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ABSTRACT: X-ray computed tomography (CT) is a noninvasive, nondestructive
approach to imaging materials, material systems, and engineered components in
two and three dimensions. Acquisition of three-dimensional (3D) images requires
the collection of hundreds or thousands of through-thickness X-ray radiographic
images from different angles. Such 3D data acquisition strategies commonly
involve suboptimal temporal sampling for in situ and operando studies (4D
imaging). Herein, we introduce a sparse-view imaging approach, Tomo-NeRF,
which is capable of reconstructing high-fidelity 3D images from <10 two-
dimensional radiographic images. Experimental 2D and 3D X-ray images were
used to test the reconstruction capability in two-view, four-view, and six-view
scenarios. Tomo-NeRF is capable of reconstructing 3D images with a structural similarity of 0.9971−0.9975 and a voxel-wise
accuracy of 81.83−89.59% from 2D experimentally obtained images. The reconstruction accuracy for the experimentally obtained
images is less than the synthetic structures. Experimentally obtained images demonstrate a similarity of 0.9973−0.9984 and a voxel-
wise accuracy of 84.31−95.77%.
KEYWORDS: sparse reconstruction, X-ray computed tomography, tomographic reconstruction, neural radiance field, operando imaging

■ INTRODUCTION
X-ray computed tomography (XCT) tools are noninvasive
imaging tools that can capture subsurface morphological and
structural features in a range of materials and material
systems.1 The fidelity of microstructure representation is
essential for material property estimation, simulation, and
materials design.2 Three-dimensional reconstructions of
materials are often utilized to accurately model components
and critically assess degradation and material transformation
pathways.3 The resiliency of any quantitative assessment is
highly dependent on the reconstruction of a three-dimensional
(3D) image from hundreds of 2D radiographic images
acquired from different projection angles.4,5 The inverse
Radon transform provides the mathematical basis for the
conventional reconstruction process.6 Hundreds of 2D images
at varying angles are typically acquired in order to reconstruct
images into a 3-D rendering. For dynamic or operando
investigations, where you combine an action with imaging
(e.g., imaging particles flowing), it is challenging to take
hundreds of images in the time period of the action. Thus, 3D
imaging for in situ and operando studies, which require fast
acquisition times on the order of seconds or subsecond per
frame, are challenging.7 Sparse-view reconstruction approaches
attempt to reduce the number of 2D images (e.g., sampling
rate) necessary for 3D reconstruction.8−12 Decreasing the
sampling rate enables transient in situ and operando studies.
Reducing the number of images needed for a reconstruction
can have the added benefit of less instrument maintenance,
longer system lifetime, and simpler system design and
hardware.13 Despite the promising features, sparse-view

reconstruction via conventional reconstruction methods suffers
from the inevitable information loss that hinders correct image
interpretation and quantification.
Image reconstruction in computed tomography has under-

gone a paradigm shift as a result of recent advancements in
deep learning for computer vision applications.14 However,
unlike tomographic slice reconstruction in biomedical fields,13

microscopic computed tomography in materials studies is
limited by training data sets. The region of interest for micro/
mesostructure studies can be orders of magnitude smaller than
in biomedical and clinical studies. This significantly lengthens
data acquisition periods and necessitates access to a
synchrotron source with a brilliance a billion times brighter
than a laboratory source.15 Reconstruction of 3D images from
high-dimensional 2D data sets is another challenge. The two
primary methodologies of deep sparse-view reconstruction are
image quality enhancement13 and stochastic reconstruction.2

The former adapts deep learning networks to reduce noise and
strike artifacts from the sparse-view reconstruction. The
networks in the data domain interpolate missing sinogram
data (i.e., Radon transform data) of sparse-view reconstruction
by learning from complete projection sinograms.3,16−20 The
networks in the image domain restore the image quality by
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learning to detect and subtract streak-type artifacts from the
undersampled reconstruction images.21,22 Either by learning
from data or images, these deep learning models incorporate
analytical transform (e.g., Radon transform) as physical-based
knowledge for image reconstructions, cutting the number of
projection views needed from hundreds to dozens. However,
these methods still face the bottleneck of reconstructing images
from single-digit views since they need enough views to
perform the reconstruction via the Radon transform for further
quality enhancement. An alternative approach is stochastic
reconstruction. Stochastic reconstruction utilizes deep con-
volutional generative adversarial networks (GANs) as layered
architecture to extract and reproduce the hierarchical features
of image data sets.2 From representative 2D CT scan slices,
GANs may stochastically generate a statistically equivalent 3D
structure of porous media,23 three-phase electrodes,2,24 and
anisotropic polymer membranes.2 The synthetic volumes via
stochastic approaches demonstrate statistical similarity with
the original data sets, while they cannot reveal the real 3D
structure from the input 2D images. The loss of localized
geometric information is inevitable. Therefore, they are
ineffective for transient in situ and operando studies or
heterogeneity studies, where realistic variations in localized
properties across time or space matter.
Ultrasparse view 3D tomography reconstruction with deep

