

1 Landscape Taphonomy Predictably Complicates Demographic
2 Reconstruction

3
4 Daniel A. Contreras (corresponding author)
5 Department of Anthropology, University of Florida
6 Gainesville, Florida, USA
7 daniel.contreras@ufl.edu
8 ORCID: 0000-0002-8127-8789
9

10 Brian F. Codding
11 Department of Anthropology, University of Utah
12 Salt Lake City, Utah, USA
13 brian.codding@anthro.utah.edu
14 ORCID: 0000-0001-7977-8568
15

17 **Abstract**

18 Accurately reconstructing past human population dynamics is critical for explaining major patterns in
 19 the human past. Demand for demographic proxies has driven hopeful interest in the “dates-as-data”
 20 approach, which models past demography by assuming a relationship between population size, the
 21 production of dateable material, and the corpus of radiocarbon dates produced by archaeological research.
 22 However, several biases can affect assemblages of dates, complicating inferences about population size.
 23 One serious but potentially addressable issue centers on landscape taphonomy – the ways in which
 24 geologic processes structure the preservation and recovery of archaeological sites and/or materials at
 25 landscape scales. Here we explore the influence of landscape taphonomy on demographic proxies. More
 26 specifically, we evaluate how well demographic proxies may be corrected for taphonomic effects with
 27 either a common generalized approach or an empirically-based tailored approach. We demonstrate that
 28 frequency distributions of landforms of varying ages can be used to develop local corrections that are
 29 more accurate than either global corrections or uncorrected estimates. Using generalized scenarios and a
 30 simulated case study based on empirical data on landform ages from the Coso Basin in the western Great
 31 Basin region, we illustrate the way in which landscape taphonomy predictably complicates ‘dates-as-data’
 32 approaches, propose and demonstrate a new method of empirically-based correction, and explore the
 33 interpretive ramifications of ignoring or correcting for taphonomic bias.

34
 35 Keywords: archaeological demography, landscape taphonomy, dates-as-data, radiocarbon SPD

36 **1. Introduction**

37 Accurately reconstructing past human population dynamics is critical for explaining major patterns in
 38 the human past, ranging from the development of behavioral modernity (e.g., Powell et al. 2009; Tallavaara
 39 et al. 2015; cf. Vaesen et al. 2016) to the emergence and spread of agriculture (e.g., Bevan et al. 2017;
 40 Codding et al. 2022; Timpson et al. 2014; Weitzel and Codding 2016). More broadly, demographic proxies
 41 are also needed to explain general trends in past human-environment interactions, including human
 42 responses to climate change (e.g., Codding et al. 2023; Flohr et al. 2016; Kelly et al. 2013) and the extent
 43 and effects past of human land use (e.g., Ellis et al. 2013; Kaplan et al. 2010; Klein Goldewijk et al. 2011).
 44 These establish baselines for anthropogenic impacts and inform predictions about future human-climate-
 45 land use dynamics (see d’Alpoim Guedes et al. 2016). Past population dynamics are so fundamental that
 46 without a reliable method for discerning them, we will be unable to address most of archaeology’s “grand
 47 challenges” (Kintigh et al. 2014).

48 Approaches to regional archaeological demography (recently summarized in Drennan et al. 2015) are
 49 generally founded upon counts of some class of archaeological feature or artifact whose abundance can be
 50 theoretically related to population size. Counts of sites based on archaeological settlement survey are
 51 perhaps the simplest and most common proxy. These can be complemented or supplanted by counts of
 52 structures or hearths, adjusted by estimates of site area, and fine-tuned to take into account spans of
 53 occupation and site function(s). The centrality of archaeological demography, however, has driven hopeful
 54 interest in population proxies that are less dependent on systematic archaeological surveys, which are
 55 comparatively expensive, slow, and limited in their spatial coverage. Most salient among these over the last
 56 two decades has been the “dates-as-data” approach (Rick 1987), which has become the dominant method
 57 for reconstructing past population histories (recently, e.g., Bird et al. 2020; Crema and Kobayashi 2020;
 58 DiNapoli et al. 2021; Parkinson et al. 2021; Riris 2018; for a recent review see Crema 2022). This method
 59 assumes a relationship between population size, the production and survival of dateable material, and the
 60 corpus of radiocarbon dates produced by the last ± 60 years of archaeological research, and leverages
 61 temporal or spatial variation in the distribution of those dates to model past demography.

62 Methods of demographic reconstruction, like any archaeological endeavor, are fundamentally
 63 vulnerable to problems of differential preservation: any population proxy relies on comparing quantities

64 that survive from different time periods, which can for a variety of reasons lead to the underrepresentation
65 of some periods of time and consequent misinterpretations of population dynamics. As a result, estimates
66 of past populations necessarily either assume that all periods are equally represented or attempt to identify
67 which particular periods are underrepresented and apply some estimated correction.

68 Landscape taphonomy – the ways in which geologic processes structure the preservation and recovery
69 of archaeological sites and/or materials at landscape scales – is one factor that potentially generates
70 systematic bias in demographic reconstruction. This problem is broadly recognized in settlement survey
71 (Banning 2002; Drennan et al. 2015, pp. 162–171; Stafford 1995), and has been recognized since Rick's
72 original dates-as-data paper as one of the factors that attenuates the relationship between a distribution of
73 population over time in a given locale and the assemblage of radiocarbon dates recovered from that region.
74 The most salient attempt at a generalizable solution is Surovell and colleagues' work (Bluhm and Surovell
75 2019; Surovell et al. 2009; Surovell and Brantingham 2007), which approximates global rates of loss of
76 archaeological material over time by comparing the differences between sedimentary and aerosol (ice core-
77 derived) records of vulcanism; those differences are argued to indicate rates of disappearance of sediments
78 over time. Surovell and colleagues use those approximations to develop a global taphonomic correction,
79 referred to as the “Volcanic” correction (Bluhm and Surovell 2019), which is now widely applied by dates-
80 as-data practitioners (e.g., Barberena et al. 2017; Broughton and Weitzel 2018; Downey et al. 2016;
81 Edinborough et al. 2017; Jones et al. 2021; Peros et al. 2010; Williams 2012) and implemented in the
82 **rcarbon** package as 'transformSPD' (Bevan and Crema 2017).

83 However, as Surovell and colleagues recognized (2009, p. 1723), deposition and erosion are highly
84 variable in space, and local rates of taphonomic loss can be expected to vary considerably from global
85 ones. This variation will be particularly consequential in regions with active and varied sedimentary
86 histories, leading to systematic biases in demographic reconstructions.

87 To evaluate the potential bias of local landscape taphonomy, and ways to address it, here we use
88 simulated archaeological data to show that under many taphonomic scenarios neither applying a
89 generalized correction nor ignoring the problem is likely to constitute an adequate response. With a focus
90 on dates-as-date approaches but with results that are broadly applicable to regional archaeological
91 demography, we demonstrate that frequency distributions of landforms of varying ages can be used to
92 develop local corrections that are more accurate than either global corrections or uncorrected estimates.

93 Using generalized scenarios and a simulated case study based on empirical data on landform ages from
94 the Coso Basin in the western Great Basin region, we illustrate the way in which landscape taphonomy
95 predictably complicates ‘dates-as-data’ approaches, propose and demonstrate a new method of empirically-
96 based correction, and explore the interpretive ramifications of ignoring or correcting for taphonomic bias.

97 2. Background

98 2.1 Landscape Taphonomy

99
100 Taphonomic concepts in archaeology most commonly embrace the analysis of post-depositional
101 modification of archaeological materials (Schiffer 1987), but have also been integrated with insights from
102 archaeological survey (e.g., Banning 2002, p. 72) to address regional landscape taphonomy. This can range
103 from regional variation in site formation processes (Borrero 2014) to consideration of the differential
104 survival of sites that are from different time periods and/or located on different landforms (Barton et al.
105 2002; Burger et al. 2008).

106 The problem is one that has been most thoroughly discussed in the geoarchaeological literature, in both
107 relatively humid (e.g., Bettis and Benn 1984; Bettis and Mandel 2002; Borejsza et al. 2014; Mandel 2008)
108 and arid (e.g., Fanning et al. 2007; Ravesloot and Waters 2004) environments. These approaches have
109 generally focused on fluvial processes, and particularly the problems posed by destruction or burial of
110 archaeological sites through erosion and deposition. These studies demonstrate that preserved distributions

111 of sites recorded by archaeological surveys of modern land surfaces can be strongly structured by
112 geomorphic patterns as well as by patterns of human settlement and land use. As a result, as Bettis and
113 Mandel conclude, “the accuracy of paleo-demographic...models based on archaeological data depends in
114 large part on the amount and quality of data available for assessing differential temporal and spatial
115 preservation, and regional and local sedimentation rates” (2002: 152). Various cases studies – e.g., the
116 Middle Gila River (Ravesloot and Waters 2004), the Central and Eastern Great Plains (Bettis and Mandel
117 2002; Mandel 2008), and southern Indiana (Herrmann 2015) – show that both the distribution and the
118 abundance of sites of any given period must be considered in light of the varying ages of extant/exposed
119 landforms in fluvial landscape. The diversity of these examples, as well as modeling of fluvial landscapes
120 (Clevis et al. 2006; Davies et al. 2015), suggests that the problem is pervasive and potentially significant.
121 Ballenger and Mabry (2011) address this with specific reference to the recovery of dateable material used
122 in dates-as-data approaches.

123 Although fewer case studies address the problem directly in other geomorphic contexts, landscape
124 taphonomy is not limited to fluvial landscapes. For instance, MacInnes and colleagues (2014) address
125 differential availability of landforms for settlement in the Kuril Islands, where landform creation or burial
126 through volcanic processes is the primary process of concern, and Zvelebil and colleagues (1992) consider
127 the impacts on archaeological survey in a southeast Irish landscape of alluviation, sea level change, and
128 peat development. Bailey and Cawthra (2023) review the landscape taphonomic implications of global sea
129 level rise in broad terms. The empirically grounded simulation that we present in Section 3.3 is based on
130 the detailed work on Great Basin landscape taphonomy by Eerkens and colleagues (2007) in the Coso
131 Basin.

132 For dates-as-data approaches, the role of taphonomy in structuring the distribution of surviving datable
133 material is fundamental. Nevertheless, as Ward and Larcombe (2021) have recently detailed, even if the
134 issue is acknowledged in dates-as-data projects, it is rarely treated in sufficient detail to enable consideration
135 of the likely effects on demographic reconstructions. At best, the vast majority of dates-as-data literature
136 assumes that, all else being equal, older material has been subject to deleterious processes for more time,
137 and is thus less likely to be represented in the archaeological record. Surovell and colleagues (Surovell et
138 al. 2009; Surovell and Brantingham 2007) recognized the importance of this issue, and approximated a
139 solution by developing a “correction” for taphonomic bias using a database of geologic ^{14}C dates associated
140 with volcanic deposits (Bryson et al. 2006) as a measure of the frequency distribution of terrestrial
141 sediments of various ages. They compared this empirical distribution against an independent ice-core-
142 derived aerosol record of Quaternary volcanism, which is unaffected by landscape taphonomy, to produce
143 a global estimate of the impact of taphonomic factors on the survival of terrestrial sediments of different
144 ages. A recent evaluation of the volcanic correction (Bluhm and Surovell 2019) produced largely similar
145 results using an independent set of non-volcanic geologic dates.

