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Abstract 17 
Accurately reconstructing past human population dynamics is critical for explaining major patterns in 18 

the human past. Demand for demographic proxies has driven hopeful interest in the “dates-as-data” 19 
approach, which models past demography by assuming a relationship between population size, the 20 
production of dateable material, and the corpus of radiocarbon dates produced by archaeological research. 21 
However, several biases can affect assemblages of dates, complicating inferences about population size. 22 
One serious but potentially addressable issue centers on landscape taphonomy – the ways in which 23 
geologic processes structure the preservation and recovery of archaeological sites and/or materials at 24 
landscape scales. Here we explore the influence of landscape taphonomy on demographic proxies. More 25 
specifically, we evaluate how well demographic proxies may be corrected for taphonomic effects with 26 
either a common generalized approach or an empirically-based tailored approach. We demonstrate that 27 
frequency distributions of landforms of varying ages can be used to develop local corrections that are 28 
more accurate than either global corrections or uncorrected estimates. Using generalized scenarios and a 29 
simulated case study based on empirical data on landform ages from the Coso Basin in the western Great 30 
Basin region, we illustrate the way in which landscape taphonomy predictably complicates ‘dates-as-data’ 31 
approaches, propose and demonstrate a new method of empirically-based correction, and explore the 32 
interpretive ramifications of ignoring or correcting for taphonomic bias. 33 
 34 
Keywords: archaeological demography, landscape taphonomy, dates-as-data, radiocarbon SPD 35 

1. Introduction 36 
Accurately reconstructing past human population dynamics is critical for explaining major patterns in 37 

the human past, ranging from the development of behavioral modernity (e.g., Powell et al. 2009; Tallavaara 38 
et al. 2015; cf. Vaesen et al. 2016) to the emergence and spread of agriculture (e.g., Bevan et al. 2017; 39 
Codding et al. 2022; Timpson et al. 2014; Weitzel and Codding 2016). More broadly, demographic proxies 40 
are also needed to explain general trends in past human-environment interactions, including human 41 
responses to climate change (e.g., Codding et al. 2023; Flohr et al. 2016; Kelly et al. 2013) and the extent 42 
and effects past of human land use (e.g., Ellis et al. 2013; Kaplan et al. 2010; Klein Goldewijk et al. 2011). 43 
These establish baselines for anthropogenic impacts and inform predictions about future human-climate-44 
land use dynamics (see d’Alpoim Guedes et al. 2016). Past population dynamics are so fundamental that 45 
without a reliable method for discerning them, we will be unable to address most of archaeology’s “grand 46 
challenges” (Kintigh et al. 2014). 47 

Approaches to regional archaeological demography (recently summarized in Drennan et al. 2015) are 48 
generally founded upon counts of some class of archaeological feature or artifact whose abundance can be 49 
theoretically related to population size. Counts of sites based on archaeological settlement survey are 50 
perhaps the simplest and most common proxy. These can be complemented or supplanted by counts of 51 
structures or hearths, adjusted by estimates of site area, and fine-tuned to take into account spans of 52 
occupation and site function(s). The centrality of archaeological demography, however, has driven hopeful 53 
interest in population proxies that are less dependent on systematic archaeological surveys, which are 54 
comparatively expensive, slow, and limited in their spatial coverage. Most salient among these over the last 55 
two decades has been the “dates-as-data” approach (Rick 1987), which has become the dominant method 56 
for reconstructing past population histories (recently, e.g., Bird et al. 2020; Crema and Kobayashi 2020; 57 
DiNapoli et al. 2021; Parkinson et al. 2021; Riris 2018; for a recent review see Crema 2022). This method 58 
assumes a relationship between population size, the production and survival of dateable material, and the 59 
corpus of radiocarbon dates produced by the last ±60 years of archaeological research, and leverages 60 
temporal or spatial variation in the distribution of those dates to model past demography.  61 

Methods of demographic reconstruction, like any archaeological endeavor, are fundamentally 62 
vulnerable to problems of differential preservation: any population proxy relies on comparing quantities 63 
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that survive from different time periods, which can for a variety of reasons lead to the underrepresentation 64 
of some periods of time and consequent misinterpretations of population dynamics. As a result, estimates 65 
of past populations necessarily either assume that all periods are equally represented or attempt to identify 66 
which particular periods are underrepresented and apply some estimated correction.  67 

Landscape taphonomy – the ways in which geologic processes structure the preservation and recovery 68 
of archaeological sites and/or materials at landscape scales – is one factor that potentially generates 69 
systematic bias in demographic reconstruction. This problem is broadly recognized in settlement survey 70 
(Banning 2002; Drennan et al. 2015, pp. 162–171; Stafford 1995), and has been recognized since Rick’s 71 
original dates-as-data paper as one of the factors that attenuates the relationship between a distribution of 72 
population over time in a given locale and the assemblage of radiocarbon dates recovered from that region. 73 
The most salient attempt at a generalizable solution is Surovell and colleagues’ work (Bluhm and Surovell 74 
2019; Surovell et al. 2009; Surovell and Brantingham 2007), which approximates global rates of loss of 75 
archaeological material over time by comparing the differences between sedimentary and aerosol (ice core-76 
derived) records of vulcanism; those differences are argued to indicate rates of disappearance of sediments 77 
over time. Surovell and colleagues use those approximations to develop a global taphonomic correction, 78 
referred to as the “Volcanic” correction (Bluhm and Surovell 2019), which is now widely applied by dates-79 
as-data practitioners (e.g., Barberena et al. 2017; Broughton and Weitzel 2018; Downey et al. 2016; 80 
Edinborough et al. 2017; Jones et al. 2021; Peros et al. 2010; Williams 2012) and implemented in the 81 
rcarbon package as `transformSPD` (Bevan and Crema 2017).  82 

However, as Surovell and colleagues recognized (2009, p. 1723), deposition and erosion are highly 83 
variable in space, and local rates of taphonomic loss can be expected to vary considerably from global 84 
ones. This variation will be particularly consequential in regions with active and varied sedimentary 85 
histories, leading to systematic biases in demographic reconstructions.  86 

To evaluate the potential bias of local landscape taphonomy, and ways to address it, here we use 87 
simulated archaeological data to show that under many taphonomic scenarios neither applying a 88 
generalized correction nor ignoring the problem is likely to constitute an adequate response. With a focus 89 
on dates-as-date approaches but with results that are broadly applicable to regional archaeological 90 
demography, we demonstrate that frequency distributions of landforms of varying ages can be used to 91 
develop local corrections that are more accurate than either global corrections or uncorrected estimates.  92 

Using generalized scenarios and a simulated case study based on empirical data on landform ages from 93 
the Coso Basin in the western Great Basin region, we illustrate the way in which landscape taphonomy 94 
predictably complicates ‘dates-as-data’ approaches, propose and demonstrate a new method of empirically-95 
based correction, and explore the interpretive ramifications of ignoring or correcting for taphonomic bias. 96 