learning methods is an underexplored area due to model
limitations and insufficient training data. Herein, we introduce
a learnable framework capable of reconstructing high-fidelity
3D images from single-digit radiographic images (Tomo-
NeRF). Tomo-NeRF is distinct from the quality enhancement
and stochastic reconstruction methods and does not rely on
the analytical knowledge of inverse transform for reconstruc-
tion. Instead, Tomo-NeRF is a physics-based approach which
utilizes the Beer−Lambert law to reconstruct samples.
Enlightened by pixel-NeRF,25 a photorealistic novel view
synthesis model, Tomo-NeRF aligns pixel and voxel in the 3D
coordinate system via relating the X-ray attenuation to the
material properties of the sample. The algorithm learns to
predict the phase of each voxel with the grayscale value from
2D radiographic images. We train the model with a set of
multiview radiography projections along with the 3D voxel
labels so that the model can learn the scene prior to
reconstruction from two-view radiographic images. Obtaining
thousands of 3D and 2D training data sets from real
experiments for training is cost-prohibitive. Herein, we utilize
a numerical simulator to create synthetic data. Synthetic
reconstructions are combined with physics-based equations
(e.g., Beer−Lambert) to generate artificial radiographic images
for the 2D training data sets. To demonstrate the functionality
of Tomo-NeRF and the artificial training data sets, we conduct
real full-view tomography imaging experiments on granular
ceramic proppants with monodispersed sizes. These ceramic
proppants are made of bauxite and are commonly utilized for
high-temperature heat transfer from concentrated solar power
plants. The bauxite particle heat exchangers are comprised of
spheroid materials which can exhibit a range of aspect ratios
and varying morphologies. By combining synthetic data with
experimental data we can test Tomo-NeRF's ability reconstruct
3D images from less than 10 views.

■ TOMO-NERF
Tomo-NeRF is a learning framework that can reconstruct 3-D
images from a limited number of fixed radiographic projection

views. Neural radiance field (NeRF) was previously developed
for novel photorealistic view synthesis with an incomplete set
of photos.26 It leverages a continuous volumetric radiance field
of color and density for volumetric scene prediction and uses
gradient descent to optimize the scene using the input photos.
Our Tomo-NeRF employs the convolutional approach to the
conventional NeRF, pixelnerf.25 Convolutional layers in
convolutional neural networks (CNNs) utilize a local receptive
field defined by the size of the convolutional kernel.27 This
design enhances network’s flexibility and computational
efficiency when extracting image features, compared to a
fully connected structure. Therefore, CNNs would be more
suitable for computed tomography reconstruction in tolerating
potential noise within the input radiographic images. To realize
the ultrasparse view reconstruction in X-ray computed
tomography, we embed the physical field of X-ray imaging
into NeRF, making it correspond to real experiments.

Physical Field of X-ray Imaging. Radiographic images
are 2D images which capture variable attenuation character-
istics in a material or component.28 An X-ray source emits
fluxes of X-ray photons that pass through or interact with the
sample.29 Any interaction, via scattering or absorption,
removes the photon from the X-ray beam.30 The attenuation
coefficient (μ) is a material property which describes how
easily an X-ray can pass through a material. The attenuation
coefficient of a material depends on the type of material
(atomic number and density) and the photon energy of the
radiation.31 The X-ray attenuation often varies in space for
heterogeneous materials comprised of either multiple materials
or local variations in density. The detector electronically
detects the photons that pass through the sample. Other than
the material types and incident photon energy, the decrease in
detected X-ray intensity is dependent upon the depth of X-ray
beam penetration through the sample (i.e., material hetero-
geneity).30 The computer will further process the through-
thickness projection data (e.g., adjust brightness and contrast)
and visualize it as a grayscale radiographic image. The Beer−
Lambert law relates the X-ray beam attenuation to the material
properties (attenuation coefficient) and the penetration depth
(z). With a parallel-beam approximation, the general equation
to calculate detected X-ray intensity Id is

