A1) to estimate the remaining two factors. It thus follows that for
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every t ∈ I with t ≥ T2

Wρα
(Pt(u0, ·), Pt(v0, ·))

≤
[
κ2 exp

( α

m
∥u0∥2+ α

m
∥v0∥2

)
ρ(u0, v0)

]1/2
exp(2αC0) exp

(
αψ(t)

(
∥u0∥2 + ∥v0∥2

))

≤ κ
1/2
2 exp(2αC0)ρ(u0, v0)

1/2 exp
(( α

2m
+ αψ(t)

) (
∥u0∥2 + ∥v0∥2

))
. (2.18)

Since α ∈ (0, α0/4] and, by the choice of κ2, we have κ2 < exp(−α0C0), then

κ̃2 := (κ2 exp(4αC0))
1/2 ≤ (κ2 exp(α0C0))

1/2 < 1. (2.19)

Moreover, taking as before T̃2 ≥ T2 sufficiently large such that ψ(t) < 1/(2m) for all t ≥ T̃2, we
obtain from (2.18) and (2.19) that for all t ∈ I with t ≥ T̃2

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ κ̃2ρα/m(u0, v0). (2.20)

From (2.15), (2.17) and (2.20), it follows that for each fixed m ≥ 1 there exists αm > 0 such that for
each α ∈ (0, αm] there exists ρ ∈ Λ and T > 0 for which (2.11) holds with κ := max{κ̃1, κ̃2, κ̃} and for
all t ∈ I with t ≥ T . This finishes the first part of the proof.

We proceed to show inequality (2.9) under the additional assumption (A3.ii), with the same choices
of κ2 and r from step (iii) above. Again as a consequence of (2.10), it suffices to show that for every
m ≥ 1 there exists αm > 0 such that for each α ∈ (0, αm] there exists ρ ∈ Λ, T > 0 and constants
C1, C2 > 0 such that

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ C1 e−C2tρα/m(u0, v0) (2.21)

for all t ∈ I with t ≥ T , and for all u0, v0 ∈ X.
Fix m ≥ 1. Take K ≥ 1 such that the function ψ from assumption (A1) satisfies ψ(t) ≤ K for all

t ≥ 0. Take also α2mK > 0 as in (2.14) corresponding to the parameter 2mK. Let us fix α ∈ (0, α2mK]
and the corresponding κ ∈ (0, 1), ρ ∈ Λ and T > 0 for which (2.7) holds. Clearly, we may assume
T ∈ I . Then, for any t ∈ I with t ≥ T , we may write t = jT + s, with j ∈ N, j ≥ 1 and s ∈ [0, T)∩I .
Notice that jT ∈ I , for all j ∈ N. Thus, invoking (2.11) j times, it follows that for all u0, v0 ∈ X

Wρα
(Pt(u0, ·), Pt(v0, ·)) = Wρα

(P(j−1)T+s(u0, ·)PT , P(j−1)T+s(v0, ·)PT)

≤ κWρα/(2mK)
(P(j−1)T+s(u0, ·), P(j−1)T+s(v0, ·))

≤ κWρα
(P(j−1)T+s(u0, ·), P(j−1)T+s(v0, ·))

≤ . . . ≤ κ jWρα/(2mK)
(Ps(u0, ·), Ps(v0, ·)). (2.22)
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From a similar calculation as in (2.12), we have that for all s ∈ [0, T) ∩ I

Wρα/(2mK)
(Ps(u0, ·), Ps(v0, ·))

≤ Wρ(Ps(u0, ·), Ps(v0, ·))1/2
(

Ps exp
(

2
α

mK
∥u0∥2

))1/4 (
Ps exp

(
2

α

mK
∥v0∥2

))1/4
.

Hence, recalling the analogous choice of r in step (iii) above, namely r := α/(2mK), with α ∈ (0, α2mK]
and α2mK as in (2.14), it follows from assumption 2.1 along with assumption (A1) that

Wρα/(2mK) (Ps(u0, ·), Ps(v0, ·))

≤ C exp
( α

4mK

(
∥u0∥2+∥v0∥2

))
ρ(u0, v0)1/2 exp

( α

mK
C0

)
exp

( α

2mK
ψ(s)

(
∥u0∥2 + ∥v0∥2

))

≤ C exp
( α

4m

(
∥u0∥2+∥v0∥2

))
ρ(u0, v0)1/2 exp

( α

mK
C0

)
exp

( α

2m

(
∥u0∥2 + ∥v0∥2

))

≤ Cρα/m(u0, v0). (2.23)

Plugging (2.23) into (2.22) yields

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ κ jCρα/m(u0, v0).

Since t = jT + s < (j + 1)T , then j > (t/T) − 1 and, consequently, κ j < κ
t
T −1. Thus,

Wρα
(Pt(u0, ·), Pt(v0, ·)) ≤ κ

t
T −1Cρα/m(u0, v0) = C

κ
et ln κ

T ρα/m(u0, v0)

for all t ∈ I with t ≥ T , and every u0, v0 ∈ X. Therefore, (2.21) holds with C1 = C/κ and C2 =
−(ln κ)/T . This concludes the proof. !

Remark 2.3 Clearly, if Pt, t ∈ I , is a Markov semigroup satisfying the assumptions of Theorem 2.1,
and for which there exists an associated invariant measure µ∗ ∈ Pr(X), i.e. µ∗Pt = µ∗ for all t ∈ I , then
inequality (2.7) implies that µ∗ must also be the unique invariant measure. Moreover, fixing ρ ∈ Λ to be
the distance-like function for which (2.7) holds, it follows similarly as in Hairer et al. (2011, Corollary
4.11) that if there exists a complete metric ρ̃ on X such that ρ̃ ≤ √

ρ and such that Pt is a Feller semigroup
on (X, ρ̃), then together with assumptions (A1), (A2) and (A3.i) one can also guarantee the existence of
such invariant measure. Indeed, an explicit example of ρ̃ can be easily identified for the specific ρ we
consider in our applications and given in (3.26) below, see Corollary 3.10.

Remark 2.4 From the proof of Theorem 2.1 it follows that the contraction constants from (2.7) and (2.9)
become worse with decreasing values of α. Indeed, since κ from (2.7) is given by κ := max{κ̃1, κ̃2, κ̃},
then from the definitions of κ̃1, κ̃ , κ̃2 given in steps (i), (ii), (iii), respectively, one obtains that κ → 1 as
α → 0.

2.3 Uniform in time weak convergence

The following general result provides the specific set of assumptions needed for achieving a long time
bias estimate similar to (1.7), though in a more general setting than considered in Section 1.1. Indeed,
our estimate is given with respect to the Wasserstein distance induced by the distance-like function ρα
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defined in (2.8) above, thus not necessarily a metric. The main assumptions are given by: a generalized
triangle inequality satisfied by ρα , (H1); the existence of an invariant measure for each member of the
given parametrized family of Markov kernels, (H2); a finite-time error estimate for the approximating
processes, (H3); and a parameter-uniform Wasserstein contraction for the given family of Markov
kernels. Under these assumptions, the proof follows essentially the same steps of argumentation leading
to (1.7).

Theorem 2.5 Let X be a separable Banach space with norm ∥ · ∥. Fix a collection Λ of distance-like
functions ρ : X × X → [0, 1]. Consider a family of Markov kernels Pθ

t on X indexed by t ∈ R+ and a
parameter θ varying in some set Θ . Assume the following set of conditions:

(H1) There exists a constant γ ≥ 1 such that for every ρ ∈ Λ and α > 0 the distance-like function
ρα : X × X → R+ defined in (2.8) satisfies

ρα(u, v) ≤ C
[
ργα(u, w) + ργα(w, v)

]
(2.24)

for all u, v, w ∈ X and for some constant C > 0 (which may depend on ρ, α and γ ).

(H2) For each θ ∈ Θ , there exists a probability measure µθ on X, which is invariant under Pθ
t ,

t ∈ R+.

(H3) There exist θ0 ∈ Θ and α′ > 0 such that for each α ∈ (0, α′] and for each ρ ∈ Λ there exist
functions gθ0

: Θ → R+, R : R+ → R+, and a measurable function f : X → R+ ∪ {∞} such
that

Wρα

(
Pθ

t (u, ·), Pθ0
t (u, ·)

)
≤ R(t)f (u)gθ0

(θ), (2.25)

for all θ ∈ Θ , t ∈ R+ and u ∈ X.

(H4) For every m ≥ 1, there exists αm > 0 such that for each α ∈ (0, αm] there exists ρ ∈ Λ, T > 0
and constants C1, C2 > 0 for which the following inequality holds:

sup
θ∈Θ\{θ0}

Wρα

(
µPθ

t , µ̃Pθ
t

)
≤ C1 e−tC2Wρα/m

(µ, µ̃) (2.26)

for every µ, µ̃ ∈ Pr(X) and t ≥ T , with θ0 ∈ Θ as in (H3).

Then, there exists α∗ > 0 such that for each fixed α ∈ (0, α∗] there exists ρ ∈ Λ, T̃ > 0 and a
constant C > 0 for which it holds that

Wρα
(µθ , µθ0

) ≤ CR(T̃)gθ0
(θ)

∫

X
f (u)µθ0

(du), (2.27)

for every θ ∈ Θ .

Remark 2.6 The crucial condition (2.24) of Theorem 2.5 is not hard to verify in practice. The main
underlying condition for the collection of distance like functions Λ is that they satisfy a generalized
triangle inequality, namely that for ρ ∈ Λ, we have the bound ρ(u, w) ≤ C(ρ(u, v) + ρ(u, w)), for a
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constant C independent of any u, v, w ∈ X. See Proposition A.1 below for our precise formulation and
(3.26) in Section 3.2, (4.8) in Section 4.2 where we put this result into practice.

Proof. Due to assumptions (H1) and (H2), together with Proposition A.2, it follows that for each ρ ∈ Λ

and α > 0 there exists a constant C > 0 such that for all t ∈ R+ and θ ∈ Θ\{θ0}

Wρα

(
µθ , µθ0

)
= Wρα

(
µθ Pθ

t , µθ0
Pθ0

t

)
≤ C

[
Wργα

(
µθ Pθ

t , µθ0
Pθ

t

)
+ Wργα

(
µθ0

Pθ
t , µθ0

Pθ0
t

)]
. (2.28)

Now invoking assumption (H4) with m = γ to estimate the first term in the right-hand side of (2.28),
we obtain that for any fixed α ∈ (0, αγ /γ ] and corresponding ρ ∈ Λ, T > 0 and constants C1, C2 > 0,
we have

Wρα

(
µθ , µθ0

)
≤ C

[
C1 e−tC2Wρα

(
µθ , µθ0

)
+ Wργα

(
µθ0

Pθ
t , µθ0

Pθ0
t

)]
(2.29)

for all t ≥ T . Take T̃ ≥ T such that

CC1 e−T̃C2 <
1
2

. (2.30)

Thus, taking t = T̃ in (2.29) and rearranging terms, we deduce that

Wρα

(
µθ , µθ0

)
≤ 2CWργα

(
µθ0

Pθ
T̃ , µθ0

Pθ0
T̃

)
. (2.31)

Moreover, similarly as in (2.10), it follows from Villani (2008, Theorem 4.8) that

Wργα

(
µθ0

Pθ
T̃ , µθ0

Pθ0
T̃

)
≤

∫

X×X
Wργα

(
Pθ

T̃(u, ·), Pθ0
T̃

(v, ·)
)
Γ (du, dv), (2.32)

for every coupling Γ ∈ C (µθ0
, µθ0

). Take Γ (du, dv) = δu(dv)µθ0
(du), where δu ∈ Pr(X) denotes the

Dirac measure concentrated at u ∈ X. It is not difficult to check that Γ ∈ C (µθ0
, µθ0

). Therefore,

Wργα

(
µθ0

Pθ
T̃ , µθ0

Pθ0
T̃

)
≤

∫

X×X
Wργα

(
Pθ

T̃(u, ·), Pθ0
T̃

(v, ·)
)
δu(dv)µθ0

(du)

=
∫

X
Wργα

(
Pθ

T̃(u, ·), Pθ0
T̃

(u, ·)
)
µθ0

(du). (2.33)

Let us assume additionally that α ≤ α′/γ , with α′ as in (H3), so that inequality (2.25) from (H3) holds
with respect to γα, namely

Wργα

(
Pθ

t (u, ·), Pθ0
t (u, ·)

)
≤ R(t)f (u)gθ0

(θ), (2.34)
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for all θ ∈ Θ , t ∈ R+, u ∈ X, and where we are fixing ρ as in (2.29). It thus follows from (2.31), (2.33)
and (2.34) with t = T̃ that

Wρα
(µθ , µθ0

) ≤ 2CWργα

(
µθ0

Pθ
T̃ , µθ0

Pθ0
T̃

)
≤ 2CR(T̃)gθ0

(θ)

∫

X
f (u) µθ0

(du). (2.35)

This shows (2.27), and concludes the proof. !
Next we notice that a finite time error estimate as in (2.25), assuming gθ0

(θ) → 0 as θ → θ0,
combined with a uniform Wasserstein contraction for the approximating family {Pθ

t }t≥0, θ ∈ Θ\{θ0}, as

in (2.26) yields a Wasserstein contraction result for the limiting process {Pθ0
t }t≥0. This is made precise

as follows.

Lemma 2.7 Fix the same setting from Theorem 2.5 and assume that hypotheses (H1)–(H4) hold.
Regarding (H3), suppose additionally that for each α ∈ (0, α′] and ρ ∈ Λ the corresponding function
gθ0

is such that limθ→θ0
gθ0

(θ) = 0. Then, for every m ≥ 1 there exists αm > 0 such that for each
α ∈ (0, αm] there exists ρ ∈ Λ, T̃ > 0 and constants C̃1, C̃2 > 0 for which the following inequality
holds:

Wρα

(
µPθ0

t , µ̃Pθ0
t

)
≤ C̃1 e−tC̃2Wρα/m

(µ, µ̃) (2.36)

for every t ≥ T̃ and all µ, µ̃ ∈ Pr(X) satisfying

∫

X
f (u)µ(du) +

∫

X
f (u)µ̃(du) < ∞, (2.37)

where f is the function from (H3).

Proof. Fix any m ≥ 1 and µ, µ̃ satisfying (2.37). Invoking (H1) and Proposition A.2 twice, we obtain

Wρα

(
µPθ0

t , µ̃Pθ0
t

)
≤ C

[
Wργα

(
µPθ0

t , µPθ
t

)
+ Wρ

γ 2α

(
µPθ

t , µ̃Pθ
t

)
+ Wρ

γ 2α

(
µ̃Pθ

t , µ̃Pθ0
t

)]
(2.38)

for any θ ∈ Θ\{θ0}. Now we assume α > 0 is sufficiently small, then proceed as in (2.32)–(2.33) and
invoke (H3) to estimate the first and third terms in the right-hand side of (2.38), and (H4) to estimate the
second term. It thus follows that for any such α there exists ρ ∈ Λ and T > 0 such that

Wρα

(
µPθ0

t , µ̃Pθ0
t

)
≤ C

[
R(t)gθ0

(θ)

(∫

X
f (u)µ(du) +

∫

X
f (u)µ̃(du)

)
+ C1 e−tC2Wρα/m

(µ, µ̃)

]

for all t ≥ T , where C1, C2 are the same as in (2.26). Thus, taking the limit as θ → θ0 and recalling the
assumptions that limθ→θ0

gθ0
(θ) = 0 and (2.37), we deduce (2.36). !

Next, we show that, under the same assumptions from Theorem 2.5 together with some natural
conditions on the functions appearing in the right-hand side of the finite-time error estimate (2.25), it
follows that the given parametrized family of Markov kernels Pθ

t , θ ∈ Θ , converges uniformly in t ≥ 0
towards Pθ0

t in the Wasserstein topology determined by Wρα
.



22 N. E. GLATT-HOLTZ AND C. F. MONDAINI

Theorem 2.8 Fix the same setting from Theorem 2.5 and assume that hypotheses (H1)–(H4) hold.
Additionally, regarding (H3), suppose that for each α ∈ (0, α′] and ρ ∈ Λ the corresponding functions
R, gθ0

and f satisfy:

(H5) R is continuous and strictly increasing;

(H6) gθ0
is bounded, and limθ→θ0

gθ0
(θ) = 0;

(H7)
∫

X f (u)µθ0
(du) < ∞, with µθ0

as in (H2).

Then, there exists α̂ > 0 such that for each fixed α ∈ (0, α̂] there exists ρ ∈ Λ for which the
following inequality holds for every θ ∈ Θ and µ ∈ Pr(X) with

∫
X f (u)µ(du) < ∞:

sup
t∈R+

Wρα

(
µPθ

t , µPθ0
t

)
≤ g̃θ0

(θ)

[
Wργα

(µ, µθ0
) +

∫

X
f (u)µ(du) +

∫

X
f (u)µθ0

(du)

]
, (2.39)

where, if R is bounded,

g̃θ0
(θ) = Cgθ0

(θ),

and if R is unbounded

g̃θ0
(θ) = C max

{
exp

(
−C2R−1(Cgθ0

(θ)−q)
)

, gθ0
(θ), gθ0

(θ)1−q
}

, (2.40)

for gθ0
(θ) ̸= 0, and g̃θ0

(θ) = 0 otherwise. Here, q is any fixed number in (0, 1), C > 0 is a constant that
may depend on α, ρ and γ from (H1), but is independent of θ , µ; and C2 is the constant from (2.26).

Consequently, if additionally Wργα
(µ, µθ0

) < ∞, then

lim
θ→θ0

sup
t∈R+

Wρα

(
µPθ

t , µPθ0
t

)
= 0. (2.41)

Proof. From Proposition A.2, along with assumptions (H1) and (H2), we obtain that for every µ ∈
Pr(X), α > 0, ρ ∈ Λ, t ∈ R+ and θ ∈ Θ\{θ0}

Wρα

(
µPθ

t , µPθ0
t

)
≤ C

[
Wργα

(
µPθ

t , µθ Pθ
t

)
+ Wργα

(
µθ , µPθ0

t

)]

≤ C
[
Wρ

γ 2α

(
µPθ

t , µθ0
Pθ

t

)
+ Wρ

γ 2α

(
µθ0

Pθ
t , µθ Pθ

t

)
+ Wρ

γ 2α
(µθ , µθ0

) + Wρ
γ 2α

(
µθ0

Pθ0
t , µPθ0

t

)]
.

(2.42)

Now we invoke assumption (H4) to estimate the first and second terms in the right-hand side of (2.42),
(2.27) from Theorem 2.5 to estimate the third term and Lemma 2.7 to estimate the fourth term. Here we
notice that we can apply (H4) and Lemma 2.7 with any choice of m ≥ 1 to estimate the first, second and
fourth terms. But for estimating the third term via (2.27), as we recall from the proof of Theorem 2.5,
we must invoke (H4) with m = γ . Since the distance-like function ρ ∈ Λ for which (2.26) in (H4) and
(2.36) in Lemma 2.7 hold depends in particular on the choice of m, we thus also estimate the first, second
and fourth terms under m = γ . This yields that for α > 0 sufficiently small there exists ρ ∈ Λ, T > 0,
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and constants C1, C2 > 0 such that

Wρα

(
µPθ

t , µPθ0
t

)
≤ C

[
C1 e−tC2Wργα

(µ, µθ0
) + C1 e−tC2Wργα

(µθ0
, µθ ) + Wρ

γ 2α
(µθ , µθ0

)
]

≤ C
[
e−tC2Wργα

(µ, µθ0
) + Wρ

γ 2α
(µθ , µθ0

)
]

≤ C
[

e−tC2Wργα
(µ, µθ0

) + gθ0
(θ)

∫

X
f (u)µθ0

(du)

]
, (2.43)

for every t ≥ T , θ ∈ Θ and µ ∈ Pr(X) such that
∫

X f (u)µ(du) < ∞. Here, C > 0 is a constant that may
depend on γ , α, T , ρ, but is independent of t, θ , µ.

On the other hand, proceeding similarly as in (2.32)–(2.35), we obtain directly from assumption (H3)
that, by taking α smaller if necessary,

Wρα

(
µPθ

t , µPθ0
t

)
≤ R(t)gθ0

(θ)

∫

X
f (u)µ(du), (2.44)

for all θ ∈ Θ and t ∈ R+. We now combine inequalities (2.43) and (2.44) to yield the desired uniform
in t ∈ R+ estimate (2.39).

Let us first suppose that R is a bounded function. In this case, it follows immediately from (2.44) that

sup
t∈R+

Wρα

(
µPθ

t , µPθ0
t

)
≤ Cgθ0

(θ)

∫

X
f (u)µ(du),

for every θ ∈ Θ and for some constant C > 0, as desired.
Now let us assume that R is unbounded. Fix q ∈ (0, 1) and let t∗ > 0 such that R(t∗) ̸= 0. Let

R̃(τ ) := R(τ )/R(t∗), τ ∈ R+, and g̃θ0
(θ) := gθ0

(θ)/gθ0
, θ ∈ Θ , where gθ0

:= supθ∈Θ gθ0
(θ). Here we

recall our assumptions that R is strictly increasing and continuous, and gθ0
is bounded, which implies

that R̃ is also strictly increasing and continuous, and gθ0
< ∞.

Fix θ ∈ Θ and assume first that gθ0
(θ) ̸= 0, so that g̃θ0

(θ) ̸= 0. Notice that R̃(t∗) = 1, and
g̃θ0

(θ) ≤ 1, so that R̃(t∗) ≤ g̃θ0
(θ)−q. Since R̃ : R+ → R+ is continuous and unbounded, there exists

τ∗ ∈ R+ such that R̃(τ∗) = g̃θ0
(θ)−q. And since R, R̃ are strictly increasing, then their corresponding

inverses R−1, R̃−1 are well-defined, so that τ∗ = R̃−1(g̃θ0
(θ)−q) = R−1(gθ0

(θ)−qR(t∗)/gθ0
). From

(2.44), we thus obtain that for every t ≤ τ∗

Wρα

(
µPθ

t , µPθ0
t

)
≤ R(τ∗)gθ0

(θ)

∫

X
f (u)µ(du) = R̃(τ∗)g̃θ0

(θ)R(t∗)gθ0

∫

X
f (u)µ(du)

= g̃θ0
(θ)1−qR(t∗)gθ0

∫

X
f (u)µ(du)

≤ Cgθ0
(θ)1−q

∫

X
f (u)µ(du), (2.45)
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and for every t ≤ T

Wρα

(
µPθ

t , µPθ0
t

)
≤ R(T)gθ0

(θ)

∫

X
f (u)µ(du). (2.46)

On the other hand, it follows from (2.43) that for every t > max{τ∗, T}

Wρα

(
µPθ

t , µPθ0
t

)
≤ C

[
e−τ∗C2Wργα

(µ, µθ0
) + gθ0

(θ)

∫

X
f (u)µθ0

(du)

]

≤ C max
{
exp

(
−C2R−1(gθ0

(θ)−qR(t∗)/gθ0
)
)

, gθ0
(θ)

} [
Wργα

(µ, µθ0
) +

∫

X
f (u)µθ0

(du)

]
. (2.47)

From (2.45), (2.46) and (2.47) we conclude that

sup
t∈R+

Wρα

(
µPθ

t , µPθ0
t

)
≤ C max

{
exp

(
−C2R−1(gθ0

(θ)−qR(t∗)/gθ0
)
)

, gθ0
(θ), gθ0

(θ)1−q
}

·
[
Wργα

(µ, µθ0
) +

∫

X
f (u)µθ0

(du) +
∫

X
f (u)µ(du)

]
, (2.48)

for all θ ∈ Θ such that gθ0
(θ) ̸= 0. Further, if gθ0

(θ) = 0, then it follows directly from (2.44) that

Wρα

(
µPθ

t , µPθ0
t

)
= 0 for all t ∈ R+.

This concludes the proof of (2.39). Finally, the validity of (2.41) is clear under (2.39) and the additional
condition Wργα

(µ, µθ0
) < ∞. !

Remark 2.9 Note that the order of convergence implied by the uniform in time estimate (2.40) is
possibly smaller than the order of convergence from the finite-time error assumption in (H3), (2.25).

Remark 2.10 In the particular case that assumption (H3) holds with R(t) = C̃ etC′
for some positive

constants C̃, C′, it follows that, under assumptions (H1)–(H3), inequality (2.39) holds with

g̃θ0
(θ) = C max

{
gθ0

(θ)
C2q
C′ , gθ0

(θ), gθ0
(θ)1−q

}
(2.49)

for any fixed q < 1 and for some constant C > 0. Indeed, this follows directly from the general
expression of g̃θ0

(θ) in (2.40) for this specific case of R. This particular situation appears in the
application to a numerical discretization of the 2D SNSE presented in Section 3 below. From (2.49),
it is clear that larger values of C′ imply a smaller order of convergence of the numerical scheme in the
sense specified by (2.39).

To conclude this section, we have the following immediate corollary of Theorem 2.8 yielding
uniform-in-time weak convergence for stochastic processes associated to the Markov kernels Pθ

t , θ ∈ Θ ,
with respect to Lipschitz test functions.
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Corollary 2.11 Fix the same setting and assumptions from Theorem 2.8. For each u0 ∈ X and θ ∈ Θ ,
let uθ (t; u0), t ∈ R+, be a stochastic process such that L (uθ (t; u0)) = Pθ

t (u0, ·) for every t ∈ R+, where
L (uθ (t; u0)) denotes the law of uθ (t; u0). Then, there exists α̂ > 0 such that for each α ∈ (0, α̂] there
exists ρ ∈ Λ for which the following inequality holds for every θ ∈ Θ , u0 ∈ X such that f (u0) < ∞,
and every ρα-Lipschitz function ϕ : X → R with Lipschitz constant Lϕ :

sup
t∈R+

∣∣E
[
ϕ(uθ (t; u0)) − ϕ(uθ0

(t; u0))
]∣∣ ≤ Lϕ g̃θ0

(θ)

[
Wργα

(δu0
, µθ0

) + f (u0) +
∫

X
f (u)µθ0

(du)

]
,

(2.50)

where g̃θ0
(θ) is as given in (2.40).

Consequently, if Wργα
(δu0

, µθ0
) < ∞ then

lim
θ→θ0

sup
t∈R+

∣∣E
[
ϕ(uθ (t; u0)) − ϕ(uθ0

(t; u0))
]∣∣ = 0. (2.51)

Proof. Let α̂ > 0 such that (2.39) holds for each α ∈ (0, α̂] and corresponding ρ ∈ Λ, and let us fix
any such α and ρ. Fix also θ ∈ Θ , u0 ∈ X such that f (u0) < ∞, with f as in (2.25), and let ϕ : X → R
be a ρα-Lipschitz function with Lipschitz constant denoted as Lϕ . Thus, for every t ∈ R+ and coupling

Γ ∈ C (Pθ
t (u0, ·), Pθ0

t (u0, ·)), we have

∣∣E
[
ϕ(uθ (t; u0)) − ϕ(uθ0

(t; u0))
]∣∣ =

∣∣∣∣

∫

X
ϕ(u)Pθ

t (u0, du) −
∫

X
ϕ(ũ)Pθ0

t (u0, dũ)

∣∣∣∣

=
∣∣∣∣

∫

X

[
ϕ(u) − ϕ(ũ)

]
Γ (du, dũ)

∣∣∣∣ ≤ Lϕ

∫

X
ρα(u, ũ)Γ (du, dũ).