2. Background 97 

2.1 Landscape Taphonomy 98 
 99 

Taphonomic concepts in archaeology most commonly embrace the analysis of post-depositional 100 
modification of archaeological materials (Schiffer 1987), but have also been integrated with insights from 101 
archaeological survey (e.g., Banning 2002, p. 72) to address regional landscape taphonomy. This can range 102 
from regional variation in site formation processes (Borrero 2014) to consideration of the differential 103 
survival of sites that are from different time periods and/or located on different landforms (Barton et al. 104 
2002; Burger et al. 2008).  105 

The problem is one that has been most thoroughly discussed in the geoarchaeological literature, in both 106 
relatively humid (e.g., Bettis and Benn 1984; Bettis and Mandel 2002; Borejsza et al. 2014; Mandel 2008) 107 
and arid (e.g., Fanning et al. 2007; Ravesloot and Waters 2004) environments. These approaches have 108 
generally focused on fluvial processes, and particularly the problems posed by destruction or burial of 109 
archaeological sites through erosion and deposition. These studies demonstrate that preserved distributions 110 
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of sites recorded by archaeological surveys of modern land surfaces can be strongly structured by 111 
geomorphic patterns as well as by patterns of human settlement and land use. As a result, as Bettis and 112 
Mandel conclude, “the accuracy of paleo-demographic…models based on archaeological data depends in 113 
large part on the amount and quality of data available for assessing differential temporal and spatial 114 
preservation, and regional and local sedimentation rates” (2002: 152). Various cases studies – e.g., the 115 
Middle Gila River (Ravesloot and Waters 2004), the Central and Eastern Great Plains (Bettis and Mandel 116 
2002; Mandel 2008), and southern Indiana (Herrmann 2015) – show that both the distribution and the 117 
abundance of sites of any given period must be considered in light of the varying ages of extant/exposed 118 
landforms in fluvial landscape. The diversity of these examples, as well as modeling of fluvial landscapes 119 
(Clevis et al. 2006; Davies et al. 2015), suggests that the problem is pervasive and potentially significant. 120 
Ballenger and Mabry (2011) address this with specific reference to the recovery of dateable material used 121 
in dates-as-data approaches.  122 

Although fewer case studies address the problem directly in other geomorphic contexts, landscape 123 
taphonomy is not limited to fluvial landscapes. For instance, MacInnes and colleagues (2014) address 124 
differential availability of landforms for settlement in the Kuril Islands, where landform creation or burial 125 
through volcanic processes is the primary process of concern, and Zvelebil and colleagues (1992) consider 126 
the impacts on archaeological survey in a southeast Irish landscape of alluviation, sea level change, and 127 
peat development. Bailey and Cawthra (2023) review the landscape taphonomic implications of global sea 128 
level rise in broad terms. The empirically grounded simulation that we present in Section 3.3 is based on 129 
the detailed work on Great Basin landscape taphonomy by Eerkens and colleagues (2007) in the Coso 130 
Basin. 131 

For dates-as-data approaches, the role of taphonomy in structuring the distribution of surviving datable 132 
material is fundamental. Nevertheless, as Ward and Larcombe (2021) have recently detailed, even if the 133 
issue is acknowledged in dates-as-data projects, it is rarely treated in sufficient detail to enable consideration 134 
of the likely effects on demographic reconstructions. At best, the vast majority of dates-as-data literature 135 
assumes that, all else being equal, older material has been subject to deleterious processes for more time, 136 
and is thus less likely to be represented in the archaeological record. Surovell and colleagues (Surovell et 137 
al. 2009; Surovell and Brantingham 2007) recognized the importance of this issue, and approximated a 138 
solution by developing a “correction” for taphonomic bias using a database of geologic 14C dates associated 139 
with volcanic deposits (Bryson et al. 2006) as a measure of the frequency distribution of terrestrial 140 
sediments of various ages. They compared this empirical distribution against an independent ice-core-141 
derived aerosol record of Quaternary volcanism, which is unaffected by landscape taphonomy, to produce 142 
a global estimate of the impact of taphonomic factors on the survival of terrestrial sediments of different 143 
ages. A recent evaluation of the volcanic correction (Bluhm and Surovell 2019) produced largely similar 144 
results using an independent set of non-volcanic geologic dates.  145 

While this approach is an ingenious solution to the problem of taphonomic bias, it assumes that local 146 
landscape taphonomy mirrors global patterns, smoothing over variation in local surface processes that may 147 
produce significant deviations in the post-depositional factors that structure the availability of dateable 148 
material in any given region. Since local taphonomy can significantly structure surviving distributions of 149 
dateable material, ignoring it can have significant effects on demographic interpretations. Surovell and 150 
colleagues (2009, p. 1723) acknowledged this issue and suggested their global correction only as a first 151 
approximation. Others (e.g., Attenbrow and Hiscock 2015, p. 32; Rhode et al. 2014, p. 576) also emphasize 152 
the importance of attention to local landscape taphonomy and suggest that the appropriateness of a 153 
generalized correction should be demonstrated rather than assumed. In spite of this recognition, and 154 
although it is clear that in order for summaries of radiocarbon dates to accurately reflect the original 155 
distributions of dateable material these taphonomic effects must be accounted for, no systematic approach 156 
for dealing with taphonomic effects at local or regional scales exists. Crema’s recent (2022) comprehensive 157 
review of dates-as-data methods neither explores the magnitude of the problem nor suggests any solutions 158 
other than the volcanic correction. Moreover, Surovell and colleagues’ global volcanic correction is widely 159 
cited (369 citations listed in Google Scholar as of November 2023, though certainly not all of these represent 160 
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applications of the correction), often without justification of its appropriateness for the region under 161 
consideration (though sometimes, e.g., Barberena et al. 2017, with caveats about the applicability of the 162 
results).  163 

2.2 “Dates-as-Data” Approaches 164 
 165 

Embrace of meta-analysis of archaeological assemblages of 14C dates can be traced to John Rick’s 166 
(1987) use of 14C dates from the Central Andean preceramic period to argue that 14C dates could be 167 
employed as population proxies. Other early efforts can be discerned (see Carleton and Groucutt 2020, p. 168 
2), but Rick’s paper is increasingly cited, and its title commonly used to describe this genre of studies. 169 

Following Rick, this “dates-as-data” approach has been founded on the argument that in addition to 170 
their traditional role in establishing chronological frameworks for archaeological sites and regions, 14C dates 171 
could also figure in analyses of broad demographic patterns in space and time. The central contention is 172 
that in spite of various confounding factors, archaeological 14C dates can serve as a population proxy, given 173 
an initial assumption that the production of dateable material is roughly proportional to population size at 174 
any given time. 175 

