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non-truncated correlations
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ABSTRACT ARTICLE HISTORY
Interstitial dumbbell-mediated diffusion can affect segregation Received 15 February 2022
and precipitation properties of solutes in alloys under Accepted 26 August 2022
irradiated conditions. Accurate computation of transport
coefficients for dumbbell-mediated diffusion thus becomes
essential for modelling solute segregation under irradiation. In
this work, we extend the Green’s function approach, a
general numerical approach, to compute accurate transport
coefficients for interstitial dumbbell-mediated mechanisms in
the dilute limit for arbitrary crystalline systems with non-
truncated correlations in atomic diffusion. We also present
results of tracer correlation factors, solute drag ratios and
partial diffusion coefficient ratios in iron and nickel-based
alloys computed with our approach, compare our results with
existing results in the literature, and discuss some aspects of
correlated solute-dumbbell motion.
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1. Introduction

Alloys used in nuclear reactor components are subjected to extreme environ-
ments that progressively degrade their performance over time due to harmful
microstructural changes that occur under irradiation. Such phenomena com-
monly include: void swelling, which leads to formation and growth of cavities
inside the material that reduces its strength and can cause macroscopic dimen-
sion change of the components (see Section 4.02.8.2 in [1] for a review of void
swelling in austenitic stainless steels); radiation-induced segregation [2], which
leads to non-uniform concentration profiles of chemical species in the alloy;
and radiation-induced precipitation [2] of intermetallic phases leading to the
loss of strength, toughness and corrosion resistance. These issues occur ubiqui-
tously in alloys for structural applications in nuclear reactors such as ferritic/
ferritic-martensitic [2-5] and austenitic steels [6,7] and Zircaloys [8]. They
are induced by high-energy particles such as alpha particles and neutrons
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produced in nuclear reactors which cause cascades of atomic displacements in a
target material upon collision, leading to excess defects in the material [9].

Depending on the flux of such incident high energy particles, a far greater-
than-equilibrium amount of vacancy-interstitial pairs (called Frenkel pairs)
may be produced. Many of these excess vacancies and interstitials recombine
quickly and annihilate, but a significant amount can survive recombination,
setting up defect chemical potential gradients (CPGs) in the material, which
produce atomic transport processes resulting in the aforementioned micro-
structural changes. While excess vacancies can either coalesce with each
other to produce new voids or diffuse towards and enlarge existing cavities
in the alloy, causing swelling, both excess interstitial defects and vacancies
can facilitate atomic diffusion as they themselves diffuse towards sinks such
as grain boundaries and dislocations, leading to a non-uniform redistribution
of alloying elements in the matrix. Such redistribution phenomena can be col-
lectively called the Inverse Kirkendall Effect [10,11]. This is because unlike the
Kirkendall effect in a diffusion couple [12,13], in irradiated alloys, net atomic
fluxes are set up under defect CPGs. This may result in the vicinity of the
defect sinks becoming either depleted of or enriched with certain atomic
species, depending on the coupling of atomic fluxes with that of defects. For
example, in [14], atomic scale simulations of Fe-Cr alloys of various compo-
sitions show that below a threshold temperature (depending on Cr content),
positive flux coupling of Cr with interstitial atoms is stronger than the negative
flux coupling of Cr with vacancies. At higher temperatures, this trend is
reversed. This causes Cr enrichment at the grain boundaries at lower tempera-
tures via interstitial-mediated diffusion and Cr depletion at higher tempera-
tures due to vacancy-mediated diffusion.

Since vacancy-mediated diffusion is prevalent in a wide range of materials
for various applications, it has been studied extensively in the literature, both
theoretically as well as experimentally. On the other hand, interstitial defect-
mediated diffusion in irradiated alloys is often more complicated due to the
geometrical nature of such defects, and theoretical models for their transport
behaviour require deeper attention. To date, only approximate methods exist
to compute their transport properties that involve the truncation of correlations
in atomic motion.

First principles simulations have shown that interstitial defects in metals
involving atoms knocked out of lattice sites often occur in the form of ‘dumb-
bells’ in their most stable form [15-17]. This defect occurs when an atom that is
too big to fit in an interstitial site is forced into it, and as a result, pushes a
neighbouring atom out of its lattice site. The two atoms centred about an unoc-
cupied lattice site form a ‘dumbbell’. There can be two different kinds of these
dumbbells depending on the chemical species of the two atoms. Whenever the
two atoms are of the same species, either self-interstitial atoms (SIAs) or solutes,
they are called pure dumbbells, while if they differ, they are called mixed
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dumbbells. Due to the directional nature of dumbbells, they can execute more
complicated types of atomic jumps compared to vacancies [18]. They also have
lower migration barriers than vacancies [19,20] and are able to form in irra-
diated materials in concentrations significant enough to affect atomic transport
properties.