Taking the infimum over Γ ∈ C (Pθ
t (u0, ·), Pθ0

t (u0, ·)), we deduce that

∣∣E
[
ϕ(uθ (t; u0)) − ϕ(uθ0

(t; u0))
]∣∣ ≤ LϕWρα

(
Pθ

t (u0, ·), Pθ0
t (u0, ·)

)
. (2.52)

Next, we take the supremum over t ∈ R+ and invoke Theorem 2.8 to further estimate the right-hand
side. It thus follows from (2.39) with µ = δu0

that

sup
t∈R+

∣∣E
[
ϕ(uθ (t; u0)) − ϕ(uθ0

(t; u0))
]∣∣ ≤ Lϕ g̃θ0

(θ)

[
Wργα

(δu0
, µθ0

) + f (u0) +
∫

X
f (u)µθ0

(du)

]
,

with g̃θ0
(θ) as given in (2.40). This shows (2.50). Clearly, (2.51) follows immediately from (2.50) and

the assumption that Wργα
(δu0

, µθ0
) < ∞. This concludes the proof. !

3. Numerical approximation of the 2D stochastic Navier–Stokes equations
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We now turn to the application of the abstract results from the previous section to the 2D stochastic
Navier–Stokes equations (SNSE) and a corresponding space-time numerical discretization. In Sec-
tion 3.1, we introduce some preliminary material regarding the form of the 2D stochastic Navier–Stokes
equations that we consider here, along with the specific space-time discretization to be analyzed. In Sec-
tion 3.2, we verify the general set of assumptions from Theorem 2.1 for a suitable class Λ of distance-like
functions, defined in (3.26) below, to prove Wasserstein contraction for the Markov semigroup generated
by this discretization. Here, as mentioned above in the introduction, Section 1, we emphasize that the con-
traction coefficients obtained for the discretized system are independent of any discretization parameters.
This fact is crucial for obtaining a weak convergence result for the numerical scheme as a consequence
of Theorem 2.8, which we present later in Section 3.4. We also provide in Section 3.4 an estimate of the
bias between the long time statistics of the discrete system and the continuous one as an application of
Theorem 2.5. Before in Section 3.3, we present some pathwise finite-time error estimates that are used
to verify the required assumption 2.5 from Theorem 2.5 and Theorem 2.8 for these last two results.

3.1 Mathematical setting and moment bounds

3.1.1 Two-dimensional stochastic Navier–Stokes equations. Let T2 ≃ (R/2πZ)2 be the two-
dimensional torus. We consider the homogeneous Lebesgue space L̇2 = L̇2(T2) = {ξ ∈ L2(T2) :∫
T2 ξ(x)dx = 0}, endowed with the standard inner product and norm of L2(T2), which we denote

by (·, ·) and | · |, respectively. Recall that any function ξ ∈ L̇2 can be written as the Fourier
expansion ξ(x) = ∑

κ∈Z2\{0} ξ̂(κ) eiκ·x, with ξ̂ denoting the Fourier transform of ξ , given by ξ̂(κ) :=
(2π)−2 ∫

T2 e−iκ·xξ(x)dx.
We also consider, for each s ≥ 0, the homogeneous Sobolev space Ḣs = Ḣs(T2) = {ξ ∈ L̇2(T2) :

∥ξ∥Ḣs < ∞}, where ∥ · ∥Ḣs is the norm induced by the inner product (·, ·)Ḣs , given by

(ξ1, ξ2)Ḣs = (2π)2
∑

κ∈Z2\{0}
|κ|2sξ̂1(κ)ξ̂2(κ),

where · denotes complex conjugation. Clearly, for every s1 < s2, we have Ḣs2 ⊂ Ḣs1 . Moreover, note
that Ḣ0 coincides with L̇2, with |ξ | = ∥ξ∥Ḣ0 . Also, |∇ξ | = ∥ξ∥Ḣ1 and |∆ξ | = ∥ξ∥Ḣ2 .

Fix a stochastic basis S = (Ω , F , {Ft}t≥0,P, {Wk}d
k=1), i.e. a filtered probability space equipped

with a finite family {Wk}d
k=1 of standard independent real-valued Brownian motions on Ω that are

adapted to the filtration {Ft}t≥0. We consider the stochastically forced 2D Navier–Stokes equations
(SNSE) in vorticity form in T2 and driven by a white in time and colored in space additive noise, namely

dξ + (−ν∆ξ + u · ∇ξ) dt =
d∑

k=1

σk dWk, u = K ∗ ξ , (3.1)

where ξ = ξ(x, t), (x, t) ∈ T2 × (0, ∞), represents the unknown random vorticity field; u = u(x, t)
represents the random velocity field, which is determined from the vorticity through the Biot–Savart
kernel K in (3.1), so that ∇⊥ · u = (−∂y, ∂x) · (u1, u2) = ξ and ∇ · u = 0, see e.g. Majda & Bertozzi

(2001). Note in particular that the Fourier coefficients of u and ξ satisfy the relation û(κ) = −i κ⊥
|κ|2 ξ̂(κ)

for any κ = (κ1, κ2) ∈ Z2\{0}, with κ⊥ := (−κ2, κ1), which yields an explicit way of determining u
from ξ in actual numerical implementations.
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Moreover, σ1, . . . , σd are given functions in L̇2. We will sometimes use the abbreviated notation σ dW
for

∑d
k=1 σk dWk. Also, we assume that (3.1) is in nondimensional form, so that the parameter ν equals

(Re)−1, where Re denotes the Reynolds number associated to the fluid flow.
Equation (3.1) is sometimes also written in the following convenient functional form

dξ + (νAξ + B(ξ , ξ)) dt = σ dW, (3.2)

where A = (−∆) : Ḣ2 → L̇2, and B : Ḣ1 × Ḣ1 → (Ḣ1)′ is the bilinear mapping defined as B(ξ , ξ) =
u · ∇ξ = (K ∗ ξ) · ∇ξ . Here, (Ḣ1)′ denotes the dual space of Ḣ1. For each s ≥ 0, we define the
corresponding power of A as As : D(As) → L̇2, given by Asξ(x) = ∑

κ∈Z2\{0} |κ|2sξ̂(κ) eiκ·x, where

D(As) = Ḣ2s. Notice that |Asξ | = ∥ξ∥Ḣ2s . Further, we recall that A is a positive and self-adjoint operator
with compact inverse. As such, it possesses a nondecreasing sequence of positive eigenvalues {λk}k∈N
with λk ∼ k asymptotically, so that λk → ∞ as k → ∞, associated to a sequence of eigenfunctions
{ek}k∈N that form an orthonormal basis of L̇2.

Regarding the noise term in (3.1), we adopt the following additional notation. For each s ≥ 0,
we denote by Ḣ

s
the d-fold product of Ḣs, and define, for each σ = (σ1, . . . , σd) ∈ Ḣ

s
, ∥σ∥2

Ḣs :=
∑d

k=1 ∥σk∥2
Ḣs . Similarly, we consider L̇

2 = Ḣ
0

and denote |σ | := ∥σ∥Ḣ0 for all σ ∈ L̇
2
. We then set

σW := ∑d
k=1 σkWk, so that, for any σ ∈ Ḣ

s
, σW is a Brownian motion on Ḣs with covariance operator

tQs, where Qs : Ḣs → Ḣs is given by

Qsξ =
d∑

k=1

(σk, ξ)Ḣsσk, ξ ∈ Ḣs. (3.3)

We notice that Qs is a compact and symmetric operator with Tr(Qs) = ∥σ∥2
Ḣs , where we recall that

Tr(Qs) = ∑∞
j=1(Qsẽj, ẽj)Ḣs for any orthonormal basis {ẽj}j≥1 of Ḣs.

With a slight abuse of notation, we also regard a given σ ∈ Ḣ
s

as a mapping σ : Rd → Ḣs, defined as
σ (w1, . . . , wd) = ∑d

k=1 σkwk for all (w1, . . . , wd) ∈ Rd. Clearly, σ is thus a bounded linear operator on
Rd with operator norm bounded from above by ∥σ∥Ḣs . Moreover, we denote by σ−1 : range(σ ) → Rd

its corresponding pseudo-inverse, which is a bounded operator.1

In what follows, we will be interested in pathwise, i.e. probabilistically strong, solutions of (3.1),
which are defined with respect to a fixed stochastic basis S = (Ω , F , {Ft}t≥0,P, {Wk}d

k=1) as
considered above. We have the following well-posedness result regarding this type of solutions.

Proposition 3.1 Let S = (Ω , F , {Ft}t≥0,P, {Wk}d
k=1) be a stochastic basis. Then, given any sequence

{σk}d
k=1 in L̇2 and any F0-measurable random variable ξ0 ∈ L2(Ω , L̇2), there exists a unique L̇2-valued

random process ξ with

ξ ∈ L2
(
Ω; L2

loc

(
[0, ∞); Ḣ1

)
∩ C([0, ∞); L̇2)

)
,

1 Note that since range(σ ) is a finite dimensional subset of L̇2, then it is closed. This implies that the pseudo-inverse σ−1 is a
bounded operator (see e.g. Sheffield, 1956, Theorem 3.8).
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which is Ft-adapted, solves (3.1) weakly in L̇2 and satisfies the initial condition ξ(0) = ξ0 almost
surely. Moreover, ξ depends continuously on the initial data, i.e. for each ξ0 ∈ L̇2, the map-
ping ξ0 5→ ξ(t; ξ0, {Wk}d

k=1) is continuous in L̇2 for any t ∈ [0, ∞) and any fixed realization
{Wk(·, ω)}k, ω ∈ Ω .

Within this additive noise setting, a proof of Proposition 3.1 is given by following the standard
argument of defining a change of variables ξ = ξ + ζ , where

dξ

dt
− ν∆ξ + (K ∗ (ξ + ζ )) · ∇(ξ + ζ ) = 0 and dζ − ν∆ζ dt = σ dW.

For each realization of ζ , ξ thus satisfies a deterministic equation for which one can show well-posedness
by following similar arguments as for the 2D Navier–Stokes equations, see e.g. Constantin & Foias
(1988); Temam (2001). Whereas ζ satisfies a linear SPDE whose well-posedness is well-established,
see e.g. Da Prato & Zabczyk (2014). We remark, however, that well-posedness has also been established
under much more general noise settings, see e.g. Mikulevicius & Rozovskii (2004); Glatt-Holtz & Ziane
(2009).

With the notation introduced in Section 2.1 and Proposition 3.1, we denote the transition function
associated to (3.1) by Pt = Pt(ξ0, O), for each t ≥ 0, initial point ξ0 ∈ L̇2 and Borel set O ∈ B(L̇2),
defined as

Pt(ξ0, O) := P(ξ(t; ξ0) ∈ O), (3.4)

where ξ(t; ξ0), t ≥ 0, is the unique solution of (3.1) satisfying ξ(0) = ξ0 almost surely, in the sense given
in Proposition 3.1. The corresponding Markov semigroup Pt, t ≥ 0, is defined for each ϕ ∈ Mb(L̇

2) as

Ptϕ(ξ0) := Eϕ(ξ(t; ξ0)), ξ0 ∈ L̇2. (3.5)

Since ξ(·; ξ0) is continuous with respect to the initial data ξ0, it follows that {Pt}t≥0 is also a Feller
Markov semigroup in L̇2. Namely, denoting by Cb(L̇

2) the space of real-valued, bounded and continuous
functions on L̇2, we have Ptϕ ∈ Cb(L̇

2) for every ϕ ∈ Cb(L̇
2).

We recall that existence of an invariant measure µ∗ with respect to the semigroup Pt, t ≥ 0, is a
well-established result, in fact valid for much more general noise structures than specified in (3.1), see
e.g. Flandoli (1994). On the other hand, showing uniqueness of the invariant measure requires extra
assumptions on the noise term, see e.g. Flandoli & Maslowski (1995); Da Prato & Zabczyk (1996);
Mattingly (1999); Bricmont et al. (2001); E et al. (2001); Kuksin & Shirikyan (2001); Bricmont et al.
(2002); Kuksin & Shirikyan (2002); Mattingly (2002); Shirikyan et al. (2002); Mattingly (2003); Hairer
& Mattingly (2006, 2008, 2011a); Kuksin & Shirikyan (2012); Debussche (2013); Glatt-Holtz et al.
(2017, 2018). Following a similar assumption from previous works, here we consider that the number d
of stochastically forced directions in (3.1) is sufficiently large depending on the ‘size’ of the parameter
ν and the coefficients σk, see (3.29) below. Our setup would also accommodate infinitely many driving
noise terms provided they decay sufficiently fast to preserve sufficient smoothness in the solutions and
with the appropriate modifications in the definition of σ .

We expect certain other noise structures to yield similar results regarding the space-time discretiza-
tion (3.20) below. For example, we could consider the degenerate type of stochastic forcing as analyzed
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in Hairer & Mattingly (2006, 2008); Földes et al. (2015); Glatt-Holtz et al. (2018). This would however
require more sophisticated Malliavin calculus techniques that we intend to pursue in future work, as we
pointed out in Section 1.4 above.

Let us also recall a few basic inequalities and properties of the bilinear term u · ∇ξ in (3.1). For any
divergence-free u ∈ (Ḣ1)2, it follows with integration by parts that

(u · ∇ξ , ξ̃) = −(u · ∇ ξ̃ , ξ) for all ξ , ξ̃ ∈ Ḣ1, (3.6)

which implies the orthogonality property

(u · ∇ξ , ξ) = ((K ∗ ξ) · ∇ξ , ξ) = 0 for all ξ ∈ Ḣ1. (3.7)

Moreover, the following inequalities follow by standard arguments involving Hölder and interpolation
inequalities, see e.g. Constantin & Foias (1988); Temam (2001):

|
(
(K ∗ ξ1) · ∇ξ2, ξ3

)
| ≤ c|ξ1||∇ξ2||ξ3|1−a|∇ξ3|a, a ∈ [0, 1], (3.8)

|
(
(K ∗ ξ1) · ∇ξ2, ξ3

)
| ≤ c|ξ1|1/2|∇ξ1|1/2|∇ξ2||ξ3|, (3.9)

|
(
∇

[
(K ∗ ξ1) · ∇ξ2

]
, ∇ξ2

)
| ≤ c|ξ1|3/4|∆ξ1|1/4|∇ξ2||ξ2|1/4|∆ξ2|3/4, (3.10)

for some positive absolute constant c, and for all ξ such that the norms above make sense.

Remark 3.2 Throughout the next sections, we adopt the following convention regarding constants.
With lower-case letters c, c̃, we denote a positive absolute constant, i.e. independent of any parameters
whatsoever. Whereas with upper-case letters C, C̃, C0, C1, C2, we denote a positive constant that depends
at most on the parameters ν, |σ |, |∇σ |, |Aσ |, the parameters ε > 0 and s ∈ (0, 1] from the definition of the
family of distances in (3.26) below, along with other parameters that are specific to certain statements.
These will be made explicit within each statement. Most importantly, these constants will always be
independent of any discretization parameters. Under this convention regarding their dependences, we
allow the values of these constants to vary from line to line.

3.1.2 Spectral Galerkin discretization. We start by fixing some notation. As before, we denote the
eigenvalues and eigenfunctions of A = (−∆) : Ḣ2 → L̇2 by {λk}k∈N and {ek}k∈N, respectively. Then,
for each N ∈ N, we denote by ΠN : L̇2 → L̇2 the projection operator onto the subspace ΠNL̇2 of L̇2

given by the span of the first N eigenfunctions of (−∆). Therefore, I−ΠN is the projection operator onto
the complement space (I − ΠN)L̇2. We have the following Poincaré-type inequality, see e.g. Constantin
& Foias (1988); Temam (2001):

|∇(I − ΠN)ξ |2 ≥ λN+1|(I − ΠN)ξ |2 for all ξ ∈ Ḣ1. (3.11)

The spectral Galerkin in space approximation of (3.1) in ΠNL̇2 is given by

dξN + [−ν∆ξN + ΠN(uN · ∇ξN)] dt = ΠNσ dW, uN = K ∗ ξN . (3.12)
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The existence and uniqueness of probabilistically strong solutions of (3.12) satisfying a given initial
condition follows analogously to the proof of Proposition 3.1. For completeness, we state this result
below.

Proposition 3.3 Fix a stochastic basis S = (Ω , F , {Ft}t≥0,P, {Wk}d
k=1). Then, given any family

{σk}d
k=1 of functions in L̇2 and any F0-measurable random variable ξ0 ∈ L2(Ω , L̇2), there exists a unique

ΠNL̇2-valued random process ξN with

ξN ∈ L2
(
Ω; C

(
[0, ∞); ΠNL̇2

))
,

which is Ft-adapted, solves (3.12) weakly in L̇2 and satisfies the initial condition ξ(0) = ΠNξ0 almost
surely. Moreover, ξN depends continuously on the initial data, i.e. for each ξ0 ∈ L̇2, the mapping
ξ0 5→ ξN(t; ΠNξ0, {Wk}d

k=1) is continuous in L̇2 for any t ∈ [0, ∞) and any fixed realization {Wk(·, ω)}k,
ω ∈ Ω .

We next state a collection of results regarding solutions of the Galerkin system (3.12) as well of the
limiting system (3.1) that will be particularly useful in Section 3.3 and Section 3.4 below.

The following proposition presents some further moment bounds for solutions of the Galerkin scheme
(3.12) and the fully continuous system (3.1). The proof follows from similar arguments as in Kuksin
& Shirikyan (2012, Corollary 2.4.11, Proposition 2.4.12), where for handling the nonlinear term in
each case we invoke (3.7), (3.10) and the following inequality, which follows similarly as in Kuksin
& Shirikyan (2012, Lemma 2.1.20)

∣∣∣
(
(K ∗ ξ) · ∇ξ , Akξ

) ∣∣∣ ≤ c|ξ |
k+2

2(k+1) ∥ξ∥
k+2
2k

Ḣ1 ∥ξ∥
k(4k+1)−2

2k(k+1)

Ḣk ,

for all ξ ∈ Ḣk, k ≥ 2.

Proposition 3.4 Fix any ξ0 ∈ Ḣ1 and σ ∈ Ḣ
1
. Let ξN(t), t ≥ 0, be the solution of (3.12) satisfying

ξN(0) = ΠNξ0 almost surely. Then, for every T > 0 and m ∈ N, it holds

sup
N∈N

E

[

sup
t∈[0,T]

(
|∇ξN(t)|2 + ν

∫ t

0
|∆ξN(s)|2 ds

)m
]

≤ C
(

1 + |ξ0|4m + |∇ξ0|2m
)

, (3.13)

for some constant C = C(m, ν, T , |∇σ |).
Moreover, given any ξ0 ∈ L̇2 and σ ∈ Ḣ

k
, k ∈ Z+, it follows that for every T > 0 and m ∈ N there

exists p = p(k) such that

sup
N∈N

E

[

sup
t∈[0,T]

(
tk∥ξN(t)∥2

Ḣk + ν

∫ t

0
sk∥ξN(s)∥2

Ḣk+1 ds
)m

]

≤ C̃
(

1 + |ξ0|2mp
)

, (3.14)

for some constant C̃ = C̃(m, k, ν, T , ∥σ∥Ḣk ). More precisely, p(0) = 1, p(1) = 2 and p(k) = (3k +
1)(k + 2)/(3k + 2) for every k ≥ 2.

Furthermore, let ξ(t), t ≥ 0, be the solution of (3.1) satisfying ξ(0) = ξ0 almost surely. Then,
analogous inequalities to (3.13) and (3.14) hold with ξN(t) replaced by ξ(t).
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The next two propositions provide, respectively, some exponential moment bounds, and exponential
Lyapunov inequalities for systems (3.12) and (3.1). The proofs are available within similar contexts
in e.g. Hairer & Mattingly (2006, 2008); Kuksin & Shirikyan (2012); Debussche (2013); Glatt-Holtz
(2014); Glatt-Holtz et al. (2017), while also following as entirely analogous continuous versions of the
proofs of Proposition 3.15 and Proposition 3.11 below.

We note in particular that in inequalities (3.16) and (3.61) we obtain the supremum in time inside the
expectation thanks to an argument involving exponential martingales combined with Doob’s martingale
inequality, which is described in detail later in the proof of Proposition 3.15. Note moreover that the terms
−α|σ |2t in (3.16) and n

4 ln(1 − 4αδ|σ |2) in (3.61) imply an exponentially growing upper bound in t and
n, respectively, for the exponential of the remaining two terms inside the parentheses in expected value.

Proposition 3.5 Fix any σ ∈ L̇
2

and ξ0 ∈ L̇2. Fix also N ∈ N and let ξN(t), t ≥ 0, be the solution of
(3.20) satisfying ξN(0) = ΠNξ0 almost surely. Then, for all α ∈ R satisfying

0 < α ≤ ν

2|σ |2 , (3.15)

the following inequality holds

E sup
t≥0

exp
(

α|ξN(t)|2 + αν

∫ t

0
|∇ξN(s)|2 ds − α|σ |2t

)
≤ 2 exp

(
α|ξ0|2

)
. (3.16)

Moreover, let ξ(t), t ≥ 0, be the solution of (3.1) satisfying ξ(0) = ξ0 almost surely. Then, an analogous
inequality to (3.16) holds with ξN(t) replaced by ξ(t).

Proposition 3.6 Fix any σ ∈ L̇
2

and ξ0 ∈ L̇2. Fix also N ∈ N and let ξN(t), t ≥ 0, be the solution of
(3.20) satisfying ξN(0) = ΠNξ0 almost surely. Consider α ∈ R satisfying (3.15). Then, the following
inequality holds

E exp
(
α|ξN(t)|2

)
≤ exp

(
α

(
e−νt|ξ0|2 + |σ |2

ν

))
for all t ≥ 0. (3.17)

Moreover, let ξ(t), t ≥ 0, be the solution of (3.1) satisfying ξ(0) = ξ0 almost surely. Then, an analogous
inequality to (3.17) holds with ξN(t) replaced by ξ(t).

The following result shows Hölder regularity in time for solutions of the Galerkin system (3.12).
We note that a similar result was shown in Carelli & Prohl (2012, Lemma 2.3) involving the velocity
formulation of (3.1) subject to a suitable multiplicative noise structure, and resulting in Hölder regularity
for the associated solution with respect to a weaker norm than presented here. A proof is included in
Section B.

Theorem 3.7 Fix any σ ∈ Ḣ
1

and ξ0 ∈ Ḣ2. Let ξN = ξN(t) be the solution of (3.12) satisfying
ξN(0) = ΠNξ0 almost surely. Then, for every T > 0, m ∈ N and p̃ ∈ (0, 1/2),

sup
N∈N

E
[
|ξN(t) − ξN(s)|m

]
≤ C|t − s|mp̃

(
1 + |ξ0|4m + |∇ξ0|2m

)
(3.18)
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and

sup
N∈N

E
[
|∇ξN(t) − ∇ξN(s)|m

]
≤ C|t − s|mp̃

(
1 + |ξ0|4m + |∇ξ0|2m + |Aξ0|m

)
(3.19)

for all s, t ∈ [0, T], where C = C(m, p̃, T , ν, |σ |, |∇σ |). Moreover, let ξ(t), t ≥ 0, be the solution of
(3.1) satisfying ξ(0) = ξ0 almost surely. Then, analogous inequalities to (3.18) and (3.19) hold with ξ(t)
replaced by ξ(t).

3.1.3 Space-time discretization. We now introduce, for each fixed time step δ > 0, a fully space-
time discrete approximation of (3.1) given by a semi-implicit in time Euler discretization of the Galerkin
system (3.12), namely

ξn
N,δ = ξn−1

N,δ + δ
[
ν∆ξn

N,δ − ΠN

(
un−1

N,δ · ∇ξn
N,δ

)]
+

d∑

k=1

ΠNσk

(
Wk(tn) − Wk(tn−1)

)
, (3.20)

un−1
N,δ = K ∗ ξn−1

N,δ ,

where each ξn
N,δ represents the approximation of ξN , and thus of ξ , at time tn = nδ, for all n ∈ N.

Since {Wk}d
k=1 is a sequence of independent real-valued Brownian motions, we can write

Wk(tn) − Wk(tn−1)
L= ηk

nδ
1/2 (3.21)

for a sequence ηk
n : Ω → R, n ∈ N, k = 1, . . . , d, of independent and identically distributed Gaussian

random variables with mean zero and covariance 1.
As in (3.2) above, we adopt the abbreviated notation

ηn = (η1
n, . . . , ηd

n), ΠNσ = (ΠNσ1, . . . , ΠNσd) and ΠNσηn =
d∑

k=1

ΠNσkη
k
n,

so that (3.20) is compactly written as

ξn
N,δ = ξn−1

N,δ + δ
[
ν∆ξn

N,δ − ΠN

(
un−1

N,δ · ∇ξn
N,δ

)]
+ ΠNσηnδ

1/2, un−1
N,δ = K ∗ ξn−1

N,δ . (3.22)

We notice that, for each n ∈ N, σηn is a Gaussian random variable in L̇2 with zero mean and covariance
operator given by Q0 defined in (3.3).
Remark on notation: To avoid overburdening notation, in the subsequent sections we will frequently
denote ξn

N,δ and un
N,δ simply as ξn and un, respectively, for any n ∈ N.

The following proposition establishes pathwise well-posedness of (3.20) for a given initial data. Its
proof follows by standard arguments that are analogous as in the deterministic case (see e.g. Foias et al.,
1991, Section 4.2), so we only present the main ideas.

Proposition 3.8 Let S = (Ω , F , {Ft}t≥0,P, {Wk}d
k=1) be a stochastic basis. Then, given any family

{σk}d
k=1 of functions in L̇2 and any L̇2-valued and F0-measurable random variable ξ0 ∈ L2(Ω , L̇2), there
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exists a unique ΠNL̇2-valued discrete random process {ξn
N,δ}n∈Z+ with ξn

N,δ ∈ L2(Ω , L̇2), for all n ∈ Z+,
and which is {Ftn}n∈N-adapted, solves (3.20) in L̇2 and satisfies the initial condition ξ0

N,δ = ΠNξ0

almost surely. Moreover, ξn
N,δ depends continuously on the initial data, i.e. for each ξ0 ∈ L̇2, the mapping

ξ0 5→ ξn
N,δ(ΠNξ0, {Wk}d

k=1) is continuous in L̇2 for any n ∈ Z+ and any fixed realization {Wk(·, ω)}k,
ω ∈ Ω .

Proof. Since (3.22) is a linear equation with respect to ξn on the finite-dimensional space ΠNL̇2,
existence of pathwise strong solutions follows immediately from uniqueness. For showing uniqueness,
suppose that for a given fixed realization of {Wk}d

k=1 and given ξn−1 ∈ ΠNL̇2, there exist two solutions
ξn

1 and ξn
2 of (3.20). Then ζn = ξn

1 − ξn
2 satisfies

ζn = νδ∆ζn − δΠN

((
K ∗ ξn−1

N

)
· ∇ζn

)
. (3.23)

Taking the inner product of (3.23) with ζn in L̇2 and invoking (3.7), it follows that |ζn|2 + νδ|∇ζn|2 = 0,
which implies that ζn = 0, and thus ξn

1 = ξn
2 .

The fact that {ξn}n∈N is {Ftn}n∈N-adapted follows immediately from (3.20), since ξ0 is F0-
measurable and {Wk(tn)}d

k=1, n ∈ N, is {Ftn}n∈N-adapted. The continuity of {ξn}n∈Z+ with respect
to initial data for a fixed realization of {Wk}d

k=1 follows by considering the equation for the difference
ξn(ΠNξ0) − ξn(ΠN ξ̃0) for any ξ0, ξ̃0 ∈ L̇2, and proceeding with standard estimates by invoking (3.8)
and (3.34) below. We omit further details. !

For each fixed time step δ > 0 and number N of Galerkin modes, we denote the Markov transition
function associated to n steps of the discrete scheme (3.22) by PN,δ

n = PN,δ
n (ξ0, O), ξ0 ∈ L̇2, O ∈ B(L̇2).