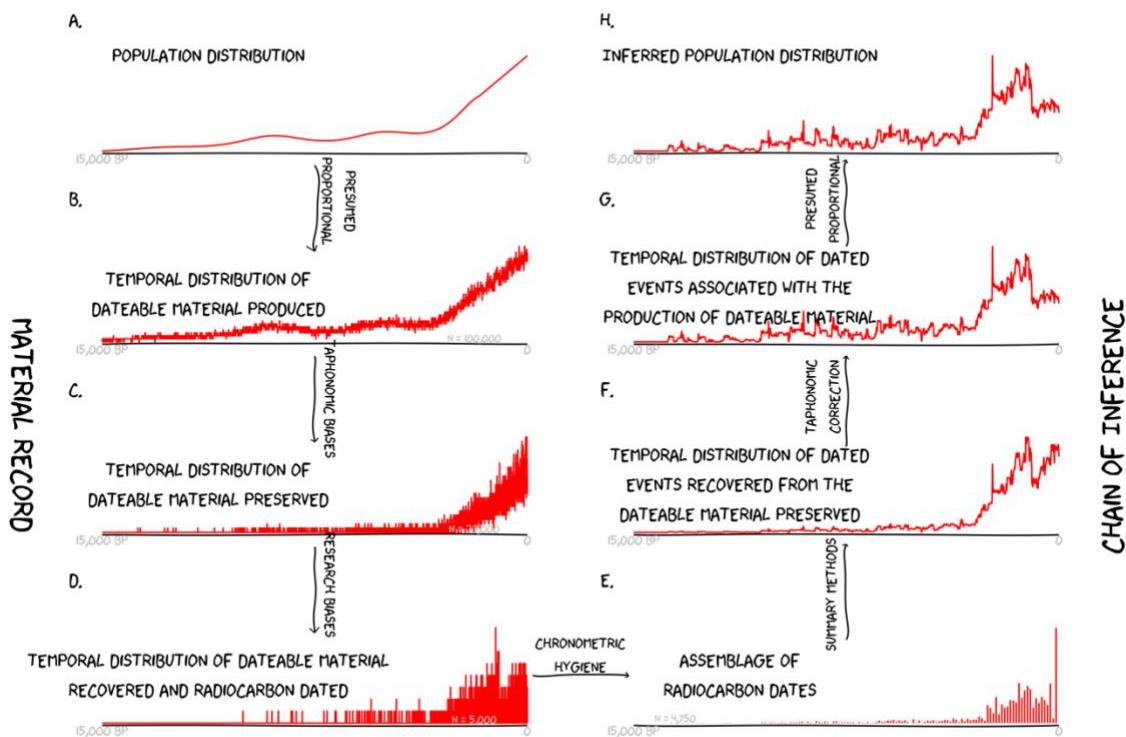
146 While this approach is an ingenious solution to the problem of taphonomic bias, it assumes that local
147 landscape taphonomy mirrors global patterns, smoothing over variation in local surface processes that may
148 produce significant deviations in the post-depositional factors that structure the availability of dateable
149 material in any given region. Since local taphonomy can significantly structure surviving distributions of
150 dateable material, ignoring it can have significant effects on demographic interpretations. Surovell and
151 colleagues (2009, p. 1723) acknowledged this issue and suggested their global correction only as a first
152 approximation. Others (e.g., Attenbrow and Hiscock 2015, p. 32; Rhode et al. 2014, p. 576) also emphasize
153 the importance of attention to local landscape taphonomy and suggest that the appropriateness of a
154 generalized correction should be demonstrated rather than assumed. In spite of this recognition, and
155 although it is clear that in order for summaries of radiocarbon dates to accurately reflect the original
156 distributions of dateable material these taphonomic effects must be accounted for, no systematic approach
157 for dealing with taphonomic effects at local or regional scales exists. Crema’s recent (2022) comprehensive
158 review of dates-as-data methods neither explores the magnitude of the problem nor suggests any solutions
159 other than the volcanic correction. Moreover, Surovell and colleagues’ global volcanic correction is widely
160 cited (369 citations listed in Google Scholar as of November 2023, though certainly not all of these represent

161 applications of the correction), often without justification of its appropriateness for the region under
162 consideration (though sometimes, e.g., Barberena et al. 2017, with caveats about the applicability of the
163 results).

164 2.2 “Dates-as-Data” Approaches

165
166 Embrace of meta-analysis of archaeological assemblages of ^{14}C dates can be traced to John Rick’s
167 (1987) use of ^{14}C dates from the Central Andean preceramic period to argue that ^{14}C dates could be
168 employed as population proxies. Other early efforts can be discerned (see Carleton and Groucutt 2020, p.
169 2), but Rick’s paper is increasingly cited, and its title commonly used to describe this genre of studies.

170 Following Rick, this “dates-as-data” approach has been founded on the argument that in addition to
171 their traditional role in establishing chronological frameworks for archaeological sites and regions, ^{14}C dates
172 could also figure in analyses of broad demographic patterns in space and time. The central contention is
173 that in spite of various confounding factors, archaeological ^{14}C dates can serve as a population proxy, given
174 an initial assumption that the production of dateable material is roughly proportional to population size at
175 any given time.



176

177 Figure 1: Schematic of the 'dates as data' approach, using simulated data. The creation of the material
178 record (at left) involves the initial production of dateable material and the subsequent transformation of that
179 material by successive processes. A population (A), derived from the Terminal Pleistocene - Holocene estimate
180 produced by Weitzel and Codding (2016), produces dateable material (B) at a rate assumed to be proportional
181 to population. That dateable material is subject to taphonomic processes, which though irregular are
182 cumulative, making older material less likely to be preserved. Here we simulate this taphonomic bias by
183 sampling from the initial distribution with probabilities following the exponential curve described by Surovell
184 and colleagues (2009). The remaining (preserved) dateable material (C) is the population of archaeological
185 material available to be recovered and dated by archaeologists, who for intellectual and budgetary reasons (at

186 least) do not select material to date at random. The resulting distribution of dateable material (D) is shaped by
187 both the abundance of material available from different periods and the preferential recovery and analysis of
188 material from particular periods. Here we simulate research bias simply by sampling from the preserved
189 distribution with probabilities uniformly equal to 1 for the period before 1000 BP and uniformly equal to .5 for
190 the post-1000 BP period, reflecting the abundance of other dating techniques likely to be used for archaeological
191 material dating to the most recent millennium. The process of making inferences about demographic history
192 from the resulting assemblage of radiocarbon dates (at right) involves the summarization of calibrated
193 radiocarbon dates and then application of a correction for taphonomic effects. After removing 5% of the
194 assemblage to simulate the application of chronometric hygiene to a collection of radiocarbon dates,
195 radiocarbon dates are simulated for each of the remaining calendar dates (using `rcarbon::uncalibrate`), which
196 are illustrated here with a histogram binning the medians of those radiocarbon dates (E). These simulated
197 radiocarbon dates are calibrated, and then a summed probability distribution (SPD) describing them (F) is
198 calculated. This SPD is taphonomically corrected following the method described by Surovell and colleagues
199 (2009), producing a corrected distribution (G) that is presumed proportional to the population distribution
200 over time (H), and understood as an approximation of (A).

201 This contention rests upon a) the validity of the relationship between population size and production of
202 dateable material, and b) dismissal of both the effects of research priorities and budgets on the recovery and
203 analysis of dateable material, and the effects of temporally and spatially variable preservation on the
204 ultimate composition of the material record. The latter two processes can significantly structure ^{14}C
205 assemblages in ways that strongly impact interpretation. Addressing these biases, consequently, is vital if
206 “dates as data” approaches are to produce reliable results. We review below the principles and application
207 of the “dates as data” approach, as well as the significant challenges yet to be overcome. These challenges
208 are the product of three assumptions fundamental to the ‘dates as data’ approach (see Figure 1):

- 209 1) past population size is proportional to (\propto) the dateable material produced,
- 210 2) dateable material produced is proportional to the dateable material now available to sample, and
- 211 3) the dateable material now available is representatively sampled.

212 In order to accurately reconstruct changing populations, archaeologists must develop methods that address
213 whether these assumptions are justifiable for a particular case and, if not, correct for the biases introduced.
214 While this paper focuses on the second fundamental assumption, here we briefly review each as well as the
215 methods developed to try to reduce the impact of biases on dates-as-data. For additional detail we refer the
216 reader to Crema’s (2022) recent comprehensive review.

217 **2.2.1 Foundational Assumption 1: Population Size \propto Dateable Material Produced**

218 The foundational assumption of any attempt to use an assemblage of radiocarbon dates as a population
219 proxy, articulated in Rick’s 1987 paper, is clear if not necessarily universally accepted: the production of
220 dateable material at any given time is proportional to population size (Figure 1a and 1b). Rick pointed out
221 from the outset that this relationship was likely to be a function of technology and environment (Rick 1987,
222 p. 57), and argued that the population proxies were only appropriately compared in situations where these
223 were similar, but this caution has not always been observed by subsequent researchers. With the exception
224 of the recent work by Freeman and colleagues (2018), only critiques of “dates as data” approaches (e.g.,
225 Attenbrow and Hiscock 2015; Mökkönen 2014; Torfing 2015) tend to raise this issue. Although in principle
226 it is clear that the relationship between population and the production of dateable material may vary over
227 time and/or space, dates-as-data practitioners seem to be content that this risk is either a) unimportant, or
228 b) can be managed by confining analyses to populations within which that relationship is likely to be fairly
229 constant – i.e., where technology and sociopolitical complexity are comparable.

230 **2.2.2 Foundational Assumption 2: Dateable Material Produced \propto Dateable Material 231 Available**

232 Any approach whose logic relies on diachronic comparison – in the case of ‘dates as data’ approaches
233 to past population, of the quantities of dateable material produced at different times – must confront the
234 issue of taphonomy (see Section 2.1). Where radiocarbon dates are concerned, the issue is the differential

235 survival of dateable material that might be recovered and analyzed (Figure 1c). However, the “dates as
236 data” literature has generally embraced the convenient assumption that (other things being equal)
237 taphonomic patterns will have a neutral effect on a ^{14}C assemblage, or at least an effect that can be simply
238 corrected.

239 As early as 1987, however, Rick noted that “preservation processes will discriminate against older
240 dates” (1987, p. 57). Ward and Larcombe (2021, p. 550) have recently reiterated this caution, and a series
241 of studies have explored the potential interpretive ramifications of differential preservation. Ballenger &
242 Mabry (2011) present a case study in which other factors overwhelm production as a determinant of the
243 abundance of dateable material, wherein taphonomic loss cannot be simply modeled (“the conditions that
244 determine preservation/loss have varied through time” [Ballenger and Mabry 2011, p. 1322]). Holdaway
245 and colleagues (2009), on the basis of dates on different kinds of archaeological components in southeastern
246 Australia, and Davies and colleagues (Carney and Davies 2020; Davies et al. 2015), on the basis of model
247 simulations, argue that landscape taphonomy can produce an apparently complex ^{14}C record even if the
248 generative process is simple.