= ( )I x y I x y z z( , ) ( ) ( )exp ( , , ; )d dd
0

0
max

(1)

where η(ε) is the quantum efficiency of the detector and I0(ε)
is the incident X-ray intensity with the unit of photons per unit
area per unit electron energy (photons/(m2 keV)). The
incident X-ray intensity is a function of X-ray energy (ε).
Variations in material properties are more detectable than
variations in X-ray energies, particularly when utilizing a
synchrotron facility that can generate an almost monochro-
matic X-ray source.30 Therefore, Tomo-NeRF neglects the
incident energy variation and simplifies the Beer−Lambert Law
function as only an integral function of penetration thickness

= × × ( )I x y I x y z z( , ) exp ( , , )dd 0 (2)

The Beer−Lambert law function allows for a continuous 3D
field representation and aligns material microstructures in
spatial location (x, y, z) with the radiographic projection on
the 2D plane (x, y). The continuous volumetric representation
allows for interpolating volumetric density from neighboring
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input views, providing additional depth information in the
novel views. The additional information relaxes the Nyquist
sampling bound of projection views required for conventional
reconstruction in discrete representations.
X-ray computed tomography 3D reconstruction requires

through-thickness information from different views (conven-
tional methods would require hundreds of views). Therefore,
the tomography imaging experiment involves radiographic
scanning around a sample by fixing the X-ray source and
detector and rotating the sample at a constant altitude around
the central axis.32 To represent spatial location of X-ray beams
from different imaging directions, we encode the projection
direction into a Cartesian coordinate system. We sample points
along the 0° projection beam as a reference coordinate (x0, y0,
z0) and rotate the X-ray parallel beams in the reverse direction
of the sample rotation. For a field of view of w × w, the
reference point (x0, y0, z0) on X-ray parallel beams rotates
angle θ around the central vertical axis (i.e., y-axis) where (xc,
yc) = (w/2, w/2) will be (x1, y1, z0). Here,

= +x x x y y x( )cos( ) ( )sin( )1 0 c 0 c c (3)

and

= +y x x y y y( )sin( ) ( )cos( )1 0 c 0 c c (4)

Model Pipeline. Tomo-NeRF (Figure 1) utilizes an
encoder−decoder convolutional neural network to extract
features from images and align the features of the input image
with 3D geometry in a voxel grid (see the Supporting
Information). Tomo-NeRF uses a modified ResNet34 as a 2D
encoder to extract local and global information from
radiography images. A 3D decoder further processes the
output feature vector from the 2D encoder with the
upsampling methods of transposed convolution and bilinear
interpolation. It reshapes and restores the feature vector into a
3D feature map that aligns with the 3D ground truth in the
voxel grid. The last layer of the convolution neural network
within the 3D decoder is a sigmoid activation function

= +S x( ) 1
1 e x to bound the output between 0 and 1,33 turning

each voxel grid into a classifier. For a two-phase sample (e.g.,
ceramic proppants), the numerical prediction in each voxel
within the 3D feature map represents the probability prob of
finding the solid phase in that spatial location. If prob > 0.5,
the grid has a higher chance of being occupiedby a solid
material (e.g., ceramic), otherwise it is unoccupied (e.g., air).
During the training process (see the Supporting Informa-

tion), the encoder−decoder convolutional neural network
takes the 0 and 90° projection images as the input and
produces a 3D feature grid of probability information that
matches the original size of the volumetric grid (100 × 100 ×