 176 

Figure 1: Schematic of the 'dates as data' approach, using simulated data. The creation of the material 177 
record (at left) involves the initial production of dateable material and the subsequent transformation of that 178 
material by successive processes. A population (A), derived from the Terminal Pleistocene - Holocene estimate 179 
produced by Weitzel and Codding (2016), produces dateable material (B) at a rate assumed to be proportional 180 
to population. That dateable material is subject to taphonomic processes, which though irregular are 181 
cumulative, making older material less likely to be preserved. Here we simulate this taphonomic bias by 182 
sampling from the initial distribution with probabilities following the exponential curve described by Surovell 183 
and colleagues (2009). The remaining (preserved) dateable material (C) is the population of archaeological 184 
material available to be recovered and dated by archaeologists, who for intellectual and budgetary reasons (at 185 
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least) do not select material to date at random. The resulting distribution of dateable material (D) is shaped by 186 
both the abundance of material available from different periods and the preferential recovery and analysis of 187 
material from particular periods. Here we simulate research bias simply by sampling from the preserved 188 
distribution with probabilities uniformly equal to 1 for the period before 1000 BP and uniformly equal to .5 for 189 
the post-1000 BP period, reflecting the abundance of other dating techniques likely to be used for archaeological 190 
material dating to the most recent millennium. The process of making inferences about demographic history 191 
from the resulting assemblage of radiocarbon dates (at right) involves the summarization of calibrated 192 
radiocarbon dates and then application of a correction for taphonomic effects. After removing 5% of the 193 
assemblage to simulate the application of chronometric hygiene to a collection of radiocarbon dates, 194 
radiocarbon dates are simulated for each of the remaining calendar dates (using rcarbon::uncalibrate), which 195 
are illustrated here with a histogram binning the medians of those radiocarbon dates (E). These simulated 196 
radiocarbon dates are calibrated, and then a summed probability distribution (SPD) describing them (F) is 197 
calculated. This SPD is taphonomically corrected following the method described by Surovell and colleagues 198 
(2009), producing a corrected distribution (G) that is presumed proportional to the population distribution 199 
over time (H), and understood as an approximation of (A). 200 

This contention rests upon a) the validity of the relationship between population size and production of 201 
dateable material, and b) dismissal of both the effects of research priorities and budgets on the recovery and 202 
analysis of dateable material, and the effects of temporally and spatially variable preservation on the 203 
ultimate composition of the material record. The latter two processes can significantly structure 14C 204 
assemblages in ways that strongly impact interpretation. Addressing these biases, consequently, is vital if 205 
“dates as data” approaches are to produce reliable results. We review below the principles and application 206 
of the “dates as data” approach, as well as the significant challenges yet to be overcome. These challenges 207 
are the product of three assumptions fundamental to the ‘dates as data’ approach (see Figure 1):  208 

1) past population size is proportional to (∝) the dateable material produced,  209 
2) dateable material produced is proportional to the dateable material now available to sample, and  210 
3) the dateable material now available is representatively sampled.  211 

In order to accurately reconstruct changing populations, archaeologists must develop methods that address 212 
whether these assumptions are justifiable for a particular case and, if not, correct for the biases introduced. 213 
While this paper focuses on the second fundamental assumption, here we briefly review each as well as the 214 
methods developed to try to reduce the impact of biases on dates-as-data. For additional detail we refer the 215 
reader to Crema’s (2022) recent comprehensive review.  216 

2.2.1 Foundational Assumption 1: Population Size ∝ Dateable Material Produced 217 
The foundational assumption of any attempt to use an assemblage of radiocarbon dates as a population 218 

proxy, articulated in Rick’s 1987 paper, is clear if not necessarily universally accepted: the production of 219 
dateable material at any given time is proportional to population size (Figure 1a and 1b). Rick pointed out 220 
from the outset that this relationship was likely to be a function of technology and environment (Rick 1987, 221 
p. 57), and argued that the population proxies were only appropriately compared in situations where these 222 
were similar, but this caution has not always been observed by subsequent researchers. With the exception 223 
of the recent work by Freeman and colleagues (2018), only critiques of “dates as data” approaches (e.g., 224 
Attenbrow and Hiscock 2015; Mökkönen 2014; Torfing 2015) tend to raise this issue. Although in principle 225 
it is clear that the relationship between population and the production of dateable material may vary over 226 
time and/or space, dates-as-data practitioners seem to be content that this risk is either a) unimportant, or 227 
b) can be managed by confining analyses to populations within which that relationship is likely to be fairly 228 
constant – i.e., where technology and sociopolitical complexity are comparable.  229 
2.2.2 Foundational Assumption 2: Dateable Material Produced ∝ Dateable Material 230 
Available 231 

Any approach whose logic relies on diachronic comparison – in the case of ‘dates as data’ approaches 232 
to past population, of the quantities of dateable material produced at different times – must confront the 233 
issue of taphonomy (see Section 2.1). Where radiocarbon dates are concerned, the issue is the differential 234 
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survival of dateable material that might be recovered and analyzed (Figure 1c). However, the “dates as 235 
data” literature has generally embraced the convenient assumption that (other things being equal) 236 
taphonomic patterns will have a neutral effect on a 14C assemblage, or at least an effect that can be simply 237 
corrected.  238 

As early as 1987, however, Rick noted that “preservation processes will discriminate against older 239 
dates” (1987, p. 57). Ward and Larcombe (2021, p. 550) have recently reiterated this caution, and a series 240 
of studies have explored the potential interpretive ramifications of differential preservation. Ballenger & 241 
Mabry (2011) present a case study in which other factors overwhelm production as a determinant of the 242 
abundance of dateable material, wherein taphonomic loss cannot be simply modeled (“the conditions that 243 
determine preservation/loss have varied through time” [Ballenger and Mabry 2011, p. 1322]). Holdaway 244 
and colleagues (2009), on the basis of dates on different kinds of archaeological components in southeastern 245 
Australia, and Davies and colleagues (Carney and Davies 2020; Davies et al. 2015), on the basis of model 246 
simulations, argue that landscape taphonomy can produce an apparently complex 14C record even if the 247 
generative process is simple.  248 
2.2.3 Foundational Assumption 3: Dateable Material Available ∝ Material Dated by 249 
Researchers 250 

The issue of research intensity, already recognized in the infancy of “dates as data” approaches by Rick 251 
(1987: 57–58), is similarly challenging (Figure 1d). The tacit contention is that an archaeological 252 
radiocarbon assemblage can be treated as a random sample of the dateable material produced, in part 253 
because disparate research agendas focus on different time periods. A key risk is that research interests 254 
and/or budgetary realities may drive research practices: in addition to locally eclectic research preferences, 255 
the number of 14C samples dated in any region may best reflect that region's economic fortunes rather than 256 
its population in prehistory. Even within regions of comparable prosperity, perceptions as to the relative 257 
importance of different archaeological phenomena or periods and the relative utility of 14C and other dating 258 
methods mean that resources will be unevenly directed towards dating different periods. Further 259 
complicating factors are that researchers collecting 14C results published in academic literature may be 260 
unaware of larger and perhaps less selective data sets generated by commercial archaeology (as Crombé 261 
and Robinson [2014] observed), and that results may be structured by regional reporting conventions 262 
(notable, for instance, in the salience of Wyoming in the Canadian Archaeological Radiocarbon Database 263 
[CARD] data [e.g., Chaput et al. 2015, p. Fig. 1; Crema et al. 2017, p. 2]). The effects of even sampling 264 
that can be treated as effectively random can also produce patterns that are difficult to distinguish from 265 
fluctuations in the abundance of dateable material (Rhode et al. 2014). 266 