249 **2.2.3 Foundational Assumption 3: Dateable Material Available \propto Material Dated by 250 Researchers**

251 The issue of research intensity, already recognized in the infancy of “dates as data” approaches by Rick
252 (1987: 57–58), is similarly challenging (Figure 1d). The tacit contention is that an archaeological
253 radiocarbon assemblage can be treated as a random sample of the dateable material produced, in part
254 because disparate research agendas focus on different time periods. A key risk is that research interests
255 and/or budgetary realities may drive research practices: in addition to locally eclectic research preferences,
256 the number of ^{14}C samples dated in any region may best reflect that region’s economic fortunes rather than
257 its population in prehistory. Even within regions of comparable prosperity, perceptions as to the relative
258 importance of different archaeological phenomena or periods and the relative utility of ^{14}C and other dating
259 methods mean that resources will be unevenly directed towards dating different periods. Further
260 complicating factors are that researchers collecting ^{14}C results published in academic literature may be
261 unaware of larger and perhaps less selective data sets generated by commercial archaeology (as Crombé
262 and Robinson [2014] observed), and that results may be structured by regional reporting conventions
263 (notable, for instance, in the salience of Wyoming in the Canadian Archaeological Radiocarbon Database
264 [CARD] data [e.g., Chaput et al. 2015, p. Fig. 1; Crema et al. 2017, p. 2]). The effects of even sampling
265 that can be treated as effectively random can also produce patterns that are difficult to distinguish from
266 fluctuations in the abundance of dateable material (Rhode et al. 2014).

267 **2.2.4 “Dates as Data” Methodology**

268 The majority of the “dates as data” literature has focused on the difficulties of summarizing ^{14}C assemblages
269 (see recent reviews in Bronk Ramsey 2017; Crema 2022; Crema and Bevan 2021) and interpreting the
270 resulting summed probability distributions (SPDs); practitioners have generally preferred to take the
271 foundational assumptions for granted (though see Carleton and Groucutt 2021; Freeman et al. 2018).

272 **2.2.4.1 Summarizing Assemblages of ^{14}C dates**

273 Although a few alternatives continue to be explored – e.g., model fits on binned dates (Weitzel and
274 Codding 2016) and summed ranges (Drake et al. 2017) – addressing the uneven probability distributions of
275 calibrated dates by using summed probability distributions has become the dominant method of
276 summarizing ^{14}C assemblages (Figure 1e and 1f), in spite of various methodological and theoretical
277 critiques (e.g., Attenbrow and Hiscock 2015; Bamforth and Grund 2012; Chiverrell et al. 2011; Contreras
278 and Meadows 2014; Culleton 2008; Mökkönen 2014; Torfing 2015). This is likely due in large part to the
279 relative ease with which they can be calculated, coupled with the inability of critiques to suggest a more
280 viable alternative. However, Bronk Ramsey’s (2017, pp. 1810–13) discussion of various methods of
281 summarizing ^{14}C dates argues that an adaption of kernel density estimation (KDE) provides a more

282 promising tool for separating signal (date frequency) from noise (effects of the calibration curve and
283 sampling, primarily). Others (e.g., Brown 2015; Codding et al. 2023; Wilson et al. 2023) have explored
284 resampling approaches to explicitly address the uncertainty associated with each radiocarbon date.

285 **2.2.4.2 Correcting for Research Biases**

286 Recent work using Sum distributions to summarize ^{14}C assemblages has in some cases attempted to
287 “correct” ^{14}C assemblages for differential research intensity, by summing the calibrated pooled means of
288 ^{14}C results from individual sites/site-phases (e.g., Buchanan et al. 2008; Shennan and Edinborough 2007;
289 Tallavaara et al. 2010), by summing the calibrated dates for individual sites or site-phases before summing
290 the sums (e.g., Collard et al. 2010; Crema et al. 2016; Hinz et al. 2012; Shennan et al. 2013), or by
291 combining dates from sites (e.g., Balsara et al. 2015), areas (e.g., Goldberg et al. 2016), or site-phases
292 (Timpson et al. 2014) before summing. Chaput and colleagues (2015) use the spatial distribution of the
293 entire assemblage as a measure of the spatial distribution of research, thereby controlling (they argue) for
294 variable intensity of sampling in space, and Crema and colleagues (Crema et al. 2017) address research and
295 other biases by looking for local fluctuations relative to regional trends.

296 All of these techniques are intended to address the problem of well-funded excavations that produce
297 significantly more ^{14}C dates than other investigations in a region, but they run counter to the fundamental
298 assumption that larger populations would produce more dateable material: pooling gives equal weight to
299 every site or site-phase, thus conflating large and small sites and presuming site populations are static over
300 time. That is, populations of different sizes separated by more than some minimum amount of time are
301 expected to produce different amounts of dateable material, but populations of different sizes separated in
302 space are not. Pooling in this manner leaves unaddressed the question of when the quantity of dates from a
303 particular site, area, or time period represents an anomaly in the amount of research attention paid to that
304 area/site/period, and when it represents a concentration of population. Just as Kent Flannery describes the
305 risk, for a rigid sampling strategy of surface survey in the Basin of Mexico, of missing the metropolis of
306 Teotihuacan (Flannery 1976, p. Ch.5), uniformly binning multiple dates to minimize bias stemming from
307 well-funded investigations may lead “dates as data” researchers to ignore sites that have many dates
308 specifically because they are large sites that had large populations.

309 **2.2.4.3 Correcting for Taphonomic Biases**

310 Surovell and colleagues’ (2009) work stands out for its creative attempt to confront the issue of
311 taphonomic effects and remains the preferred means of addressing the differential survival of datable
312 material of varying ages (Figure 1g). Although the authors note that their proposed correction is a coarse
313 global approximation and suggest that the best approach would be to develop local corrections for any given
314 study (Bluhm and Surovell 2019, p. 328; Surovell et al. 2009, p. 1723), nevertheless their correction is
315 widely implemented (e.g., Barberena et al. 2017; Broughton and Weitzel 2018; Downey et al. 2016;
316 Edinborough et al. 2017; Fernández-López de Pablo et al. 2019; Zahid et al. 2016), reflecting recognition
317 that taphonomic bias poses a potentially significant problem. However, taphonomic correction is not
318 universally applied (e.g., Codding et al. 2022; Stewart et al. 2021; Tremayne and Winterhalder 2017) and
319 details of correction methods may vary. Williams (2012), for example, preferred a slightly modified version
320 of Surovell and colleagues’ empirically-derived equation relating time elapses to survival of material, and
321 argued that either correction produced “unrealistic values for time intervals >25.0 ka” (Williams 2012, p.
322 584). That dissatisfaction with results that did not match expectations led Williams (2012, p. 586) to argue
323 that “taphonomic correction should not be routinely applied without some discussion of whether time-
324 dependent taphonomic loss is valid as an a priori assumption.” Stewart and colleagues (2022, p. 2) make a
325 similar point in more broadly theoretical terms, noting that Surovell’s use of a monotonic function to
326 describe taphonomic loss effectively implies that the environmental conditions controlling taphonomic
327 processes were constant over time. Various empirical and simulation studies (e.g., Ballenger and Mabry
328 2011; Davies et al. 2015; Holdaway et al. 2009; Rhode et al. 2014) – as well as landscape-scale

329 geoarchaeology (see Section 2.1) – demonstrate that in fact taphonomic processes vary in both time and
330 space.

331 Critiques of Surovell's approach, however, neither argue that taphonomy is unimportant nor suggest
332 any alternative methods of correction. Although Surovell and colleagues explicitly presented their
333 correction as a first approximation in need of further development, and in spite of subsequent cautions about
334 the potentially significant implications of taphonomic effects, only Crema and colleagues' (2017)
335 comparison of local and regional trends has any potential for detecting – much less correcting – taphonomic
336 bias.

338 *2.2.4.4 Interpretation*

339 The interpretation of a corrected distribution of archaeological radiocarbon dates (Figure 1h) represents
340 a final hurdle. Peaks and troughs in summaries of radiocarbon assemblages may result from significant
341 fluctuations in the population that produced the dateable material that survived to be recovered and dated,
342 or they may result from the vagaries of sampling, from the effects of biasing factors, or from unintended
343 effects of methodology (see reviews in Bronk Ramsey 2017; Carleton and Groucutt 2021; Contreras and
344 Meadows 2014; Crema 2022). Slopes – representing rates of change – are similarly vulnerable, particularly
345 over short timespans. The more discerning an interpretation tries to be, the more susceptible it is to
346 confounding factors introduced by taphonomic effects, patterns of research, and simple sampling. Attempts
347 to address challenges of SPD interpretation through methodological improvements – e.g., comparison to
348 growth models (see summary in Crema and Shoda 2021) – tackle the problem of what can be inferred from
349 a summarized ^{14}C assemblage, but do not address how well (or poorly) the sample of ^{14}C dates represents
350 the population for which the SPD is argued to be a proxy.

351 Both research and taphonomic biases are especially pernicious in that they are spatially and temporally
352 heterogenous, affecting different subsets of large ^{14}C assemblages differently as these biases vary both in
353 space and over time. Interpretations that do not take this variability into account risk overgeneralizing in
354 potentially problematic ways, depending on the questions involved.

355 *3. Simulating Taphonomic Effects and Corrections*

356 As we have detailed above, while taphonomic correction is not entirely standard in dates-as-data
357 approaches, the possibility that older sites are underrepresented has been considered and means of
358 correcting accordingly proposed (Bluhm and Surovell 2019; Surovell et al. 2009; Surovell and
359 Brantingham 2007). Landscape taphonomy has also been identified as a – largely neglected – problem for
360 archaeological assemblages more generally.

361 The correction developed by Surovell and colleagues (2009) attempts to deal with this by estimating
362 *how much* less likely older material is to survive, and adjusting the SPD accordingly. Their empirically-
363 derived function (Surovell et al. 2009, p. 1717) describes the relationship between time elapsed and
364 probability of survival, positing that for a given age a predictable proportion of material will have
365 survived. As a result, the observed quantity that has survived can be used to estimate how much originally
366 existed by dividing the observed quantity by the expected proportion (Surovell et al. 2009, p. 1718). We
367 mirror this approach here, but addressing the particulars of preservation probabilities for a given
368 assemblage. Specifically, we use simulated data to develop a means of spatially explicit estimation of
369 local taphonomic effects and calculation of corresponding probability weights for ^{14}C samples from
370 different periods. Simulation offers a way to explore the impacts of a) landscapes composed of landforms
371 of varying ages, b) distinct demographic scenarios, and c) various taphonomic corrections.