This is defined as

PN,δ
n (ξ0, O) := P

(
ξn

N,δ(ΠNξ0) ∈ O
)

, (3.24)

where ξn
N,δ(ΠNξ0) is the unique solution of (3.1) starting from the initial datum ΠNξ0, in the sense

given in Proposition 3.8. The corresponding Markov semigroup PN,δ
n , n ∈ Z+, is thus defined for each

ϕ ∈ Mb(L̇
2) as

PN,δ
n ϕ(ξ0) := Eϕ

(
ξn

N,δ(ΠNξ0)
)

, ξ0 ∈ L̇2, n ∈ Z+. (3.25)

Similarly as pointed out in Section 3.1.1 for the Markov semigroup Pt, t ≥ 0, it follows as a consequence
of the continuity of the solution ξn

N,δ(ΠNξ0) with respect to the initial datum ΠNξ0, guaranteed by
Proposition 3.8 above, that PN,δ

n , n ∈ Z+, is a Feller Markov semigroup in L̇2.

3.2 Discretization-uniform Wasserstein contraction

In this section, we apply Theorem 2.1 to show a Wasserstein contraction result for the Markov semigroup
PN,δ

n , n ∈ Z+, associated to the numerical scheme (3.22), defined in (3.25), for any fixed parameters
N ∈ N, δ > 0. Within the setting of Theorem 2.1, we consider (X, ∥ · ∥) = (L̇2, | · |), I = δZ+ and
{Pt}t∈I given by PN,δ

n , n ∈ Z+. Moreover, we consider the class of distance-like functions Λ = {ρε,s :
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ε > 0, 0 < s ≤ 1}, with each ρε,s defined as

ρε,s(ξ , ξ̃) = 1 ∧ |ξ − ξ̃ |s
ε

, ξ , ξ̃ ∈ L̇2. (3.26)

Here, in fact, each ρε,s is an actual metric on L̇2, as it can be easily verified. The parameter ε is
appropriately tuned so as to produce a local contraction in (3.59) below, in view of assumption 2.1 from
Theorem 2.1. Thus, in a certain sense, ε can be understood as representing the small spatial scales in the
dynamics specified by (3.20) and (3.1), respectively.

As in (2.8), for each a > 0 we denote the corresponding Lyapunov-weighted version of ρε,s by ρε,s,a,
defined as

ρε,s,a(ξ , ξ̃) = ρε,s(ξ , ξ̃)1/2 exp
(

a|ξ |2 + a|̃ξ |2
)

, ξ , ξ̃ ∈ L̇2. (3.27)

Moreover, we denote the Wasserstein-like extensions to Pr(L̇2) corresponding to ρε,s and ρε,s,a, as
defined in (2.2), by Wε,s and Wε,s,a, respectively.

The validity of assumptions (A1)–(A3) from Theorem 2.1 is verified in Proposition 3.11, Proposi-
tion 3.12 and Proposition 3.13 below. This leads us to the Wasserstein contraction result Proposition 3.9
below, whose proof we postpone to the end of this section. With the purpose of later applying Theorem 2.8
to yield uniform weak convergence of the numerical scheme (3.20) towards the continuous system (3.1),
we state Theorem 3.9 in terms of a suitable continuous family of Markov kernels corresponding to the
discrete semigroup PN,δ

n , n ∈ Z+. Namely, we define for each t ∈ R+

PN,δ
t := PN,δ

n if t ∈ [nδ, (n + 1)δ), n ∈ Z+. (3.28)

We notice that the family PN,δ
t , t ∈ R+, may not define a Markov semigroup. However, the semigroup

property is not required in the general weak convergence result, Theorem 2.8.

Theorem 3.9 Fix δ0 > 0. Suppose there exists K ∈ N and σ ∈ L̇
2

such that

ΠKL̇2 ⊂ range(σ ), and λK+1 ≥ c
ν

max

{
1
δ0

,
δ2

0 |σ |4
ν3 ,

|σ |4
ν5

}

(3.29)

for some absolute constant c > 0. For each N ∈ N and 0 < δ ≤ δ0, let PN,δ
t , t ∈ R+, be the

corresponding family of Markov kernels defined in (3.28). Then, for every m > 1 there exists αm > 0
such that for each α ∈ (0, αm] there exist ε > 0, s ∈ (0, 1], T > 0, and constants C1, C2 > 0 for which
the following holds

sup
N∈N, 0<δ≤δ0

Wε,s,α(µPN,δ
t , µ̃PN,δ

t ) ≤ C1 e−tC2Wε,s,α/m(µ, µ̃) (3.30)

for every µ, µ̃ ∈ Pr(L̇2) and t ≥ T .

In view of Remark 2.3, Theorem 3.9 together with the Feller property of PN,δ
n , n ∈ Z+, implies the

existence of a unique associated invariant measure. We state this result below.
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Corollary 3.10 Consider the assumptions of Theorem 3.9. Then, for each fixed discretization
parameters N ∈ N and δ > 0, there exists a unique invariant measure µN,δ

∗ of the discrete Markov
semigroup PN,δ

n , n ∈ Z+, and consequently of PN,δ
t , t ∈ R+.

Proof. The uniqueness of the invariant measure follows immediately from inequality (3.30). For the
existence, as recalled in Remark 2.3, it follows similarly as in Hairer et al. (2011, Corollary 4.11) that it
suffices to show there exists a complete metric ρ̃ on L̇2 such that ρ̃ ≤ √

ρε,s and for which {PN,δ
n }n∈Z+

is a Feller semigroup on (L̇2, ρ̃). Here, ε > 0 and s ∈ (0, 1] are any parameters such that (3.30) holds.
This is achieved, for example, by ρ̃ = √

ρε,s = ρ√
ε,s/2, which is a metric on L̇2 that is equivalent to the

distance induced by the norm | · |, so that the known Feller property of {PN,δ
n }n∈Z+ on (L̇2, | · |) also holds

in (L̇2, √ρε,s). Clearly, if µN,δ
∗ is an invariant measure for {PN,δ

n }n∈Z+ , then from the definition (3.28) it

follows immediately that µN,δ
∗ is also an invariant measure for {PN,δ

t }t∈R+ . !
To prove Theorem 3.9, we start by verifying the existence of an exponential Lyapunov structure as

in assumption 2.1 of Theorem 2.1.

Proposition 3.11 Fix any N ∈ N, δ, δ0 > 0 with δ ≤ δ0, σ ∈ L̇
2

and ξ0 ∈ L̇2. Let {ξn
N,δ}n∈Z+ be the

solution of (3.22) corresponding to the parameters N, δ and satisfying ξ0
N,δ = ΠNξ0 almost surely. Then,

for all α ∈ R satisfying

0 < α ≤ ν

4|σ |2 , (3.31)

it holds that

E exp
(
α|ξn

N,δ|2
)

≤ exp
(

α

(
2|ξ0|2

(1 + νλ1δ)
n + C

))
for all n ∈ Z+, (3.32)

for some positive constant C depending only on ν, |σ |, δ0.
Consequently, recalling the definition of the Markov semigroup PN,δ

n , n ∈ Z+, in (3.25), it follows
that for all n ∈ Z+

PN,δ
n exp

(
α|ξ0|2

)
≤ exp

(
α

(
ce−nδC̃|ξ0|2 + C

))
, (3.33)

where C̃ is a positive constant depending only on ν, δ0.

Proof. Throughout the proof we adopt the simplified notation ξ
j
N,δ = ξ j, j ∈ Z+, mentioned in

Section 3.1.3 above.
Fix n ∈ N. For each j ∈ {1, . . . , n}, we take the inner product of the first equation in (3.22) with ξ j

in L̇2 and invoke the Hilbert space identity

2(ξ − ξ̃ , ξ) = |ξ |2 + |ξ − ξ̃ |2 − |̃ξ |2 for all ξ , ξ̃ ∈ L̇2, (3.34)

together with the orthogonality property (3.7), to obtain that

|ξ j|2 + |ξ j − ξ j−1|2 − |ξ j−1|2 + 2νδ|∇ξ j|2 = 2δ1/2(ΠNσηj, ξ
j) = 2δ1/2(σηj, ξ

j). (3.35)
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In view of obtaining a well-defined martingale in (3.38) below, we add and subtract 2δ1/2(σηj, ξ
j−1) in

the right-hand side and estimate

2δ1/2
(
σηj, ξ

j
)

= 2δ1/2
(
σηj, ξ

j − ξ j−1
)

+ 2δ1/2
(
σηj, ξ

j−1
)

≤ |ξ j − ξ j−1|2 + δ|σηj|2 + 2δ1/2
(
σηj, ξ

j−1
)

,

so that, from (3.35) and Poincaré inequality,

(1 + νδ)|ξ j|2 + νδ|∇ξ j|2 ≤ |ξ j|2 + 2νδ|∇ξ j|2 ≤ |ξ j−1|2 + δ|σηj|2 + 2δ1/2
(
σηj, ξ

j−1
)

, (3.36)

for all j ∈ {1, . . . , n}.
Fix m ∈ N with m ≥ n. Denoting b := (1 + νδ)−1, we obtain after multiplying both sides of (3.36)

by bm−j+1 and summing over j = 1, . . . , n that

bm−n|ξn|2 + νδ

n∑

j=1

bm−j+1|∇ξ j|2 ≤ bm|ξ0|2 +
n∑

j=1

δbm−j+1|σηj|2 + Mn, (3.37)

where {Mn}n∈N is the martingale defined as

Mn := 2δ1/2
n∑

j=1

bm−j+1
(
σηj, ξ

j−1
)

for all n ∈ N, (3.38)

with corresponding quadratic variation given by

⟨M⟩n = 4δ

n∑

j=1

d∑

k=1

b2(m−j+1)
(
σk, ξ j−1

)2
. (3.39)

We then estimate ⟨M⟩n as

⟨M⟩n ≤ 4δ|σ |2
n∑

j=1

b2(m−j+1)|ξ j−1|2 = 4δ|σ |2
n−1∑

j=0

b2(m−j)|ξ j|2

≤ 4δ|σ |2
⎛

⎝b2m|ξ0|2 +
n−1∑

j=1

b2(m−j)|∇ξ j|2
⎞

⎠

≤ 4δ|σ |2
⎛

⎝bm+1|ξ0|2 +
n∑

j=1

bm−j+1|∇ξ j|2
⎞

⎠ ,
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where in the last line we used that b ≤ 1 and m ≥ n ≥ 1. Thus, for all α ∈ R satisfying (3.31) we obtain
that

α⟨M⟩n ≤ bm|ξ0|2 + νδ

n∑

j=1

bm−j+1|∇ξ j|2. (3.40)

Now, adding and subtracting α⟨M⟩n to the right-hand side of (3.37) and invoking (3.40) it follows
that

bm−n|ξn|2 ≤ 2bm|ξ0|2 +
n∑

j=1

δbm−j+1|σηj|2 + Mn − α⟨M⟩n. (3.41)

Multiplying by α, taking exponentials and expected values on both sides of (3.41) and applying Hölder’s
inequality, we deduce that

E exp
(
αbm−n|ξn|2

)
≤ exp

(
2αbm|ξ0|2

)
E

⎡

⎣

⎛

⎝
n∏

j=1

exp
(
αδbm−j+1|σηj|2

)
⎞

⎠ exp
(
αMn − α2⟨M⟩n

)
⎤

⎦

≤ exp
(

2αbm|ξ0|2
)

⎡

⎣
n∏

j=1

E exp
(

2αδbm−j+1|σηj|2
)
⎤

⎦
1/2

(
EM̃n

)1/2 , (3.42)

where

M̃n = exp
(

2αMn − 2α2⟨M⟩n

)
, (3.43)

and we used the independence of the random variables σηj, j = 1, . . . , n, to write the second factor in
the right-hand side of (3.42).

From (3.38), let us denote zn := bm−n+1(σηn, ξn−1), and consider the regular conditional probability
of zn given Ftn−1

, i.e. µn(ω, A) := P(zn(ω) ∈ A | Ftn−1
) = E[1z−1

n (A)
| Ftn−1

], for ω ∈ Ω , A ∈ B(R),
see e.g. Dudley (2002, Section 10.2). It is not difficult to show that, for each fixed ω ∈ Ω , µn(ω, ·)
is a Gaussian probability measure on B(R) with zero mean and variance b2(m−n+1)(Q0ξ

n−1, ξn−1) =∑d
k=1 b2(m−n+1)(σk, ξn−1)2, where Q0 is as defined in (3.3). Using this fact, one can easily show that

{M̃n}n∈N is a martingale with respect to the filtration {Ftn}n∈N, and EM̃n = 1 for all n (see e.g. Lamba
et al., 2007, Appendix). Moreover, since σηj ∼ N (0, Q0), j = 1, . . . , n, from a general result on Gaus-
sian probability measures on Hilbert spaces (Da Prato & Zabczyk, 2014, Proposition 2.17) it follows that

E exp(γ |σηj|2) ≤ 1
(1 − 2γ |σ |2)1/2 for all γ <

1
2|σ |2 , (3.44)
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where we recall that |σ |2 = Tr(Q0). In particular, since α ≤ ν/(4|σ |2) by assumption (3.31), and since
bm−j+1 ≤ b = 1/(1 + νδ), we have that (3.44) holds with γ = 2αδbm−j+1. Thus, from (3.42),

E exp
(
αbm−n|ξn|2

)
≤ exp

(
2αbm|ξ0|2

) n∏

j=1

1
(1 − 4αδbm−j+1|σ |2)1/4 for all m ≥ n ≥ 1. (3.45)

In particular, if m = n then

E exp
(
α|ξn|2

)
≤ exp

(
2αbn|ξ0|2

) n∏

j=1

1
(1 − 4αδbj|σ |2)1/4

= exp
(

2αbn|ξ0|2
)

exp

⎛

⎝−1
4

n∑

j=1

ln
(

1 − 4αδbj|σ |2
)
⎞

⎠ . (3.46)

Since − ln(1 − x) ≤ x(1 − x)−1 for all x ∈ (0, 1), we obtain

−1
4

n∑

j=1

ln
(

1 − 4αδbj|σ |2
)

≤ 1
4

n∑

j=1

4αδbj|σ |2
1 − 4αδbj|σ |2 . (3.47)

Moreover, since α ≤ ν/(4|σ |2) and bj ≤ b = 1/(1 + νδ), it follows that [1 − 4αδbj|σ |2]−1 ≤ 1 + νδ,
so that

1
4

n∑

j=1

4αδbj|σ |2
1 − 4αδbj|σ |2 ≤ (1 + νδ)αδ|σ |2

n∑

j=1

bj

≤ (1 + νδ)αδ|σ |2 b
1 − b

= (1 + νδ)
α|σ |2

ν
≤ (1 + νδ0)

α|σ |2
ν

. (3.48)

Therefore, from (3.46)–(3.48), it follows that

E exp
(
α|ξn|2

)
≤ exp

(
α(2bn|ξ0|2 + C)

)
,

where C = (1 + νδ0)|σ |2/(ν). This shows (3.32).
For the remaining inequality, (3.33), we use the fact that for any constant 0 < a < 1 we have

ln(1 + x) ≥ ax for all x ∈ [0, (1/a) − 1]. Since δ ≤ δ0, we take a := 1/(1 + νδ0) and obtain that
ln(1 + νδ) ≥ νδ/(1 + νδ0), so that

2
(1 + νδ)n = 2 exp (−n ln(1 + νδ)) ≤ 2 exp

(
− ν

1 + νδ0
nδ

)
. (3.49)
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From (3.32) and (3.49), it thus follows that, for every 0 < α ≤ ν/(4|σ |2),

PN,δ
n exp

(
α|ξ0|2

)
= E exp

(
α|ξn|2

)
≤ exp

(
α

(
2|ξ0|2

(1 + νδ)n + C
))

≤ exp
(

α

(
2 exp

(
− ν

1 + νδ0
nδ

)
|ξ0|2 + C

))
,

which shows (3.33) and concludes the proof. !

For showing the remaining assumptions (A1) and (A3) from Theorem 2.1, we follow a similar
asymptotic coupling strategy from previous works, see e.g. Bricmont et al. (2001); E et al. (2001); Kuksin
& Shirikyan (2001); E & Liu (2002); Hairer (2002); Kuksin & Shirikyan (2002); Mattingly (2002);
Mattingly (2003); Debussche & Odasso (2005); Hairer & Mattingly (2006, 2008); Hairer et al. (2011);
Hairer & Mattingly (2011a); Kuksin & Shirikyan (2012); Földes et al. (2015); Butkovsky et al. (2020).
The idea consists in introducing the following modified equation for a given ξ0 ∈ L̇2 and corresponding
solution ξn

N,δ = ξn
N,δ(ΠNξ0) = ξn(ΠNξ0), n ∈ N, of (3.20). Namely, we consider ξ̃n

N,δ = ξ̃n, n ∈ N,
satisfying

ξ̃n = ξ̃n−1+δ
[
ν∆ξ̃n−ΠN (̃un−1 ·∇ ξ̃n)−βΠK

(
ξ̃n−ξn(ΠNξ0)

)]
+

d∑

k=1

ΠNσkv(Wk(tn)−Wk(tn−1)), (3.50)

ũn−1 = K ∗ ξ̃n−1. (3.51)

Here, the extra term −βδΠK (̃ξn −ξn(ΠNξ0)) has the purpose of enforcing a suitable control over ‘large’
scales, with K ∈ N representing the number of controlled modes, and β > 0 a control parameter, both
to be appropriately chosen in (3.77) below.

Analogously as in Proposition 3.8, we can show that system (3.50)–(3.51) is well-posed in the
pathwise sense. We omit the technical details. Therefore, for each N ∈ N, δ > 0 and ξ0 ∈ L̇2, we
may define

P̃N,δ,ξ0
n (̃ξ0, O) = P

(
ξ̃n

N,δ(ΠN ξ̃0; ΠNξ0) ∈ O
)

for all n ∈ Z+, ξ̃0 ∈ L̇2 and O ∈ B(L̇2), (3.52)

where ξ̃n
N,δ(ΠN ξ̃0; ΠNξ0) is the unique (strong) solution of (3.50)–(3.51) with respect to a fixed stochastic

basis (Ω , F , {Ft}t≥0,P, {Wk}d
k=1), and which satisfies the initial condition ξ̃0

N,δ = ΠN ξ̃0 almost surely.
Moreover, for every bounded and measurable function ϕ : L̇2 → R, we denote

P̃N,δ,ξ0
n ϕ(̃ξ0) = Eϕ

(
ξ̃n

N,δ(ΠN ξ̃0; ΠNξ0)
)

for all n ∈ Z+ and ξ̃0 ∈ L̇2. (3.53)
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Given any ξ0, ξ̃0 ∈ L̇2, the idea consists in utilizing the family P̃N,δ,ξ0
n , n ∈ Z+, to estimate the

Wasserstein distance Wε,s between PN,δ
n (ξ0, ·) and PN,δ

n (̃ξ0, ·) as

Wε,s

(
PN,δ

n (ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤ Wε,s

(
PN,δ

n (ξ0, ·), P̃N,δ,ξ0
n (̃ξ0, ·)

)
+ Wε,s

(
P̃N,δ,ξ0

n (̃ξ0, ·), PN,δ
n (̃ξ0, ·)

)
,

(3.54)

which holds since Wε,s is a metric in Pr(L̇2). We then estimate each term on the right-hand side of
(3.54) by analyzing system (3.50)–(3.51) under two different perspectives. The first term is estimated
by establishing a suitable contraction between the solution ξ̃n

N,δ(ΠN ξ̃0; ΠNξ0) of (3.50)–(3.51) and the
solution ξn

N,δ(ΠNξ0) of (3.20). This is possible due to the presence of the control term −βΠK (̃ξn
N,δ −

ξn
N,δ(ΠNξ0)) in (3.50), and provided the number K ∈ N of controlled modes and the tuning parameter

β > 0 are chosen sufficiently large (see (3.77) below).
For the second term in the right-hand side of (3.54), due to uniqueness of pathwise strong solutions

of (3.20) we deduce that the solution ξ̃n
N,δ(ΠN ξ̃0; ΠNξ0, W) of (3.50)–(3.51) corresponding to the Wiener

process W coincides with the solution ξn
N,δ(ΠN ξ̃0; Ŵ) of (3.20) corresponding to the following shifted

process

Ŵ(t) = W(t) +
∫ t

0

∞∑

j=1

ψj1[tj−1,tj)(τ ) dτ , (3.55)

where

ψj = −βσ−1ΠK

(
ξ̃

j
N,δ

(
ΠN ξ̃0; ΠNξ0, W

)
− ξ

j
N,δ(ΠNξ0; W)

)
∀j. (3.56)

Here we recall that σ−1 denotes the pseudo-inverse of σ (see Section 3.1.1). The second term in the right-
hand side of (3.54) can then be estimated by the total variation distance (see (3.89) below) between the
laws of the processes W and Ŵ. This is in turn estimated via a Girsanov-type result. We note carefully
that in order to have the expression in (3.56) well-defined, particularly in what concerns the domain of
definition of σ−1, we assume that ΠKL̇2 ⊂ range(σ ).

Under this approach, we prove here the following results validating assumptions 2.1 and 2.1 of
Theorem 2.1 for the Markov semigroup PN,δ

n , n ∈ Z+, and the class of distances Λ = {ρε,s : ε >

0, s ∈ (0, 1]} defined in (3.26) above.

Proposition 3.12 Fix δ0 > 0 and suppose there exists K ∈ N and σ ∈ L̇
2

such that (3.29) holds.
Then, for every M > 0, ε > 0 and s ∈ (0, 1], there exist a time T1 = T1(M, ε, s) > 0 and a coefficient
κ1 = κ1(M) ∈ (0, 1), which is independent of ε, s, such that

sup
N∈N, 0<δ≤δ0

sup
n≥T1/δ

Wε,s

(
PN,δ

n (ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤ 1 − κ1 (3.57)

for all δ0 > 0, and for every ξ0, ξ̃0 ∈ L̇2 with |ξ0| ≤ M and |̃ξ0| ≤ M.

Proposition 3.13 Fix δ0 > 0 and suppose there exists K ∈ N and σ ∈ L̇
2

such that (3.29) holds. Then,
for every κ2 ∈ (0, 1) and for every r > 0 there exists s ∈ (0, 1] for which the following holds:
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(i) For every ε > 0 and δ0 > 0, there exists a constant C = C(ε, s, δ0) > 0 such that

sup
N∈N, 0<δ≤δ0, n∈Z+

Wε,s

(
PN,δ

n (ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤ C exp

(
r|ξ0|2+r|̃ξ0|2

)
ρε,s(ξ0, ξ̃0) (3.58)

for every ξ0, ξ̃0 ∈ L̇2 with ρε,s(ξ0, ξ̃0) < 1.

(ii) For every δ0 > 0, there exist a parameter ε = ε(κ2, r) > 0 and a time T2 = T2(κ2, r) > 0 such that

sup
N∈N, 0<δ≤δ0

sup
n≥T2/δ

Wε,s

(
PN,δ

n (ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤ κ2 exp

(
r|ξ0|2+r|̃ξ0|2

)
ρε,s(ξ0, ξ̃0) (3.59)

for every ξ0, ξ̃0 ∈ L̇2 with ρε,s(ξ0, ξ̃0) < 1.

Remark 3.14 We notice that item (i) of Proposition 3.13 gives a slightly stronger result than required
in the general assumption (A3.ii) of Theorem 2.1. Indeed, inequality (3.58) is valid over all n ∈ Z+ and
ε > 0. In contrast, (2.6) concerns only a finite time interval [0, τ ] and a particular choice of distance-like
function ρε,s, which thus entails both a particular choice of s ∈ (0, 1] and ε > 0.

Before proceeding with the proofs of Proposition 3.12 and Proposition 3.13, we establish some
preliminary facts and terminology that are necessary for following the outline described under (3.54)
above. We start with the following result establishing suitable exponential moment bounds for solutions
of (3.22).

Lemma 3.15 Fix any N ∈ N, δ, δ0 > 0 with δ ≤ δ0, σ ∈ L̇
2

and ξ0 ∈ L̇2. Let {ξn
N,δ}n∈Z+ be the solution

of (3.22) corresponding to the parameters N, δ, and satisfying ξ0
N,δ = ΠNξ0 almost surely. Then, there

exists an absolute constant c > 0 such that for all α ∈ R satisfying

0 < α ≤ c
|σ |2 min

{
ν,

1
δ0

}
, (3.60)

the following inequality holds

E sup
n≥1

exp

⎛

⎝α
∣∣∣ξn

N,δ

∣∣∣
2
+ ανδ

n∑

j=1

∣∣∣∇ξ
j
N,δ

∣∣∣
2
+ n

4
ln(1 − 4αδ|σ |2)

⎞

⎠ ≤ c̃ exp
(

Cα|ξ0|2
)

, (3.61)

and, consequently,

E exp

⎛

⎝α
∣∣∣ξn

N,δ

∣∣∣
2
+ ανδ

n∑

j=1

∣∣∣∇ξ
j
N,δ

∣∣∣
2

⎞

⎠ ≤ c̃ exp
(

Cα|ξ0|2
)

exp
(

c̃α|σ |2nδ
)

for all n ∈ N. (3.62)

Here, C = c̃(1 + νδ0) and c̃ > 0 is an absolute constant.
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Proof. Proceeding as in (3.35)–(3.36) above, and summing (3.36) over j = 1, . . . , n, we obtain

|ξn|2 − |ξ0|2 + 2νδ

n∑

j=1

|∇ξ j|2 ≤ δ

n∑

j=1

|σηj|2 + Mn, (3.63)

where {Mn}n∈N is the martingale defined as

Mn := 2δ1/2
n∑

j=1

(
σηj, ξ

j−1
)

(3.64)

with corresponding quadratic variation given by

⟨M⟩n = 4δ

n∑

j=1

d∑

k=1

(
σk, ξ j−1

)2
. (3.65)

We estimate ⟨M⟩n as

⟨M⟩n ≤ 4δ|σ |2
n∑

j=1

|ξ j−1|2 = 4δ|σ |2
⎛

⎝|ξ0|2 +
n−1∑

j=1

|ξ j|2
⎞

⎠

≤ 4δ|σ |2|ξ0|2 + 4δ|σ |2
n−1∑

j=1

|∇ξ j|2. (3.66)

Thus, under assumption (3.60) on α with a suitable absolute constant c it follows that

α⟨M⟩n ≤ νδ|ξ0|2 + νδ

n−1∑

j=1

|∇ξ j|2.

Adding and subtracting α⟨M⟩n in (3.63) yields

|ξn|2 + νδ

n∑

j=1

|∇ξ j|2 ≤ (1 + νδ)|ξ0|2 + δ

n∑

j=1

|σηj|2 + Mn − α⟨M⟩n. (3.67)

We now subtract Rn := − n
2α Tr(ln(1 − 2αδQ0)) from both sides of (3.67), where Q0 is defined in (3.3).

Then, multiplying by α/2, taking exponentials, the supremum over n ∈ {1, . . . , m} for some m ∈ N and
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expected values, it follows that

E sup
1≤n≤m

exp

⎛

⎝α

2
|ξn|2 + ανδ

2

n∑

j=1

|∇ξ j|2 − α

2
Rn

⎞

⎠

≤ exp
(α

2
(1 + νδ)|ξ0|2

) [

E sup
1≤n≤m

exp
(

Dn

2

)]1/2 [

E sup
1≤n≤m

exp
(

En

2

)]1/2

, (3.68)

where

Dn = 2αMn − 2α2⟨M⟩n (3.69)

and

En = αδ

n∑

j=1

|σηj|2 − αRn. (3.70)

Similarly as in (3.43), we have that {exp(Dn)}n∈N is a martingale with respect to the filtration
{Ftn}n∈N, and E exp(Dn) = 1 for all n.