2.2.4 “Dates as Data” Methodology 267 
The majority of the “dates as data” literature has focused on the difficulties of summarizing 14C assemblages 268 
(see recent reviews in Bronk Ramsey 2017; Crema 2022; Crema and Bevan 2021) and interpreting the 269 
resulting summed probability distributions (SPDs); practitioners have generally preferred to take the 270 
foundational assumptions for granted (though see Carleton and Groucutt 2021; Freeman et al. 2018).  271 

2.2.4.1 Summarizing Assemblages of 14C dates  272 
Although a few alternatives continue to be explored – e.g., model fits on binned dates (Weitzel and 273 

Codding 2016) and summed ranges (Drake et al. 2017) – addressing the uneven probability distributions of 274 
calibrated dates by using summed probability distributions has become the dominant method of 275 
summarizing 14C assemblages (Figure 1e and 1f), in spite of various methodological and theoretical 276 
critiques (e.g., Attenbrow and Hiscock 2015; Bamforth and Grund 2012; Chiverrell et al. 2011; Contreras 277 
and Meadows 2014; Culleton 2008; Mökkönen 2014; Torfing 2015). This is likely due in large part to the 278 
relative ease with which they can be calculated, coupled with the inability of critiques to suggest a more 279 
viable alternative. However, Bronk Ramsey’s (2017, pp. 1810–13) discussion of various methods of 280 
summarizing 14C dates argues that an adaption of kernel density estimation (KDE) provides a more 281 
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promising tool for separating signal (date frequency) from noise (effects of the calibration curve and 282 
sampling, primarily). Others (e.g., Brown 2015; Codding et al. 2023; Wilson et al. 2023) have explored 283 
resampling approaches to explicitly address the uncertainty associated with each radiocarbon date.  284 
2.2.4.2 Correcting for Research Biases 285 

Recent work using Sum distributions to summarize 14C assemblages has in some cases attempted to 286 
“correct” 14C assemblages for differential research intensity, by summing the calibrated pooled means of 287 
14C results from individual sites/site-phases (e.g., Buchanan et al. 2008; Shennan and Edinborough 2007; 288 
Tallavaara et al. 2010), by summing the calibrated dates for individual sites or site-phases before summing 289 
the sums (e.g., Collard et al. 2010; Crema et al. 2016; Hinz et al. 2012; Shennan et al. 2013), or by 290 
combining dates from sites (e.g., Balsera et al. 2015), areas (e.g., Goldberg et al. 2016), or site-phases 291 
(Timpson et al. 2014) before summing. Chaput and colleagues (2015) use the spatial distribution of the 292 
entire assemblage as a measure of the spatial distribution of research, thereby controlling (they argue) for 293 
variable intensity of sampling in space, and Crema and colleagues (Crema et al. 2017) address research and 294 
other biases by looking for local fluctuations relative to regional trends.  295 

All of these techniques are intended to address the problem of well-funded excavations that produce 296 
significantly more 14C dates than other investigations in a region, but they run counter to the fundamental 297 
assumption that larger populations would produce more dateable material: pooling gives equal weight to 298 
every site or site-phase, thus conflating large and small sites and presuming site populations are static over 299 
time. That is, populations of different sizes separated by more than some minimum amount of time are 300 
expected to produce different amounts of dateable material, but populations of different sizes separated in 301 
space are not. Pooling in this manner leaves unaddressed the question of when the quantity of dates from a 302 
particular site, area, or time period represents an anomaly in the amount of research attention paid to that 303 
area/site/period, and when it represents a concentration of population. Just as Kent Flannery describes the 304 
risk, for a rigid sampling strategy of surface survey in the Basin of Mexico, of missing the metropolis of 305 
Teotihuacan (Flannery 1976, p. Ch.5), uniformly binning multiple dates to minimize bias stemming from 306 
well-funded investigations may lead “dates as data” researchers to ignore sites that have many dates 307 
specifically because they are large sites that had large populations. 308 
2.2.4.3 Correcting for Taphonomic Biases 309 

Surovell and colleagues’ (2009) work stands out for its creative attempt to confront the issue of 310 
taphonomic effects and remains the preferred means of addressing the differential survival of datable 311 
material of varying ages (Figure 1g). Although the authors note that their proposed correction is a coarse 312 
global approximation and suggest that the best approach would be to develop local corrections for any given 313 
study (Bluhm and Surovell 2019, p. 328; Surovell et al. 2009, p. 1723), nevertheless their correction is 314 
widely implemented (e.g., Barberena et al. 2017; Broughton and Weitzel 2018; Downey et al. 2016; 315 
Edinborough et al. 2017; Fernández-López de Pablo et al. 2019; Zahid et al. 2016), reflecting recognition 316 
that taphonomic bias poses a potentially significant problem. However, taphonomic correction is not 317 
universally applied (e.g., Codding et al. 2022; Stewart et al. 2021; Tremayne and Winterhalder 2017) and 318 
details of correction methods may vary. Williams (2012), for example, preferred a slightly modified version 319 
of Surovell and colleagues’ empirically-derived equation relating time elapses to survival of material, and 320 
argued that either correction produced “unrealistic values for time intervals >25.0 ka” (Williams 2012, p. 321 
584). That dissatisfaction with results that did not match expectations led Williams (2012, p. 586) to argue 322 
that “taphonomic correction should not be routinely applied without some discussion of whether time-323 
dependent taphonomic loss is valid as an a priori assumption.” Stewart and colleagues (2022, p. 2) make a 324 
similar point in more broadly theoretical terms, noting that Surovell’s use of a monotonic function to 325 
describe taphonomic loss effectively implies that the environmental conditions controlling taphonomic 326 
processes were constant over time. Various empirical and simulation studies (e.g., Ballenger and Mabry 327 
2011; Davies et al. 2015; Holdaway et al. 2009; Rhode et al. 2014) – as well as landscape-scale 328 
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geoarchaeology (see Section 2.1) – demonstrate that in fact taphonomic processes vary in both time and 329 
space.  330 

Critiques of Surovell’s approach, however, neither argue that taphonomy is unimportant nor suggest 331 
any alternative methods of correction. Although Surovell and colleagues explicitly presented their 332 
correction as a first approximation in need of further development, and in spite of subsequent cautions about 333 
the potentially significant implications of taphonomic effects, only Crema and colleagues’ (2017) 334 
comparison of local and regional trends has any potential for detecting – much less correcting – taphonomic 335 
bias.  336 