150). The model samples voxel grids, along X-ray beams
among the six projection directions (i.e., beam rotation angle
θ). Each direction ranges from 0 to 180° with a step of 30°. It
sends the query specification of the spatial location along with
the input image into the Tomo-NeRF network to retrieve the
corresponding feature from the predicted 3D feature grid. The
model compares the retrieved 3D prediction along the X-ray
beam with the 3D ground truth and has a cross-entropy loss
(LCE) for each grid to learn from the 3D data set. Tomo-NeRF
programs that each X-ray beam in the network may produce a
grayscale pixel on the radiographic image under a given
projection direction. Therefore, the model can further make a
2D prediction of the pixel value by integrating the 3D
predictions on the specified X-ray beams with the Beer−
Lambert law (eq 2). By comparing the 2D prediction (i.e., a
radiographic image from 3D predictions) with the radiography
ground truth corresponding to its projection direction, the
model can learn from the 2D data set (i.e., six direction
radiographic images for each sample) via mean-square-error
(MSE) loss. By continuously minimizing cross-entropy (eq S2
in the Supporting Information) and MSE (eq S3 in the
Supporting Information) losses during the training process,
Tomo-NeRF can learn to increase the probability of predicting
the voxel phase from 3D labels and six-views. Other than
improving learning performance from 2D labels, the 2D
prediction allows comparison with input images while
optimizing the trained network, testing, or experimental
validation, where 3D labels are unavailable. Learning from
one projection direction can serve as relevance and share
knowledge for other directions. The model can rely more
directly on the input image feature if the query projection
direction and input orientation are similar; otherwise, the
model needs to leverage the learned prior.

■ EXPERIMENTAL METHODS
Tomo-NeRF reconstruction capabilities were evaluated on a bauxite
granular material. Granular media are commonly used for high-
temperature heat transfer, catalysis, food, and pharmaceutical
applications.34,35 Understanding the kinetics of dense granular flow
via a noninvasive method is essential to flow phenomena studies (e.g.,
Brazil nut effect,36 pattern formation,37 jamming transition,38,39 local
rearrangement,40 etc.) and heat transfer analysis.41,42 However,
dynamic granular flow studies with a noninvasive method have been
limited to radiographic studies due to the rate dependency in granular
flow. Tomo-NeRF enables the prediction of complex 3D micro-
structures from a limited number of radiographic images.

X-ray microcomputed tomography imaging was conducted on a
sintered bauxite proppant sample, which is typically used as a heat
transfer and storage medium within particle-based concentrated solar
power plants.42 Here, we used CARBO HSP 16/30, a commercialized
sintered bauxite proppant sample composed of Al2O3, SiO2, TiO2, and

Figure 1. Overview of the Tomo-NeRF pipeline (memory size of the whole model is ∼80 MB).
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Fe2O3. It is a monodispersed granular material with 85% of the
particle equivalent diameters falling within the range of 850−1180 μm
and 12% lower than 850 μm.43 Each grain in the CARBO HSP 16/30
sample is irregular in shape, with a sphericity of 0.9. ZEISS Xradia
Versa 3D X-ray microscopes probed the CARBO HSP 16/30 sample
in a quartz tube (inner diameter of 3.95 mm and outer diameter of
4.95 mm) placed between the source and detector. The imaging field
of view is 4085 μm × 4085 μm, slightly larger than the inner diameter
of the container (3950 μm). The X-ray tube voltage that is relevant to
photon energy is 60 kV. We applied a low-energy filter to make the X-
ray beam closer to monochromatic. The exposure time for each
radiographic imaging is 1.5 s. The microscope system has a full scan
around the sample for 1600 projections for reconstructing a 3D
tomographic image. To evaluate the Tomo-NeRF reconstruction
capability in different numbers of projection views, we selected two
projections (0 and 90°), four projections (0, 45, 90, and 135°), and
six projections (0, 30, 60, 90, 120, and 150°) from the 1600
projections as the 2D input for the model. We obtained real
tomographic (reconstruction from full view) and radiographic images
as reference samples (i.e., real sample) for evaluating reconstruction
performance.

Training Tomo-NeRF requires thousands of 2-D and 3-D image
training data sets for an accurate reconstruction. Acquisition of such a
large number of real data sets faces the limitations of time, cost, and
synchrotron source availability. Herein, we propose an artificial image
generator as a means for obtaining an affordable training data set. For
preparing 3-D artificial samples, we utilized a discrete element method
simulator44 to randomly assemble packs of grains in a cylinder
container based on physical forces. The artificial data set closer to the
real samples will benefit the training performance. The information on
the particle size distribution and irregularity (relevant to Perlin noise
altitude44) enables the simulator to generate artificial 3D structures of
irregular shapes that resemble the real samples. The simulator
produces the packed bed shape structures in terms of TIFF files. Each
TIFF file contains a 3-D binary matrix of structure information that
distinguishes each voxel into ceramic or air. The structure and
materials of the real-experiment container are known properties.
Therefore, we can mathematically create randomly assembled
particle-packed beds in quartz containers as the artificial tomography
images. For preparing the corresponding 2-D radiographic images, we
leverage the fundamental principle of X-ray radiographic imaging. The