Clearly, each exp(En) is measurable with respect to Ftn . To conclude that {exp(En)}n∈N is a
martingale, it remains to show that E| exp(En)| = E exp(En) < ∞ and E(exp(En+1)|Ftn) = exp(En)

for all n ∈ N. Since α < c(δ0|σ |2)−1 and σηn ∼ N (0, Q0), it follows by invoking once again (Da Prato
& Zabczyk, 2014, Proposition 2.17) that for all δ ≤ δ0

E exp(αδ|σηn|2) = exp
(

−1
2

Tr ln(1 − 2αδQ0)

)
for all n ∈ N.

Hence,

E(exp(En+1) | Ftn) = exp

⎛

⎝αδ

n∑

j=1

|σηj|2
⎞

⎠E exp
(

αδ|σηn+1|2 + (n + 1)

2
Tr ln(1 − 2αδQ0)

)

= exp

⎛

⎝αδ

n∑

j=1

|σηj|2 + n
2

Tr ln(1 − 2αδQ0)

⎞

⎠ = exp(En).

This implies that, for all n ∈ N,

E[exp(En)] = E[E[exp(En) | Ft1 ]] = E[exp(E1)] = exp
(

αδ|ση1|2 + 1
2

Tr ln(1 − 2αδQ0)

)
= 1.

(3.71)

Therefore, {exp(En)}n∈N is a martingale and, moreover, E exp(En) = 1 for all n.
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With these facts, we proceed to further estimate the right-hand side of (3.68) by noticing that

E sup
1≤n≤m

exp
(

En

2

)
=

∫ ∞

0
P

(

sup
1≤n≤m

exp(En) ≥ z2

)

dz

≤ 1 +
∫ ∞

1
P

(

sup
1≤n≤m

exp(En) ≥ z2

)

dz ≤ 1 +
∫ ∞

1

E exp(Em)

z2 dz = 2, (3.72)

where the last inequality follows from Doob’s martingale inequality, while in the final equality we used
(3.71). Analogously, we can show that

E sup
1≤n≤m

exp
(

Dn

2

)
≤ 2. (3.73)

Plugging estimates (3.72) and (3.73) into (3.68), it follows that

E sup
1≤n≤m

exp

⎛

⎝α

2
|ξn|2 + ανδ

2

n∑

j=1

|∇ξ j|2 − α

2
Rn

⎞

⎠ ≤ 2 exp
(α

2
(1 + νδ)|ξ0|2

)
, (3.74)

for all m ∈ N. Replacing α/2 by α, and noticing that Tr(ln(1 − 4αδQ0)) ≥ ln(1 − 4αδTr(Q0)) (see Da
Prato & Zabczyk, 2014, Proposition 2.17) and Tr(Q0) = |σ |2, we obtain that for all N ∈ N and δ ≤ δ0

E sup
1≤n≤m

exp

⎛

⎝α|ξn|2 + ανδ

n∑

j=1

|∇ξ j|2 + n
4

ln(1 − 4αδ|σ |2)

⎞

⎠ ≤ 2 exp
(α

2
(1 + νδ0)|ξ0|2

)
(3.75)

for all m ∈ N. Now we conclude (3.61) from (3.75) by invoking the Monotone Convergence theorem.
For the final inequality (3.62), first notice that (3.61) clearly implies

E exp

⎛

⎝α|ξn|2 + ανδ

n∑

j=1

|∇ξ j|2
⎞

⎠ ≤ c̃ exp
(
Cα|ξ0|2

)

(1 − 4αδ|σ |2)n/4 for all n ∈ N. (3.76)

Now we use the elementary fact that ln(1−x) ≥ −ex for every 0 ≤ x ≤ 1/e. Thus, choosing the constant
c in (3.60) appropriately so that 4αδ0|σ |2 ≤ 1/e, we obtain that for all δ ≤ δ0

(1 − 4αδ|σ |2)−n/4 = exp
(
−n

4
ln(1 − 4αδ|σ |2)

)
≤ exp(c̃α|σ |2nδ).

Plugging this inequality into (3.76), we deduce (3.62). This concludes the proof. !
Next, we have the following contraction result.

Lemma 3.16 Fix any N ∈ N, δ, δ0 > 0 with δ ≤ δ0, σ ∈ L̇
2

and ξ0, ξ̃0 ∈ L̇2. Let ξ̃n
N,δ =

ξ̃n
N,δ(ΠN ξ̃0; ΠNξ0), n ∈ Z+, be the solution of (3.50)–(3.51) corresponding to the parameters N, δ, ξ0,
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and satisfying ξ̃0
N,δ = ΠN ξ̃0 almost surely. Suppose K∈ N and β> 0 from (3.50) satisfy

νλK+1 ≥ 2β (3.77)

and

β ≥ c max

{
1
δ0

,
δ2

0 |σ |4
ν3 ,

|σ |4
ν5

}

(3.78)

for some absolute constant c > 0. Then, for every n ∈ Z+

E
[∣∣∣̃ξn

N,δ

(
ΠN ξ̃0; ΠNξ0

)
− ξn

N,δ(ΠNξ0)
∣∣∣
2
]

≤ c̃
exp

(
C(ν3β)−1/2|ξ0|2

)

(1 + βδ)3n/4 |̃ξ0 − ξ0|2, (3.79)

where c̃ is an absolute constant, and C > 0 is a constant depending only on ν, δ0.

Proof. Denote ζ n = ζ n
N,δ := ξ̃n

N,δ(ΠN ξ̃0; ΠNξ0)− ξn
N,δ(ΠNξ0) and vn = vn

N,δ = ũn
N,δ −un

N,δ . Subtracting
(3.20) from (3.50), we obtain

ζ n = ζ n−1 + δ
[
ν∆ζ n − ΠN(vn−1 · ∇ζ n) − ΠN(vn−1 · ∇ξn) − ΠN(un−1 · ∇ζ n) − βΠKζ n

]
. (3.80)

Taking the inner product of (3.80) with ζ n and invoking (3.7) and (3.34), it follows that

|ζ n|2 − |ζ n−1|2 + |ζ n − ζ n−1|2 + 2νδ|∇ζ n|2 = −2δ(vn−1 · ∇ξn, ζ n) − 2βδ
∣∣∣ΠKζ n

∣∣∣
2
. (3.81)

Invoking (3.8) with a = 1/2 and Young’s inequality, we estimate the nonlinear term above as

2δ|(vn−1 · ∇ξn, ζ n)| ≤ c̃δ|ζ n−1||∇ξn||ζ n|1/2|∇ζ n|1/2

≤ c̃
δ

(νβ)1/2 |ζ n−1|2|∇ξn|2 + βδ|ζ n|2 + νδ|∇ζ n|2, (3.82)

for some absolute constant c̃ > 0. Thus, from (3.81),

|ζ n|2 − |ζ n−1|2 + |ζ n − ζ n−1|2 + νδ|∇ζ n|2 ≤ c̃
δ

(νβ)1/2 |ζ n−1|2|∇ξn|2 + βδ|ζ n|2 − 2βδ
∣∣∣ΠKζ n

∣∣∣
2
.

With inequality (3.11), we estimate the last term in the left-hand side as

νδ|∇ζ n|2 = νδ
(∣∣∣∇ΠKζ n

∣∣∣
2
+ |∇(I − ΠK)ζ n|2

)
≥ νδ

(
|∇ΠKζ n|2 + λK+1|(I − ΠK)ζ n|2

)

≥ νδ
∣∣∣∇ΠKζ n

∣∣∣
2
+ 2βδ

∣∣∣(I − ΠK)ζ n
∣∣∣
2
, (3.83)
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where in the last inequality we invoked the hypotheses that νλK+1 ≥ 2β, (3.77). After rearranging terms,
we deduce that

|ζ n|2 − |ζ n−1|2 + |ζ n − ζ n−1|2 + νδ|∇ΠKζ n|2 + βδ|ζ n|2 ≤ c̃
δ

(νβ)1/2 |ζ n−1|2|∇ξn|2. (3.84)

In particular, after ignoring the third and fourth terms from the left-hand side of (3.84), we obtain

(1 + βδ)|ζ n|2 ≤
(

1 + c̃δ
|∇ξn|2
(νβ)1/2

)
|ζ n−1|2 for all n ∈ N.

Therefore, by induction,

|ζ n|2 ≤ |ζ0|2
(1 + βδ)n

n∏

j=1

(
1 + c̃δ

|∇ξ j|2
(νβ)1/2

)
≤ |ζ0|2

(1 + βδ)n exp

⎛

⎝
n∑

j=1

c̃δ
|∇ξ j|2
(νβ)1/2

⎞

⎠ , (3.85)

where in the last inequality we used that 1 + x ≤ ex, for all x ∈ R. Taking expected values on both sides
of (3.85), we thus obtain

E[|ζ n|2] ≤ |ζ0|2
(1 + βδ)nE exp

⎛

⎝
n∑

j=1

c̃δ
|∇ξ j|2
(νβ)1/2

⎞

⎠ . (3.86)

Now let α = c̃(ν3β)−1/2. From assumption (3.78) on β it is clear that α satisfies condition (3.60)
from Proposition 3.15. Thus, from (3.76) and (3.86), we obtain that

E[|ζ n|2] ≤ |ζ0|2
(1 + βδ)n

c̃ exp
(
Cα|ξ0|2

)

(1 − 4αδ|σ |2)n/4 . (3.87)

Moreover, we can assume that the constant c in assumption (3.78) on β is large enough so that
α = c̃(ν3β)−1/2 ≤ 1/(8δ0|σ |2) and β ≥ 1/δ0. We then estimate

1 − 4αδ|σ |2 ≥ 1 − δ

2δ0
= 1 − 1

2δ0β
βδ

≥ 1 − 1
1 + δ0β

βδ ≥ 1 − 1
1 + βδ

βδ = 1
1 + βδ

,

where in the last inequality we used that δ ≤ δ0. Therefore,

(1 + βδ)n(1 − 4αδ|σ |2)n/4 ≥ (1 + βδ)n(1 + βδ)−n/4 = (1 + βδ)3n/4,
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so that from (3.87) we deduce

E[|ζ n|2] ≤ |ζ0|2
c̃ exp

(
Cα|ξ0|2

)

(1 + βδ)3n/4 . (3.88)

This shows (3.79) and concludes the proof. !
We next recall some additional notions of distance in the space of probability measures on any

measurable space (X, ΣX), along with some useful related inequalities. These will be particularly helpful
in further estimating the second term in the right-hand side of (3.54), i.e. the cost-of-control term. First,
we recall that the total variation distance between any two measures µ, µ̃ ∈ Pr(X) is defined as

∥µ − µ̃∥TV := sup
A∈ΣX

|µ(A) − µ̃(A)|. (3.89)

Given another measurable space (Y , ΣY) and a measurable function φ : X → Y , it follows immediately
from definition (3.89) that

∥∥φ∗µ − φ∗µ̃
∥∥

TV ≤ ∥µ − µ̃∥TV , (3.90)

where here φ∗µ ∈ Pr(Y) denotes the pushforward measure of µ by the function φ, i.e. φ∗µ(A) :=
µ(φ−1(A)) for all A ∈ ΣY .

Secondly, we recall that the Kullback–Leibler divergence is defined as

DKL(µ̃∥µ) :=
∫

X
ln

(
dµ̃

dµ
(ξ)

)
µ̃(dξ), (3.91)

for any µ, µ̃ ∈ Pr(X) such that µ̃ is absolutely continuous with respect to µ, so that the Radon–
Nikodym derivative dµ̃/dµ is well-defined. When µ̃ is not absolutely continuous with respect to µ,
we set DKL(µ̃∥µ) := +∞.

Regarding the definitions in (3.89) and (3.91), we will make use of two useful inequalities from
Butkovsky et al. (2020) providing estimates on the distance between the law of a d-dimensional Wiener
process W and the corresponding shifted process

Ŵ(t) = W(t) +
∫ t

0
ϕ(τ ) dτ (3.92)

for some progressively measurable process ϕ(t), t ≥ 0. In the proofs below, these inequalities will be
applied with ϕ(t) = ∑∞

j=1 ψj1[tj−1,tj)(t), for ψj as given in (3.56). Specifically, denoting by L (W) and

L (Ŵ) the laws of W and Ŵ, respectively, it follows from Butkovsky et al. (2020, Theorem A.2) that

DKL(L (Ŵ)∥L (W)) ≤ 1
2
E

∫ ∞

0
|ϕ(t)|2 dt. (3.93)
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And from Butkovsky et al. (2020, Theorem A.5, (A.13)), we have that for any a ∈ (0, 1]2

∥∥L (Ŵ) − L (W)
∥∥

TV ≤ 2
1−a
1+a

{
E

[(∫ ∞

0
|ϕ(t)|2 dt

)a]} 1
1+a

. (3.94)

We also recall the following inequality providing an explicit relation between these two definitions
(see e.g. Tsybakov, 2009, inequality (2.25)):

∥µ − µ̃∥TV ≤ 1 − 1
2

exp
(
−DKL(µ̃∥µ)

)
(3.95)

for all µ, µ̃ ∈ Pr(X).
To further connect these definitions with the Wasserstein-like distances defined in (2.2) on Pr(L̇2),

we notice that for any distance-like function ρ : L̇2 × L̇2 → R+ such that ρ(ξ , ξ̃) ≤ 1 for all ξ , ξ̃ ∈ L̇2, it
follows as an immediate consequence of the coupling lemma (Kuksin & Shirikyan, 2012, Lemma 1.2.24)
that

Wρ(µ, µ̃) ≤ ∥µ − µ̃∥TV for all µ, µ̃ ∈ Pr(L̇2). (3.96)

With these notations and facts in place, we now proceed with the proofs of Proposition 3.12 and
Proposition 3.13.

Proof of Proposition 3.12. Fix M > 0, ε > 0, s ∈ (0, 1], and let ξ0, ξ̃0 ∈ L̇2 such that |ξ0| ≤ M and
|̃ξ0| ≤ M.

We start with the triangle inequality as in (3.54) and provide an estimate of each term in the
right-hand side by following the strategy described in the introduction to this section. For the first
term, it follows from the definition of Wε,s according to (2.2) and (3.26), along with Hölder’s
inequality, that

Wε,s

(
PN,δ

n (ξ0, ·), P̃N,δ,ξ0
n (̃ξ0, ·)

)
≤ E

⎛

⎜⎝1 ∧

∣∣∣ξn(ΠNξ0) − ξ̃n(ΠNξ0; ΠN ξ̃0)
∣∣∣
s

ε

⎞

⎟⎠

≤ 1
ε

(
E

[∣∣∣ξn(ΠNξ0) − ξ̃n(ΠNξ0; ΠN ξ̃0)
∣∣∣
2
])s/2

. (3.97)

By assumption, there exists K ∈ N such that (3.29) holds. In particular, the second condition in (3.29)
implies that we can take β > 0 satisfying assumptions (3.77) and (3.78) of Lemma 3.16. It thus follows

2 In Butkovsky et al. (2020, Theorem A.5, (A.13)), it is actually assumed a ∈ (0, 1). In fact, inequality (3.94) also holds with
a = 1, although a slightly sharper bound is valid in this case due to (3.93) and Pinsker’s inequality (see e.g. Tsybakov, 2009,

Lemma 2.5.(i)). Namely,
∥∥L (Ŵ) − L (W)

∥∥
TV ≤

√
1
2 DKL(L (Ŵ)∥L (W)) ≤ 1

2

(
E

∫ ∞
0 |ϕ(t)|2 dt

)1/2
.
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from (3.79) and (3.97) that

Wε,s

(
PN,δ

n (ξ0, ·), P̃N,δ,ξ0
n (̃ξ0, ·)

)
≤ |ξ0 − ξ̃0|s

ε

c̃s exp
(
Cs(ν3β)−1/2|ξ0|2

)

(1 + βδ)3ns/8 (3.98)

= c̃s Ms

ε

exp
(
Cs(ν3β)−1/2M2)

(1 + βδ)3ns/8 , (3.99)

for some absolute constant c̃ > 0 and some constant C > 0 depending only on ν, δ0.
We proceed to estimate the second term in the right-hand side of (3.54). Let us denote by ξn(ΠN ξ̃0; W)

and ξ̃n(ΠN ξ̃0; ΠNξ0, W) the solutions of (3.20) and (3.50)–(3.51), respectively, starting from ΠN ξ̃0 ∈
ΠNL̇2 and corresponding to the family W = {Wk}d

k=1 of independent real-valued Brownian motions Wk,
k = 1, . . . , d. Then, denoting by L (Z) the law of a random variable Z, we can equivalently write the
Markov transition kernels defined in (3.24) and (3.52) as

PN,δ
n (̃ξ0, ·) = L

(
ξn(ΠN ξ̃0; W)

)
and P̃N,δ,ξ0

n (̃ξ0, ·) = L
(
ξ̃n(ΠN ξ̃0; ΠNξ0, W)

)
,

respectively. From inequality (3.96), we thus have

Wε,s

(
P̃N,δ,ξ0

n (̃ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤

∥∥∥P̃N,δ,ξ0
n (̃ξ0, ·) − PN,δ

n (̃ξ0, ·)
∥∥∥

TV

=
∥∥L (̃ξn(ΠN ξ̃0; ΠNξ0, W)) − L (ξn(ΠN ξ̃0; W))

∥∥
TV . (3.100)

Let Ŵ = {Ŵk}d
k=1 be the family of shifted independent Brownian motions defined in (3.55)–(3.56).

Here notice that, in the definition of ψj in (3.56), σ−1ΠK is well-defined due to the assumption that
ΠKL̇2 ⊂ range(σ ) in (3.29). Moreover, due to the uniqueness of pathwise strong solutions of (3.20),
as shown in Proposition 3.8, it follows that ξn(ΠN ξ̃0; Ŵ) = ξ̃n(ΠN ξ̃0; ΠNξ0, W) for all n ∈ N almost
surely. Hence, from (3.100),

Wε,s(̃P
N,δ,ξ0
n (̃ξ0, ·), PN,δ

n (̃ξ0, ·)) ≤
∥∥L (ξn(ΠN ξ̃0; Ŵ)) − L (ξn(ΠN ξ̃0; W))

∥∥
TV . (3.101)

It is not difficult to show that W ∈ C ([0, nδ];Rd) 5→ ξn(ΠN ξ̃0; W)∈ L̇2 is a continuous mapping
with respect to the topology in L̇2 generated by | · |, and the one in the space C ([0, nδ];Rd) of continuous
Rd-valued functions on [0, nδ] derived from the supremum norm on this interval. It thus follows from
(3.90) that

∥∥∥L
(
ξn(ΠN ξ̃0; Ŵ)

)
− L

(
ξn(ΠN ξ̃0; W)

)∥∥∥
TV

=
∥∥ξn(ΠN ξ̃0; ·)∗L (Ŵ) − ξn(ΠN ξ̃0; ·)∗L (W)

∥∥
TV

≤
∥∥L (Ŵ) − L (W)

∥∥
TV . (3.102)
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Together with inequality (3.95), we thus have

∥∥∥L
(
ξn(ΠN ξ̃0; Ŵ)

)
− L

(
ξn(ΠN ξ̃0; W)

)∥∥∥
TV

≤ 1 − 1
2

exp
(
−DKL(L (Ŵ)∥L (W))

)
. (3.103)

Recalling from (3.55) that

Ŵ(t) = W(t) +
∫ t

0
ϕ(τ )dτ , where ϕ(τ ) :=

∞∑

j=1

ψj1[tj−1,tj)(τ ),

with ψj as defined in (3.56), we now invoke (3.93) and obtain that

DKL(L (Ŵ)∥L (W)) ≤ 1
2
E

∫ ∞

0
|ϕ(t)|2 dt = Eδ

∞∑

j=1

|ψj|2. (3.104)

Now invoking the fact that the pseudo-inverse σ−1 is bounded, and once again Lemma 3.16, we
further estimate the right-hand side above as

Eδ

∞∑

j=1

|ψj|2 ≤ δβ2∥σ−1∥2
∞∑

j=1

E
∣∣∣̃ξ j

(
ΠN ξ̃0; ΠNξ0, W

)
− ξ j(ΠNξ0; W)

∣∣∣
2

≤ δβ2∥σ−1∥2
∞∑

j=1

|ξ0 − ξ̃0|2
c̃ exp

(
C(ν3β)−1/2|ξ0|2

)

(1 + βδ)3j/4 (3.105)

for some constant C > 0, and where ∥σ−1∥ denotes the operator norm of σ−1. Notice that

βδ

∞∑

j=1

1
(1 + βδ)3j/4 = βδ

1
1 − (1 + βδ)−3/4 ≤ βδ

1
1 − (1 + βδ)−1/2 = βδ

(1 + βδ)1/2

(1 + βδ)1/2 − 1

= βδ
(1 + βδ)1/2[(1 + βδ)1/2 + 1]

βδ
≤ 2(1 + βδ),

so that, from (3.105),

1
2
E

∫ ∞

0
|ϕ(t)|2 dt = Eδ

∞∑

j=1

|ψj|2 ≤ c̃β(1 + βδ)∥σ−1∥2|ξ0 − ξ̃0|2 exp
(

C(ν3β)−1/2|ξ0|2
)

(3.106)

≤ c̃β(1 + βδ)∥σ−1∥2M2 exp
(

C(ν3β)−1/2M2
)

. (3.107)
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From (3.101)–(3.104) and (3.107), we thus have

Wε,s

(
P̃N,δ,ξ0

n (̃ξ0, ·), PN,δ
n (̃ξ0, ·)

)

≤ 1 − 1
2

exp
{
−c̃β(1 + βδ)∥σ−1∥2M2 exp

(
C(ν3β)−1/2M2

)}
. (3.108)

Hence, combining inequality (3.54) with the estimates (3.99) and (3.108), it follows that

Wε,s

(
PN,δ

n (̃ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤ c̃s Ms

ε

exp
(
Cs(ν3β)−1/2M2)

(1 + βδ)3ns/8

+ 1 − 1
2

exp
{
−c̃β

(
1 + βδ0

)
∥σ−1∥2M2 exp

(
C(ν3β)−1/2M2

)}
,

(3.109)

where we have used that δ ≤ δ0 to further estimate the right-hand side of (3.108).
To arrive at (3.57), we use the fact that for any constant 0 < a < 1 we have ln(1 + x) ≥ ax for all

x ∈ [0, (1/a) − 1]. In particular, taking a = 1/(1 + βδ0) we have βδ ≤ βδ0 = (1/a) − 1, so that

1
(1 + βδ)3ns/8 = exp

(
−3ns

8
ln(1 + βδ)

)
≤ exp

(
−3s

8
β

1 + βδ0
nδ

)
. (3.110)

Hence, we can fix a time T1 > 0 depending on M, s, ε, β, σ , δ0 such that for all n ∈ N with nδ ≥ T1 the
first term in the right-hand side of (3.109) can be estimated as

c̃s Ms

ε

exp
(
Cs(ν3β)−1/2M2)

(1 + βδ)3ns/8 ≤ c̃s Ms

ε
exp

(
Cs(ν3β)−1/2M2

)
exp

(
−3s

8
β

1 + βδ0
nδ

)

≤ 1
4

exp
{
−c̃β

(
1 + βδ0

)
∥σ−1∥2M2 exp

(
C(ν3β)−1/2M2

)}
. (3.111)

From (3.109) and (3.111), we thus conclude

Wε,s

(
PN,δ

n (̃ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤ 1 − 1

4
exp

{
−c̃β

(
1 + βδ0

)
∥σ−1∥2M2 exp

(
C(ν3β)−1/2M2

)}

=: 1 − κ1.

This shows (3.57) and concludes the proof. !

Proof of Proposition 3.13. Fix κ2 ∈ (0, 1) and r > 0. Let ξ0, ξ̃0 ∈ L̇2 satisfying ρε,s(ξ0, ξ̃0) < 1, for ρε,s
as defined in (3.26). Note that this implies ρε,s(ξ0, ξ̃0) = |ξ0 − ξ̃0|s/ε.

We proceed analogously as in the proof of Proposition 3.12, starting with the inequality (3.54). For the
first term in the right-hand side of (3.54), we first estimate as in (3.98). Then, choose s ∈ (0, 1] such that

Cs
(ν3β)1/2 ≤ r, (3.112)
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with C > 0 as in (3.98) and (3.106). Here we recall that β > 0 is fixed so that assumptions (3.77) and
(3.78) of Lemma 3.16 hold, which is possible due to the second condition in the standing assumption
(3.29).

With this choice of s, it follows from (3.98) that

Wε,s

(
PN,δ

n (ξ0, ·), P̃N,δ,ξ0
n (̃ξ0, ·)

)
≤ c̃s |ξ0 − ξ̃0|s

ε

exp
(
r|ξ0|2

)

(1 + βδ)3ns/8 . (3.113)

For the second term in the right-hand side of (3.54), we proceed as in (3.100)–(3.102), and then
invoke (3.94) to obtain that for any a ∈ (0, 1]

Wε,s

(
P̃N,δ,ξ0

n (̃ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤

∥∥L (Ŵ) − L (W)
∥∥

TV ≤ 2
1−a
1+a

{
E

[(∫ ∞

0
|ϕ(t)|2 dt

)a]} 1
1+a

.

(3.114)

By Hölder’s inequality, together with estimate (3.106), we have

2
1−a
1+a

{
E

[(∫ ∞

0
|ϕ(t)|2 dt

)a]} 1
1+a

≤ 2
1−a
1+a

[
E

∫ ∞

0
|ϕ(t)|2 dt

] a
1+a

≤ 2
1−a
1+a

(
c̃β(1 + βδ)∥σ−1∥2

) a
1+a |ξ0 − ξ̃0|

2a
1+a exp

(
Ca

(1 + a)(ν3β)1/2 |ξ0|2
)

. (3.115)

In particular, choosing a ∈ (0, 1] such that 2a/(1 + a) = s, with s ∈ (0, 1] as fixed in (3.112), it follows
from (3.114), (115) and (3.112) that

Wε,s

(
P̃N,δ,ξ0

n (̃ξ0, ·), PN,δ
n (̃ξ0, ·)

)
≤ 21−s

(
c̃β(1 + βδ)∥σ−1∥2

)s/2
|ξ0 − ξ̃0|s exp

(
r|ξ0|2

)

≤ 21−s
(

c̃β
(
1 + βδ0

)
∥σ−1∥2

)s/2
|ξ0 − ξ̃0|s exp

(
r|ξ0|2

)
. (3.116)

Thus, from (3.54), (3.113), (3.116) and since ρε,s(ξ0, ξ̃0) = |ξ0 − ξ̃0|s/ε, it follows that

Wε,s(P
N,δ
n (ξ0, ·), PN,δ

n (̃ξ0, ·))

≤
[

c̃s

(1 + βδ)3ns/8 + ε21−s
(

c̃β
(
1 + βδ0

)
∥σ−1∥2

)s/2
]

exp
(

r|ξ0|2
)

ρε,s(ξ0, ξ̃0) (3.117)

for every n ∈ N.
In particular, by estimating 1/(1 + βδ)3ns/8 ≤ 1, we deduce that (3.58) holds with

C(ε, s) = c̃s + ε21−s
(

c̃β
(
1 + βδ0

)
∥σ−1∥2

)s/2
.
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Moreover, proceeding as in (3.110) and choosing T2 = T2(κ2, r) > 0 and ε = ε(κ2, r) > 0 such that

c̃s exp
(

−3s
8

β

1 + βδ0
T2

)
+ ε21−s

(
c̃β

(
1 + βδ0

)
∥σ−1∥2

)s/2
≤ κ2,

we conclude from (3.117) that (3.59) holds for every n ∈ N with nδ ≥ T2, as desired. !
We conclude this section by combining the above results to deduce a proof of Theorem 3.9.