372 We consider four scenarios at extremes of these spectra, and explore one empirically grounded
373 realistic scenario based on the Coso Basin in the southwestern Great Basin. For each, we 1) simulate a
374 population and a landscape taphonomic process, 2) produce a simulated sample of radiocarbon dates
375 resulting from the interplay of these factors, and 3) apply dates-as-data methods to attempt to reconstruct
376 the (known) population from which that sample was generated. The results generated in (3) are compared

377 to the simulated population in (1) to explore challenges to demographic reconstruction and the efficacy of
378 different corrections. We implement this approach in the R environment for statistical computing (R Core
379 Team 2021). All code required to replicate our simulations are provided in the Supplementary Material.

380 **3.1 Developing and applying a local taphonomic correction based on landform frequencies**

381 Frequency distributions of landforms of varying ages enable estimation of the varying probabilities of
382 preservation and recovery of archaeological sites of differing ages, and thus estimation of the probabilities
383 of recovering dates from particular age ranges. Using these probabilities to weight dates of different ages
384 in extant ^{14}C assemblage accounts for the differential likelihoods of survival of dateable material
385 produced at varying times, in a process analogous to Surovell's (2009) method but empirically
386 approximating local erosional and depositional processes.

387 We explore this method by developing a simulation that accounts for:

- 388 • production (of sites and dateable material, proportional to population),
- 389 • preservation (dependent on both time elapsed and landscape processes – burial and erosion),
- 390 • recovery (more possible/likely where landforms that *could* host sites are exposed), and
- 391 • reconstruction (of sites/dateable material as a proxy for population).

392 There are seven steps to the simulation process, summarized below and detailed in the annotated R code
393 included as Supplementary Material.

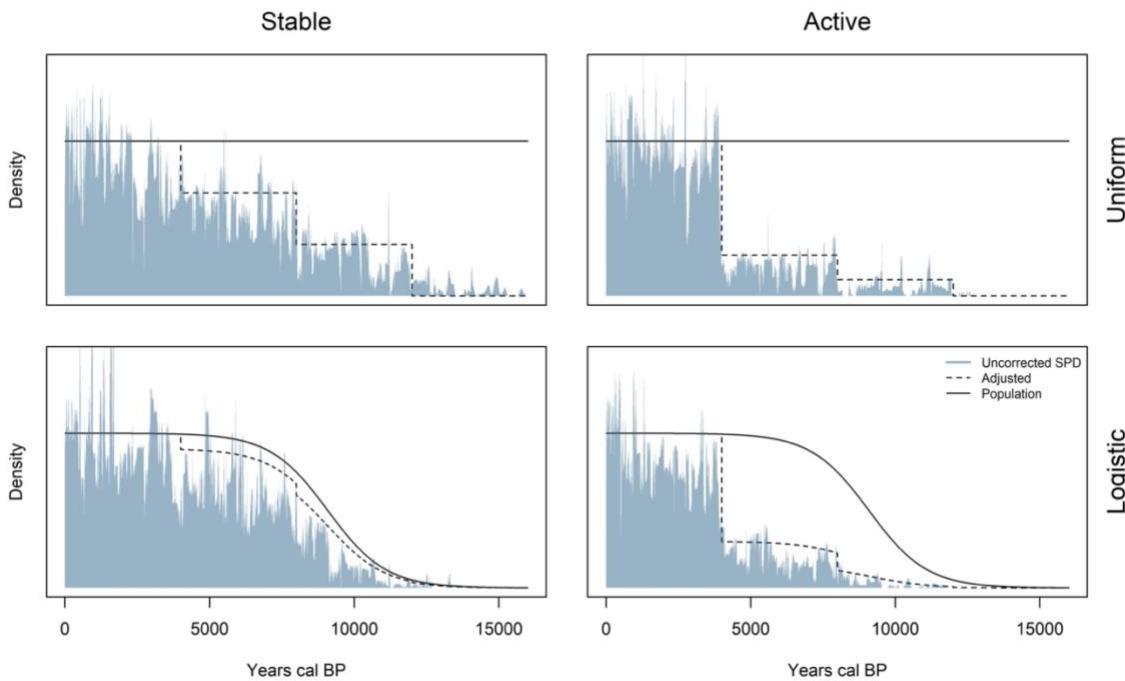
- 394 1. Generate a landform age distribution.
- 395 2. Generate a population curve that will provide the probability distribution that governs the sampling in Step 3. This can be derived from a theoretical expectation (e.g., of exponential growth) or from an empirical or hypothetical approximation (e.g., a population reconstruction or inferred trajectory).
- 396 3. Use that population curve as a probability distribution governing the selection of a sample of calendar dates over a given span of time at the desired density, adjusting the probabilities according to the frequency distribution of landforms (i.e., sites can only be found on landforms that are at least as old as the sites are) and modeled decay over time (Surovell and Brantingham 2007, p. 1872).
- 397 4. Use each of those calendar dates to simulate a radiocarbon date (using, e.g., 'R_Simulate' in OxCal [Bronk Ramsey 2009, 2020]; or 'uncalibrate' or 'unCalibrate' from the **rcarbon** [Bevan and Crema 2017] and **BChron** [Parnell 2015] packages, respectively).
- 398 5. Summarize the resulting radiocarbon dates, using, e.g., 'rcarbon::spd'. SPDs have been compellingly critiqued as a means of summarizing ^{14}C assemblages (Bronk Ramsey 2017), but remain so common as to be standard.
- 399 6. Correct that SPD using both Surovell and colleagues' (2009) volcanic correction and a local correction (derived either directly from the landform distribution in Step 1, or from some empirical approximation). Either correction is applied by dividing the observed value for a given year by the correction-derived proportion expected to have survived for that year.
- 400 7. Compare uncorrected, volcanic-corrected, and locally-corrected against the known starting population from Step 2.

411 In Section 3.2 below, we use this simulation process to explore the reconstruction of known population
412 distributions in both active and stable landscapes. We illustrate the varying success of uncorrected,
413 volcanic-corrected, and locally-corrected SPDs in reconstructing the populations from which these
414 proxies were derived, before considering the implications using a realistic scenario derived from the Coso
415 Basin case study considered by Eerkens and colleagues (2007).

422 **3.2 Simulating Population Scenarios and Geomorphic Extremes**

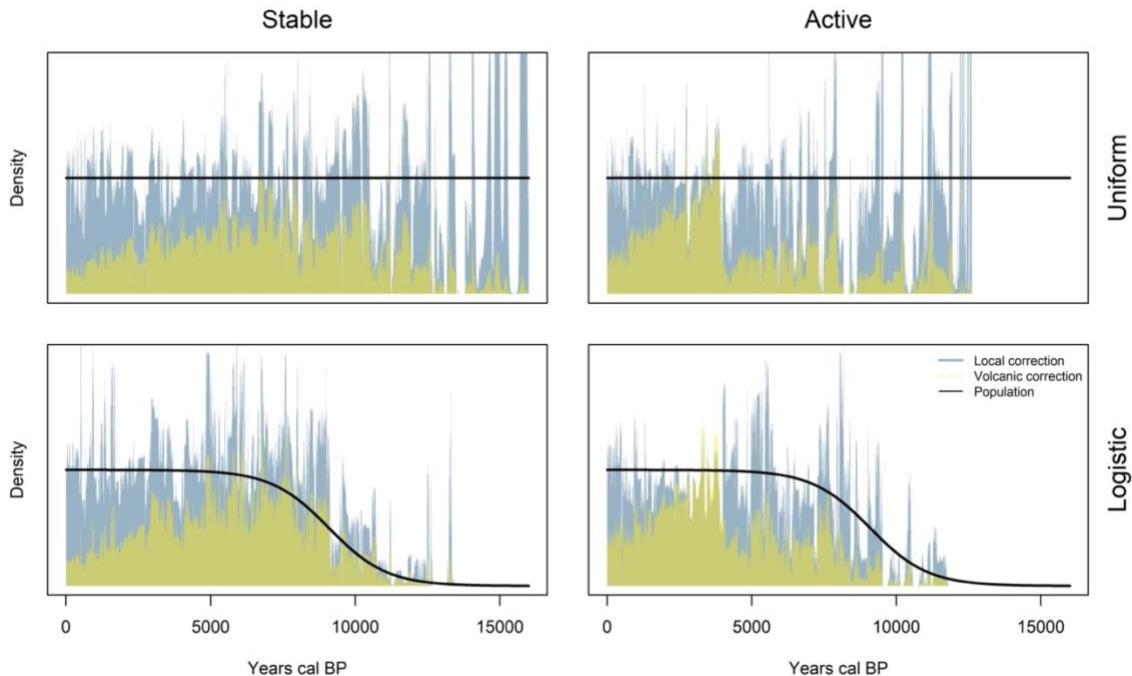
423 We use notional populations, adjusted for landscape taphonomy and decay, to simulate assemblages
424 of radiocarbon dates that can be subsequently summarized, adjusted for taphonomic effects, and used to
425 approximate the initial population. The correspondence between the reconstructed population and the

426 initial population provides a means of assessing the utility of different approaches to landscape
427 taphonomy (ignoring it, applying a global correction, and applying a local correction) under two scenarios
428 of population growth over time (uniform and logistic) and under two geomorphic scenarios that make it
429 more and less likely that older sites will survive (stable and active environments).



430
431 **Figure 2: Population/landscape scenarios showing that SPDs reflect geomorphic activity as well as population structure.**
432 **Solid lines show the original population, dashed lines show the taphonomically-adjusted population, and shaded polygons**
433 **show the SPD resulting from the sampling (n = 1000) the adjusted population.**

434



435
 436 **Figure 3: Results of simulations showing the original population (solid line), volcanic-corrected SPD, and locally-**
 437 **corrected SPD under uniform and logistic growth scenarios in stable and active landscapes (all SPDs based on 1000**
 438 **simulated ^{14}C dates sampled from the landform adjusted population; see Figure 2).**

439 Comparing the uncorrected, volcanic-corrected, and locally-corrected SPDs to the underlying populations
 440 from which they are sampled reveals five characteristics of SPDs:

- 441 1. Any SPD – corrected or not – is a far from perfect population proxy. The combination of
 442 landscape taphonomy, sampling, and calibration introduces significant noise even when an SPD
 443 is derived from a uniform distribution. Distinguishing signal from noise remains a fundamental
 444 challenge of ‘dates as data’ approaches. SPDs are best considered like models: all SPDs are
 445 wrong; some SPDs are useful (Box 1979).
- 446 2. Visual inspection makes clear that for any span of time the locally-corrected SPD (Fig. 3, blue
 447 polygon) more closely approximates the underlying population distributions (Fig. 3, black lines)
 448 than do the uncorrected SPDs (Fig. 3, yellow polygon) in all four scenarios. While for a few
 449 spans of time the volcanic-corrected SPD succeeds as well as the locally-corrected one in
 450 approximating the population distribution from which it is derived, for many more spans of time
 451 it performs less well.
- 452 3. All reconstructions retain artifacts of landscape taphonomy, wherein more active landscapes
 453 result in lower probability of recovery of dateable material and hence lower population estimates.
 454 All reconstructions do poorly under the conditions of uniform population growth on active
 455 landscapes. This is because there is a point where there are so few landforms remaining from
 456 which material can be sampled that recovering a sample of sufficient size to accurately estimate
 457 the population is very unlikely; the resulting sparseness of samples produces reconstructions that
 458 are spiky even when they correct sufficiently that a rolling mean would be high enough to
 459 reconstruct the original population.
- 460 4. There is greater variance in the locally adjusted SPD than the volcanic-corrected SPD, especially
 461 further back in time. This is not surprising as the older dates require greater adjustment, which
 462 also amplifies the variance. Future work could further help correct for this by applying a

463 variance-reducing scalar or smoother and by calculating bootstrapped confidence intervals to
 464 focus interpretation on the highest probability region.