Beer−Lambert law indicates that the detected X-ray intensity Id(x, y)
corresponds to the material structure and properties in 3D space (x, y,
z) at known X-ray source properties. We are able to estimate the
attenuation coefficient with a quartz density of 2.6 g/cm3 and a
ceramic density of 3.61 g/cm3.45 The attenuation coefficient in the
real experiment might deviate from the expected one due to the
difference in incident energy and material properties. The potential
deviation is acceptable as long as the attenuation difference among the
ceramic, quartz, and air is large enough to form the extractable
features on radiographic images. In addition, the model normalizes
the input images during preprocessing. With the 3-D structure and
corresponding properties, we are able to integrate the attenuation
coefficient μ along the X-ray beams in the z-direction. The generator
further mathematically rotates the 3-D structure along the central y-
axis every 30° for generating radiographic images in six different
views.

The artificial image generator prepares two different types of data
sets: (1) synthetic data with regular spheres and (2) synthetic data
with irregular spheres (nonsmooth). The first type of data set is
randomly packed identical spherical particles with 600 μm diameter in
a 3 mm inner diameter tube (i.e., artificial sphere sample). The second
data set is randomly packed monodispersed particles in a 3.95 mm
inner diameter tube. The irregular spheres more closely resemble the
real bauxite materials (e.g., ceramic proppant) used in the
experimental tomography imaging experiment.

To validate the reconstruction capabilities of Tomo-NeRF, we
conduct four deep learning experiments (Table 1). Each experiment
used a specific type of synthetic data set as the training data and a
specific input to test the algorithm’s ability to convert two-, four-, and
six-views into a 3D image. Two-view means two radiographic images
taken from two different angles, while six-view means six radiographic
images taken from six different angles. Conventional tomography
combines 1000 s of radiographs from 1000 s of different angles to
create 3-D images. All input data sets were original and were not
utilized in the training process. Experiment #1 uses real X-ray
radiographic images of the bauxite particles as an input for the model
trained with synthetic data comprised of irregular spheres (non-
smooth). The first experiment specifically aims to evaluate the
practicality of the proposed Tomo-NeRF in real XCT applications.
Experiments #2 and #3 use the synthetic data as the input data and
utilize algorithms trained with their respective types of data sets

Table 1. Summary of Four Experiments with Input Data and Training Input Data for the Model

experiment # input data training data for the model

Experiment #1 real XCT synthetic data�irregular spheres
Experiment #2 synthetic data�irregular sphere synthetic data�irregular sphere
Experiment #3 synthetic data�regular sphere synthetic data�regular sphere
Experiment #4 synthetic data�irregular sphere synthetic data�regular sphere

Figure 2. Example of a two-view reconstruction for an artificial sphere sample (in a voxel-wise accuracy of 90.39%) for illustrating the experimental
workflow. (a) The artificial image generator first produces a 3D sample of identical sphere particles with a discrete element method simulator and
then makes artificial radiographic images in 0 and 90° projecting direction. (b) Tomo-NeRF takes the concatenated two images as an input and
predicts a 3D image. The Beer−Lambert law applies to the 3D output to make 2D radiographic projections in the same projection angle of input
images as the validation view (e.g., 0°) and the different projection angle as the novel view (e.g., 45°).

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.3c06291
ACS Appl. Mater. Interfaces 2023, 15, 35024−35033

35027

https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig2&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c06291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(Table 1). These experiments aim to validate the feasibility of the
proposed Tomo-NeRF’s reconstruction principle and to investigate
the role of geometric complexity (e.g., uniform vs irregular spheres) on
the reconstruction results. Experiment #4 utilizes radiographic images
of artificial irregular sphere samples into the model trained by the
artificial spherical shape sample data set. Tomo-NeRF takes the two-
view, four-view, or six-view images as the input (Figure 2a) and
reconstructs a 3-D image as the output (Figure 2b). We visualize the
2-D prediction images by further making projections on the 3-D
output in both the same and different directions of the input images
(i.e., validation view and novel view). The quality of the novel view
from 2-D prediction represents the model reconstruction capability
when there is a lack of information in a direction different from the
input image. Other than visual comparison, we quantitively evaluate
the reconstruction accuracy with 3-D structural similarity (SSIM),
voxel-wise accuracy, and the standard deviation of localized porosity
(see the Supporting Information) by using the 3D ground truth
sample as the reference.