Proof of Theorem 3.9. Fix N ∈ N and δ ≤ δ0. Following the notation from Theorem 2.1, we take
(X, ∥ · ∥) = (L̇2, | · |), I = δZ+, {Pt}t∈I given by PN,δ

n , n ∈ Z+ and Λ as the class of distance
functions defined in (3.26). It follows from Proposition 3.11, Proposition 3.12 and Proposition 3.13 that
assumptions (A1), (A2) and (A3) of Theorem 2.1 are satisfied in this setting. Thus, from (2.9) we obtain
that for every m > 1 there exists αm > 0 such that for each α ∈ (0, αm) there exist ε > 0, s ∈ (0, 1],
T > 0, and constants C1, C2 > 0 for which the following holds

Wε,s,α

(
µPN,δ

n , µ̃PN,δ
n

)
≤ C1 e−nδC2Wε,s,α/m(µ, µ̃) (3.118)

for every µ, µ̃ ∈ Pr(L̇2) and all n ∈ Z+ such that nδ ≥ T .
Now take any t ∈ R+ with t ≥ δ0 + T , and let n0 := infn∈Z+{nδ0 ≥ T}. It follows that (n0 − 1)δ0 <

T ≤ t−δ0, and hence t ≥ n0δ0 ≥ n0δ for all δ ≤ δ0. Thus, there exists n ∈ Z+ for which t ∈ [nδ, (n+1)δ),
so that from definition (3.28) we have PN,δ

t = PN,δ
n . Therefore,

Wε,s,α

(
µPN,δ

t , µ̃PN,δ
t

)
= Wε,s,α

(
µPN,δ

n , µ̃PN,δ
n

)
≤ C1 e−nδC2Wε,s,α/m(µ, µ̃)

≤ C1eδ0C2 e−tC2Wε,s,α/m(µ, µ̃) (3.119)

for every µ, µ̃ ∈ Pr(L̇2). Moreover, according to the dependence of the constants C1, C2 made explicit
in the statement of Theorem 2.1, it follows from Proposition 3.11 that C1 and C2 depend only on m, α,
T , ν, |σ |, δ0. Hence, we may take the supremum in (3.119) with respect to N ∈ N and δ in (0, δ0] to
conclude that (3.30) holds for every t ≥ δ0 + T . !

3.3 Finite-time strong error estimates for the numerical scheme

In this section, we present an estimate of the error between a solution ξ(t), t ≥ 0, of (3.1), and a solution
ξn

N,δ , n ∈ Z+, of the numerical scheme (3.20), in a suitable strong sense. This will be used later in
Section 3.4 to show a uniform weak convergence result for the family of Markov semigroups {PN,δ

n }n∈Z+ ,
defined in (3.25), as an application of Theorem 2.8. Specifically, it will be used to verify assumption (H3)
in Theorem 2.5.

For this purpose, we split the error |ξ(nδ)−ξn
N,δ| into the spatial discretization error |ξ(nδ)−ξN(nδ)|

and the time discretization error |ξN(nδ) − ξn
N,δ|. Here we recall that ξN(t), t ≥ 0, denotes a solution of

the spectral Galerkin discretization scheme (3.12). Concretely, we obtain a strong L2(Ω) estimate of the
spatial discretization error with respect to the topology in L∞

loc,tL
2
x . For the time discretization error, due

to limitations associated to the nonlinear terms in (3.12) and (3.20), we are only able to obtain strong
convergence in Lp(Ω; L∞

loc,tL
2
x) for sufficiently small p > 0. As we show later in Proposition 3.19, this

is however compensated in the Wasserstein error estimate by the presence of the Lyapunov function
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ξ 5→ exp(α|ξ |2) in the definition of ρε,s,α , thanks to the associated Lyapunov inequalities from
Proposition 3.11 and Proposition 3.6.

We start by providing an estimate of the spatial discretization error.

Proposition 3.17 Fix any N ∈ N, σ ∈ Ḣ
1

and ξ0 ∈ Ḣ1. Let ξ = ξ(t) and ξN = ξN(t) be the solutions
of (3.1) and (3.12), satisfying ξ(0) = ξ0 and ξN(0) = ΠNξ0 almost surely, respectively. Then, for every
α satisfying

0 < α ≤ ν

2|σ |2 ,

it follows that, for every T > 0,

E

[

sup
t∈[0,T]

|ξ(t) − ξN(t)|2
]

≤ C
N

[
exp

(
cα|ξ0|2

)
+ |∇ξ0|2

]
, (3.120)

for some positive constant C depending only on ν, |σ |, |∇σ |, α, T .

Proof. We start by estimating the spatial discretization error by its low mode and high mode components,
namely

E

[

sup
t∈[0,T]

|ξ(t) − ξN(t)|2
]

= E

[

sup
t∈[0,T]

|(ΠNξ(t) − ξN(t)) + (I − ΠN)ξ(t)|2
]

≤ 2E

[

sup
t∈[0,T]

|ΠNξ(t) − ξN(t)|2
]

+ 2E

[

sup
t∈[0,T]

|(I − ΠN)ξ(t)|2
]

. (3.121)

For the second term, it follows from (3.11) and the analogous version of the bound (3.13) for ξ(t), t ≥ 0,
that

E

[

sup
t∈[0,T]

|(I − ΠN)ξ(t)|2
]

≤ λ−1
N+1E

[

sup
t∈[0,T]

|∇ξ(t)|2
]

≤ N−1C
(

1 + |ξ0|4 + |∇ξ0|2
)

, (3.122)

for some positive constant C = C(ν, T , |σ |, |∇σ |), where we have also used that λj ∼ j as recalled in
Section 3.1.1.

We proceed to estimate the first term in (3.121). Let us denote ζN = ΠNξ − ξN and vN = K ∗ ζN .
Applying the projection ΠN to (3.1), we have

dΠNξ +
[
−ν∆ΠNξ + ΠN(u · ∇ξ)

]
dt =

d∑

k=1

ΠNσk dWk. (3.123)

Subtracting (3.12) from (3.123), we obtain that ζN satisfies

dζN +
[
−ν∆ζN + ΠN

(
u · ∇ξ − uN · ∇ξN

)]
dt = 0.
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Hence, it follows by Itô formula that

d|ζN |2 + 2ν|∇ζN |2 dt = −2
(
u · ∇ξ − uN · ∇ξN , ζN

)
dt. (3.124)

Denote QN = I − ΠN . Notice that

u · ∇ξ − uN · ∇ξN = u · ∇QNξ + QNu · ∇ΠNξ + ΠNu · ∇ζN + vN · ∇ΠNξ − vN · ∇ζN .

Thus, due to the orthogonality property (3.7),

(
u · ∇ξ − uN · ∇ξN , ζN

)
=

(
u · ∇QNξ , ζN

)
+

(
QNu · ∇ΠNξ , ζN

)
+

(
vN · ∇ΠNξ , ζN

)
. (3.125)

We proceed to estimate each term in the right-hand side of (3.125). Invoking (3.6), (3.9) and (3.11), we
obtain

|
(
u · ∇QNξ , ζN

)
| = |

(
u · ∇ζN , QNξ

)
| ≤ c|ξ |1/2|∇ξ |1/2|∇ζN ||QNξ |

≤ c

λ
1/2
N+1

|ξ |1/2|∇ξ |3/2|∇ζN | ≤ ν

6
|∇ζN |2 + c

νλN+1
|ξ | |∇ξ |3. (3.126)

Moreover, it follows from (3.8) with a = 1/2 that

∣∣(vN · ∇ΠNξ , ζN
)∣∣ ≤ c|∇ΠNξ | |ζN |3/2 |∇ζN |1/2 ≤ ν

6
|∇ζN |2 + c

ν1/3 |∇ξ |4/3|ζN |2, (3.127)

and

∣∣(QNu · ∇ΠNξ , ζN
)∣∣ =

∣∣(QNu · ∇ζN , ΠNξ
)∣∣ ≤ c|QNξ | |∇ζN | |ΠNξ |1/2 |∇ΠNξ |1/2

≤ c

λ
1/2
N+1

|ξ |1/2|∇ξ |3/2|∇ζN | ≤ ν

6
|∇ζN |2 + c

νλN+1
|ξ | |∇ξ |3. (3.128)

Hence, from (3.124), we obtain

d
dt

|ζN |2 + ν|∇ζN |2 ≤ c
ν1/3 |∇ξ |4/3|ζN |2 + c

νλN+1
|ξ | |∇ξ |3.

Ignoring the second term in the right-hand side and applying Gronwall’s inequality, recalling that
ζN(0) = 0, it follows that

|ζN(t)|2 ≤ c
νλN+1

∫ t

0
|ξ(s)| |∇ξ(s)|3 exp

(
c

ν1/3

∫ t

s
|∇ξ(τ )|4/3 dτ

)
ds. (3.129)
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For some α > 0 to be appropriately chosen later, we estimate

c
ν1/3

∫ t

s
|∇ξ(τ )|4/3 dτ ≤

∫ t

s

(αν

2
|∇ξ(τ )|2 + Cα

)
dτ ≤ αν

2

∫ T

0
|∇ξ(τ )|2 dτ + CαT , (3.130)

where Cα = c(α2ν3)−1 for some positive absolute constant c.
Plugging (3.130) into (3.129), and taking the supremum over t ∈ [0, T], expected values, and

applying Hölder’s inequality, it follows that

E

[

sup
t∈[0,T]

|ζN(t)|2
]

≤ c
eCαT

νλN+1

(
E exp

(
αν

∫ T

0
|∇ξ(τ )|2 dτ

))1/2 (

E

[(∫ T

0
|ξ(s)| |∇ξ(s)|3 ds

)2])1/2

. (3.131)

Choosing 0 < α ≤ ν/(2|σ |2) and invoking Proposition 3.5, we estimate the first term between
parentheses above as

E exp
(

αν

∫ T

0
|∇ξ(τ )|2 dτ

)
≤ 2 exp

(
α|ξ0|2

)
exp

(
α|σ |2T

)
. (3.132)

For the last term in (3.131), we estimate

E

[(∫ T

0
|ξ(s)| |∇ξ(s)|3 ds

)2]

≤ E

[

sup
t∈[0,T]

|ξ(t)|2|∇ξ(t)|2
(∫ T

0
|∇ξ(s)|2 ds

)2]

≤ CE

[(

sup
t∈[0,T]

(
|ξ(t)|2 + ν

∫ t

0
|∇ξ(s)|2 ds

)3
)(

sup
t∈[0,T]

|∇ξ(t)|2
)]

.

Thus, after applying Hölder’s inequality, we obtain from the analogous versions of inequalities (3.13)
and (3.14) with k = 0 satisfied by ξ(t) that

E

[(∫ T

0
|ξ(s)| |∇ξ(s)|3 ds

)2]

≤ C
(

1 + |ξ0|6
)(

1 + |ξ0|4 + |∇ξ0|2
)

≤ C exp
(

cα|ξ0|2
)(

1 + |∇ξ0|2
)

, (3.133)

for some positive constant C depending on ν, α, T , |∇σ |.
Plugging (3.132) and (3.133) into (3.131), we deduce that

E

[

sup
t∈[0,T]

|ζN(t)|2
]

≤ C
N

exp
(

cα|ξ0|2
)
(1 + |∇ξ0|), (3.134)

where we again used that λj ∼ j.
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Now combining (3.134) with (3.122), it follows from (3.121) that

E

[

sup
t∈[0,T]

|ξ(t) − ξN(t)|2
]

≤ 2C
N

exp
(

cα|ξ0|2
)
(1 + |∇ξ0|) + 2C

N

(
1 + |ξ0|4 + |∇ξ0|2

)

≤ C
N

[
exp

(
cα|ξ0|2

)
+ |∇ξ0|2

]
.

This finishes the proof. !
We proceed by showing an estimate of the time discretization error as mentioned above. We note that

a related result is obtained in Bessaih & Millet (2019) (see also Bessaih & Millet (2021, 2022)), where the
authors consider instead the velocity formulation of the 2D stochastic Navier–Stokes equations subject
to periodic boundary conditions and either multiplicative or additive noise as in (3.1). In particular, for a
semi-implicit Euler time discretization under additive noise analogously as in (3.22), their result yields a
strong L2(Ω) estimate of the discretization error for the approximating velocity fields under the topology
of L∞

loc,tL
2
x and with order of convergence 1/4. Our result below provides instead a strong error bound

for the approximating vorticity fields in L∞
loc,tL

2
x , which implies an error bound for the corresponding

velocity fields in L∞
loc,tH

1
x , to a power p sufficiently small, and with higher order of convergence 1/2.

Notably, according to (3.135) below it follows that p can be almost 2 as ν → ∞. The main difference in
our proof in relation to Bessaih & Millet (2019) concerns the definition of the appropriate localization
set in the sample space. Here, we consider a sequence of localization sets that are related to a suitable
sequence of discrete stopping times, see (3.146) and (3.154) below.

Proposition 3.18 Fix any N ∈ N, δ, δ0 > 0 with δ ≤ δ0, σ ∈ Ḣ
1

and ξ0 ∈ Ḣ2. Let ξN(t), t ≥ 0,
and ξn

N,δ , n ∈ Z+, be the solutions of (3.12) and (3.20) satisfying ξN(0) = ΠNξ0 and ξ0
N,δ = ΠNξ0,

respectively. Then there exist positive absolute constants c1, c2 such that if

0 < α ≤ c1

|σ |2 min
{
ν,

1
δ0

}
and 0 < p <

2ν2α

c2 + ν2α
, (3.135)

then for every K ∈ N and p̃ ∈ (0, 1/2)

E

[

sup
k≤K

∣∣∣ξ k
N,δ(ξ0) − ξN(tk; ξ0)

∣∣∣
p
]

≤ Cδp̃p
(

1 + |∇ξ0|4 + |Aξ0|2
)p/2

exp
(

C̃α|ξ0|2
)

, (3.136)

where C̃ = c(1 + νδ0) and C = C(p̃, p, ν, δ0, T , |σ |, |∇σ |, α), with T ≥ (K + 1)δ. Notably, C and C̃ are
independent of N and δ.

Proof. For each j ∈ N, let ζ
j
N,δ = ζ j := ξ

j
N,δ − ξN(tj) = ξ j − ξN(tj) and vj = K ∗ ζ j. Integrating (3.12)

with respect to t ∈ [tj, tj+1],

ξN(tj+1) − ξN(tj) +
∫ tj+1

tj

[
−ν∆ξN(s) + ΠN(uN(s) · ∇ξN(s))

]
ds

= ΠNσ (W(tj+1) − W(tj)). (3.137)
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Thus, subtracting (3.137) from (3.20) with n = j + 1, we obtain

ζ j+1 − ζ j − ν

∫ tj+1

tj

(
∆ξ j+1 − ∆ξN(s)

)
ds +

∫ tj+1

tj

[
ΠN

(
uj · ∇ξ j+1

)
− ΠN(uN(s) · ∇ξN(s))

]
ds = 0.

Taking the inner product with ζ j+1 in L̇2 yields

|ζ j+1|2 + |ζ j+1 − ζ j|2 − |ζ j|2 = 2ν

∫ tj+1

tj

(
∆ξ j+1 − ∆ξN(s), ζ j+1

)
ds

− 2
∫ tj+1

tj

((
uj · ∇ξ j+1

)
− (uN(s) · ∇ξN(s)), ζ j+1

)
ds. (3.138)

Notice that

2ν

∫ tj+1

tj

(
∆ξ j+1 − ∆ξN(s),ζ j+1

)
ds

= −2νδ|∇ζ j+1|2 + 2ν

∫ tj+1

tj

(
∆ξN(tj+1) − ∆ξN(s), ζ j+1

)
ds. (3.139)

Integrating by parts the second term in the right-hand side of (3.139), then applying Cauchy–Schwarz
and Young’s inequalities, it follows that

2ν

∣∣∣∣∣

∫ tj+1

tj

(
∆ξN(tj+1) − ∆ξN(s), ζ j+1

)
ds

∣∣∣∣∣

≤ 2ν

∫ tj+1

tj

∣∣∣∇ξN(tj+1) − ∇ξN(s)
∣∣∣
∣∣∣∇ζ j+1

∣∣∣ ds

≤ νδ

4

∣∣∣∇ζ j+1
∣∣∣
2
+ cν

∫ tj+1

tj

∣∣∣∇ξN(tj+1) − ∇ξN(s)
∣∣∣
2

ds. (3.140)

Now for the second term in the right-hand side of (3.138), first notice that

(
(uj · ∇ξ j+1) − (uN(s) · ∇ξN(s)), ζ j+1

)
(3.141)

=
(

vj · ∇ξ j+1, ζ j+1
)

+
(
(uN(tj) − uN(s)) · ∇ξN(tj+1), ζ

j+1
)

−
(

uN(s) · ∇(ξN(s) − ξN(tj+1)), ζ
j+1

)
.
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We proceed to estimate each term in the right-hand side of (3.141). With (3.8) and Young’s inequality,
we obtain

∣∣∣
(

vj · ∇ξ j+1, ζ j+1
)∣∣∣ ≤ c|ζ j| |∇ξ j+1| |ζ j+1|1/2|∇ζ j+1|1/2

≤ c|ζ j| |∇ξ j+1| |∇ζ j+1|

≤ ν

8
|∇ζ j+1|2 + c

ν
|ζ j|2|∇ξ j+1|2. (3.142)

Similarly,

∣∣∣
(

uN(s) · ∇(ξN(s) − ξN(tj+1)), ζ
j+1

)∣∣∣ ≤ ν

8
|∇ζ j+1|2 + c

ν
|ξN(s)|2|∇ξN(s) − ∇ξN(tj+1)|2. (3.143)

Now from (3.6) and (3.9), we obtain

∣∣∣
(
(uN(tj) − uN(s)) · ∇ξN(tj+1), ζ

j+1
)∣∣∣ =

∣∣∣
(
(uN(tj) − uN(s)) · ∇ζ j+1, ξN(tj+1)

)∣∣∣

≤ c|∇ξN(tj) − ∇ξN(s)| |∇ζ j+1| |ξN(tj+1)|

≤ ν

8
|∇ζ j+1|2 + c

ν
|∇ξN(tj) − ∇ξN(s)|2|ξN(tj+1)|2. (3.144)

With (3.139)–(3.144), we obtain from (3.138) the following inequality valid for every j ∈ N

|ζ j+1|2 + |ζ j+1 − ζ j|2 − |ζ j|2 + νδ|∇ζ j+1|2

≤ cν
∫ tj+1

tj
|∇ξN(tj+1) − ∇ξN(s)|2 ds + cδ

ν
|ζ j|2|∇ξ j+1|2

+ c
ν
|ξN(tj+1)|2

∫ tj+1

tj
|∇ξN(tj) − ∇ξN(s)|2 ds + c

ν

∫ tj+1

tj
|ξN(s)|2|∇ξN(s) − ∇ξN(tj+1)|2 ds. (3.145)

Fix K ∈ N. For each l ∈ N, we define the following discrete stopping time

κl := min

⎧
⎨

⎩k ≥ 1 : sup
t∈[0,tk+2]

|ξN(t)|2
ν2 + 3δ

ν

k+2∑

j=1

|∇ξ j|2 ≥ l

⎫
⎬

⎭ ∧ K. (3.146)

We also define a corresponding family of discrete stopping times κ i
l , i = 0, 1, . . . , L, for some L = L(l) ∈

N to be suitably chosen, given by

κ0
l := 0; κ i

l := min

⎧
⎪⎨

⎪⎩
k ≥ κ i−1

l + 1 :
δ

ν

k+2∑

j=κ i−1
l +1

|∇ξ j|2 ≥ l
L

⎫
⎪⎬

⎪⎭
∧ κl, i = 1, . . . , L.

It is not difficult to show that κ i−1
l < κ i

l for all i = 1, . . . , L, and κL
l = κl.
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Ignoring the second and fourth terms in the left-hand side of (3.145) and summing over j =
κ i−1

l , . . . , k, for κ i−1
l ≤ k ≤ κ i

l and i ∈ {1, . . . , L}, it follows that

|ζ k+1|2 − |ζ κ i−1
l |2 ≤ cν

κ i
l∑

j=κ i−1
l

∫ tj+1

tj
|∇ξN(tj+1) − ∇ξN(s)|2 ds + cδ

ν
sup

κ i−1
l ≤j≤κ i

l

|ζ j|2
κ i

l +1∑

j=κ i−1
l +1

|∇ξ j|2

+ c
ν

sup
t∈[0,t

κi
l +1]

|ξN(t)|2
κ i

l∑

j=κ i−1
l

∫ tj+1

tj

[
|∇ξN(tj) − ∇ξN(s)|2 + |∇ξN(s) − ∇ξN(tj+1))|2

]
ds. (3.147)

Notice that, by the definition of κ i
l , i = 1, . . . , L, we have

δ

ν

κ i
l +1∑

j=κ i−1
l +1

|∇ξ j|2 ≤ l
L

for all i = 1, . . . , L.

Choose L ∈ N as

L = min {j ∈ N : cl/j ≤ 1/2}, (3.148)

with c > 0 as in the second term in the right-hand side of (3.147). We then estimate this term as

cδ
ν

sup
κ i−1

l ≤j≤κ i
l

|ζ j|2
κ i

l +1∑

j=κ i−1
l +1

|∇ξ j|2 ≤ c
l
L

sup
κ i−1

l ≤j≤κ i
l

|ζ j|2 ≤ 1
2

sup
κ i−1

l ≤j≤κ i
l +1

|ζ j|2. (3.149)

Notice that (3.147) is in fact valid for all k = (κ i−1
l − 1), κ i−1

l , . . . , κ i
l . Thus, taking in (3.147) the

supremum over k = (κ i−1
l − 1), κ i−1

l , . . . , κ i
l and invoking (3.149), we obtain

sup
κ i−1

l ≤j≤κ i
l +1

|ζ j|2 ≤ 2
∣∣∣ζ κ i−1

l

∣∣∣
2
+ cν

κ i
l∑

j=κ i−1
l

∫ tj+1

tj

∣∣∣∇ξN(tj+1) − ∇ξN(s)
∣∣∣
2

ds

+ c
ν

sup
t∈

[
0,t

κi
l +1

] |ξN(t)|2
κ i

l∑

j=κ i−1
l

∫ tj+1

tj

[∣∣∣∇ξN(tj) − ∇ξN(s)
∣∣∣
2
+

∣∣∣∇ξN(s) − ∇ξN(tj+1)
∣∣∣
2
]

ds. (3.150)

From the definition of κl and since κ i
l ≤ κL

l = κl for all i = 1, . . . , L, we have

sup
t∈

[
0,t

κi
l +1

]
|ξN(t)|2

ν2 ≤ sup
t∈[0,tκl+1]

|ξN(t)|2
ν2 ≤ sup

t∈[0,tκl+1]

|ξN(t)|2
ν2 + 3δ

ν

κl+1∑

j=1

|∇ξ j|2 ≤ l. (3.151)
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Using (3.151) to estimate the third term in the right-hand side of (3.150), it follows that

sup
κ i−1

l ≤j≤κ i
l +1

|ζ j|2 ≤ 2|ζ κ i−1
l |2 + Ai,

where

Ai := cνl
κ i

l∑

j=κ i−1
l

∫ tj+1

tj

[
|∇ξN(tj) − ∇ξN(s)|2 + |∇ξN(s) − ∇ξN(tj+1)|2

]
ds. (3.152)

Hence, for every i = 1, . . . , L,

sup
j≤κ i

l

|ζ j|2 ≤ sup
j≤κ i−1

l

|ζ j|2 + sup
κ i−1

l ≤j≤κ i
l +1

|ζ j|2

≤ sup
j≤κ i−1

l

|ζ j|2 + 2|ζ κ i−1
l |2 + Ai

≤ 3 sup
j≤κ i−1

l

|ζ j|2 + Ai.

By induction, it follows that for every l ∈ N and L = L(l) ∈ N as in (3.148),

sup
j≤κl

|ζ j|2 = sup
j≤κL

l

|ζ j|2 ≤ 3L|ζ 0|2 +
L∑

i=1

3L−iAi =
L∑

i=1

3L−iAi, (3.153)

since ζ 0 = 0.
Now, for K ∈ N as in (3.146), we define for every l ∈ N

ΩK
l :=

⎧
⎨

⎩ω ∈ Ω : l − 1 ≤ sup
t∈[0,tK+2]

|ξN(t)|2
ν2 + 3δ

ν

K+2∑

j=1

|∇ξ j|2 < l

⎫
⎬

⎭ . (3.154)

Since Ω = ⋃
l∈N ΩK

l , we obtain for any p ∈ (0, 2)

E[sup
j≤K

|ζ j|p] = E

(

sup
j≤K

|ζ j|p
∞∑

l=1

1ΩK
l

)

=
∞∑

l=1

E

(

sup
j≤K

|ζ j|p1ΩK
l

)

≤
∞∑

l=1

(

E[sup
j≤K

|ζ j|21ΩK
l

]

)p/2

P(ΩK
l )

2−p
2 , (3.155)
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where the last step follows from Hölder’s inequality. Moreover, from the definition of κl and ΩK
l , it

follows that if ω ∈ ΩK
l then κl(ω) = K. Thus, from (3.153) and (3.152),

E

[

sup
j≤K

|ζ j|21ΩK
l

]

= E

[

sup
j≤κl

|ζ j|21ΩK
l

]

≤
L∑

i=1

3L−iE(1ΩK
l
Ai)

≤ cνl3L−1E

⎛

⎜⎝1ΩK
l

L∑

i=1

κ i
l∑

j=κ i−1
l

∫ tj+1

tj

[
|∇ξN(tj)−∇ξN(s)|2+|∇ξN(s)−∇ξN(tj+1)|2

]
ds

⎞

⎟⎠

≤ cνl3L−1E
K∑

j=0

∫ tj+1

tj

[
|∇ξN(tj) − ∇ξN(s)|2 + |∇ξN(s) − ∇ξN(tj+1)|2

]
ds

= cνl3L−1
K∑

j=0

∫ tj+1

tj

(
E

[
|∇ξN(tj) − ∇ξN(s)|2

]
+ E

[
|∇ξN(s) − ∇ξN(tj+1)|2

])
ds.

Fix any T ≥ (K + 1)δ. From Theorem 3.7 with m = 2, we have that for every p̃ ∈ (0, 1/2) and
s, t ∈ [0, T]

E[|∇ξN(t) − ∇ξN(s)|2] ≤ CR0|t − s|2p̃, (3.156)

where R0 = (1 + |ξ0|8 + |∇ξ0|4 + |Aξ0|2), and C is a positive constant depending on p̃, T , ν, |σ |, |∇σ |.
Hence,

E

[

sup
j≤K

|ζ j|21ΩK
l

]

≤ cνl3L−1
K∑

j=0

CR0δ
2p̃+1 ≤ CR0δ

2p̃l3L−1,

where C = C(p̃, T , ν, |σ |, |∇σ |).
Moreover, from the definition of L in (3.148) it follows that 2cl ≤ L ≤ 2cl + 1, so that l3L−1 ≤ 3cl

and

E

[

sup
j≤K

|ζ j|21ΩK
l

]

≤ CR0δ
2p̃3cl. (3.157)
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From the definition of the set ΩK
l in (3.154) and invoking Markov’s inequality, it follows that for

any α̃ > 0

P(ΩK
l ) ≤ P

⎛

⎝ sup
t∈[0,tK+2]

|ξN(t)|2
ν2 + 3δ

ν

K+2∑

j=1

|∇ξ j|2 ≥ l − 1

⎞

⎠

= P

⎛

⎝exp

⎛

⎝α̃ sup
t∈[0,tK+2]

|ξN(t)|2
ν2 + α̃

3δ

ν

K+2∑

j=1

|∇ξ j|2
⎞

⎠ ≥ eα̃(l−1)

⎞

⎠

≤ e−α̃(l−1)E

⎛

⎝exp

⎛

⎝α̃ sup
t∈[0,tK+2]

|ξN(t)|2
ν2 + α̃

3δ

ν

K+2∑

j=1

|∇ξ j|2
⎞

⎠

⎞

⎠

≤ e−α̃(l−1)

(

E exp

(

2α̃ sup
t∈[0,tK+2]

|ξN(t)|2
ν2

))1/2
⎛

⎝E exp

⎛

⎝cα̃
δ

ν

K+2∑

j=1

|∇ξ j|2
⎞

⎠

⎞

⎠
1/2

.