465 5. One limitation of the volcanic-correction is that the calculation implicitly assumes that recent
 466 populations are orders of magnitude larger than past ones (see Williams 2012, pp. 584–586). If
 467 they are not, more recent estimates will be down-weighted relative to earlier populations,
 468 producing population estimates that suggest larger populations in, e.g., the Early Holocene than in
 469 500 BP. We suggest that the best way to handle this is to consider the corrected results *only* for
 470 earlier periods, considering instead the *uncorrected* SPD for the recent part of the population
 471 distribution. Unfortunately, there is no method, in the abstract, for determining the inflection
 472 point – i.e., at what date BP we should stop preferring the corrected results in favor of the original
 473 SPD. Some of these issues were recently raised by Bluhm and Surovell (2019).

474

475 3.3 A Realistic Coso Basin Simulation

476

477 In this section, we use the methods detailed above to simulate a realistic scenario based on Eerkens
 478 and colleagues' (2007) study in the Coso Basin. Eerkens and colleagues concluded that the abundance of
 479 Early Holocene sites has generally been underestimated due to the extant distribution of landforms of
 480 varying ages in the region: the relative scarcity of landforms on which Early Holocene components *could*
 481 be present/preserved/found has led to their under-representation in archaeological survey data, and
 482 consequently to underestimation of their abundance. That, in turn, has led to reconstructions of site and
 483 population densities over time that underestimate the Early Holocene component. In fact, Eerkens and
 484 colleagues note, "Early Holocene sites are found throughout the study area *wherever older landforms are*
 485 *present at or near the surface.*" (2007, p. 107 [our emphasis]) While Eerkens and colleagues focus on site
 486 counts, including as a proxy for population, the issues that they highlight are equally applicable to use of
 487 ¹⁴C dates as a population proxy. They note: "we believe that site density is a fairly reliable indication of
 488 population density. This method of estimating population density avoids many of the problems noted by
 489 Surovell and Brantingham (2007), such as tabulating radiocarbon dates." (2007, p. 106)

490 We draw on the Coso Basin case for 1) frequency distributions of landforms (based on Eerkens et al.
 491 2007: Table 3), and 2) a realistic Holocene population distribution (based on Eerkens et al. 2007: Table 7;
 492 we assume for present purposes that Eerkens and colleagues accurately reconstruct Coso Basin
 493 populations by accounting for landscape taphonomy). Eerkens and colleagues (2007) exclude the post-
 494 1500 BP period from consideration, but Eerkens and Rosenthal (2002, p. 29) consider Coso Basin
 495 population growth post-Newberry unlikely; we here follow this in considering post-Newberry population
 496 stable. These estimates of relative populations over time provide a realistic population distribution that we
 497 use as the basis for this simulated scenario. The point is not the absolute accuracy of the population
 498 distribution itself, but rather how well it can be reconstructed from a simulated assemblage of ¹⁴C dates
 499 that accounts for landscape taphonomy. In this case, that landscape taphonomy is significant: the Coso
 500 Basin landscape is one where ~40% of the extant landforms – mid-late Holocene dunes, alluvial fans, and
 501 playa deposits – were not available for habitation in the Early Holocene (Table 1).

502

503 **Table 1: Coso Basin landform frequencies (after Eerkens et al. 2007: Table 3).**

Landform	Abbrev	Acreage	Period	Proportion Acreage
pre-Tertiary basement	pTu	1978	Pre- to Early Holocene	0.032
Volcanic rocks	Qv	6530	Pre- to Early Holocene	0.105
Older lakeshore deposits	Qls	34	Pre- to Early Holocene	0.001
Older fan deposits	Qof	22852	Pre- to Early Holocene	0.368

Older lacustrine deposits	Qol	4032	Pre- to Early Holocene	0.065
Older dune sands	Qos	499	Pre- to Early Holocene	0.008
Playa deposits	Qp	2496	Middle to Late Holocene	0.04
Younger fan deposits	Qyf	20989	Middle to Late Holocene	0.338
Dune sands	Qds	2617	Middle to Late Holocene	0.042

504
505
506
507
508
509
510

We simulate an archaeological radiocarbon assemblage as described in Section 3.1, using landform frequencies and population and population distribution derived from Eerkens and colleagues (2007) as described above. The resulting assemblage of dates is summarized in an SPD, and corrected using both the volcanic correction and a correction derived from the Coso Basin landform frequencies. R code that details this process, like that for the idealized scenarios described in Section 3.2, is available in the Supplementary Material.

Accounting for landscape taphonomy in this context can have significant effects: Figure 4 contrasts an uncorrected SPD of a simulated Coso Basin radiocarbon record (4a) with one adjusted using the global volcanic taphonomic correction suggested by Surovell et al (2009) (4b), and one adjusted using a taphonomic correction factor estimated based on the frequency distribution of landforms in the Coso Basin (4c). Sites that predate 8400 BP cannot be found on mid-late Holocene landforms and have been subject to decay processes for longer, making their survival less likely. As a result, the simulated population distribution (dashed line in Figs. 4a, 4b, and 4c) – moderate in the late Pleistocene and early Holocene, low in the middle Holocene, and relatively high in the later Holocene – produces a distribution of dateable material (solid line in Figs. 4a, 4b, and 4c) that is differentially attenuated over time. Because it is derived from this distribution of surviving material, any radiocarbon-based reconstruction – regardless of the method of summary used – will reflect that pattern, rather than the original population distribution. This is evident in Fig. 4a, where the SPD that summarizes the simulated ^{14}C assemblage (in purple) can be understood as a noisy approximation of the solid line; noise has been introduced by sampling, calibration uncertainty, and summary method.

In fact, the target is the original population distribution, not the distribution of surviving dateable material. In this simulated case study, uncorrected, volcanically/globally corrected, and locally corrected SPDs clearly do not all approximate that original distribution equally well.

The macro-pattern of Coso Basin population – relatively low in the Middle Holocene – is evident in all three results. All three also indicate that the later Early Holocene population was higher than that of the Middle Holocene; the volcanic correction strongly exaggerates this relative high, while the uncorrected SPD slightly underestimates it. The increase in population at the end of the Middle Holocene is apparent in all three results as well, though its magnitude is underestimated by the volcanic correction. As noted above, an unexpected consequence of the volcanic correction is the downward adjustment of the more recent part of a distribution if it is not significantly higher than the earlier portion; in this case the later Holocene is increasingly underestimated by the uncorrected SPD.

An expected consequence of taphonomic decay is that uncorrected and corrected SPDs vary dramatically in the earlier Early Holocene. The uncorrected SPD approximates the relative quantities of surviving dateable material, and as a result appears to indicate a low population that increased slowly over time even though the initial simulated population was stable. Both corrections alleviate this tendency, but they produce very different results, with the local correction much more strongly correcting the Early Holocene. Because the correction only acts upon positive values in the probability distribution (rather than creating data where probabilities are zero), this strong correction increases the variance in the dataset by further exaggerating the positive values. While the result is that the majority of annual estimates vary around the original population distribution, the increased variance due to sampling also produces a noisier signal. Particularly in the earlier Early Holocene and the Terminal Pleistocene, the result gives the impression of boom and bust population cycles. Because the volcanic correction similarly does not attempt to modify probabilities of zero, it also produces a high-variance, noisy pattern of apparent population fluctuation

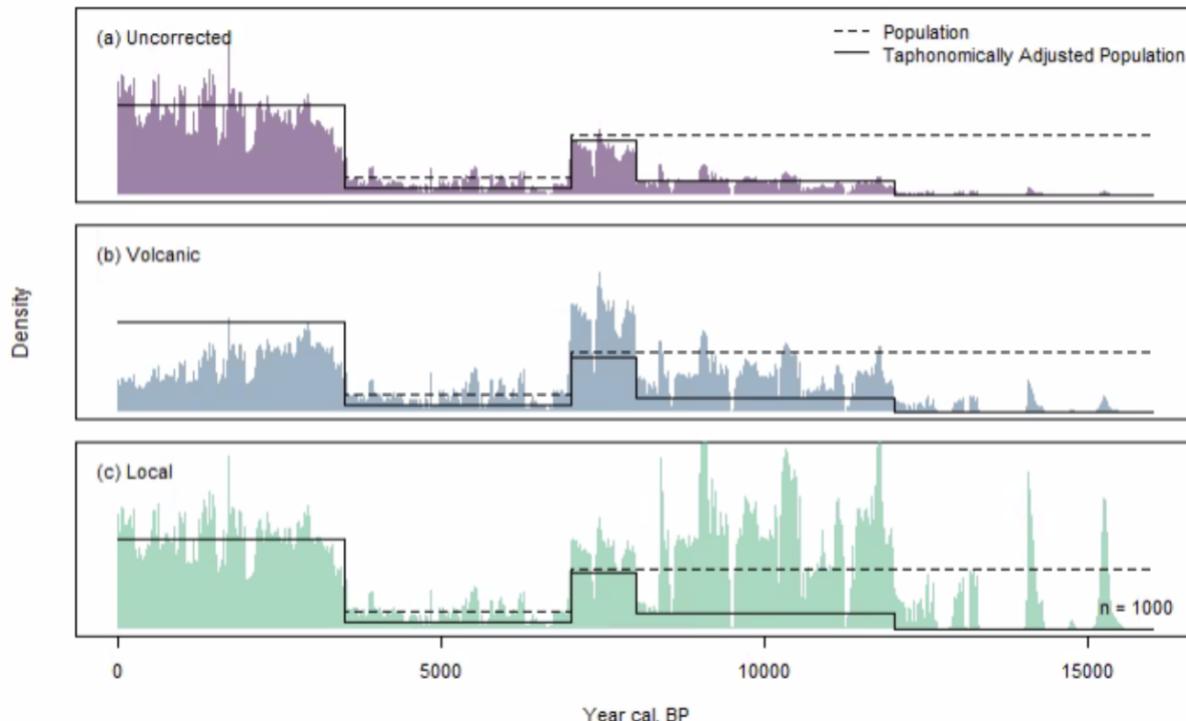
548 during the same period. Since in this case it is not correcting as strongly, this tendency is less pronounced,
549 but as a result the volcanic correction, like the uncorrected SPD, gives the impression of incremental
550 population growth rather than of substantial and stable population. In addition, even the corrected versions
551 still suggest a contrast between later Early Holocene and earlier Early Holocene, which is in fact the result
552 of the landform distribution (the recent landforms postdate 8400 BP).