 337 
2.2.4.4 Interpretation 338 

The interpretation of a corrected distribution of archaeological radiocarbon dates (Figure 1h) represents 339 
a final hurdle. Peaks and troughs in summaries of radiocarbon assemblages may result from significant 340 
fluctuations in the population that produced the dateable material that survived to be recovered and dated, 341 
or they may result from the vagaries of sampling, from the effects of biasing factors, or from unintended 342 
effects of methodology (see reviews in Bronk Ramsey 2017; Carleton and Groucutt 2021; Contreras and 343 
Meadows 2014; Crema 2022). Slopes – representing rates of change – are similarly vulnerable, particularly 344 
over short timespans. The more discerning an interpretation tries to be, the more susceptible it is to 345 
confounding factors introduced by taphonomic effects, patterns of research, and simple sampling. Attempts 346 
to address challenges of SPD interpretation though methodological improvements – e.g., comparison to 347 
growth models (see summary in Crema and Shoda 2021) – tackle the problem of what can be inferred from 348 
a summarized 14C assemblage, but do not address how well (or poorly) the sample of 14C dates represents 349 
the population for which the SPD is argued to be a proxy. 350 

Both research and taphonomic biases are especially pernicious in that they are spatially and temporally 351 
heterogenous, affecting different subsets of large 14C assemblages differently as these biases vary both in 352 
space and over time. Interpretations that do not take this variability into account risk overgeneralizing in 353 
potentially problematic ways, depending on the questions involved.  354 

3. Simulating Taphonomic Effects and Corrections 355 
As we have detailed above, while taphonomic correction is not entirely standard in dates-as-data 356 

approaches, the possibility that older sites are underrepresented has been considered and means of 357 
correcting accordingly proposed (Bluhm and Surovell 2019; Surovell et al. 2009; Surovell and 358 
Brantingham 2007). Landscape taphonomy has also been identified as a – largely neglected – problem for 359 
archaeological assemblages more generally.  360 

The correction developed by Surovell and colleagues (2009) attempts to deal with this by estimating 361 
how much less likely older material is to survive, and adjusting the SPD accordingly. Their empirically-362 
derived function (Surovell et al. 2009, p. 1717) describes the relationship between time elapsed and 363 
probability of survival, positing that for a given age a predictable proportion of material will have 364 
survived. As a result, the observed quantity that has survived can be used to estimate how much originally 365 
existed by dividing the observed quantity by the expected proportion (Surovell et al. 2009, p. 1718). We 366 
mirror this approach here, but addressing the particulars of preservation probabilities for a given 367 
assemblage. Specifically, we use simulated data to develop a means of spatially explicit estimation of 368 
local taphonomic effects and calculation of corresponding probability weights for 14C samples from 369 
different periods. Simulation offers a way to explore the impacts of a) landscapes composed of landforms 370 
of varying ages, b) distinct demographic scenarios, and c) various taphonomic corrections.  371 

We consider four scenarios at extremes of these spectra, and explore one empirically grounded 372 
realistic scenario based on the Coso Basin in the southwestern Great Basin. For each, we 1) simulate a 373 
population and a landscape taphonomic process, 2) produce a simulated sample of radiocarbon dates 374 
resulting from the interplay of these factors, and 3) apply dates-as-data methods to attempt to reconstruct 375 
the (known) population from which that sample was generated. The results generated in (3) are compared 376 
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to the simulated population in (1) to explore challenges to demographic reconstruction and the efficacy of 377 
different corrections. We implement this approach in the R environment for statistical computing (R Core 378 
Team 2021). All code required to replicate our simulations are provided in the Supplementary Material. 379 

3.1 Developing and applying a local taphonomic correction based on landform frequencies 380 
Frequency distributions of landforms of varying ages enable estimation of the varying probabilities of 381 

preservation and recovery of archaeological sites of differing ages, and thus estimation of the probabilities 382 
of recovering dates from particular age ranges. Using these probabilities to weight dates of different ages 383 
in extant 14C assemblage accounts for the differential likelihoods of survival of dateable material 384 
produced at varying times, in a process analogous to Surovell’s (2009) method but empirically 385 
approximating local erosional and depositional processes.  386 

We explore this method by developing a simulation that accounts for:  387 
● production (of sites and dateable material, proportional to population), 388 
● preservation (dependent on both time elapsed and landscape processes – burial and erosion),  389 
● recovery (more possible/likely where landforms that could host sites are exposed), and  390 
● reconstruction (of sites/dateable material as a proxy for population). 391 

There are seven steps to the simulation process, summarized below and detailed in the annotated R code 392 
included as Supplementary Material. 393 

1. Generate a landform age distribution. 394 
2. Generate a population curve that will provide the probability distribution that governs the 395 

sampling in Step 3. This can be derived from a theoretical expectation (e.g., of exponential 396 
growth) or from an empirical or hypothetical approximation (e.g., a population reconstruction or 397 
inferred trajectory). 398 

3. Use that population curve as a probability distribution governing the selection of a sample of 399 
calendar dates over a given span of time at the desired density, adjusting the probabilities 400 
according to the frequency distribution of landforms (i.e., sites can only be found on landforms 401 
that are at least as old as the sites are) and modeled decay over time (Surovell and Brantingham 402 
2007, p. 1872). 403 

4. Use each of those calendar dates to simulate a radiocarbon date (using, e.g., `R_Simulate` in 404 
OxCal [Bronk Ramsey 2009, 2020]; or `uncalibrate` or `unCalibrate` from the rcarbon 405 
[Bevan and Crema 2017] and BChron [Parnell 2015] packages, respectively). 406 

5. Summarize the resulting radiocarbon dates, using, e.g., `rcarbon::spd`. SPDs have been 407 
compellingly critiqued as a means of summarizing 14C assemblages (Bronk Ramsey 2017), but 408 
remain so common as to be standard. 409 

6. Correct that SPD using both Surovell and colleagues’ (2009) volcanic correction and a local 410 
correction (derived either directly from the landform distribution in Step 1, or from some 411 
empirical approximation). Either correction is applied by dividing the observed value for a given 412 
year by the correction-derived proportion expected to have survived for that year. 413 

7. Compare uncorrected, volcanic-corrected, and locally-corrected against the known starting 414 
population from Step 2.  415 

 416 
In Section 3.2 below, we use this simulation process to explore the reconstruction of known population 417 
distributions in both active and stable landscapes. We illustrate the varying success of uncorrected, 418 
volcanic-corrected, and locally-corrected SPDs in reconstructing the populations from which these 419 
proxies were derived, before considering the implications using a realistic scenario derived from the Coso 420 
Basin case study considered by Eerkens and colleagues (2007). 421 

3.2 Simulating Population Scenarios and Geomorphic Extremes 422 
We use notional populations, adjusted for landscape taphonomy and decay, to simulate assemblages 423 

of radiocarbon dates that can be subsequently summarized, adjusted for taphonomic effects, and used to 424 
approximate the initial population. The correspondence between the reconstructed population and the 425 
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initial population provides a means of assessing the utility of different approaches to landscape 426 
taphonomy (ignoring it, applying a global correction, and applying a local correction) under two scenarios 427 
of population growth over time (uniform and logistic) and under two geomorphic scenarios that make it 428 
more and less likely that older sites will survive (stable and active environments). 429 