Now we assume that 0 < α̃ ≤ c̃ν2|σ |−2 min{ν, δ−1
0 } for some absolute constant c̃ > 0 that is small

enough so we can invoke the bounds (3.62) from Proposition 3.15 and (3.16) from Proposition 3.5 to
obtain that

P
(
ΩK

l

)
≤ C e−α̃(l−1) exp

(
C̃

α̃

ν2 |ξ0|2
)

exp
(

c
α̃

ν2 |σ |2(K + 2)δ

)

≤ C e−α̃(l−1) exp
(

C̃
α̃

ν2 |ξ0|2
)

, (3.158)

where C = C(ν, δ0, T , |σ |) and C̃ = c(1 + νδ0).
Therefore, it follows from from (3.155), (3.157) and (3.158) that

E

[

sup
j≤K

|ζ j|p
]

≤
∞∑

l=1

(
CR0δ

2p̃3cl
)p/2

(
C e−α̃(l−1) exp

(
C̃

α̃

ν2 |ξ0|2
)) 2−p

2

≤ CRp/2
0 exp

(
C̃

α̃

ν2 |ξ0|2
)

δp̃p

( ∞∑

l=1

3cple− α̃(2−p)
2 l

)

eα̃
(2−p)

2 . (3.159)

For the terms depending on the initial datum ξ0, we have by the definition of R0 in (3.156) that

Rp/2
0 exp

(
C̃

α̃

ν2 |ξ0|2
)

=
(

1 + |ξ0|8 + |∇ξ0|4 + |Aξ0|2
)p/2

exp
(

C̃
α̃

ν2 |ξ0|2
)

≤ C
(

1 + |∇ξ0|4 + |Aξ0|2
)p/2

exp
(

C̃
α̃

ν2 |ξ0|2
)

, (3.160)

for C = C(p, ν, δ0, |σ |, α̃).
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Moreover, for the term involving the sum in (3.159), notice that

∞∑

l=1

3cple−α̃
(2−p)

2 l =
∞∑

l=1

eln(3)cple−α̃
(2−p)

2 l =
∞∑

l=1

e−γ l, (3.161)

where γ = [α̃(2 − p)/2] − cp. We choose p < 2α̃/(c + α̃), so that γ > 0 and, consequently, the last
sum in (3.161) is finite. We thus conclude from (3.159) and (3.160) that

E

[

sup
j≤K

|ζ j|p
]

≤ Cδp̃p
(

1 + |∇ξ0|4 + |Aξ0|2
)p/2

exp
(

C̃
α̃

ν2 |ξ0|2
)

,

for some positive constant C = C(p̃, p, ν, δ0, T , |σ |, |∇σ |, α̃). This shows (3.136) by denoting α := α̃ν−2,
and finishes the proof. !

3.4 Uniform in time weak convergence of the numerical scheme

This section focuses on the application of Theorem 2.5 and Theorem 2.8 to the space-time discretization
of the 2D stochastic Navier–Stokes equations introduced in (3.20). Following the notation from
Theorem 2.5, similarly as in Section 3.2 we take (X, ∥ · ∥) = (L̇2, | · |) and again consider Λ to be
the class of distance functions ρε,s, ε > 0, s ∈ (0, 1], defined in (3.26). We let Θ be the set of pairs
{(N, δ) : N ∈ N, δ > 0} ∪ {(∞, 0)}. Then, for every θ = (N, δ) with N ∈ N and δ > 0, we let {Pθ

t }t≥0

be the family of Markov kernels {PN,δ
t }t≥0 associated to the numerical scheme (3.22), defined in (3.28)

and (3.25). For θ0 := (∞, 0), we let {Pθ0
t }t≥0 be the Markov semigroup {Pt}t≥0 associated to the 2D

SNSE (3.1), and defined in (3.5).
Regarding assumptions (H1)–(H4) of Theorem 2.5, only (H3) requires extra work to be verified.

This is done in the following proposition, whose proof follows crucially from the strong error estimates
obtained in Proposition 3.17 and Proposition 3.18 above, combined with the exponential Lyapunov
inequalities from Proposition 3.11 and Proposition 3.6.

Proposition 3.19 Fix any N ∈ N, δ, δ0 > 0 with δ ≤ δ0, and σ ∈ Ḣ
1
. Let {Pt}t≥0 and {PN,δ

t }t≥0 be the
corresponding family of Markov kernels associated to systems (3.1) and (3.22), respectively, as defined
in (3.5) and (3.28). Then, there exists a positive absolute constant c1 such that if

α′ = c1

|σ |2 min
{
ν,

1
δ0

}
(3.162)

then for every α ∈ (0, α′], s ∈ (0, 1], ε > 0 and p̃ ∈ (0, 1/2), it holds that

Wε,s,α

(
PN,δ

t (ξ0, ·), Pt(ξ0, ·)
)

(3.163)

≤ C eC′t

ε1/2

[
max{δs, δp/2}p̃/2 + N−s/4

]
exp

(
C̃α′|ξ0|2

)(
1 + |∇ξ0| + |Aξ0|1/2

)s
,
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for every t ≥ 0 and ξ0 ∈ Ḣ2. Here, 0 < p < 2ν2α′
c2+ν2α′ for some absolute constant c2, and C̃ = c(1 + νδ0),

C′ = C′(ν, |σ |), C = C(p̃, p, ν, δ0, |σ |, |∇σ |, α).

Proof. Fix any α ∈ (0, α′], s ∈ (0, 1], ε > 0, p̃ ∈ (0, 1/2), ξ0 ∈ Ḣ2 and t ≥ 0. Let n ∈ Z+ such that
t ∈ [nδ, (n + 1)δ). It follows immediately from the definitions of {Pt}t≥0, {PN,δ

t }t≥0 and Wε,s,α that

Wε,s,α

(
PN,δ

t (ξ0, ·), Pt(ξ0, ·)
)

≤ Wε,s,α′
(
PN,δ

t (ξ0, ·), Pt(ξ0, ·)
)

= Wε,s,α′
(

PN,δ
n (ξ0, ·), Pt(ξ0, ·)

)

≤ 1
ε1/2E

[∣∣∣ξn(ξ0) − ξ(t; ξ0)
∣∣∣
s/2

exp
(

α′
∣∣∣ξn(ξ0)

∣∣∣
2
+ α′|ξ(t; ξ0)|2

)]
.

By Hölder’s inequality,

Wε,s,α′
(
PN,δ

t (ξ0, ·), Pt(ξ0, ·)
)

≤ 1
ε1/2

(
E

[∣∣∣ξn(ξ0) − ξ(t; ξ0)
∣∣∣
s])1/2

(
E exp

(
4α′

∣∣∣ξn(ξ0)
∣∣∣
2
))1/4 (

E exp
(

4α′|ξ(t; ξ0)|2
))1/4

.

(3.164)

We assume that the constants c1 in (3.162) and c2 in the definition of p are sufficiently small so that
the results of Proposition 3.11, Proposition 3.6, Proposition 3.17 and Proposition 3.18 can be applied
in the estimates to follow. In particular, invoking the exponential Lyapunov inequalities (3.32) from
Proposition 3.11 and the analogous version of (3.17) for ξ(t), t ≥ 0, from Proposition 3.6, respectively,
we estimate the last two terms between parentheses in (3.164) as

(
E exp

(
4α′

∣∣∣ξn(ξ0)
∣∣∣
2
))1/4 (

E exp
(

4α′
∣∣∣ξ(t; ξ0)

∣∣∣
2
))1/4

≤ C exp
(

2α′|ξ0|2
(1 + νλ1δ)

n

)
exp

(
α′e−νt|ξ0|2

)

≤ C exp
(

3α′|ξ0|2
)

, (3.165)

where C = C(ν, δ0, |σ |).
Regarding the first term between parentheses in (3.164), we first estimate as

E
[∣∣∣ξn(ξ0) − ξ(t; ξ0)

∣∣∣
s]

≤ E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
s]

+ E
[∣∣∣ξN(nδ; ξ0) − ξ(nδ; ξ0)

∣∣∣
s]

+ E
[∣∣∣ξ(nδ; ξ0) − ξ(t; ξ0)

∣∣∣
s]

, (3.166)

where we recall that s ∈ (0, 1]. We proceed to estimate the terms in the right-hand side of (3.166)
by invoking Theorem 3.7, Proposition 3.17 and Proposition 3.18 with T = t. Here we will write the
t-dependence of the constant C from (3.18), (3.120) and (3.136) explicitly as eC′t, for some constant
C′ = C′(ν, |σ |), as can easily be seen from the corresponding proofs.
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In particular, invoking inequality (3.120) from Proposition 3.17 and Hölder’s inequality, we estimate
the second term in the right-hand side of (3.166) as

E
[∣∣∣ξN(nδ; ξ0) − ξ(nδ; ξ0)

∣∣∣
s]

≤
(
E

[∣∣∣ξN(nδ; ξ0) − ξ(nδ; ξ0)
∣∣∣
2])s/2

≤
(

C eC′t

N

[
exp

(
cα′|ξ0|2

)
+ |∇ξ0|2

])s/2

≤ C eC′t

Ns/2 exp
(

cα′|ξ0|2
)(

1 + |∇ξ0|2
)s/2

, (3.167)

where C = C(ν, |σ |, |∇σ |, α′).
For the third term in the right-hand side of (3.166), we invoke the analogous version of inequality

(3.18) from Theorem 3.7 with ξ(t), and obtain

E
[
|ξ(nδ; ξ0) − ξ(t; ξ0)|s

]
≤

(
E|ξ(nδ; ξ0) − ξ(t; ξ0)|

)s ≤ C eC′tδsp̃
(

1 + |ξ0|4 + |∇ξ0|2
)s

, (3.168)

where C = C(p̃, ν, |σ |, |∇σ |).
Finally, to estimate the first term in the right-hand side of (3.166), let us first assume that s < p, with

p as in (3.135). In this case, it follows by Hölder’s inequality and (3.136) from Proposition 3.18 that

E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
s]

≤
(
E

∣∣∣ξn(ξ0) − ξN(nδ; ξ0)
∣∣∣
p)s/p

≤
(

C eC′tδp̃p exp
(

C̃α′|ξ0|2
)(

1 + |∇ξ0|4 + |Aξ0|2
)p/2

)s/p

≤ C eC′tδp̃s exp
(

C̃α′|ξ0|2
)(

1 + |∇ξ0|4 + |Aξ0|2
)s/2

, (3.169)

where C̃ = c(1 + νδ0) and C = C(p̃, p, ν, δ0, |σ |, |∇σ |). On the other hand, if s ≥ p we proceed as
follows

E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
s]

= E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
p/2∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
s− p

2
]

≤ E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
p/2 (

|ξn(ξ0)|s−
p
2 + |ξN(nδ; ξ0)|s−

p
2

)]

≤ C E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
p/2

(
exp

(
α′

∣∣∣ξn(ξ0)
∣∣∣
2)

+ exp
(
α′

∣∣∣ξN(nδ; ξ0)
∣∣∣
2))]

,
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where C = C(α′). Thus, by Hölder’s inequality and inequalities (3.32), (3.17) and (3.136) from
Proposition 3.11, Proposition 3.6 and Proposition 3.18, respectively, we obtain that

E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
s]

≤ C
(
E

[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)
∣∣∣
p])1/2

[
E exp

(
2α′

∣∣∣ξn(ξ0)
∣∣∣
2)

+ E exp
(

2α′
∣∣∣ξN(nδ; ξ0)

∣∣∣
2)]1/2

≤ C
(

eC′tδp̃p exp
(

C̃α′|ξ0|2
)(

1 + |∇ξ0|4 + |Aξ0|2
)p/2

)1/2

·
[
exp

(
4α′|ξ0|2

(1 + νλ1δ)
n

)
+ exp

(
2α′e−νnδ|ξ0|2

)]1/2

≤ C eC′tδp̃p/2 exp
(

C̃α′|ξ0|2
)(

1 + |∇ξ0|4 + |Aξ0|2
)s/4

, (3.170)

where C = C(p̃, p, ν, δ0, |σ |, |∇σ |, α′). Combining (3.169) and (3.170), it thus follows that for every
s ∈ (0, 1]

E
[∣∣∣ξn(ξ0) − ξN(nδ; ξ0)

∣∣∣
s]

≤ C eC′t max{δs, δp/2}p̃ exp
(

C̃α′|ξ0|2
)(

1 + |∇ξ0|4 + |Aξ0|2
)s/2

. (3.171)

Plugging (3.167), (3.168) and (3.171) into (3.166), we thus have

E
[∣∣∣ξn(ξ0) − ξ(nδ; ξ0)

∣∣∣
s]

≤ C eC′t
[
max{δs, δp/2}p̃ + N−s/2

]
exp

(
C̃α′|ξ0|2

)(
1 + |∇ξ0|4 + |Aξ0|2

)s/2
.

(3.172)

Now, plugging (3.165) and (3.172) into (3.164), we deduce that

Wε,s,α′
(
PN,δ

t (ξ0, ·), Pt(ξ0, ·)
)

≤ C eC′t

ε1/2

[
max{δs, δp/2}p̃/2 + N−s/4

]
exp

(
C̃α′|ξ0|2

)(
1 + |∇ξ0| + |Aξ0|1/2

)s
,

with C = C(p̃, p, ν, δ0, |σ |, |∇σ |, α′), and we recall that C̃ = c(1 + νδ0), C′ = C′(ν, |σ |). This shows
(3.163) and concludes the proof. !

Before proceeding with the application of Theorem 2.5 and Theorem 2.8 within this setting, we
present the following lemma showing finiteness of certain moments for the invariant measure of Pt,
t ≥ 0. This will ensure that the terms in (2.27) and (2.39) concerning µθ0

= µ∗ are finite.

Lemma 3.20 Fix any σ ∈ L̇
2
, and let µ∗ be an invariant measure of the corresponding Markov semigroup

Pt, t ≥ 0, defined in (3.5). Then, the following statements hold:
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1. For every α > 0 satisfying condition (3.15),

∫

L̇2
exp

(
α|ξ0|2

)
µ∗(dξ0) ≤ C, (3.173)

2. for some constant C = C(ν, |σ |).

3. Suppose additionally that σ ∈ Ḣ
k
, for some fixed k ∈ N. Then, for every m ∈ N,

∫

L̇2
∥ξ0∥2m

Ḣk µ∗(dξ0) ≤ C, (3.174)

4. for some constant C = C(ν, m, k, ∥σ∥Ḣk ). Consequently, µ∗ is supported in Ḣk, i.e.

µ∗(L̇
2 \ Ḣk) = 0.

Proof. The proof of (3.173) follows as a consequence of the analogous version of the exponential
Lyapunov inequality (3.17) for ξ(t), t ≥ 0, similarly as in the proof of Kuksin & Shirikyan (2012,
Theorem 2.5.3). The subsequent bound (3.174) then follows by combining (3.173) with inequality (3.14)
for ξ(t), t ≥ 0, by estimating 1 + |ξ0|2mp ≤ C(m, p, α) exp(α|ξ0|2). We omit further details. !

We are now ready to apply Theorem 2.5 and derive a bias estimate between invariant measures of
{PN,δ

t }t≥0 and {Pt}t≥0.

Theorem 3.21 (long time bias estimate). Fix any N ∈ N, δ, δ0 > 0 with δ ≤ δ0. Suppose there exists

K ∈ N and σ ∈ Ḣ
2

such that

ΠKL̇2 ⊂ range(σ ) and λK+1 ≥ c
ν

max

{

1,
1
δ0

,
δ2

0 |σ |4
ν3 ,

|σ |4
ν5

}

(3.175)

for some absolute constant c > 0. Let {Pt}t≥0 and {PN,δ
t }t≥0 be the corresponding family of Markov

kernels associated to systems (3.1) and (3.22), respectively, as defined in (3.5) and (3.28). Let µ∗ and
µN,δ

∗ be invariant measures for {Pt}t≥0 and {PN,δ
t }t≥0, respectively.

Then, there exists α∗ > 0 such that for each fixed α ∈ (0, α∗] there exists ε > 0 and s ∈ (0, 1] for
which the following inequality holds for every p̃ ∈ (0, 1/2)

Wε,s,α

(
µN,δ

∗ , µ∗
)

≤ Cg(N, δ), (3.176)

where

g(N, δ) = max{δs, δp/2}p̃/2 + N−s/4, (3.177)
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with

0 < p <
2ν2α′

c2 + ν2α′ , α′ = c1

|σ |2 min
{
ν,

1
δ0

}
, (3.178)

for some absolute constants c1, c2, and where C = C(ε, s, α, ν, δ0, |σ |, |∇σ |, ∥σ∥Ḣ2 , p̃).

Proof. We verify that all assumptions from Theorem 2.5 are satisfied with the choices of (X, ∥ · ∥), Λ,
Θ , {Pθ

t }t≥0 and {Pθ0
t }t≥0 taken in the introduction to this section.

Assumption 2.5 follows as a consequence of Proposition A.1 applied to the metric ρε,s. Indeed, items
(i) and (ii) of Proposition A.1 hold with M = K = 1. Moreover, taking c = 1 in item (iii), we notice that
if ρε,s(ξ1, ξ2) < 1 then |ξ1 − ξ2|s < ε. Thus, by triangle inequality, |ξ1|2 < 2|ξ2|2 + 2ε2/s, so that item
(iii) holds with γ = 2 and C = 2ε2/s. It thus follows from (A2) and the definition of K̃ inside the proof
that

ρε,s,α(ξ1, ξ2) ≤ exp(2αε2/s)
[
ρε,s,2α(ξ1, ξ3) + ρε,s,2α(ξ3, ξ2)

]
for all ξ1, ξ2, ξ3 ∈ L̇2,

as desired.
Regarding assumption 2.5, the existence of an invariant measure for {PN,δ

t }t≥0 is shown in Corollary
3.10. Whereas the existence of an invariant measure for {Pt}t≥0, as mentioned in Section 3.1.1, is a well-
known result that is valid for even more general noise structures than we consider here, see e.g. Flandoli
(1994).

Assumption 2.5 follows as a direct consequence of Theorem 3.9. Finally, assumption 2.5 follows
from Proposition 3.19, with g(N, δ), R(t) and f (ξ0) given for any fixed ε > 0 and s ∈ (0, 1] as

g(N, δ) = max{δs, δp/2}p̃/2 + N−s/4, for all N ∈ N, 0 < δ ≤ δ0, (3.179)

R(t) = C eC′t

ε1/2 , for all t ≥ 0, (3.180)

f (ξ0) =
{

exp
(

C̃α′|ξ0|2
)
(1 + |∇ξ0| + |Aξ0|1/2)s for ξ0 ∈ Ḣ2,

∞ for ξ0 ∈ L̇2\Ḣ2,
(3.181)

with p, p̃, α′, C, C′, C̃ as in (3.163).
Therefore, it follows from Theorem 2.5 that

Wε,s,α

(
µN,δ

∗ , µ∗
)

≤ Cg(N, δ)
∫

L̇2
f (ξ0)µ∗(dξ0), (3.182)

where C = C(ε, s, α, ν, δ0, |σ |, |∇σ |, p̃). Moreover, from the definitions of C̃ and α′ given in Proposition
3.19 it is not difficult to show that C̃α′ ≤ cν|σ |−2. With this, we may apply Hölder’s inequality and
Lemma 3.20 to obtain that

∫
L̇2 f (ξ0)µ∗(dξ0) ≤ C, for C = C(ν, ∥σ∥Ḣ2). Plugging this into (3.182) we

conclude (3.176). !
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We conclude this section by applying Theorem 2.8 to show convergence in Wasserstein distance for
{PN,δ

t }t≥0 towards {Pt}t≥0, and consequently weak convergence for ξn
N,δ , n ∈ Z+, towards ξ(t), t ≥ 0,

as a result of Corollary 2.11.

Theorem 3.22 (Uniform in time weak convergence). Fix any N ∈ N, δ, δ0 > 0 with δ ≤ δ0. Suppose

there exists K ∈ N and σ ∈ Ḣ
2

satisfying (3.175). Let {Pt}t≥0 and {PN,δ
t }t≥0 be the corresponding

family of Markov kernels associated to systems (3.1) and (3.22), respectively, as defined in (3.5) and
(3.28).

Then, there exists α̂ > 0 such that for each fixed α ∈ (0, α̂] there exists ε > 0 and s ∈ (0, 1] for
which the following inequality holds

sup
t≥0

Wε,s,α

(
µPN,δ

t , µPt

)
≤ C max

{
g(N, δ)qC′

, g(N, δ), g(N, δ)1−q
}

, (3.183)

with g as in (3.177), for every p̃ ∈ (0, 1/2), q ∈ (0, 1) and µ ∈ Pr(L̇2) satisfying

∫

L̇2

[
exp

(
cα|ξ0|2

)
+ exp

(
C̃α′|ξ0|2

)(
1 + |∇ξ0| + |Aξ0|1/2

)s]
µ(dξ0) < ∞ (3.184)

for some absolute constant c, with C̃ and α′ being the same as in (3.163) and (3.178), respectively.
Moreover, C = C(ε, s, α, ν, δ0, |σ |, |∇σ |, ∥σ∥Ḣ2 , p̃, µ) and C′ = C′(ε, s, α, ν, |σ |).

Consequently, under these same assumptions it follows that for all ξ0 ∈ Ḣ2 and ρε,s,α-Lipschitz
function ϕ : L̇2 → R with Lipschitz constant Lϕ ,

sup
n∈N

∣∣∣E
[
ϕ(ξ(nδ; ξ0)) − ϕ

(
ξn

N,δ(ξ0)
)]∣∣∣ ≤ LϕC max

{
g(N, δ)qC′

, g(N, δ), g(N, δ)1−q
}

, (3.185)

with C and C′ as in (3.183). Here, ξ(t; ξ0), t ≥ 0, and ξn
N,δ(ξ0), n ∈ N, denote the unique solutions of

(3.1) and (3.22), respectively, such that ξ(0; ξ0) = ξ0 and ξ0
N,δ(ξ0) = ξ0.

Remark 3.23 Regarding the Lipschitz condition on the test function ϕ in (3.185) above, we note that,
by following similar arguments as in Glatt-Holtz & Mondaini (2022, Proposition 46), it is not difficult
to show that the class of ρε,s,α-Lipschitz functions includes all C1 functions ϕ : L̇2 → R such that

Lϕ := sup
ξ∈L̇2

max

⎧
⎨

⎩
2|ϕ(ξ)|

exp(α|ξ |2) ,
ε1/s∥Dϕ(ξ)∥
exp

(
α
2 |ξ |2

)

⎫
⎬

⎭ < ∞. (3.186)

Here, Dϕ(ξ) denotes the Fréchet derivative of ϕ at ξ ∈ L̇2, and ∥Dϕ(ξ)∥ its corresponding standard
operator norm. In this case, Lϕ yields a suitable Lipschitz constant with respect to ρε,s,α . In particular,
observe that (3.186) allows for exponentially growing ϕ and Dϕ.

Proof. Let us verify that the assumptions of Theorem 2.8 hold. The verification of assumptions (H1)–
(H4) follows as in the proof of Theorem 3.21. Moreover, from the definitions of gθ0

(N, δ) and R(t) in
(3.179) and (3.180), respectively, it is clear that R is continuous and strictly increasing in t, and gθ0

is
bounded with respect to (N, δ) ∈ N× (0, δ0]. Further, as argued at the end of the proof of Theorem 3.21,
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denoting by µ∗ an invariant measure of {Pt}t≥0 it follows from the definition of f in (3.181) and Lemma
3.20 that

∫
L̇2 f (ξ0)µ∗(dξ0) ≤ C < ∞, for C = C(ν, ∥σ∥Ḣ2).

Thus, from Theorem 2.8 and Remark 2.10 we deduce that

sup
t≥0

Wε,s,α

(
µPN,δ

t , µPt

)
≤ g̃(N, δ)

[
Wε,s,2α(µ, µ∗) +

∫

L̇2
f (ξ0)µ(dξ0) +

∫

L̇2
f (ξ0)µ∗(dξ0)

]
, (3.187)

for every µ ∈ Pr(L̇2) satisfying (3.184), where

g̃(N, δ) = C max
{

g(N, δ)qC′
, g(N, δ), g(N, δ)1−q

}
,

for any fixed q < 1. Here, as seen from the proof of Theorem 2.8 and the invoked results, it follows that
C and C′ are positive constants with C = C(ε, s, α, ν, δ0, |σ |, |∇σ |, p̃) and C′ = C′(ε, s, α, ν, |σ |).

Moreover, from the definition of Wε,s,α , together with Lemma 3.20 and under condition (3.184), it
is not difficult to see that for α > 0 sufficiently small Wε,s,2α(µ, µ∗) ≤ C < ∞, with C = C(ν, |σ |, µ).
This concludes the proof of (3.183). The final inequality (3.185) is clearly a direct consequence of
Corollary 2.11. !

Remark 3.24 As mentioned in Section 1.3, a useful consequence of the Wasserstein contraction result
(3.30), together with the long time bias estimate (3.176) established in Theorem 3.21, are error estimates
between the stationary average

∫
ϕ(ξ ′)µ∗(dξ ′) and its estimator 1

n

∑n
k=1 ϕ(ξ k

N,δ(ξ0)) for given n ∈ N,
ξ0 ∈ ΠNL̇2, and suitable observable ϕ : L̇2 → R. Here, µ∗ denotes the invariant measure of the Markov
semigroup Pt, t ≥ 0, associated to the 2D SNSE (3.1) and defined in (3.4). Commonly, estimates are
sought for the estimator bias

E

(
1
n

n∑

k=1

ϕ
(
ξ k

N,δ(ξ0)
)

−
∫

ϕ(ξ ′)µ∗(dξ ′)

)

= 1
n

n∑

k=1

PN,δ
k ϕ(ξ0) −

∫
ϕ(ξ ′)µ∗(dξ ′), (3.188)

and the mean-squared error

E

⎡

⎣
(

1
n

n∑

k=1

ϕ
(
ξ k

N,δ(ξ0)
)

−
∫

ϕ(ξ ′)µ∗(dξ ′)

)2
⎤

⎦ . (3.189)

Let us briefly sketch some of the steps that lead to these estimates. We assume ϕ is a ρε,s,α-Lipschitz
function, with ε, s, α fixed so that (3.30) holds, and denote its Lipschitz constant by Lϕ .

To estimate the bias (3.188), we first decompose it as

(
1
n

n∑

k=1

PN,δ
k ϕ(ξ0) −

∫
ϕ(ξ ′)µN,δ

∗ (dξ ′)

)

+
(∫

ϕ(ξ ′)µN,δ
∗ (dξ ′) −

∫
ϕ(ξ ′)µ∗(dξ ′)

)
. (3.190)
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From the Lipschitzianity of ϕ and the contraction inequality (3.30), the first term can be bounded as

∣∣∣∣∣
1
n

n∑

k=1

PN,δ
k ϕ(ξ0) −

∫
ϕ(ξ ′)µN,δ

∗ (dξ ′)

∣∣∣∣∣ ≤
Lϕ

n

n∑

k=1

Wε,s,α

(
PN,δ

k (ξ0, ·), µN,δ
∗

)
.