553 In fact, not only is the Early Holocene population underestimated by an SPD; neither correction does
554 enough to recapture the Early Holocene population. This limitation is empirical rather than methodological
555 – correction cannot address an absence of material available to sample (as addressed by Rhode and
556 colleagues [2014]). This problem might be addressed by using a rolling mean or other smoothing approach
557 to capture the central tendency of the corrected SPD, but such an approach requires the tacit assertion that
558 peaks and troughs in the SPD reflect only noise and not signal (i.e., changes in population). Imputing values
559 in the absence of evidence – asserting that for time periods when no archaeological evidence has been
560 found, that absence is due to taphonomic processes and not an absence of occupation – likely is beyond the
561 threshold of correction with which most archaeologists would be comfortable.

562 This Coso Basin simulation demonstrates that correcting an SPD is likely to be necessary, particularly
563 earlier in the record, that correction may or may not be sufficient to accurately reconstruct a population
564 distribution, and that the choice of correction can significantly affect the results. In this case, archaeologists
565 confronting the distinct population reconstructions would likely infer differing population histories,
566 summarized in Table 2. In the context of Great Basin prehistory, these distinctions have significant
567 interpretive weight. They cast initial colonization and early occupation, responses to mid-Holocene aridity,
568 and Late Holocene re-population in notably different lights, and suggest divergent interpretations of such
569 phenomena as risk management in dynamic environments, adaptive responses to resource uncertainty, and
570 population sensitivity to climate change.

571
572 **Table 2: Likely inferences about population history of the Coso Basin. Results indicate that local correction would most**
573 **closely approximate the underlying trends in past populations.**

Simulated Population	<ul style="list-style-type: none">stable and moderate in scale throughout the Terminal Pleistocene and Early Holocenesignificant Middle Holocene lowrapid growth to a relatively high and stable Late Holocene population
Population Reconstruction	Likely Inference
Uncorrected SPD	<ul style="list-style-type: none">consistent population increase throughout the Early Holoceneprobable period of population increase immediately preceding a significant mid-Holocene population low
Volcanic correction	<ul style="list-style-type: none">Early Holocene distinguishable into three stagesdramatic late Early Holocene population boom preceding a significant Middle Holocene population lowMiddle Holocene low is followed by strong but ephemeral population growth in the Late Holocene
Local correction	<ul style="list-style-type: none">Early Holocene boom-and-bust with generally high populationdramatic Middle Holocene population lowrapid growth to a high and stable Late Holocene population



575
 576 **Figure 4: SPDs derived from a simulated Coso Basin radiocarbon assemblage (n=1000):** a) uncorrected summed probability
 577 distribution, b) summed probability distribution corrected following the global volcanic taphonomic correction produced
 578 by Surovell and colleagues (2009), and c) summed probability distribution corrected with a local Coso Basin taphonomic
 579 correction. Applying a taphonomic correction at all results in a markedly different distribution (compare a with b or c),
 580 and which correction is applied also results in significant changes (compare b and c). The estimated local taphonomic
 581 correction employed in (c) is derived from the frequency distribution of landforms of different ages reported by Eerkens
 582 and colleagues (2007, p. Table 7), combined with an approximated low rate of taphonomic decay following the exponential
 583 curve suggested by Surovell and Brantingham (2007).

584 **4. Discussion**

585
 586
 587

The simulations detailed in Sections 3.2 and 3.3 illustrate some key issues in correcting and interpreting SPDs:

588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599

- The volcanic correction doesn't just under-correct or over-correct, but may do one or the other for different spans of time, depending on local landscape taphonomy.
- How much better a local correction approximates the original distribution varies (presumably depending on how much the landform distribution departs from the assumptions of the volcanic correction).
- Further back in time, sparseness of sample leads to underestimates and increased variance with either correction, and neither correction can address an absence of data.
- The volcanic correction down-weights the last 4000 years; this is a mathematical artifact and not an intended effect of the correction.
- One of the problems of any correction that upscales the high values but maintains no-data values (zeroes) is exaggeration of variance, which exacerbates the problem of distinguishing signal from noise.

600
 601

These issues are fundamental to interpreting assemblages of ^{14}C dates and do not depend on the method used to summarize assemblages of ^{14}C dates. In the terms of the simulations above, methodological

602 improvements focused on improved summary of ^{14}C assemblages (e.g., Bronk Ramsey 2017; Price et al.
603 2021) may improve how well a taphonomically adjusted population is reconstructed, but remain vulnerable
604 to taphonomic effects. These simulations reveal the significant differences in archaeological interpretation
605 that may result from using different estimates of taphonomic loss (or discounting it), and highlight the
606 importance of selecting the best possible model of taphonomic effects.

607 The correction suggested by Surovell and colleagues is reasonable and widely employed, but as the
608 Coso Basin simulation demonstrates, it can either over-correct or under-correct, depending on the local
609 landscape history. In the Coso simulation, it over-corrects in the later Early Holocene, but under-corrects
610 in the earlier part of the Early Holocene. These effects result from the relative scarcity of Early Holocene
611 surfaces, which have been buried by later Holocene aeolian, alluvial, and lacustrine deposits. As a result,
612 the volcanic correction, like the uncorrected SPD, underemphasizes the Early Holocene population; for
613 mathematical reasons it also underestimates the Late Holocene population.

614 Although neither the volcanic correction nor the local Coso Basin correction produces reconstructions
615 that perfectly approximate the initial population distribution, both outperform the uncorrected SPD, and
616 demonstrate the potential significance of taphonomic correction in structuring interpretations of past
617 demography. Although both introduce additional artifacts to data that are already noisy from sampling and
618 calibration effects, the majority of annual estimates from the corrected distributions tend to better
619 approximate initial population distributions. Mismatches between volcanic correction and local landscape
620 history, however, can produce spurious effects, while a local correction – presuming of course that it is
621 accurate – better approximates the initial distribution of dateable material.

622 Neither method of taphonomic correction is perfect, and neither pretends to address all the potential
623 complications of SPDs. Other systematic biases affecting dated samples – for example, increasing reliance
624 on wood charcoal samples in older contexts where organic preservation can be a significant constraint –
625 can also impact the fidelity with which an SPD reflects population dynamics. A global correction addresses
626 the potentially dramatic under-estimation of older dateable material, but its generalized approach risks over-
627 and under-correcting where local landscape taphonomies diverge from the global average. Local correction
628 avoids this problem, but depends on accurate estimates of the frequency distributions of landforms of
629 different ages. Neither correction can address the uneven sampling that is common if surviving material is
630 sparse (a pattern which might be generated either by relatively small initial quantities and low probability
631 of survival *or* by especially small initial quantities and intensive research [i.e., search for earliest
632 inhabitants]), or if research intensity is heterogenous for different time periods. The magnification of small
633 early signals exacerbates the problem of distinguishing continuous low-level occupation from sporadic
634 occupation (see Rhode et al. 2014), while the successful identification, and accurate and precise dating, of
635 rapid population changes can be critical to interpretation, for example of responses to climate change
636 (Coddington et al. 2023).

637 5. Conclusion

638

639 The simulations that we have explored here demonstrate both the potential of summarized
640 radiocarbon data for reconstructing population distributions and the pitfalls of any such approach. It is
641 clear that, as with any archaeological interpretation, biases in the data can significantly structure
642 interpretations, in this case leading to spurious conclusions about past demography. While correcting for
643 taphonomic effects is not a panacea, the structured relationship between frequency distributions of
644 landforms of different ages and distributions of dateable material over time means that biases can be
645 anticipated, described, and accounted for. The results may remain structured by research biases as well as
646 past demography, and the challenge of distinguishing signal from noise will continue to make radiocarbon
647 summaries difficult to interpret (see Figure 4) – but because the complications introduced by taphonomic
648 effects are predictable, they may be accounted for and one source of inaccuracy minimized.

649 It is clear that taphonomic factors have the potential to skew dates-as-data results. Moreover, and
650 contrary to the assumptions inherent in a global correction, at least some of the likely taphonomic agents

651 – e.g., sea level change and alluvial deposition and erosion – are likely to have produced taphonomic
652 biases that are heterogeneous both in space and over time. Even within a single study region, a specific
653 taphonomic correction (which no study, so far as we are aware, has attempted to develop) is likely to
654 subsume areas with varying landscape histories, resulting in spatially and temporally distributed over- and
655 under-correction and consequent over- and under-representation of dates and estimation of population.
656 This risk is exacerbated as study regions expand in space and time and more potential diversity is
657 encompassed by an implicit assumption of homogeneity.

658 As the simulated scenarios discussed here illustrate, without appropriate taphonomic correction,
659 results are likely to be inaccurate, and they are likely to be inaccurate in ways that can meaningfully affect
660 archaeological interpretation. Landscape-scale taphonomic processes are likely to significantly structure
661 the archaeological record, but they are local rather than global. As such, accounting for their effect
662 requires specific attention to local landscape processes. Adjusting summaries of radiocarbon assemblages
663 to account for local/regional frequencies of landforms of varying ages provides an approach that is
664 generalizable to local contexts across the globe. It responds to the as-yet unaddressed appeal that Surovell
665 and colleagues issued when publishing their widely employed global correction: “The ideal approach
666 would be to build local databases of geologic radiocarbon dates that can be used to correct for taphonomic
667 bias, *and to take into account local variation in sedimentation and erosion not captured by the global*
668 *volcanic model.*” (Surovell et al. 2009, p. 1723 [our emphasis])

669 These simulated cases demonstrate the significant differences in interpretation that may result from
670 using different estimates of taphonomic loss (or discounting it), and highlights the importance of selecting
671 the best possible model of taphonomic effects. Given the potential magnitude of the effects, addressing the
672 differential probabilities of survival of cultural material of different ages is vital to interpretation of regional
673 prehistory and human-environment interactions.

675 **Acknowledgments**

676 This research was supported by National Science Foundation Awards BCS-1921013 and BCS-1921072.
677 The authors thank John Meadows, D. Craig Young, and Duncan Metcalfe for productive conversations
678 about dates-as-data and landscape taphonomy, as well as the various students who have worked on other
679 aspects of this project. We also appreciate the thoughtful and constructive comments provided by two
680 anonymous reviewers.

682 **Declarations**

683 **Funding**

684 This research was supported by National Science Foundation Awards 1921013 and 1921072.

685 **Competing Interests**

686 The authors have no relevant financial or non-financial interests to disclose.

687 **Data and Code Availability**

688 The R code used in this project is available in the included Supplementary Information.

689 **References Cited**

690 Attenbrow, V., & Hiscock, P. (2015). Dates and demography: are radiometric dates a robust proxy for
691 long-term prehistoric demographic change? *Archaeology in Oceania*, 50(2), 29–35.
692 Bailey, G., & Cawthra, H. C. (2023). The significance of sea-level change and ancient submerged
693 landscapes in human dispersal and development: A geoarchaeological perspective. *Oceanologia*
694 65(1), 50-70.

695 Ballenger, J. A. M., & Mabry, J. B. (2011). Temporal frequency distributions of alluvium in the American
696 Southwest: taphonomic, paleohydraulic, and demographic implications. *Journal of*
697 *Archaeological Science*, 38(6), 1314–1325.