■ RESULTS
The reconstruction accuracy increases with an increasing
number of input views for each of the four experiments (Figure
3a). The rate of improvement decreases for Experiments #1,

#2, and #3 but steadily increases for Experiment #4.
Experiment #3 which uses uniform spheres as an input and
an algorithm trained on synthetic data with uniform spheres
has the highest accuracy across all number of views. Eight
synthetic samples in the testing process have an average
accuracy of 88.71% in two-view reconstruction, and this
increases to 96.63% with six-input views. It is unsurprising that
Tomo-NeRF performs better in reconstructing images with
smooth and predictable surfaces and regular sizes (e.g., uniform
spheres). Reconstructing “real XCT” data (Experiment # 1)
results in lower reconstruction accuracy. The real X-ray data
set has voxel-wise accuracy around 81.83, 87.77, and 89.59%
for two-view, four-view, and six-view reconstructions, respec-
tively. The fourth experiment, which incorporates irregular
shaped spheres into a model trained for regular spheres has the
lowest reconstruction accuracy with 2 views. However, the
fourth experiment shows the greatest improvement in voxel-
wise accuracy with increasing projection views.
Similar to the voxel-wise accuracy, the trend for structural

similarity (SSIM) increases with the number of projection
views (Figure 3b) for the real XCT data (e.g., Experiment #1)

Figure 3. (a) Reconstruction voxel-wise accuracy increases with more available input projection views, and the new task samples have the highest
increasing rate. (b) Structural similarity (SSIM) with exponent for the structural term (γ) of 3 exceeds 0.997, and it increases with more input
views. The standard deviation (SD) of localized porosity decreases with more views. (c) The localized porosity radial profile from the center to the
near-wall region for the real sample (voxel-wise accuracy ranges from 81.83 to 89.59%) shows that the major deviations occur near the central
region. (d) The localized porosity radial profile for the artificial sample (voxel-wise accuracy ranges from 86.40 to 95.37%) has a smaller deviation
than the real sample.
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and synthetic irregular spheres (e.g., Experiment #2). Tomo-
NeRF shows a high fidelity in structural restoration. When the
input data is real XCT data, the two-view reconstruction has a
low accuracy but the structural similarity (SSIM) still reaches
as high as 0.9971. The highest value of structural similarity
(SSIM) is 0.9984 for the six-view reconstruction of the
artificial sample (e.g., synthetic data with irregular spheres).
Another way to evaluate the resiliency of the reconstruction is
to extract local microstructure properties (e.g., porosity) for the
different particle beds. The porosity radial profile through the
reconstructed sample was systematically compared for the true
XCT data (e.g., Experiment #1) and input data containing
irregular spheres (e.g., Experiment #2). Figure 3c,d demon-
strates the radial porosity for input data (e.g., original) and
two-, three-, and six-view reconstructions. The real XCT data
(e.g., Experiment #1) demonstrates wide porosity variations
between the different views (Figure 3c) and captures the
subsurface variability in the learning exercise. The standard
deviation of localized porosity distribution is between 3.14 and
4.85% for the synthetic data with irregular spheres (Figure 3d,
Experiment #2) and 10.05−12.43% for the real XCT sample
(Figure 3c, Experiment #1)
Synthetic data was constructed with irregular shaped spheres

of varying sizes (e.g., Experiment #2). The 3D ground truth
(Figure 4a) and predicted images (Figure 4c) demonstrate that
all of the reconstructions (two-, four-, and six-views)
demonstrate similar packing densities as the ground truth. As
the number of projection views increases, the details of the
particles’ shape are more accurate and the surface is smoother.