Take T > 0 as in Theorem 3.9. Then fix 0 < δ ≤ δ0 and consider k0 ∈ N sufficiently large such that
k0δ ≥ T . From (3.30), we obtain

∣∣∣∣∣
1
n

n∑

k=1

PN,δ
k ϕ(ξ0) −

∫
ϕ(ξ ′)µN,δ

∗ (dξ ′)

∣∣∣∣∣

≤
Lϕ

n
k0 sup

1≤k≤k0

Wε,s,α

(
PN,δ

k (ξ0, ·), µN,δ
∗

)
+

Lϕ

n

n∑

k=k0+1

C1 e−kδC2Wε,s,α

(
δξ0

, µN,δ
∗

)
. (3.191)

From (3.27) and (3.33) above, one can show that

sup
1≤k≤k0

Wε,s,α

(
PN,δ

k (ξ0, ·), µN,δ
∗

)
< ∞ and also Wε,s,α

(
δξ0

, µN,δ
∗

)
< ∞,

both with bounds independent of 0 < δ ≤ δ0 so that from (3.191) we deduce
∣∣∣∣∣
1
n

n∑

k=1

PN,δ
k ϕ(ξ0) −

∫
ϕ(ξ ′)µN,δ

∗ (dξ ′)

∣∣∣∣∣ = O
(

1
nδ

)
as n → ∞. (3.192)

Estimating the second term in (3.190) as LϕWε,s,α(µN,δ
∗ , µ∗) and invoking the bias estimate (3.176) above

thus yields (1.19).
Regarding the mean-squared error (3.189), we may proceed similarly as in e.g. Glatt-Holtz &

Mondaini (2022, Appendix) (see also references therein) and write

1
n

n∑

k=1

ϕ
(
ξ k

N,δ(ξ0)
)

−
∫

ϕ(ξ ′)µN,δ
∗ (dξ ′) = 1

n

∞∑

k=1

(
PN,δ

k ϕ̄(ξ0) − PN,δ
k ϕ̄

(
ξn

N,δ(ξ0)
))

+ Mϕ
n

n
=: T(n)

1 + T(n)
2 ,

where ϕ̄(ξ0) := ϕ(ξ0) −
∫

ϕ(ξ ′)µN,δ
∗ (dξ ′), and

Mϕ
n : =

∞∑

k=1

[
E

(
ϕ̄
(
ξ k

N,δ(ξ0)
)
|Fnδ

)
− E

(
ϕ̄
(
ξ k

N,δ(ξ0)
))]

=
n∑

k=1

ϕ̄
(
ξ k

N,δ(ξ0)
)

+
∞∑

k=1

(
PN,δ

k+1ϕ̄
(
ξn

N,δ(ξ0)
)

− PN,δ
k ϕ̄(ξ0)

)
,

n ∈ N, is a martingale (relative to the filtration given by the noise increments). In view of (3.176), it
suffices to estimate E(T(n)

1 )2 and E(T(n)
2 )2.
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For the first term, we have

E
[(

T(n)
1

)2]
≤

L2
ϕ

n2

( ∞∑

k=1

Wε,s,α

(
PN,δ

k (ξ0, ·), µN,δ
∗

)
+ Wε,s,α

(
PN,δ

k

(
ξn

N,δ(ξ0), ·
)

, µN,δ
∗

))2

,

so that by proceeding analogously as in (3.191)–(3.192) we obtain E[(T(n)
1 )2] = O((nδ)−2) as n → ∞.

For the second term, invoking standard martingale properties it follows that

E

[(
Mϕ

n

n

)2
]

= 1
n2

n∑

k=1

E
[(

Mϕ
k − Mϕ

k−1

)2]
≤ 2

(
T(n)

2,1 + T(n)
2,2

)
,

where

T(n)
2,1 := 1

n2

n∑

k=1

E
[(

ϕ̄
(
ξ k

N,δ(ξ0)
))2

]
,

T(n)
2,2 := 1

n2

n∑

k=1

E

⎡

⎣
( ∞∑

l=1

PN,δ
l ϕ̄

(
ξ k

N,δ(ξ0)
)

− PN,δ
l ϕ̄

(
ξ k−1

N,δ (ξ0)
))2

⎤

⎦.

Now for T(n)
2,1 we fix ξ̄ ∈ L̇2 and estimate

E
[(

ϕ̄
(
ξ k

N,δ(ξ0)
))2

]
≤ 2

{
E

[(
ϕ̄
(
ξ k

N,δ(ξ0)
)

− ϕ̄(ξ̄)
)2

]
+ ϕ̄(ξ̄)2

}

≤ 2
{

LϕE
[
ρε,s,α

(
ξ k

N,δ(ξ0), ξ̄
)2]

+ ϕ̄(ξ̄)2
}

.

Again from (3.27) and (3.33), we obtain supk E
[(

ϕ̄(ξ k
N,δ(ξ0))

)2
]

< ∞, which yields T(n)
2,1 ≤ C/n for

some constant C.
Lastly, we bound T(n)

2,2 as

T(n)
2,2 ≤ 1

n2

n∑

k=1

E

⎡

⎣
( ∞∑

l=1

LϕWε,s,α

(
PN,δ

l

(
ξ k

N,δ(ξ0), ·
)

, PN,δ
l

(
ξ k−1

N,δ (ξ0), ·
)))2

⎤

⎦.

Taking k0 as in (3.191), we obtain after further estimates that

T(n)
2,2 ≤ C

n
+ 1

n2

n∑

k=1

E

⎡

⎣
( ∞∑

l=1

C1 e−lδC2ρε,s,α

(
ξ k

N,δ(ξ0), ξ
k−1
N,δ (ξ0)

))2
⎤

⎦ .
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By estimating the difference |ξ k
N,δ − ξ k−1

N,δ | according to (3.20) and choosing s appropriately, one can

show that ρε,s,α(ξ k
N,δ(ξ0), ξ

k−1
N,δ (ξ0)) " δ1/2, which ultimately yields T(n)

2,2 = O((nδ)−1) as n → ∞. Such
considerations together with the bias estimate (3.176) thus imply (1.20).

4. Wasserstein contraction in the case of a bounded domain

In this section, we apply Theorem 2.1 to show Wasserstein contraction for the Markov kernel associated
to the 2D stochastic Navier–Stokes equations on a bounded domain. As discussed in the introduction we
include this domain example to illustrate the full scope and significance of Theorem 2.1. Indeed such a
suitable form of contraction does not appear to follow from the approaches taken in previous relevant
works in this direction (Hairer & Mattingly, 2008; Hairer et al., 2011; Butkovsky et al., 2020), as we
describe in technical detail in Remark 4.6 below.

4.1 Mathematical setting

We start by briefly recalling the associated mathematical setting in Section 4.1. For further details, we
refer to e.g. Constantin & Foias (1988); Foias et al. (2001); Temam (2001); Albeverio et al. (2008). Let
D ⊂ R2 be an open and bounded domain with smooth boundary ∂D . Similarly as in Section 3.1.1, we
fix a stochastic basis (Ω , F , {Ft}t≥0,P, {Wk}d

k=1) equipped with a finite family {Wk}d
k=1 of standard

independent real-valued Brownian motions on Ω that are adapted to the filtration {Ft}t≥0. We then
consider the following stochastically forced 2D Navier–Stokes equations in D

du + (−ν∆u + u · ∇u + ∇p) dt = f dt +
d∑

k=1

σk dWk, ∇ · u = 0, (4.1)

subject to the no-slip (Dirichlet) boundary condition

u|∂D = 0, (4.2)

where u = u(x, t) and p = p(x, t), (x, t) ∈ D × [0, ∞), are the unknowns, and denote the velocity
vector field and the scalar pressure field, respectively; whereas ν > 0 and f = f(x), x ∈ D , are given
and represent the kinematic viscosity parameter and a deterministic body force, respectively. Moreover,
{σk}d

k=1 are given vector fields in D . We assume that f, σ1, . . . , σd ∈ L2(D)2.
Consider the following functional spaces

H =
{

u ∈ L2(D)2 : ∇ · u = 0, u · n|∂D = 0
}

,

V =
{

u ∈ H1(D)2 : ∇ · u = 0, u|∂D = 0
}

,

where n denotes the outward unit normal vector to ∂D . See e.g. Constantin & Foias (1988); Temam
(2001). We endow H with the standard inner product and associated norm from L2(D)2, which we denote
as (·, ·) and | · |, respectively. For V , we consider the inner product ((u, v)) := (∇u, ∇v), with associated
norm ∥u∥ := ((u, u))1/2 = |∇u|, which is well-defined due to Poincaré inequality (4.4) below. We
identify H with its dual H′, so that V ⊆ H ≡ H′ ⊆ V ′, with continuous injections, where V ′ denotes the
dual space of V .
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Denoting by PL the Leray projection of L2(D)2 onto H, and applying PL to (4.1) yields the following
functional formulation

du + (νAu + B(u, u)) dt = f dt + σ dW, (4.3)

where we assume without loss of generality that PLf = f and PLσk = σk,3 and use the abbreviated
notation σ dW := ∑d

k=1 σk dWk. Here, A : V ∩H2(D)2 → H, Au = −PL∆u, is the Stokes operator and
B : V ×V → V ′ is the bilinear mapping B(u, v) = PL(u ·∇)v. Similarly as in the periodic case, we have
that A is a positive and self-adjoint operator with compact inverse. Therefore, it admits a nondecreasing
sequence of positive eigenvalues {λk}k∈N with λk → ∞ as k → ∞, which is associated to a sequence of
eigenfunctions {ek}k∈N forming an orthonormal basis of H. For each K ∈ N, we denote by ΠK : H → H
the projection operator onto the subspace ΠKH of H consisting of the span of the first K eigenfunctions
of A.

We recall Poincaré inequality

|u| ≤ λ
−1/2
1 ∥u∥ for all u ∈ V , (4.4)

where λ1 denotes the smallest eigenvalue of the Stokes operator A. Moreover, for each K ∈ N we have

|(I − ΠK)u| ≤ λ
−1/2
K+1 ∥(I − ΠK)u∥ for all u ∈ V . (4.5)

Recall also the following property of the bilinear term

(B(u, v), w) = −(B(u, w), v) for all u, v, w ∈ V ,

which implies

(B(u, v), v) = 0 for all u, v ∈ V . (4.6)

We adopt similar notation from Section 3.1.1 regarding the noise term σ dW. Specifically, let H
denote the d-fold product of H and define, for each σ = (σ1, . . . , σd) ∈ H, |σ |2 := ∑d

k=1 |σk|2. We
also abuse notation and see any σ ∈ H as a mapping σ : Rd → H, with σ (w1, . . . , wd) = ∑d

k=1 σkwk,
and denote by σ−1 : range(σ ) → Rd its corresponding pseudo-inverse. Clearly, both σ and σ−1 are
bounded operators.

The existence and uniqueness of pathwise solutions of (4.1)–(4.2) satisfying a given initial condition
follows analogously as in Proposition 3.1, with appropriate modifications in the functional spaces.
Namely, it holds by replacing L̇2 and Ḣ1 with H and V , respectively. We thus define the associated
transition function for all u0 ∈ H and Borel set O ∈ B(H) as

Pt(u0, O) := P(u(t; u0) ∈ O),

3 Indeed, we have more generally that f = ∇q + PLf for some q ∈ H1(D) (see e.g. Constantin & Foias, 1988, Proposition 1.8
and Proposition 1.9), so that we may redefine the pressure term p in (4.1) as p̃ = p + q, and similarly for σk . In particular, (4.3)
remains the same.



76 N. E. GLATT-HOLTZ AND C. F. MONDAINI

where u(t; u0), t ≥ 0, is the unique pathwise solution of (4.1)–(4.2) satisfying u(0; u0) = u0 almost
surely. The associated Feller Markov semigroup Pt, t ≥ 0, is defined as

Ptϕ(u0) = Eϕ(u(t; u0)), u0 ∈ H, (4.7)

for every bounded and measurable function ϕ : H → R.

4.2 Wasserstein contraction estimates

We proceed to verify that assumptions (A1)–(A3) of Theorem 2.1 hold in this setting. Specifically,
following the notation from Theorem 2.1, we take (X, ∥ · ∥) = (H, | · |), I = R+ and {Pt}t∈I to
be the Markov semigroup defined in (4.7). Moreover, we take Λ to be the class of distances

Λ =
{
ρε,s : ε > 0, 0 < s ≤ min

{
1, c

ν3λ1

|σ |2
}}

(4.8)

for some positive absolute constant c, with ρε,s defined analogously as in (3.26), namely

ρε,s(u, ũ) = 1 ∧ |u − ũ|s
ε

for all u, ũ ∈ H. (4.9)

We notice that in (4.8) we impose a different assumption on s than in Section 3.2, where we simply
consider s ∈ (0, 1]. See Remark 4.6 below for more details.

In the next proposition, we show with (4.12) that 2.1 is satisfied under this setting. We also provide
the energy-type inequality (4.11) to be used later in the verification of 2.1–2.1.

Proposition 4.1 Fix any σ ∈ H and u0 ∈ H. Let u(t), t ≥ 0, be the solution of (4.3) satisfying
u(0) = u0 almost surely. Then, for all α ∈ R satisfying

0 < α ≤ νλ1

4|σ |2 (4.10)

the following inequalities hold:

E sup
t≥0

exp
(

α|u(t)|2 + αν

∫ t

0
∥u(s)∥2 ds − αt

(
|σ |2 + 2

νλ1
|f|2

))
≤ 2 exp(α|u0|2), (4.11)

and

Pt exp(α|u0|2) = E exp(α|u(t)|2) ≤ C exp
(
α e−νλ1t|u0|2

)
for all t ≥ 0, (4.12)

where C = C(ν, λ1, |f|, |σ |).

Proof. The proof of (4.11) follows by applying Itô’s formula to the mapping u 5→ |u|2 and invoking
standard exponential martingale arguments. We refer to Hairer & Mattingly (2008); Kuksin & Shirikyan
(2012); Glatt-Holtz et al. (2017); Butkovsky et al. (2020) for further details.
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The proof of (4.12) is essentially an analogous continuous version of Proposition 3.11. Indeed, fixing
T > 0, applying Itô’s formula to the mapping (τ , u) 5→ e−νλ1(T−τ )|u(τ )|2 and invoking (4.6), it follows
that for all t ∈ [0, T]

e−νλ1(T−t)|u(t)|2 + 2ν

∫ t

0
e−νλ1(T−τ )∥u(τ )∥ dτ

= e−νλ1T |u0|2 + νλ1

∫ t

0
e−νλ1(T−τ )|u(τ )| dτ +

∫ t

0
e−νλ1(T−τ )

[
2(u(τ ), f) + |σ |2

]
dτ + Mt,

(4.13)

where Mt := 2
∫ t

0 e−νλ1(T−τ )(u, σ ) dW(τ ), t ∈ [0, T], is a martingale. We estimate its quadratic variation
⟨M⟩t as

⟨M⟩t = 4
∫ t

0
e−2νλ1(T−τ )(u, σ ) dτ ≤ 4

|σ |2
λ1

∫ t

0
e−νλ1(T−τ )∥u(τ )∥2 dτ , (4.14)

where we applied Cauchy–Schwarz and Poincaré inequality (4.4). Moreover, again from (4.4) and
Young’s inequality, we have

(u(τ ), f) ≤ 1

λ
1/2
1

∥u(τ )∥ |f| ≤ ν

4
∥u(τ )∥2 + 1

νλ1
|f|2. (4.15)

Now we add and subtract α⟨M⟩t/2 in (4.13), for α satisfying (4.10), and invoke (4.4) once again to
estimate the second term in the right-hand side of (4.13). Plugging the estimates (4.14)–(4.15), it follows
after rearranging terms that

e−νλ1(T−t)|u(t)|2 ≤ e−νλ1T |u0|2 +
(

2
νλ1

|f|2 + |σ |2
)

e−νλ1T(eνλ1t − 1)

νλ1
+ Mt − α

2
⟨M⟩t.

Multiplying by α and taking expected values on both sides,

E exp
(
α e−νλ1(T−t)|u(t)|2

)

≤ exp
(
α e−νλ1T |u0|2

)
exp

(
α

(
2

νλ1
|f|2 + |σ |2

)
e−νλ1T(eνλ1t − 1)

νλ1

)
, (4.16)

where we used that {Nt}t≥0 = {exp(αMt − (α2/2)⟨M⟩t)}t≥0 is a supermartingale (see e.g. Kuksin &
Shirikyan, 2012, Appendix A.11), and hence ENt ≤ EN0 = 1 for all t ≥ 0. Taking in particular T = t

in (4.16), we deduce (4.12) with C = exp
(

α
νλ1

(
2

νλ1
|f|2 + |σ |2

))
. !
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To verify the remaining assumptions (A2)–(A3) of Theorem 2.1, we proceed similarly as in
Section 3.2 and consider the following modified system

dũ +
[
νAũ + B(ũ, ũ) + νλK+1

2
ΠK

(
ũ − u(u0)

)]
dt = f dt + σ dW (4.17)

for each fixed u0 ∈ H and corresponding pathwise solution u(t; u0), t ≥ 0, of (4.3) satisfying u(0; u0) =
u0 almost surely. Here, K ∈ N is a parameter to be appropriately chosen in (4.23) below.

With similar arguments as in Proposition 3.1, we can show (4.17) to be well-posed in the pathwise
sense. This allows us to define, for any fixed u0 ∈ H, the mapping

P̃t,u0
(ũ0, O) = P(ũ(t; ũ0, u0) ∈ O) for all t ≥ 0, ũ0 ∈ H and O ∈ B(H), (4.18)

where ũ(t; ũ0, u0), t ≥ 0, is the unique pathwise solution of (4.17) satisfying ũ(0; ũ0, u0) = ũ0 almost
surely.

The next proposition presents a pathwise contraction estimate for the difference between a solution
ũ(ũ0, u0) of (4.17) and the corresponding solution u(u0) of (4.3). The proof is given in Glatt-Holtz et al.
(2017); Butkovsky et al. (2020), but we present the main ideas here for completeness.

Proposition 4.2 Fix any σ ∈ H, u0, ũ0 ∈ H and K ∈ N. Let ũ(t) = ũ(t; ũ0, u0), t ≥ 0, be the solution of
(4.17) corresponding to this data and satisfying ũ(0) = ũ0 almost surely. Then the following inequality
holds almost surely for all t ≥ 0

|ũ(t; ũ0; u0) − u(t; u0)|2 ≤ |ũ0 − u0|2 exp
(

−νλK+1t + c
ν

∫ t

0
∥u(τ ; u0)∥2 dτ

)
. (4.19)

Proof. Denote v(t) = ũ(t; ũ0, u0) − u(t; u0). Subtracting (4.3) from (4.17), it follows that

dv
dt

+ νAv + B(v, v) + B(v, u) + B(u, v) + νλK+1

2
ΠKv = 0.

Taking the inner product in H with v and invoking (4.6),

1
2

d
dt

|v|2 + ν∥v∥2 + νλK+1

2
|ΠKv|2 = −(B(v, u), v).

By classical Hölder, interpolation and Young’s inequalities, we estimate the nonlinear term as

|(B(v, u), v)| ≤ |v| ∥v∥ ∥u∥ ≤ ν

2
∥v∥2 + c

ν
∥u∥2|v|2, (4.20)

so that

d
dt

|v|2 + ν∥v∥2 + νλK+1|ΠKv|2 ≤ c
ν
∥u∥2|v|2. (4.21)
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Moreover, from (4.5),

ν∥v∥2 = ν∥ΠKv∥2 + ν∥(I − ΠK)v∥2 ≥ ν∥ΠKv∥2 + νλK+1|(I − ΠK)v|2.

Plugging back into (4.21), we obtain

d
dt

|v|2 +
(
νλK+1 − c

ν
∥u∥2

)
|v|2 ≤ 0,

from which (4.19) follows after integrating on [0, t]. !
In the next two propositions, we establish the validity of assumptions (A2) and (A3) from Theo-

rem 2.1, with the help of the pathwise contraction (4.19). In view of the crucial differences between
(4.19) and the analogous pathwise contraction estimate (3.86) from Section 3 that are pointed out in
detail in Remark 4.6 below, to verify the smallness property from (A2) we must resort here to the
following estimate for the total variation distance between the laws of a Wiener process W in Rd and the
corresponding shifted process Ŵ as in (3.92):

∥∥L (Ŵ) − L (W)
∥∥

TV ≤ 1 − 1
6

min

{
1
8

, exp

[

−
(

22−a E
[(∫ ∞

0
|ϕ(t)| dt

)a]) 1
a
]}

(4.22)

for any a ∈ (0, 1],4 see Butkovsky et al. (2020, Theorem A.5, (A.14)).

Proposition 4.3 Suppose there exists K ∈ N and σ ∈ H such that

ΠKH ⊂ range(σ ) and λK+1 ≥ c
ν3

(
|σ |2 + 2

νλ1
|f|2

)
(4.23)

for some absolute constant c > 0. Then, for every M > 0, and ε, s as in (4.8), there exist a time T1 =
T1(M, ε, s) > 0 and a coefficient κ1 = κ1(M) ∈ (0, 1), which is independent of ε, s, for which the
following inequality holds

Wε,s(Pt(u0, ·), Pt(ũ0, ·)) ≤ 1 − κ1

for all t ≥ T1 and for every u0, ũ0 ∈ H with |u0| ≤ M and |ũ0| ≤ M.

Proof. Fix M > 0, and ε, s as in (4.8). Let u0, ũ0 ∈ H such that |u0| ≤ M and |ũ0| ≤ M. Recalling the
definition of Wε,s in (2.2), (3.26) and of P̃t,u0

(ũ0, ·) in (4.18), we obtain by invoking Proposition A.2 that

Wε,s(Pt(u0, ·), Pt(ũ0, ·)) ≤ Wε,s

(
Pt(u0, ·), P̃t,u0

(ũ0, ·)
)

+ Wε,s

(
P̃t,u0

(ũ0, ·), Pt(ũ0, ·)
)

. (4.24)

4 Similarly as for (3.94), here we notice that in Butkovsky et al. (2020, Theorem A.5, (A.14)) it is assumed instead a ∈ (0, 1).
In fact, (3.95) and (3.93) above imply that (4.22) also holds with a = 1, although with an even sharper bound.
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For the first term in the right-hand side of (4.24), we have

Wε,s

(
Pt(u0, ·), P̃t,u0

(ũ0, ·)
)

≤ 1
ε
E

[∣∣∣u(t; u0) − ũ(t; ũ0, u0)
∣∣∣
s]

, (4.25)

so that by invoking the pathwise estimate (4.19) it follows that

Wε,s

(
Pt(u0, ·), P̃t,u0

(ũ0, ·)
)

≤ 1
ε
|ũ0 − u0|s exp

(
− s

2
νλK+1t

)
E exp

(
cs
ν

∫ t

0
∥u(τ )∥2 dτ

)
. (4.26)

Let α = cs/ν2. Since 0 < s ≤ cν3λ1/|σ |2 then α satisfies (4.10). We may thus invoke (4.11) to further
estimate (4.26) as

Wε,s(Pt(u0, ·), P̃t,u0
(ũ0, ·))

≤ c
ε
|ũ0 − u0|s exp

(
− s

2
νλK+1t

)
exp

( cs
ν2 |u0|2

)
exp

(
cst
ν2

(
|σ |2 + 2

νλ1
|f|2

))

≤ c
ε
|ũ0 − u0|s exp

(
− s

4
νλK+1t

)
exp

( cs
ν2 |u0|2

)
(4.27)

≤ c
ε
(2M)s exp

( cs
ν2 M2

)
exp

(
− s

4
νλK+1t

)
, (4.28)

where the second inequality follows from assumption (4.23) on K.
Regarding the second term in the right-hand side of (4.24), we proceed analogously as in (3.100)–

(3.102) and obtain

Wε,s

(
P̃t,u0

(ũ0, ·), Pt(ũ0, ·)
)

≤
∥∥L (Ŵ) − L (W)

∥∥
TV , (4.29)

where

Ŵ(t) := W(t) −
∫ t

0

νλK+1

2
σ−1ΠK(ũ − u)(τ ) dτ , t ≥ 0.

From (4.22), it follows that for any a ∈ (0, 1]

Wε,s

(
P̃t,u0

(ũ0, ·), Pt(ũ0, ·)
)

≤ 1 − 1
6

min

⎧
⎨

⎩
1
8

, exp

⎡

⎣−
(

22−a E

[(∫ ∞

0

∣∣∣∣
νλK+1

2
σ−1ΠK(ũ − u)(t)

∣∣∣∣
2

dt

)a]) 1
a
⎤

⎦

⎫
⎬

⎭ . (4.30)
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Invoking (4.19) once again, we deduce

E

[(∫ ∞

0

∣∣∣∣
νλK+1

2
σ−1ΠK(ũ − u)(t)

∣∣∣∣
2

dt

)a]

≤
(

νλK+1
2

∥σ−1∥
)2a

E
[(∫ ∞

0
|ũ(t) − u(t)|2 dt

)a]

≤
(

νλK+1
2

∥σ−1∥
)2a

E
[(∫ ∞

0
|ũ0 − u0|2 exp

(
−νλK+1t + c

ν

∫ t

0
∥u(τ )∥2 dτ

)
dt

)a]

≤
(

νλK+1
2

∥σ−1∥
)2a

|ũ0 − u0|2a

· E
[(∫ ∞

0
exp

(
−νλK+1t + c

ν2 |σ |2t
)

dt
)a

sup
t≥0

exp
(

ca
ν

∫ t

0
∥u(τ )∥2 dτ − ca

ν2 |σ |2t
)]

≤
(

νλK+1
2

∥σ−1∥
)2a

|ũ0 − u0|2a
(∫ ∞

0
e− νλK+1 t

2 dt
)a

E

[

sup
t≥0

exp
(

ca
ν

∫ t

0
∥u(τ )∥2 dτ − ca

ν2 |σ |2t
)]

,

(4.31)

where the last inequality follows from assumption (4.23) on K. Now assuming a ≤ cν3λ1/|σ |2 so that
we can resort to (4.11), we further obtain

E

[(∫ ∞

0

∣∣∣∣
νλK+1

2
σ−1ΠK(ũ − u)(t)

∣∣∣∣
2

dt

)a]

≤ c(νλK+1)
a∥σ−1∥2a|ũ0 − u0|2a exp

(ca
ν2 |u0|2

)

≤ c(νλK+1)
a∥σ−1∥2aM2a exp

(ca
ν2 M2

)
. (4.32)

Plugging back into (4.30),

Wε,s(̃Pt,u0
(ũ0, ·), Pt(ũ0, ·)) ≤ 1 − 1

6
min

{
1
8

, exp
[
−cνλK+1∥σ−1∥2M2 exp

(
c

M2

ν2

)]}
. (4.33)

Thus, from (4.24), (4.28) and (4.33),

Wε,s(Pt(u0, ·), Pt(ũ0, ·)) ≤ c
ε
(2M)s exp

( cs
ν2 M2

)
exp

(
− s

4
νλK+1t

)

+ 1 − 1
6

min
{

1
8

, exp
[
−cνλK+1∥σ−1∥2M2 exp

(
c

M2

ν2

)]}
.

Therefore, we may choose T1 = T1(ν, K, ∥σ−1∥, M, ε, s) > 0 sufficiently large such that for all t ≥ T1

Wε,s(Pt(u0, ·), Pt(ũ0, ·)) ≤ 1 − 1
12

min
{

1
8

, exp
[
−cνλK+1∥σ−1∥2M2 exp

(
c

M2

ν2

)]}
.

This concludes the proof. !

Proposition 4.4 Suppose there exists K ∈ N and σ ∈ H such that (4.23) holds. Then, for every κ2 ∈
(0, 1) and for every r > 0 there exists s > 0 for which the following holds:
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(i) For every ε > 0, there exists a constant C = C(ε, s) > 0 such that

sup
t≥0

Wε,s(Pt(u0, ·), Pt(ũ0, ·)) ≤ C(ε, s) exp
(

r|u0|2+r|ũ0|2
)

ρε,s(u0, ũ0) (4.34)

for every u0, ũ0 ∈ H with ρε,s(u0, ũ0) < 1.