698 Balsera, V., Díaz-del-Río, P., Gilman, A., Uriarte, A., & Vicent, J. M. (2015). Approaching the
699 demography of late prehistoric Iberia through summed calibrated date probability distributions
700 (7000 - 2000 cal BC). *Quaternary International*, 386(C), 208–211.

701 Bamforth, D. B., & Grund, B. (2012). Radiocarbon calibration curves, summed probability distributions,
702 and early Paleoindian population trends in North America. *Journal of Archaeological Science*,
703 39(6), 1768–1774.

704 Banning, E. B. (2002). *Archaeological Survey*. New York: Springer Science + Business Media.

705 Barberena, R., Méndez, C., & de Porras, M. E. (2017). Zooming out from archaeological discontinuities:
706 The meaning of mid-Holocene temporal troughs in South American deserts. *Journal of*
707 *Anthropological Archaeology*, 46, 68–81.

708 Barton, C. M., Bernabeu, J., Aura, J. E., Garcia, O., & La Roca, N. (2002). Dynamic landscapes, artifact
709 taphonomy, and landuse modeling in the western Mediterranean. *Geoarchaeology: An*
710 *International Journal*, 17(2), 155–190.

711 Bettis, E. A., & Benn, D. W. (1984). An archaeological and geomorphological survey in the central des
712 moines river valley, iowa. *Plains Anthropologist*, 29(105), 211–227.

713 Bettis, E. A., & Mandel, R. D. (2002). The effects of temporal and spatial patterns of Holocene erosion
714 and alluviation on the archaeological record of the Central and Eastern Great Plains, U.S.A.
715 *Geoarchaeology*, 17(2), 141–154. <https://doi.org/10.1002/gea.10006>

716 Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S., & Stevens, C. (2017). Holocene fluctuations in
717 human population demonstrate repeated links to food production and climate. *Proceedings of the*
718 *National Academy of Sciences*, 114(49), E10524–E10531.

719 Bevan, A., & Crema, E. R. (2017). *rcarbon: Methods for calibrating and analysing radiocarbon dates*.
720 <https://CRAN.R-project.org/package=rcarbon>

721 Bird, D., Freeman, J., Robinson, E., Maughan, G., Finley, J. B., Lambert, P. M., & Kelly, R. L. (2020). A
722 first empirical analysis of population stability in North America using radiocarbon records. *The*
723 *Holocene*, 30(9), 1345–1359.

724 Bluhm, L. E., & Surovell, T. A. (2019). Validation of a global model of taphonomic bias using geologic
725 radiocarbon ages. *Quaternary Research*, 91(1), 325–328.

726 Borejsza, A., Frederick, C., Alatorre, L. M., & Joyce, A. (2014). Alluvial stratigraphy and the search for
727 preceramic open-air sites in highland Mesoamerica. *Latin American Antiquity*, 25(3), 278–299.

728 Borrero, L. A. (2014). Regional Taphonomy. In C. Smith (Ed.), *Encyclopedia of Global Archaeology*.
729 Springer.

730 Box, G. E. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. N.
731 Wilkinson (Eds.), *Robustness in Statistics* (Vol. 1, pp. 201–236). New York: Academic Press.

732 Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. *Radiocarbon*, 51(1), 337–360.

733 Bronk Ramsey, C. (2017). Methods for Summarizing Radiocarbon Datasets. *Radiocarbon*, 59(6), 1809–
734 1833.

735 Bronk Ramsey, C. (2020). OxCal. Oxford. <https://c14.arch.ox.ac.uk/oxcal.html>

736 Broughton, J. M., & Weitzel, E. M. (2018). Population reconstructions for humans and megafauna
737 suggest mixed causes for North American Pleistocene extinctions. *Nature Communications*, 1–
738 13.

739 Brown, W. A. (2015). Through a filter, darkly: Population size estimation, systematic error, and random
740 error in radiocarbon-supported demographic temporal frequency analysis. *Journal of*
741 *Archaeological Science*, 53, 133–147.

742 Bryson, R., Bryson, R., & Ruter, A. (2006). A calibrated radiocarbon database of late Quaternary volcanic
743 eruptions. *Earth Discussions*, 1(2), 123–134.

744 Buchanan, B., Collard, M., & Edinborough, K. (2008). Paleoindian demography and the extraterrestrial
745 impact hypothesis. *Proceedings of the National Academy of Sciences*, 105(33), 11651–11654.

746 Burger, O., Todd, L. C., & Burnett, P. (2008). The behavior of surface artifacts: Building a landscape
747 taphonomy on the High Plains. In L. L. Scheiber & B. J. Clark (Eds.), *Archaeological*
748 *Landscapes on the High Plains* (pp. 203–236). Boulder: University Press of Colorado.

749 Carleton, W. C., & Groucutt, H. S. (2021). Sum things are not what they seem: Problems with point-wise
750 interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. *The*
751 *Holocene*, 31(4), 630–643.

752 Carney, M., & Davies, B. (2020). Agent-based modeling, scientific reproducibility, and taphonomy: A
753 successful model implementation case study. *Journal of Computer Applications in Archaeology*,
754 3(1), 182–196.

755 Chaput, M. A., Kriesche, B., Betts, M., Martindale, A., Kulik, R., Schmidt, V., & Gajewski, K. (2015).
756 Spatiotemporal distribution of Holocene populations in North America. *Proceedings of the*
757 *National Academy of Sciences*, 112(39), 12127–12132.

758 Chiverrell, R. C., Thorndycraft, V. R., & Hoffmann, T. O. (2011). Cumulative probability functions and
759 their role in evaluating the chronology of geomorphological events during the Holocene. *Journal*
760 *of Quaternary Science*, 26(1), 76–85.

761 Clevis, Q., Tucker, G. E., Lock, G., Lancaster, S. T., Gasparini, N., Desitter, A., & Bras, R. L. (2006).
762 Geoarchaeological simulation of meandering river deposits and settlement distributions: A three-
763 dimensional approach. *Geoarchaeology*, 21(8), 843–874.

764 Codding, B. F., Brenner Coltrain, J., Louderback, L., Vernon, K. B., Magargal, K. E., Yaworsky, P. M., et
765 al. (2022). Socioecological Dynamics Structuring the Spread of Farming in the North American
766 Basin-Plateau Region. *Environmental Archaeology*, 27(4), 434–446.
767 <https://doi.org/10.1080/14614103.2021.1927480>

768 Codding, B. F., Roberts, H., Eckerle, W., Brewer, S. C., Medina, I. D., Vernon, K. B., & Spangler, J. S.
769 (2023). Can we reliably detect adaptive responses of hunter-gatherers to past climate change?
770 Examining the impact of Mid-Holocene drought on Archaic settlement in the Basin-Plateau
771 Region of North America. *Quaternary International*.

772 Collard, M., Edinborough, K., Shennan, S., & Thomas, M. G. (2010). Radiocarbon evidence indicates
773 that migrants introduced farming to Britain. *Journal of Archaeological Science*, 37(4), 866–870.

774 Contreras, D. A., & Meadows, J. (2014). Summed radiocarbon calibrations as a population proxy: a
775 critical evaluation using a realistic simulation approach. *Journal of Archaeological Science*, 52,
776 591–608.

777 Crema, E. R. (2022). Statistical inference of prehistoric demography from frequency distributions of
778 radiocarbon dates: A review and a guide for the perplexed. *Journal of Archaeological Method*
779 *and Theory*, 29(4):1387–1418.

780 Crema, E. R., & Bevan, A. (2021). Inference from large sets of radiocarbon dates: software and methods.
781 *Radiocarbon*, 63(1), 23–39.

782 Crema, E. R., Bevan, A., & Shennan, S. (2017). Spatio-Temporal Approaches to Archaeological
783 Radiocarbon Dates. *Journal of Archaeological Science*, 87, 1–9.

784 Crema, E. R., Habu, J., Kobayashi, K., & Madella, M. (2016). Summed probability distribution of ^{14}C
785 dates suggests regional divergences in the population dynamics of the Jōmon Period in eastern
786 Japan. *PLoS ONE*, 11(4), e0154809.

787 Crema, E. R., & Kobayashi, K. (2020). A multi-proxy inference of Jōmon population dynamics using
788 bayesian phase models, residential data, and summed probability distribution of ^{14}C dates.
789 *Journal of Archaeological Science*, 117, 105136.

790 Crema, E. R., & Shoda, S. (2021). A Bayesian approach for fitting and comparing demographic growth
791 models of radiocarbon dates: A case study on the Jōmon-Yayoi transition in Kyushu (Japan).
792 *PLoS One*, 16(5), e0251695.

793 Cromb  , P., & Robinson, E. (2014). ^{14}C Dates as demographic proxies in Neolithisation models of
794 northwestern Europe: a critical assessment using Belgium and northeast France as a case-study.
795 *Journal of Archaeological Science*, 52, 558–566.

796 Culleton, B. J. (2008). Crude demographic proxy reveals nothing about Paleoindian population.
797 *Proceedings of the National Academy of Sciences*, 105(50), E111.

798 d'Alpoim Guedes, J. A., Crabtree, S. A., Bocinsky, R. K., & Kohler, T. A. (2016). Twenty-first century
799 approaches to ancient problems: Climate and society. *Proceedings of the National Academy of
800 Sciences*, 113(51), 14483–14491.

801 Davies, B., Holdaway, S. J., & Fanning, P. C. (2015). Modelling the palimpsest: An exploratory agent-
802 based model of surface archaeological deposit formation in a fluvial arid Australian landscape.
803 *The Holocene*, 26(3), 450–463.

804 DiNapoli, R., Crema, E., Lipo, C., Rieth, T., & Hunt, T. (2021). Approximate Bayesian Computation of
805 radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter
806 Island). *Nature Communications*, 12(1), 3939.

807 Downey, S. S., Haas, Jr., W. R., & Shennan, S. J. (2016). European Neolithic societies showed early
808 warning signals of population collapse. *Proceedings of the National Academy of Sciences*,
809 113(35), 9751–9756.

810 Drake, B. L., Blanco-González, A., & Lillios, K. T. (2017). Regional demographic dynamics in the
811 Neolithic transition in Iberia: Results from summed calibrated date analysis. *Journal of
812 Archaeological Method and Theory*, 24(3), 796–812.

813 Drennan, R. D., Berrey, C. A., & Peterson, C. E. (2015). *Regional Settlement Demography in
814 Archaeology*. Clinton Corners, NY: Eliot Werner Publications.

815 Edinborough, K., Porčić, M., Martindale, A., Brown, T. J., Supernant, K., & Ames, K. M. (2017).
816 Radiocarbon test for demographic events in written and oral history. *Proceedings of the National
817 Academy of Sciences*, 114(47), 12436–12441.

818 Eerkens, J. W., & Rosenthal, J. S. (2002). Transition from geophyte to seed processing: Evidence for
819 intensification from thermal features near China Lake, northern Mojave Desert. *Pacific Coast
820 Archaeological Society Quarterly*, 38(2–3), 19–36.