 430 
Figure 2: Population/landscape scenarios showing that SPDs reflect geomorphic activity as well as population structure. 431 
Solid lines show the original population, dashed lines show the taphonomically-adjusted population, and shaded polygons 432 
show the SPD resulting from the sampling (n = 1000) the adjusted population. 433 

 434 
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 435 
Figure 3: Results of simulations showing the original population (solid line), volcanic-corrected SPD, and locally-436 
corrected SPD under uniform and logistic growth scenarios in stable and active landscapes (all SPDs based on 1000 437 
simulated 14C dates sampled from the landform adjusted population; see Figure 2). 438 

Comparing the uncorrected, volcanic-corrected, and locally-corrected SPDs to the underlying populations 439 
from which they are sampled reveals five characteristics of SPDs:  440 

1. Any SPD – corrected or not – is a far from perfect population proxy. The combination of 441 
landscape taphonomy, sampling, and calibration introduces significant noise even when an SPD 442 
is derived from a uniform distribution. Distinguishing signal from noise remains a fundamental 443 
challenge of ‘dates as data’ approaches. SPDs are best considered like models: all SPDs are 444 
wrong; some SPDs are useful (Box 1979).  445 

2. Visual inspection makes clear that for any span of time the locally-corrected SPD (Fig. 3, blue 446 
polygon) more closely approximates the underlying population distributions (Fig. 3, black lines) 447 
than do the uncorrected SPDs (Fig. 3, yellow polygon) in all four scenarios. While for a few 448 
spans of time the volcanic-corrected SPD succeeds as well as the locally-corrected one in 449 
approximating the population distribution from which it is derived, for many more spans of time 450 
it performs less well. 451 

3. All reconstructions retain artifacts of landscape taphonomy, wherein more active landscapes 452 
result in lower probability of recovery of dateable material and hence lower population estimates. 453 
All reconstructions do poorly under the conditions of uniform population growth on active 454 
landscapes. This is because there is a point where there are so few landforms remaining from 455 
which material can be sampled that recovering a sample of sufficient size to accurately estimate 456 
the population is very unlikely; the resulting sparseness of samples produces reconstructions that 457 
are spiky even when they correct sufficiently that a rolling mean would be high enough to 458 
reconstruct the original population. 459 

4. There is greater variance in the locally adjusted SPD than the volcanic-corrected SPD, especially 460 
further back in time. This is not surprising as the older dates require greater adjustment, which 461 
also amplifies the variance. Future work could further help correct for this by applying a 462 



13 
 

variance-reducing scaler or smoother and by calculating bootstrapped confidence intervals to 463 
focus interpretation on the highest probability region.  464 

5. One limitation of the volcanic-correction is that the calculation implicitly assumes that recent 465 
populations are orders of magnitude larger than past ones (see Williams 2012, pp. 584–586). If 466 
they are not, more recent estimates will be down-weighted relative to earlier populations, 467 
producing population estimates that suggest larger populations in, e.g., the Early Holocene than in 468 
500 BP. We suggest that the best way to handle this is to consider the corrected results only for 469 
earlier periods, considering instead the uncorrected SPD for the recent part of the population 470 
distribution. Unfortunately, there is no method, in the abstract, for determining the inflection 471 
point – i.e., at what date BP we should stop preferring the corrected results in favor of the original 472 
SPD. Some of these issues were recently raised by Bluhm and Surovell (2019). 473 

 474 

3.3 A Realistic Coso Basin Simulation 475 
 476 
In this section, we use the methods detailed above to simulate a realistic scenario based on Eerkens 477 

and colleagues' (2007) study in the Coso Basin. Eerkens and colleagues concluded that the abundance of 478 
Early Holocene sites has generally been underestimated due to the extant distribution of landforms of 479 
varying ages in the region: the relative scarcity of landforms on which Early Holocene components could 480 
be present/preserved/found has led to their under-representation in archaeological survey data, and 481 
consequently to underestimation of their abundance. That, in turn, has led to reconstructions of site and 482 
population densities over time that underestimate the Early Holocene component. In fact, Eerkens and 483 
colleagues note, "Early Holocene sites are found throughout the study area wherever older landforms are 484 
present at or near the surface." (2007, p. 107 [our emphasis]) While Eerkens and colleagues focus on site 485 
counts, including as a proxy for population, the issues that they highlight are equally applicable to use of 486 
14C dates as a population proxy. They note: "we believe that site density is a fairly reliable indication of 487 
population density. This method of estimating population density avoids many of the problems noted by 488 
Surovell and Brantingham (2007), such as tabulating radiocarbon dates." (2007, p. 106) 489 

We draw on the Coso Basin case for 1) frequency distributions of landforms (based on Eerkens et al. 490 
2007: Table 3), and 2) a realistic Holocene population distribution (based on Eerkens et al. 2007: Table 7; 491 
we assume for present purposes that Eerkens and colleagues accurately reconstruct Coso Basin 492 
populations by accounting for landscape taphonomy). Eerkens and colleagues (2007) exclude the post-493 
1500 BP period from consideration, but Eerkens and Rosenthal (2002, p. 29) consider Coso Basin 494 
population growth post-Newberry unlikely; we here follow this in considering post-Newberry population 495 
stable. These estimates of relative populations over time provide a realistic population distribution that we 496 
use as the basis for this simulated scenario. The point is not the absolute accuracy of the population 497 
distribution itself, but rather how well it can be reconstructed from a simulated assemblage of 14C dates 498 
that accounts for landscape taphonomy. In this case, that landscape taphonomy is significant: the Coso 499 
Basin landscape is one where ~40% of the extant landforms – mid-late Holocene dunes, alluvial fans, and 500 
playa deposits – were not available for habitation in the Early Holocene (Table 1).  501 

 502 
Table 1: Coso Basin landform frequencies (after Eerkens et al. 2007: Table 3). 503 

Landform Abbrev Acreage Period 
Proportion 

Acreage 
pre-Tertiary basement pTu 1978 Pre- to Early Holocene 0.032 
Volcanic rocks Qv 6530 Pre- to Early Holocene 0.105 
Older lakeshore deposits Qls 34 Pre- to Early Holocene 0.001 
Older fan deposits Qof 22852 Pre- to Early Holocene 0.368 
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Older lacustrine deposits Qol 4032 Pre- to Early Holocene 0.065 
Older dune sands Qos 499 Pre- to Early Holocene 0.008 
Playa deposits Qp 2496 Middle to Late Holocene 0.04 
Younger fan deposits Qyf 20989 Middle to Late Holocene 0.338 
Dune sands Qds 2617 Middle to Late Holocene 0.042 

 504 
We simulate an archaeological radiocarbon assemblage as described in Section 3.1, using landform 505 

frequencies and population and population distribution derived from Eerkens and colleagues (2007) as 506 
described above. The resulting assemblage of dates is summarized in an SPD, and corrected using both the 507 
volcanic correction and a correction derived from the Coso Basin landform frequencies. R code that details 508 
this process, like that for the idealized scenarios described in Section 3.2, is available in the Supplementary 509 
Material.  510 