(ii) There exist a parameter ε > 0 and a time T2 > 0 such that

Wε,s(Pt(u0, ·), Pt(ũ0, ·)) ≤ κ2 exp
(

r|u0|2+r|ũ0|2
)

ρε,s(u0, ũ0) (4.35)

for all t ≥ T2 and for every u0, ũ0 ∈ H with ρε,s(u0, ũ0) < 1.

Proof. Fix any κ2 ∈ (0, 1) and r > 0. Let u0, ũ0 ∈ H such that ρε,s(u0, ũ0) < 1. Now choose s such that

0 < s ≤ c min
{

rν2,
ν3λ1

|σ |2 + ν3λ1

}
, (4.36)

for some absolute constant c. We estimate the Wasserstein distance Wε,s(Pt(u0, ·), Pt(ũ0, ·)) as in (4.24),
and then the first term on the right-hand side as in (4.27). Since ρε,s(u0, ũ0) < 1, then |ũ0 − u0|sε−1 =
ρε,s(u0, ũ0). Thus, from (4.27),

Wε,s

(
Pt(u0, ·), P̃t,u0

(ũ0, ·)
)

≤ cρε,s(u0, ũ0) exp
(
− s

4
νλK+1t

)
exp

( cs
ν2 |u0|2

)
. (4.37)

For the second term, we first estimate as in (4.29), and then invoke (3.94) to obtain for any a ∈ (0, 1]

Wε,s

(
P̃t,u0

(ũ0, ·), Pt(ũ0, ·)
)

≤ 2
1−a
1+a

{

E

[(∫ ∞

0

∣∣∣∣
νλK+1

2
σ−1ΠK(ũ − u)(t)

∣∣∣∣
2

dt

)a]} 1
1+a

. (4.38)

Choose a ∈ (0, 1] such that 2a
1+a = s. From the choice of s in (4.36), it follows in particular that a ≤

cν3λ1/|σ |2. We may thus proceed as in (4.31)–(4.32) and obtain that

Wε,s

(
P̃t,u0

(ũ0, ·), Pt(ũ0, ·)
)

≤ c(νλK+1)
a

1+a ∥σ−1∥ 2a
1+a |ũ0 − u0|

2a
1+a exp

(
c
ν2

a
1 + a

|u0|2
)

≤ c(νλK+1)
s/2∥σ−1∥s|ũ0 − u0|s exp

(
r|u0|2

)

= cε(νλK+1)
s/2∥σ−1∥sρε,s(u0, ũ0) exp

(
r|u0|2

)
, (4.39)

where in the second inequality we used that s ≤ crν2. From (4.24), (4.37) and (4.39), we thus have

Wε,s(Pt(u0, ·), Pt(ũ0, ·))

≤ c
[
exp

(
− s

4
νλK+1t

)
+ ε(νλK+1)

s/2∥σ−1∥s
]
exp

(
r|u0|2

)
ρε,s(u0, ũ0) (4.40)

for all t ≥ 0. This shows (4.34).
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For (4.35), we choose T2 = T2(s, K, κ2) > 0 and ε = ε(s, K, ∥σ−1∥, κ2) > 0 such that the expression
between brackets in (4.40) is less than κ2 for all t ≥ T2. This concludes the proof. !

From (4.12), Proposition 4.3 and Proposition 4.4, we now obtain the following Wasserstein contrac-
tion result as an immediate consequence of Theorem 2.1.

Theorem 4.5 Suppose there exists K ∈ N and σ ∈ H such that (4.23) holds. Let Pt, t ≥ 0, be the
Markov semigroup defined in (4.7). Then, for every m > 1 there exists αm > 0 such that for each
α ∈ (0, αm] there exist ε, s, T > 0 and constants C1, C2 > 0 for which the following inequality holds

Wε,s,α(µPt, µ̃Pt) ≤ C1 e−tC2Wε,s,α/m(µ, µ̃) (4.41)

for every µ, µ̃ ∈ Pr(H) and all t ≥ T . Here we recall that, for every a > 0, Wε,s,a denotes the Wasserstein-
like extension to Pr(H) of the distance-like function ρε,s,a defined as in (3.27), with L̇2 replaced by H.

Remark 4.6 In the proofs of Proposition 4.3 and Proposition 4.4, namely in pursuit of the condi-
tions (A.2) and (A.3) in Theorem 2.1, we employed the pathwise estimate (4.19). It is precisely in making
use of this challenging form of the ‘Foias-Prodi’ estimate where Theorem 2.1 improves upon the previous
formulations of the weak Harris theorem in Hairer & Mattingly (2008); Hairer et al. (2011); Butkovsky
et al. (2020). In effect, it does not seem possible to establish a suitable contraction bound à la (4.41) for
the system (4.1), (4.2) with an obvious or direct application of these previous results.

As throughout the extant SPDE literature, (4.19) represents a crucial structural property of the
dynamics which leads to the type of ‘irreducibility’ and ‘smoothing’ conditions embodied in (A.2), (A.3),
respectively. However, the form that (4.19) takes here illustrates a paradigmatic challenge in regards
to establishing a suitable form of contractivity in the Markovian dynamic, one that has not been fully
addressed previously in the literature as far as we can tell. This is due to the coefficient in front of
the integral term in (4.19), which is expected to be large in general. In turn, the size of this coefficient
presents difficulties in terms of the available exponential moments on the law of the solution; namely
the quadratic exponential moment bound (4.11) in (4.1) degenerates as O(ν2) while the demands of the
integral term in (4.19) increases as O(ν−1) for small ν. Here it is notable that a similar issue does not
occur in the case of periodic boundary conditions from Section 3, thanks to better properties regarding
the nonlinear term in (3.1) in this periodic case, cf. (3.82) and (4.20). On the other hand, analogously
difficult (or even more difficult) forms of (4.19) appear in other models considered in e.g. Glatt-Holtz
et al. (2017); Butkovsky et al. (2020); Glatt-Holtz et al. (2021).

This issue makes itself evident in establishing smoothing estimates for Pt as follows. In the weak
Harris approach developed in Hairer et al. (2011) and in the subsequent literature, the appropriate
smoothing condition is the ρ-contractivity condition. In contrast to (A.3) in our formulation from
Theorem 2.1, the ρ-contractivity is assumed to hold uniformly over the phase space. To be specific,
Hairer et al. (2011) requires that the bounded distance ρ that they use to eventually build their contraction
distance (in a fashion closely analogous to (2.8)) maintains, for some α ∈ (0, 1),

Wρ(Pt∗(u0, ·), Pt∗(v0, ·)) ≤ αρ(u0, v0), whenever ρ(u0, v0) < 1. (4.42)

We observe that, even in the absence of boundaries, using a distance of the form ρ(u, v) = ρε,s(u, v)

given in (4.9) for appropriately tuned s, ϵ > 0 only leads to a local form of this contraction estimate
(4.42); cf. (3.59) above. To circumvent this difficulty, it is suggested in Hairer et al. (2011, Proposition
5.4) that one use a certain geodesic distance developed in Hairer & Mattingly (2008, Section 4) adapted



84 N. E. GLATT-HOLTZ AND C. F. MONDAINI

to the ‘Lyapunov’ structure in the available form V(u) = exp(α|u|2). There they show that a time
asymptotic smoothing estimate for the gradient estimate on the Markovian semigroup then provides the
necessary global form of (4.42). This is an infinitesimal approach in the sense that we are trying to bound
the distance between Pt∗(u0, ·) and Pt∗(v0, ·) with ∇Pt∗(u0, ·)(u0 − v0).

In our context, we could try to repeat this strategy from Hairer & Mattingly (2008, Section 4) and
Hairer et al. (2011, Proposition 5.4) as follows. Observe that, for any C1 observable φ and any ξ ∈ H,
we have from (4.7)

∇Ptφ(u0)ξ = E
(
∇φ(u(t; u0))v

)
+ E

(
φ(u(t; u0))

∫ t

0

(
σ−1 νλK+1

2
ΠKv

)
· dW

)
, (4.43)

where

dv
dt

+ νAv + B(u, v) + B(v, u) + νλK+1

2
ΠKv = 0, v(0) = ξ .

The identity (4.43) follows by adding and subtracting the gradient of u(t; u0) in its noise variable, taken
in the direction w = σ−1 νλK+1

2 ΠKv. One then performs a Malliavin integration by parts—really just an
application of the Girsanov theorem here since w is adapted—to obtain the second term in (4.43). One
may now view (4.43) as means of estimating the possibility of coupling of two nearby solutions in two
terms analogous to (4.24).

This analogy is precisely what is operationalized in the proof of Hairer et al. (2011, Proposition 5.4).
To follow this approach, one would treat the first term as

(
Pt|∇φ|2(u0)

)1/2
(E|v|2)1/2, (4.44)

which we compare to our bound (4.37). The second term is estimated as

sup
u

|φ(u)|
(

E
∫ t

0

∣∣∣∣σ
−1 νλK+1

2
ΠKv

∣∣∣∣
2

dt

)1/2

, (4.45)

which we may compare to (4.38). However, in our setting neither of these terms can be shown to be
finite. It is not clear how to introduce a suitable localization to the above arguments to avoid these issues
with moments.

Here we notice that choosing s sufficiently small, specifically as in (4.8), is what allows us to make
use of the exponential moment bound (4.11) to proceed with the estimates in (4.26), (4.39). However,
these estimates in themselves are insufficient as they do not lead to the global form (4.42). On the other
hand, Butkovsky et al. (2020) analogously employs the pseudo-metric

ρ(u, v) = 1 ∧
( |u − v|s

ε
exp(α|u|2)

)
∧

( |u − v|s
ε

exp(α|v|2)
)

to achieve (4.42). While this approach from Butkovsky et al. (2020) would lead to a contraction in a
related pseudo-metric as a direct consequence of Hairer et al. (2011, Theorem 4.8), it is not clear that this
pseudo-metric satisfies any usable form of the generalized triangle inequality. Obviously, having such a
generalized triangle inequality is indispensable for establishing continuous parameter dependence in the
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long time statistics of certain stochastic systems using the strategies we overviewed in Section 1.1 and
used throughout Section 2.3 and Section 3.
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Appendix A. Distance-like functions

Here we present some simple general results concerning distance-like functions on a Polish space X and
their corresponding Wasserstein-like extensions to Pr(X), as recalled in Section 2.1.

We start by showing that if a given distance-like function ρ satisfies a generalized form of triangle
inequality, namely (A.1) below, together with a suitable set of conditions, then the corresponding
distance-like function ρα for a fixed parameter α > 0, defined in (2.8), satisfies an inequality of the
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form (2.24) from assumption (H1) in Theorem 2.5. The proof below follows similar ideas from Hairer
et al. (2011, Lemma 4.14).

Proposition A.1 Let (X, ∥ · ∥) be a Banach space and let ρ : X × X → R+ be a distance-like function
on X satisfying the following conditions:

i. ρ is bounded, i.e. there exists a constant M > 0 such that ρ(u, v) ≤ M for all u, v ∈ X.

ii. There exists a constant K > 0 such that

ρ(u, v) ≤ K [ρ(u, w) + ρ(w, v)] for all u, v, w ∈ X. (A.1)

iii. There exists a constant c > 0 for which the following holds: if ρ(u, v) < c for some u, v ∈ X, then
∥u∥2 ≤ γ ∥v∥2 + C for some constants γ ≥ 2 and C > 0, which are independent of u and v.

Then, for the distance-like function ρα : X × X → R+ defined for a fixed parameter α > 0 by

ρα(u, v) = ρ(u, v)1/2 exp
(
α∥u∥2 + α∥v∥2

)
for all u, v ∈ X,

it follows that there exists a constant K̃ > 0 such that

ρα(u, v) ≤ K̃
[
ργα(u, w) + ργα(w, v)

]
for all u, v, w ∈ X, (A.2)

where γ ≥ 2 is the constant from assumption (iii).

Proof. Let u, v, w ∈ X. Since, for any α > 0, ρα is symmetric, we may assume without loss of generality
that ∥v∥ ≤ ∥u∥, with γ ≥ 2 being the constant from assumption (iii).

First, suppose that ρ(u, w) ≥ c. Then, by invoking assumption (i), we obtain that

ρα(u, v) ≤ M1/2 exp
(
α∥u∥2 + α∥v∥2

)
≤ M1/2 ρ(u, w)1/2

c1/2 exp
(

2α∥u∥2
)

≤ M1/2

c1/2 ργα(u, w) ≤ M1/2

c1/2

[
ργα(u, w) + ργα(w, v)

]
. (A.3)

On the other hand, if ρ(u, w) < c then by invoking assumptions (ii) and (iii) it follows that

ρα(u, v) ≤ K1/2
[
ρ(u, w)1/2 + ρ(w, v)1/2

]
exp

(
α∥u∥2 + α∥v∥2

)

≤ K1/2
[
ρ(u, w)1/2 exp

(
2α∥u∥2

)
+ ρ(w, v)1/2 exp

(
αγ ∥w∥2 + αC + α∥v∥2

)]

≤ C̃
[
ργα(u, w) + ργα(w, v)

]
, (A.4)

where C̃ = K1/2 exp(αC).
From (A.3) and (A.4), we conclude that (A.2) holds with K̃ = max{(M/c)1/2, C̃}. !
In the following result, we show that a generalized triangle inequality satisfied by given distance-

like functions, namely (A.6) below, induces an analogous inequality for the corresponding Wasserstein-
like extensions, (A.7). The proof relies essentially on the Disintegration theorem (see e.g. Ambrosio
et al., 2005, Lemma 5.3.2): fixed measures µ, ν, ν̃ ∈ Pr(X), and given any couplings Γ ∈ C (µ, ν̃),
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Γ ′ ∈ C (ν̃, ν), it provides a way of constructing a coupling Γ ′′ ∈ C (µ, ν), so that one can pass from
(A.6) to (A.7). Before we state the result, let us recall a few definitions.

Let (X , ΣX ) and (Y , ΣY ) be measurable spaces. Given a measurable function φ : X → Y and
a measure µ ∈ Pr(X ), the pushforward of µ by φ, denoted by φ∗µ, is defined as the measure on Y
given by

φ∗µ(A) := µ(φ−1(A)) for any A ∈ ΣX ,

where φ−1(A) denotes the preimage of the set A by φ. Moreover, given a (φ∗µ)-integrable function
ψ : Y → R, it follows that the composition ψ ◦ φ : X → R is µ-integrable and the following change
of variables formula holds

∫

Y
ψ(u)(φ∗µ)(du) =

∫

X
ψ(φ(u))µ(du). (A.5)

Proposition A.2 Let X be a Polish space. Suppose there exist distance-like functions ρ1, ρ2, ρ3 : X ×
X → R+ for which there exists a constant C > 0 such that

ρ1(u, v) ≤ C
[
ρ2(u, w) + ρ3(w, v)

]
for all u, v, w ∈ X. (A.6)

Let Wρ1
, Wρ2

and Wρ3
be the Wasserstein-like extensions of ρ1, ρ2 and ρ3, respectively, to Pr(X),

according to the definition given in (2.2). Then,

Wρ1
(µ, µ′) ≤ C

[
Wρ2

(µ, µ̃) + Wρ3
(µ̃, µ′)

]
for all µ, µ′, µ̃ ∈ Pr(X). (A.7)

Proof. Let π1, π2 : X × X → X denote the projection functions onto the first and second components,
respectively. Namely, π1(u, v) = u and π2(u, v) = v for all u, v ∈ X. Then, recalling the definition of the
family of couplings C (µ, µ′) of any two measures µ, µ′ ∈ Pr(X), given in Section 2.1, it follows that,
for any Γ ∈ C (µ, µ′) ⊂ Pr(X × X), π∗

1 Γ = µ and π∗
2 Γ = µ′.

Fix µ, µ′, µ̃ ∈ Pr(X). From (2.2), it follows that for any given ε̃ > 0 there exist Γ ∈ C (µ, µ̃) and
Γ ′ ∈ C (µ̃, µ′) such that

∫

X×X
ρ2(u, v)Γ (du, dv) < Wρ2

(µ, µ̃) + ε̃,

and
∫

X×X
ρ3(u, v)Γ ′(du, dv) < Wρ3

(µ̃, µ′) + ε̃.

Further, let us denote by πi,j : X × X × X → X × X, i, j = 1, 2, 3, the projection functions

πi,j(u1, u2, u3) = (ui, uj), for all u1, u2, u3 ∈ X.

Since π∗
2 Γ = µ̃ = π∗

1 Γ ′, it follows from the Disintegration theorem (see e.g. Ambrosio et al., 2005,
Lemma 5.3.2) that there exists Γ̃ ∈ Pr(X×X×X) such that π∗

1,2Γ̃ = Γ and π∗
2,3Γ̃ = Γ ′. Consequently,
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π∗
1,3Γ̃ ∈ C (µ, µ′) and

Wρ1
(µ, µ′) ≤

∫

X×X
ρ1(u, v)π∗

1,3Γ̃ (du, dv) =
∫

X×X×X
ρ1(π1,3(u, w, v))Γ̃ (du, dw, dv). (A.8)

From assumption (A.6), we have that for any u, v, w ∈ X

ρ1(π1,3(u, w, v)) = ρ1(u, v) ≤ C
[
ρ2(u, w) + ρ3(w, v)

]

= C
[
ρ2(π1,2(u, w, v)) + ρ3(π2,3(u, w, v))

]
. (A.9)

Plugging (A.9) in (A.8) and changing variables as in (A.5), we deduce that

Wρ1
(µ, µ′) ≤ C

[∫

X×X
ρ2(u, w)π∗

1,2Γ̃ (du, dw) +
∫

X×X
ρ3(w, v)π∗

2,3Γ̃ (dw, dv)
]

= C
[∫

X×X
ρ2(u, w)Γ (du, dw) +

∫

X×X
ρ3(w, v)Γ ′(dw, dv)

]

< C
[
Wρ2

(µ, µ̃) + Wρ3
(µ̃, µ′) + 2ε̃

]
. (A.10)

Since ε̃ > 0 is arbitrary, taking the limit as ε̃ goes to 0 in (A.10) we conclude (A.7). !

Appendix B. Proof of Theorem 3.7

With the same notation from (3.2), we write the Galerkin system (3.12) in the following functional form

dξN +
[
νAξN + ΠNB(ξN , ξN)

]
dt = ΠNσ dW. (B.1)

The following preliminary lemma provides some suitable bounds for the analytic semigroup e−νtA,
t ≥ 0, generated by the operator −νA. For the proof, we refer to Pazy (1983, Theorem 6.13, Chapter 2).
The notation ∥ · ∥L (L̇2) below refers to the standard operator norm of a linear operator on L̇2.

Lemma B.1 For every a ≥ 0 and b ∈ (0, 1], there exist constants ca > 0 and cb > 0 such that

∥Aae−νtA∥L (L̇2) ≤ ca(νt)−a, (B.2)

∥A−b(I − e−νtA)∥L (L̇2) ≤ cb(νt)b, (B.3)

for all t > 0.

Having fixed the necessary terminology, we proceed to show the desired Hölder regularity for
solutions of the Galerkin system (3.12).

Proof of Theorem 3.7. We only show a proof of inequality (3.19), since the proof of (3.18) is simpler
and follows entirely analogously. Fix T > 0, m ∈ N and p̃ ∈ (0, 1/2). We consider the mild form of the
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solution ξN that follows from the functional formulation (B.1), namely

ξN(t) = e−νtAΠNξ0 −
∫ t

0
e−ν(t−τ )AΠNB(ξN , ξN) dτ +

∫ t

0
e−ν(t−τ )AΠNσ dW(τ ),

for every t ≥ 0. Thus, for every s, t ∈ [0, T],

∇ξN(t) − ∇ξN(s) =
(

e−νtA − e−νsA
)

∇ΠNξ0

−
(∫ t

0
e−ν(t−τ )A∇ΠNB(ξN , ξN) dτ −

∫ s

0
e−ν(s−τ )A∇ΠNB(ξN , ξN) dτ

)

+
(∫ t

0
e−ν(t−τ )A∇ΠNσ dW(τ ) −

∫ s

0
e−ν(s−τ )A∇ΠNσ dW(τ )

)

= (I) + (II) + (III). (B.4)

We proceed to estimate each term in the right-hand side of (B.4). Without loss of generality, let us
assume s < t. We estimate (I) as

|(I)| =
∣∣∣
(

e−νtA − e−νsA
)

∇ΠNξ0

∣∣∣ =
∣∣∣e−νsA(e−ν(t−s)A − I)∇ΠNξ0

∣∣∣

≤ ∥e−νsA∥L (L̇2)∥A−p̃(e−ν(t−s)A − I)∥L (L̇2)|Ap̃∇ξ0|

≤ c|t − s|p̃|Aξ0|,

where the last inequality follows from Lemma B.1, and the fact that Ap̃∇ξ0 = Ap̃A1/2ξ0 = Ap̃+1/2ξ0, so
that since p̃ ∈ (0, 1/2) we have |Ap̃∇ξ0| = ∥ξ0∥Ḣ2p̃+1 ≤ ∥ξ0∥Ḣ2 , see Section 3.1.1. Hence,

E[|(I)|m] ≤ c|t − s|mp̃|Aξ0|m. (B.5)

Now for term (II) we have

|(II)| =
∣∣∣∣

∫ t

0
e−ν(t−τ )AA1/2ΠNB(ξN , ξN) dτ −

∫ s

0
e−ν(s−τ )AA1/2ΠNB(ξN , ξN) dτ

∣∣∣∣

≤
∣∣∣∣

∫ s

0
(e−ν(t−τ )A − e−ν(s−τ )A)A1/2ΠNB(ξN , ξN) dτ

∣∣∣∣ +
∣∣∣∣

∫ t

s
e−ν(t−τ )AA1/2ΠNB(ξN , ξN) dτ

∣∣∣∣

= |(IIa)| + |(IIb)|.

Notice that

E[|(IIa)|m] = E
[∣∣∣∣

∫ s

0
e−ν(s−τ )A(e−ν(t−s)A − I)A1/2ΠNB(ξN , ξN) dτ

∣∣∣∣
m]

≤ E
[(∫ s

0
∥Ap̃+1/2e−ν(s−τ )A∥L (L̇2)∥A−p̃(e−ν(t−s)A − I)∥L (L̇2) |ΠNB(ξN , ξN)| dτ

)m]

≤ c
νm/2 E

[

sup
0≤τ≤T

|ΠNB(ξN , ξN)|m
] (∫ s

0
|s − τ |−p̃−1/2|t − s|p̃ dτ

)m

, (B.6)
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where in the last inequality we invoked Lemma B.1 once again.
With inequality (3.9) for the nonlinear term and estimate (3.13) from Proposition 3.4, it follows that

c
νm/2 E

[

sup
0≤τ≤T

|ΠNB(ξN , ξN)|m
]

≤ c
νm/2 E

[

sup
0≤τ≤T

|B(ξN , ξN)|m
]

≤ c
νm/2 E

[

sup
0≤τ≤T

|∇ξN |2m

]

≤ C
(

1 + |ξ0|4m + |∇ξ0|2m
)

,

where C is a constant depending on m, T , ν, |σ | and |∇σ |. Thus, from (B.6) and since p̃ ∈ (0, 1/2)

E
[
|(IIa)|m

]
≤ C

(
1 + |ξ0|4m + |∇ξ0|2m

)
|t − s|mp̃

(∫ s

0
|s − τ |−p̃−1/2 dτ

)m

≤ C
(

1 + |ξ0|4m + |∇ξ0|2m
)
|t − s|mp̃. (B.7)

Similarly, we have for (IIb) that

E
[
|(IIb)|m

]
≤ E

[(∫ t

s
∥A1/2 e−ν(t−τ )A∥L (L̇2)|ΠNB(ξN , ξN)| dτ

)m]

≤ c
νm/2 E

[

sup
0≤τ≤T

|ΠNB(ξN , ξN)|m
](∫ t

s
|t − τ |−1/2 dτ

)m

≤ C
(

1 + |ξ0|4m + |∇ξ0|2m
)

|t − s|m/2

≤ C
(

1 + |ξ0|4m + |∇ξ0|2m
)
|t − s|mp̃T(−p̃+1/2)m. (B.8)

Lastly, we estimate (III) as

|(III)| ≤
∣∣∣∣

∫ s

0
(e−ν(t−τ )A − e−ν(s−τ )A)∇ΠNσ dW(τ )

∣∣∣∣ +
∣∣∣∣

∫ t

s
e−ν(t−τ )A∇ΠNσ dW(τ )

∣∣∣∣

= |(IIIa)| + |(IIIb)|.

For each fixed s, t ∈ [0, T], we define for every r ∈ [0, s]

Mr :=
∫ r

0
(e−ν(t−τ )A − e−ν(s−τ )A)∇ΠNσ dW(τ ).

Then, {Mr}0≤r≤s is a martingale. By Burkholder–Davis–Gundy inequality (Karatzas & Shreve, 1991,
Theorem 3.28), for every p ∈ (0, ∞),

E
[
|Ms|p

]
≤ E

[

sup
0≤r≤s

|Mr|p
]

≤ c E
(
⟨M⟩p/2

s

)
,
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where

⟨M⟩s =
∫ s

0

∣∣∣(e−ν(t−τ )A − e−ν(s−τ )A)∇ΠNσ
∣∣∣
2

dτ .

Hence, invoking Lemma B.1 again,

E
[
|(IIIa)|m

]
= E

[
|Ms|m

]
≤ c

(∫ s

0
|(e−ν(t−τ )A − e−ν(s−τ )A)∇ΠNσ |2 dτ

)m/2

≤ c
(∫ s

0
|e−ν(s−τ )A(e−ν(t−s)A − I)∇ΠNσ |2 dτ

)m/2

≤ c
(∫ s

0
∥Ap̃e−ν(s−τ )A∥2

L (L̇2)
∥A−p̃(e−ν(t−s)A − I)∥2

L (L̇2)
|∇σ |2 dτ

)m/2

≤ c
(∫ s

0
|s − τ |−2p̃|t − s|2p̃|∇σ |2 dτ

)m/2

= c|t − s|mp̃|∇σ |m
(∫ s

0
|s − τ |−2p̃ dτ

)m/2

≤ c|t − s|mp̃|∇σ |ms(−p̃+1/2)m ≤ c|t − s|mp̃|∇σ |mT(−p̃+1/2)m, (B.9)

where the last inequality holds thanks to the assumption that p̃ ∈ (0, 1/2).
Analogously, we estimate E|(IIIb)|m as

E
[
|(IIIb)|m

]
≤

(∫ t

s
|e−ν(t−τ )A∇ΠNσ |2 dτ

)m/2

≤
(∫ t

s
∥e−ν(t−τ )A∥2

L (L̇2)
|∇σ |2 dτ

)m/2

≤ |∇σ |m|t − s|m/2

≤ |t − s|mp̃ |∇σ |m T(−p̃+1/2)m. (B.10)

Therefore, it follows from (B.4) and the estimates (B.5), (B.7)–(B.10) above that for all s, t ∈ [0, T]
with s ≤ t

E
[
|∇ξN(t) − ∇ξN(s)|m

]
≤ C|t − s|mp̃

[
1 + |ξ0|4m + |∇ξ0|2m + |Aξ0|m

]
, (B.11)

where C = C(m, p̃, T , ν, |σ |, |∇σ |). This concludes the proof of (3.18). Clearly, by following similar
steps as above one can show that (3.18) and (3.19) also hold with ξN(t) replaced by the solution ξ(t),
t ≥ 0, of (3.1) satisfying ξ(0) = ξ0 almost surely. !
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