The adhesion between some of the particles is attenuated since
the reconstructed particles’ shape is more accurately
represented. The 2D predictions in the validation views
(Figure 4d) show a high similarity to the input view (Figure
4b) at the same projection angle (0°) in all reconstructions
except for the high-contrast particle overlapping region in the
two-view reconstruction. The novel view projections define
more clearly particle boundaries as the number of views
increases to four (Figure 4d).
Similar to the synthetic sample with irregular particles, the

reconstruction of the real XCT data appears more similar to
the input data with higher input views (Figure 5c). However,
the overall reconstruction quality is not as high as the artificial
sample in Figure 4. The XCT data has more artifacts due to X-
ray scattering and local variations in the material which leads to
deviation between the assumptions of the model and artificial
image generator. Tomo-NeRF and artificial image generators
assume a monochromatic beam. In reality, synchrotron
facilities produce monochromatic beams (I0) through single-
crystal monochromators and X-ray diffraction at a higher
intensity than the in-house imaging facility in our experi-
ment.46 The in-house imaging facility uses the filter to decrease
the intensity of the beams with an unwanted wavelength, yet
the emitted radiation is still polychromatic, which is different
from the ideal assumption (eq 2). This deviation results in an
attenuation coefficient which is dependent on the local spatial
heterogeneity in the sample and X-ray energy (i.e., μ(x, y, z;
ε)). In addition, the lower energy of the in-house facility
increases the contrast Id/I0 (e.g., the overexposure for the void

Figure 4. (a) 3D ground truth of an example of the synthetic sample of irregular shape (Experiment #2). (b) Input view examples in 0 and 90°. (c)
3-D visualization of two-view, four-view, and six-view predictions. There is less adhesion between some of the particles as more input views (blue
box). (d) The validation views exhibit a strong overall structural similarity to the input view. In the two-view reconstruction, there is a high-contrast
region that has a marginally poor restoration of details (red box), and it gets improved with more input views. In the novel view visualizations,
individual particle outlines becomes more distinct with more input views. (e) The central slice of ground truth. (f) Visualization of prediction errors
on the central slice. Pink indicates that the prediction into the air for the actual phase is solid, and blue indicates that the prediction into solid for
the actual phase is air. Prediction accuracy increases as the reconstruction views are above two. The prediction errors are evenly distributed around
the surfaces of the particles.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.3c06291
ACS Appl. Mater. Interfaces 2023, 15, 35024−35033

35029

https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c06291?fig=fig4&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c06291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


region near the overlapping particles) and results in more noise
in the real experiment (Figure 5b). By comparing the input
images from the real sample (Figure 5b) and that from the
artificial samples (Figure 4b), we can see that there is
information loss in the particle shape, where the boundaries of
the overlapping particles cannot be resolved due to high
contrast and noise. It is more difficult for the convolution
network to extract features from blurrier input radiographic
images, leading to higher deviations of localized porosity in the
center region (Figure 3c).
More input views mitigate the particle adhesion phenom-

enon when synthetic data is in the input (Figure 4c). However,
more artifacts due to particle stacking with increasing views is
observed with real XCT data (blue box in Figure 5c). The
cone beam of the X-ray source and sample shifting during
imaging can lead to this observed flaw in terms of higher and
unevenly distributed prediction errors on the surface when the
input data is real radiographic images. In Tomo-NeRF and the
artificial generator, we assume parallel-beam geometry for the
flux of photons with the X-ray point source at an infinite
distance from the testing object. In a real experiment, the
distance between the X-ray source and the object is limited,
forming a cone beam at an angle of 3.28°. The cone beam can
distort the projection image away from the angle bisector of
the cone. The higher energy for the photon flux near the angle
bisector results in a brighter image (i.e., overexposure). In
addition to cone effect, slight misalignment during the
experimental setup can result in part of the sample to be cut
off in the field of view (orange box in Figure 5a). Particles

obstructed or cut off from the field of view will not emerge in
reconstructed experimental data (orange box in Figure 5b).
The final challenge with experimental data is that Tomo-NeRF
assumes that the sample rotates around a central axis. Any shift
in the central axis will change the projection angle in the input
data. Over long imaging experiments, where 1000 s of images
are taken, it is common for some shifting to occur. One of the
benefits of the sparse-view imaging approach is a decrease in
imaging time and thus reduction of these artifacts.
According to the 2-D validation views and the novel views

from the 3-D predictions, the validation views capture the
input views structure (Figure 5d). More input views increase
the sharpness of novel views, indicating a better reconstruction
quality in the given projecting angle. There are visible
differences between the 2-D predictions and the input views.
It is due to the inaccurate assumption of the attenuation
coefficient in particles and quartz containers. The incident
energy of the polychromatic beam is uncertain, and the
particles are made of mixtures with indeterminate proportions
of materials. The model optimizes by minimizing the difference
between the pixel predictions and the 2-D labels in a batch.
Therefore, as long as the assumption of the attenuation
coefficients is within the acceptable range and the 2-D
predictions can reflect the main structure, the inaccurate
assumption of the attenuation coefficient only has a limited
effect on the 3D reconstruction results.
In addition to the abovementioned variations between the

experiment and modeling, nonuniform information density
within the 3D decoder (Figure 1) can also impact the