Accounting for landscape taphonomy in this context can have significant effects: Figure 4 contrasts an 511 
uncorrected SPD of a simulated Coso Basin radiocarbon record (4a) with one adjusted using the global 512 
volcanic taphonomic correction suggested by Surovell et al (2009) (4b), and one adjusted using a 513 
taphonomic correction factor estimated based on the frequency distribution of landforms in the Coso Basin 514 
(4c). Sites that predate 8400 BP cannot be found on mid-late Holocene landforms and have been subject to 515 
decay processes for longer, making their survival less likely. As a result, the simulated population 516 
distribution (dashed line in Figs. 4a, 4b, and 4c) – moderate in the late Pleistocene and early Holocene, low 517 
in the middle Holocene, and relatively high in the later Holocene – produces a distribution of dateable 518 
material (solid line in Figs. 4a, 4b, and 4c) that is differentially attenuated over time. Because it is derived 519 
from this distribution of surviving material, any radiocarbon-based reconstruction – regardless of the 520 
method of summary used – will reflect that pattern, rather than the original population distribution. This is 521 
evident in Fig. 4a, where the SPD that summarizes the simulated 14C assemblage (in purple) can be 522 
understood as a noisy approximation of the solid line; noise has been introduced by sampling, calibration 523 
uncertainty, and summary method.  524 

In fact, the target is the original population distribution, not the distribution of surviving dateable 525 
material. In this simulated case study, uncorrected, volcanically/globally corrected, and locally corrected 526 
SPDs clearly do not all approximate that original distribution equally well.  527 

The macro-pattern of Coso Basin population – relatively low in the Middle Holocene – is evident in all 528 
three results. All three also indicate that the later Early Holocene population was higher than that of the 529 
Middle Holocene; the volcanic correction strongly exaggerates this relative high, while the uncorrected 530 
SPD slightly underestimates it. The increase in population at the end of the Middle Holocene is apparent in 531 
all three results as well, though its magnitude is underestimated by the volcanic correction. As noted above, 532 
an unexpected consequence of the volcanic correction is the downward adjustment of the more recent part 533 
of a distribution if it is not significantly higher than the earlier portion; in this case the later Holocene is 534 
increasingly underestimated by the uncorrected SPD. 535 

An expected consequence of taphonomic decay is that uncorrected and corrected SPDs vary 536 
dramatically in the earlier Early Holocene. The uncorrected SPD approximates the relative quantities of 537 
surviving dateable material, and as a result appears to indicate a low population that increased slowly over 538 
time even though the initial simulated population was stable. Both corrections alleviate this tendency, but 539 
they produce very different results, with the local correction much more strongly correcting the Early 540 
Holocene. Because the correction only acts upon positive values in the probability distribution (rather than 541 
creating data where probabilities are zero), this strong correction increases the variance in the dataset by 542 
further exaggerating the positive values. While the result is that the majority of annual estimates vary around 543 
the original population distribution, the increased variance due to sampling also produces a noisier signal. 544 
Particularly in the earlier Early Holocene and the Terminal Pleistocene, the result gives the impression of 545 
boom and bust population cycles. Because the volcanic correction similarly does not attempt to modify 546 
probabilities of zero, it also produces a high-variance, noisy pattern of apparent population fluctuation 547 
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during the same period. Since in this case it is not correcting as strongly, this tendency is less pronounced, 548 
but as a result the volcanic correction, like the uncorrected SPD, gives the impression of incremental 549 
population growth rather than of substantial and stable population. In addition, even the corrected versions 550 
still suggest a contrast between later Early Holocene and earlier Early Holocene, which is in fact the result 551 
of the landform distribution (the recent landforms postdate 8400 BP).  552 

In fact, not only is the Early Holocene population underestimated by an SPD; neither correction does 553 
enough to recapture the Early Holocene population. This limitation is empirical rather than methodological 554 
– correction cannot address an absence of material available to sample (as addressed by Rhode and 555 
colleagues [2014]). This problem might be addressed by using a rolling mean or other smoothing approach 556 
to capture the central tendency of the corrected SPD, but such an approach requires the tacit assertion that 557 
peaks and troughs in the SPD reflect only noise and not signal (i.e., changes in population). Imputing values 558 
in the absence of evidence – asserting that for time periods when no archaeological evidence has been 559 
found, that absence is due to taphonomic processes and not an absence of occupation – likely is beyond the 560 
threshold of correction with which most archaeologists would be comfortable. 561 

This Coso Basin simulation demonstrates that correcting an SPD is likely to be necessary, particularly 562 
earlier in the record, that correction may or may not be sufficient to accurately reconstruct a population 563 
distribution, and that the choice of correction can significantly affect the results. In this case, archaeologists 564 
confronting the distinct population reconstructions would likely infer differing population histories, 565 
summarized in Table 2. In the context of Great Basin prehistory, these distinctions have significant 566 
interpretive weight. They cast initial colonization and early occupation, responses to mid-Holocene aridity, 567 
and Late Holocene re-population in notably different lights, and suggest divergent interpretations of such 568 
phenomena as risk management in dynamic environments, adaptive responses to resource uncertainty, and 569 
population sensitivity to climate change.  570 

 571 
Table 2: Likely inferences about population history of the Coso Basin. Results indicate that local correction would most 572 
closely approximate the underlying trends in past populations. 573 

Simulated Population  ● stable and moderate in scale throughout the Terminal 
Pleistocene and Early Holocene 

● significant Middle Holocene low 
● rapid growth to a relatively high and stable Late Holocene 

population 
Population Reconstruction Likely Inference 
Uncorrected SPD ● consistent population increase throughout the Early Holocene  

● probable period of population increase immediately preceding a 
significant mid-Holocene population low 

Volcanic correction ● Early Holocene distinguishable into three stages 
● dramatic late Early Holocene population boom preceding a 

significant Middle Holocene population low 
● Middle Holocene low is followed by strong but ephemeral 

population growth in the Late Holocene 
Local correction ● Early Holocene boom-and-bust with generally high population 

● dramatic Middle Holocene population low 
● rapid growth to a high and stable Late Holocene population 

 574 
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 575 
Figure 4: SPDs derived from a simulated Coso Basin radiocarbon assemblage (n=1000): a) uncorrected summed probability 576 
distribution, b) summed probability distribution corrected following the global volcanic taphonomic correction produced 577 
by Surovell and colleagues (2009), and c) summed probability distribution corrected with a local Coso Basin taphonomic 578 
correction. Applying a taphonomic correction at all results in a markedly different distribution (compare a with b or c), 579 
and which correction is applied also results in significant changes (compare b and c).The estimated local taphonomic 580 
correction employed in (c) is derived from the frequency distribution of landforms of different ages reported by Eerkens 581 
and colleagues (2007, p. Table 7), combined with an approximated low rate of taphonomic decay following the exponential 582 
curve suggested by Surovell and Brantingham (2007). 583 