821 Eerkens, J. W., Rosenthal, J. S., Young, D. C., & King, J. (2007). Early Holocene Landscape
822 Archaeology in the Coso Basin, Northwestern Mojave Desert, California. *North American
823 Archaeologist*, 28(2), 87–112.

824 Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., & Verburg, P. H. (2013). Used
825 planet: A global history. *Proceedings of the National Academy of Sciences*, 110(20), 7978–7985.

826 Fanning, P. C., Holdaway, S. J., & Rhodes, E. J. (2007). A geomorphic framework for understanding the
827 surface archaeological record in arid environments. *Geodinamica Acta*, 20(4), 275–286.
828 <https://doi.org/10.3166/ga.20.275-286>

829 Fernández-López de Pablo, J., Gutiérrez-Roig, M., Gómez-Puche, M., McLaughlin, R., Silva, F., &
830 Lozano, S. (2019). Palaeodemographic modelling supports a population bottleneck during the
831 Pleistocene-Holocene transition in Iberia. *Nature Communications*, 10(1), 1872.

832 Flannery, K. V. (Ed.). (1976). *The Early Mesoamerican Village*. New York: Academic Press.

833 Flohr, P., Fleitmann, D., Matthews, R., Matthews, W., & Black, S. (2016). Evidence of resilience to past
834 climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events.
835 *Quaternary Science Reviews*, 136(C), 23–39.

836 Freeman, J., Byers, D. A., Robinson, E., & Kelly, R. L. (2018). Culture Process and the Interpretation of
837 Radiocarbon Data. *Radiocarbon*, 60(2), 453–467.

838 Goldberg, A., Mychajliw, A. M., & Hadly, E. A. (2016). Post-invasion demography of prehistoric
839 humans in South America. *Nature*, 532(7598), 232–235.

840 Herrmann, E. W. (2015). How bedrock-controlled channel migration can structure selective preservation
841 of archaeological sites: Implications for modeling Paleoindian settlement. *Geoarchaeology*,
842 31(1), 58–74.

843 Hinz, M., Feeser, I., Sjögren, K.-G., & Müller, J. (2012). Demography and the intensity of cultural
844 activities: an evaluation of Funnel Beaker Societies (4200–2800 cal BC). *Journal of
845 Archaeological Science*, 39(10), 3331–3340.

846 Holdaway, S. J., Fanning, P. C., & Littleton, J. (2009). Assessing the frequency distribution of
847 radiocarbon determinations from the archaeological record of the Late Holocene in western
848 NSW, Australia. In A. S. Fairbairn, S. O'Connor, & B. Marwick (Eds.), *New Directions in*
849 *Archaeological Science* (pp. 1–11). Canberra: ANU E Press.

850 Jones, T. L., Coltrain, J. B., Jacobs, D. K., Porcasi, J., Brewer, S. C., Buckner, J. C., et al. (2021). Causes
851 and consequences of the late Holocene extinction of the marine flightless duck (*Chendytes lawi*)
852 in the northeastern Pacific. *Quaternary Science Reviews*, 260, 106914.

853 Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C., & Klein Goldewijk, K.
854 (2010). Holocene carbon emissions as a result of anthropogenic land cover change. *The*
855 *Holocene*, 21(5), 775–791. <https://doi.org/10.1177/0959683610386983>

856 Kelly, R. L., Surovell, T. A., Shuman, B. N., & Smith, G. M. (2013). A continuous climatic impact on
857 Holocene human population in the Rocky Mountains. *Proceedings of the National Academy of*
858 *Sciences*, 110(2), 443–447.

859 Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., Kohler, T. A., et al.
860 (2014). Grand challenges for archaeology. *Proceedings of the National Academy of Sciences*,
861 111(3), 879–880.

862 Klein Goldewijk, K., Beusen, A., Van Drecht, G., & De Vos, M. (2011). The HYDE 3.1 spatially explicit
863 database of human-induced global land-use change over the past 12,000 years. *Global Ecology*
864 *and Biogeography*, 20(1), 73–86.

865 MacInnes, B., Fitzhugh, B., & Holman, D. (2014). Controlling for landform age when determining the
866 settlement history of the Kuril Islands. *Geoarchaeology*, 29(3), 185–201.

867 Mandel, R. D. (2008). Buried Paleoindian-age landscapes in stream valleys of the central plains, USA.
868 *Geomorphology*, 101(1), 342–361. <https://doi.org/10.1016/j.geomorph.2008.05.031>

869 Mökkönen, T. (2014). Archaeological radiocarbon dates as a population proxy: skeptical view.
870 *Fennoscandia Archaeologica*, 31, 125–134.

871 Parkinson, E. W., McLaughlin, T. R., Esposito, C., Stoddart, S., & Malone, C. (2021). Radiocarbon dated
872 trends and central Mediterranean prehistory. *Journal of World Prehistory*, 34(3), 317–379.

873 Parnell, A. (2015). *Bchron: Radiocarbon dating, age-depth modelling, relative sea level rate estimation,*
874 *and non-parametric phase modelling*. <https://CRAN.R-project.org/package=Bchron>

875 Peros, M. C., Munoz, S. E., Gajewski, K., & Viau, A. E. (2010). Prehistoric demography of North
876 America inferred from radiocarbon data. *Journal of Archaeological Science*, 37(3), 656–664.
877 <https://doi.org/10.1016/j.jas.2009.10.029>

878 Powell, A., Shennan, S., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of
879 modern human behavior. *Science*, 324(5932), 1298–1301.

880 Price, M. H., Capriles, J. M., Hoggart, J. A., Bocinsky, R. K., Ebert, C. E., & Jones, J. H. (2021). End-
881 to-end Bayesian analysis for summarizing sets of radiocarbon dates. *Journal of Archaeological*
882 *Science*, 135, 105473.

883 R Core Team. (2021). *R: A language and environment for statistical computing* (manual). Vienna,
884 Austria. <https://www.R-project.org/>

885 Ravesloot, J. C., & Waters, M. R. (2004). Geoarchaeology and archaeological site patterning on the
886 middle Gila River, Arizona. *Journal of Field Archaeology*, 29(1–2), 203–214.
887 <https://doi.org/10.1179/jfa.2004.29.1-2.203>

888 Rhode, D., Brantingham, P. J., Perreault, C., & Madsen, D. B. (2014). Mind the gaps: testing for hiatuses
889 in regional radiocarbon date sequences. *Journal of Archaeological Science*, 52, 567–577.

890 Rick, J. W. (1987). Dates as data: an examination of the Peruvian preceramic radiocarbon record.
891 *American Antiquity*, 52(1), 55–73.

892 Riris, P. (2018). Dates as data revisited: A statistical examination of the Peruvian preceramic radiocarbon
893 record. *Journal of Archaeological Science*, 97, 67–76.

894 Schiffer, M. B. (1987). *Formation Processes of the Archaeological Record*. Albuquerque, N.M.:
895 University of New Mexico Press.

896 Shennan, S., & Edinborough, K. (2007). Prehistoric population history: from the Late Glacial to the Late
897 Neolithic in central and northern Europe. *Journal of Archaeological Science*, 34(8), 1339–1345.
898 Shennan, S., Timpson, A., Edinborough, K., Colledge, S. M., Kerig, T., Manning, K., et al. (2013).
899 Regional population collapse followed initial agriculture booms in mid-Holocene Europe. *Nature
900 Communications*, 4, 1–8.
901 Stafford, C. (1995). Geoarchaeological perspectives on paleolandscapes and regional subsurface
902 archaeology. *Journal of Archaeological Method and Theory*, 2(1), 69–104.
903 Stewart, M., Carleton, W. C., & Groucutt, H. S. (2021). Climate change, not human population growth,
904 correlates with Late Quaternary megafauna declines in North America. *Nature Communications*,
905 12(1), 965.
906 Stewart, M., Carleton, W. C., & Groucutt, H. S. (2022). Reply to: Accurate population proxies do not
907 exist between 11.7 and 15 ka in North America. *Nature Communications*, 13(1), 4693.
908 <https://doi.org/10.1038/s41467-022-32356-3>
909 Surovell, T. A., & Brantingham, P. J. (2007). A note on the use of temporal frequency distributions in
910 studies of prehistoric demography. *Journal of Archaeological Science*, 34(11), 1868–1877.
911 Surovell, T. A., Finley, J. B., Smith, G. M., Brantingham, P. J., & Kelly, R. L. (2009). Correcting
912 temporal frequency distributions for taphonomic bias. *Journal of Archaeological Science*, 36(8),
913 1715–1724.
914 Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., & Seppä, H. (2015). Human population dynamics
915 in Europe over the last glacial maximum. *Proceedings of the National Academy of Sciences*,
916 112(27), 8232–8237.
917 Tallavaara, M., Pesonen, P., & Oinonen, M. (2010). Prehistoric population history in eastern
918 Fennoscandia. *Journal of Archaeological Science*, 37(2), 251–260.
919 Timpson, A., Colledge, S., Crema, E., Edinborough, K., Kerig, T., Manning, K., et al. (2014).
920 Reconstructing regional population fluctuations in the European Neolithic using radiocarbon
921 dates: a new case-study using an improved method. *Journal of Archaeological Science*, 52(C),
922 549–557.
923 Torfing, T. (2015). Neolithic population and summed probability distribution of ^{14}C -dates. *Journal of
924 Archaeological Science*, 63, 193–198.
925 Tremayne, A. H., & Winterhalder, B. (2017). Large mammal biomass predicts the changing distribution
926 of hunter-gatherer settlements in mid-late Holocene Alaska. *Journal of Anthropological
927 Archaeology*, 45, 81–97.
928 Vaesen, K., Collard, M., Cosgrove, R., & Roebroeks, W. (2016). Population size does not explain past
929 changes in cultural complexity. *Proceedings of the National Academy of Sciences*, 113(16),
930 E2241–E2247.
931 Ward, I., & Larcombe, P. (2021). Sedimentary unknowns constrain the current use of frequency analysis
932 of radiocarbon data sets in forming regional models of demographic change. *Geoarchaeology*,
933 36(3), 546–570.
934 Weitzel, E. M., & Codding, B. F. (2016). Population growth as a driver of initial domestication in Eastern
935 North America. *Royal Society Open Science*, 3(8), 160319.
936 Williams, A. N. (2012). The use of summed radiocarbon probability distributions in archaeology: a
937 review of methods. *Journal of Archaeological Science*, 39(3), 578–589.
938 Wilson, K. M., McCool, W. C., & Coltrain, J. B. (2023). Climate and oceanic condition changes
939 influence subsistence economic adaptation through intensification on the Central Andean coasts.
940 *Quaternary International*.
941 Zahid, H. J., Robinson, E., & Kelly, R. L. (2016). Agriculture, population growth, and statistical analysis
942 of the radiocarbon record. *Proceedings of the National Academy of Sciences*, 113(4), 931–935.
943 Zvelebil, M., Green, S. W., & Macklin, M. G. (1992). Archaeological landscapes, lithic scatters, and
944 human behavior. In J. Rossignol & L. Wandsnider (Eds.), *Space, time, and archaeological
945 landscapes* (pp. 193–226). New York: Springer.