Figure 5. (a) 3D ground truth of tomographic image reconstructed from the full-view X-ray imaging experiment (Experiment #1). (b) Input view
examples in 0 and 90°. The lower energy intensity and noise in the real in-house imaging experiment blur the outline of particles’ projection on the
radiographic images, resulting in information loss (red box). (c) 3D visualization of two-view, four-view, and six-view predictions. More input views
tend to aggravate the particle adhesion (blue box). (d) The validation view shows a higher structural similarity to the input view with increasing
views. In the novel view visualizations, the outline of particles’ projection gets clearer with more input views. (e) The central slice of ground truth.
(f) Visualization of prediction errors on the central slice. Pink indicates the prediction into the air for the actual phase is solid, and blue indicates
the prediction into solid for the actual phase is air. Prediction accuracy increases as the reconstruction views are above two. The prediction error is
unevenly distributed.
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reconstruction quality near the outer surfaces of the 3-D
predictions. We visualize the prediction error of the six-view
reconstructions for the synthetic irregular sphere sample
(Figure 6a) and the real sample (Figure 6b) on the selected

horizontal slices. The model is less likely to accurately discern
and reconstruct the particles at the bottom of the sample which
makes the particles look fused together. This issue is more
exacerbated with real XCT data (Experiment #1, Figure 6b).
When the distance from the bottom/top is more than four
voxels, the reconstruction quality improves. During the
transposed convolution operation, the voxels further away
from the edge are able to receive a contribution from the
adjacent voxel, i.e., overlapping information.2 The lack of
overlapping information at the edge of the sample forms an
information density gradient. The information density gradient
becomes exacerbated as it propagates in the multilayer
transposed convolution neural network. Furthermore, the
particle projections near the top and bottom edges of the
radiographic images are incomplete, thereby more irregular
than the particles of the complete shape. The low information
density and the more irregular shapes cause the low-quality
reconstruction region near the top and bottom of the sample.
This can be potentially resolved by subsequently feeding
partially overlapping radiographic images into the model and
then stitching together the central part of the reconstruction
(with a higher prediction accuracy). The error map for the
region away from the bottom/top shows that Tomo-NeRF
manages to restore the position and general shape of the
particles. However, errors primarily occur at the surface of the
particles, indicating that the restoration of shape details is
insufficiently accurate, particularly for the real-experiment
sample.

■ CONCLUSIONS
Three-dimensional X-ray imaging is an important materials
characterization approach which enables nondestructive and
subsurface evaluation of a wide range of materials. There is a
growing trend in 4-D imaging approaches which combine 3-D

imaging with time. The latter is specifically useful for observing
dynamic operating conditions also known as in situ or
operando. One of the limitations in 4-D imaging is the need
for 1000s of images which severely limits the temporal
resolution of such a technique. Herein, we introduce a sparse-
view reconstruction algorithm known as Tomo-NeRF. Tomo-
NeRF is a physics-based learning approach which enables the
reconstruction of 3-D images with limited 2-D views (<10
views). The results show the ability of Tomo-NeRF to reliably
restore the structure of 3-D two-phase granular media from
two-view 2-D radiographic images with a high structural
similarity. Structural similarity approaching 0.9971 was
obtained for real XCT images and 0.9973 as obtained for
synthetic images with irregular particle shapes. The voxel-wise
accuracy for real images (81.83−89.59%) is lower than
synthetic images (86.40−95.37%). The deviation is likely
because of experimental considerations which do not obey
model assumptions (e.g., low incident energy, differences in
attenuation coefficients, polychromatic and cone beams, and
sample shifting). Given that Tomo-NeRF involves the
underlying physical principle of X-ray imaging and classifies
each voxel into the appropriate phase, the model has the broad
potential to readily adapt to other applications beyond granular
structures (e.g., fiber, pore, and even multiphase material)
through transfer learning. Reconstruction of complex struc-
tures with high fidelity with single-digit radiographic images
can significantly impact the temporal resolution of 4-D
imaging. Future work aims to test the resiliency of these
algorithms on dynamic imaging experiments.
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