4. Discussion 584 
 585 
The simulations detailed in Sections 3.2 and 3.3 illustrate some key issues in correcting and interpreting 586 

SPDs: 587 

● The volcanic correction doesn't just under-correct or over-correct, but may do one or the other for 588 
different spans of time, depending on local landscape taphonomy. 589 

● How much better a local correction approximates the original distribution varies (presumably 590 
depending on how much the landform distribution departs from the assumptions of the volcanic 591 
correction).   592 

● Further back in time, sparseness of sample leads to underestimates and increased variance with 593 
either correction, and neither correction can address an absence of data. 594 

● The volcanic correction down-weights the last 4000 years; this is a mathematical artifact and not 595 
an intended effect of the correction. 596 

● One of the problems of any correction that upscales the high values but maintains no-data values 597 
(zeroes) is exaggeration of variance, which exacerbates the problem of distinguishing signal from 598 
noise. 599 

These issues are fundamental to interpreting assemblages of 14C dates and do not depend on the method 600 
used to summarize assemblages of 14C dates. In the terms of the simulations above, methodological 601 
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improvements focused on improved summary of 14C assemblages (e.g., Bronk Ramsey 2017; Price et al. 602 
2021) may improve how well a taphonomically adjusted population is reconstructed, but remain vulnerable 603 
to taphonomic effects. These simulations reveal the significant differences in archaeological interpretation 604 
that may result from using different estimates of taphonomic loss (or discounting it), and highlight the 605 
importance of selecting the best possible model of taphonomic effects.  606 

The correction suggested by Surovell and colleagues is reasonable and widely employed, but as the 607 
Coso Basin simulation demonstrates, it can either over-correct or under-correct, depending on the local 608 
landscape history. In the Coso simulation, it over-corrects in the later Early Holocene, but under-corrects 609 
in the earlier part of the Early Holocene. These effects result from the relative scarcity of Early Holocene 610 
surfaces, which have been buried by later Holocene aeolian, alluvial, and lacustrine deposits. As a result, 611 
the volcanic correction, like the uncorrected SPD, underemphasizes the Early Holocene population; for 612 
mathematical reasons it also underestimates the Late Holocene population.  613 

Although neither the volcanic correction nor the local Coso Basin correction produces reconstructions 614 
that perfectly approximate the initial population distribution, both outperform the uncorrected SPD, and 615 
demonstrate the potential significance of taphonomic correction in structuring interpretations of past 616 
demography. Although both introduce additional artifacts to data that are already noisy from sampling and 617 
calibration effects, the majority of annual estimates from the corrected distributions tend to better 618 
approximate initial population distributions. Mismatches between volcanic correction and local landscape 619 
history, however, can produce spurious effects, while a local correction – presuming of course that it is 620 
accurate – better approximates the initial distribution of dateable material.  621 

Neither method of taphonomic correction is perfect, and neither pretends to address all the potential 622 
complications of SPDs. Other systematic biases affecting dated samples – for example, increasing reliance 623 
on wood charcoal samples in older contexts where organic preservation can be a significant constraint – 624 
can also impact the fidelity with which an SPD reflects population dynamics. A global correction addresses 625 
the potentially dramatic under-estimation of older dateable material, but its generalized approach risks over- 626 
and under-correcting where local landscape taphonomies diverge from the global average. Local correction 627 
avoids this problem, but depends on accurate estimates of the frequency distributions of landforms of 628 
different ages. Neither correction can address the uneven sampling that is common if surviving material is 629 
sparse (a pattern which might be generated either by relatively small initial quantities and low probability 630 
of survival or by especially small initial quantities and intensive research [i.e., search for earliest 631 
inhabitants]), or if research intensity is heterogenous for different time periods. The magnification of small 632 
early signals exacerbates the problem of distinguishing continuous low-level occupation from sporadic 633 
occupation (see Rhode et al. 2014), while the successful identification, and accurate and precise dating, of 634 
rapid population changes can be critical to interpretation, for example of responses to climate change 635 
(Codding et al. 2023).  636 

5. Conclusion 637 
 638 
The simulations that we have explored here demonstrate both the potential of summarized 639 

radiocarbon data for reconstructing population distributions and the pitfalls of any such approach. It is 640 
clear that, as with any archaeological interpretation, biases in the data can significantly structure 641 
interpretations, in this case leading to spurious conclusions about past demography. While correcting for 642 
taphonomic effects is not a panacea, the structured relationship between frequency distributions of 643 
landforms of different ages and distributions of dateable material over time means that biases can be 644 
anticipated, described, and accounted for. The results may remain structured by research biases as well as 645 
past demography, and the challenge of distinguishing signal from noise will continue to make radiocarbon 646 
summaries difficult to interpret (see Figure 4) – but because the complications introduced by taphonomic 647 
effects are predictable, they may be accounted for and one source of inaccuracy minimized.  648 

It is clear that taphonomic factors have the potential to skew dates-as-data results. Moreover, and 649 
contrary to the assumptions inherent in a global correction, at least some of the likely taphonomic agents 650 
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– e.g., sea level change and alluvial deposition and erosion – are likely to have produced taphonomic 651 
biases that are heterogeneous both in space and over time. Even within a single study region, a specific 652 
taphonomic correction (which no study, so far as we are aware, has attempted to develop) is likely to 653 
subsume areas with varying landscape histories, resulting in spatially and temporally distributed over- and 654 
under-correction and consequent over- and under-representation of dates and estimation of population. 655 
This risk is exacerbated as study regions expand in space and time and more potential diversity is 656 
encompassed by an implicit assumption of homogeneity.  657 

As the simulated scenarios discussed here illustrate, without appropriate taphonomic correction, 658 
results are likely to be inaccurate, and they are likely to be inaccurate in ways that can meaningfully affect 659 
archaeological interpretation. Landscape-scale taphonomic processes are likely to significantly structure 660 
the archaeological record, but they are local rather than global. As such, accounting for their effect 661 
requires specific attention to local landscape processes. Adjusting summaries of radiocarbon assemblages 662 
to account for local/regional frequencies of landforms of varying ages provides an approach that is 663 
generalizable to local contexts across the globe. It responds to the as-yet unaddressed appeal that Surovell 664 
and colleagues issued when publishing their widely employed global correction: “The ideal approach 665 
would be to build local databases of geologic radiocarbon dates that can be used to correct for taphonomic 666 
bias, and to take into account local variation in sedimentation and erosion not captured by the global 667 
volcanic model.” (Surovell et al. 2009, p. 1723 [our emphasis]) 668 

These simulated cases demonstrate the significant differences in interpretation that may result from 669 
using different estimates of taphonomic loss (or discounting it), and highlights the importance of selecting 670 
the best possible model of taphonomic effects. Given the potential magnitude of the effects, addressing the 671 
differential probabilities of survival of cultural material of different ages is vital to interpretation of regional 672 
prehistory and human-environment interactions.  673 
 674 
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