Such transport properties can be characterised via the Onsager transport
coefficients that govern diffusion fluxes of atoms under small CPGs according
to the relation

J o= =) LFvuf (1)
B

where a and f3 correspond to chemical species, J* is the flux of species a, VP is
the CPG of species f§ and L*# are the Onsager transport coefficients that deter-
mine the amount of flux coupling between various species. These transport
coefficients can therefore be used to characterise segregation behaviour of
solutes via defect-mediated diffusion [14,21]. The transport coefficients
depend on mechanisms of atomic jumps, and several methods exist in the litera-
ture to compute them. Often the most conceptually straightforward methods are
stochastic methods. Although not used to compute transport coefficients expli-
citly, an early stochastic model used to study correlation effects in both vacancy-
[22,23] and dumbbell-mediated diffusion [24] is the ‘Encounter Model’, which is
based on stochastically computing the mean squared displacement of a tracer
atom and the mean number of jumps of the tracer atom due to a single
defect. Modern stochastic methods to compute transport coefficients are
mainly variants of Kinetic Monte Carlo (KMC), based on the generalised Ein-
stein relations for transport coefficients [25,26]. KMC methods are popular
for their ease of implementation for dilute and concentrated systems alike. In
addition to computing transport coefficients, they also allow the ability to
study the microscopic evolution of the system with time. This enables, for
example, direct atomic-scale visualisation of atomic segregation phenomena
in alloys under irradiation [14,27-30]. Advanced KMC-based methods, such
as the kinetic activation-relaxation technique [31,32] can also explore the
energy landscape ‘on-the-fly’, self-identifying new defect configurations and
transitions during the simulation. For computing transport coefficients,
however, KMC methods are limited by potentially large simulation times to
simulate long atomic trajectories required to obtain converged values. In [14]
for example, transport coefficients were calculated by computing mean
squared displacements over 10° trajectories, each containing 10° sequential
atomic jumps.

Semi-analytical models to compute the transport coefficients can help over-
come this limitation, although such models have some inherent errors due to
either truncated energetic interactions between species or truncated range of cor-
relations in atomic jumps. Some of these models for BCC and FCC systems can be



4 S. CHATTOPADHYAY AND D. R. TRINKLE

found in [33-36]. More recently, the self-consistent mean field (SCMF) method
was formulated for both vacancy and dumbbell-mediated transport [37-40]. This
is a semi-analytical method that assumes close-to-equilibrium kinetics, and is
based on approximating perturbations to equilibrium atomic configuration (or
state) probabilities under a CPG using a ‘kinetic” cluster expansion. The finite
range of this cluster expansion corresponds to truncating long-ranged corre-
lations between atomic displacements that can lead to some errors in the com-
puted transport coefficients, although with sufficient convergence studies,
accurate results can be obtained [41]. The SCMF method has also been extended
recently to compute contributions of defect clusters to transport coefficients in
arbitrary crystalline lattices with long-ranged solute-defect interactions, thereby
providing more physical insight into diffusion mechanisms [41].

One of the most recent theoretical development towards Onsager transport
coefficient computation is the Green’s function method [42] that also assumes
close-to-equilibrium kinetics. The Green’s function method — which uses the
Dyson equation to solve for the full Green’s function in the presence of a
solute — has been shown to truncate no correlations, and is applicable to arbitrary
crystalline systems with solute-vacancy energetic interactions to any desired sep-
aration distance. Provided that the solute-induced changes in rate are localised to
a finite set of states, then the corrected Green function can be computed without
truncating the correlations to a finite range. As shown in [42], this allows for
transport coeflicients to be computed efficiently, requiring only a few seconds
on a single processor at a given temperature, and with high accuracy through
controllable numerical integration errors in the first Brillouin zone that show
a power-law decay. Since variations in computed transport coefficients can
arise both out of model approximation errors as well as variations in first prin-
ciples energy schemes [43], such ability to efficiently compute transport coeffi-
cients with non-truncated correlations can also help quantify the variations
propagated from uncertainties in the energies themselves as discussed in [43].

In this work, we extend the Green’s function method to compute transport
coefficients for dumbbell-mediated diffusion in the dilute limit in arbitrary lat-
tices with non-truncated correlation effects. We then discuss some widely used
flux coupling ratios useful in predicting segregation behaviour of solutes under
irradiation, such as the drag ratio and partial diffusion coefficient ratio, and
their origins based on correlated solute-defect motion and also compare our
results to accurate data available in the literature to validate our model.

2, Methodology
2.1. Master equation and onsager transport coefficients

We consider an infinitely large crystalline solid and say that every arrangement
of atoms on the lattice sites constitutes a state of the system. Diffusion via
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atomic jumps can then be viewed as transitions of the system from one state to
another. The aim is to then arrive at an expression for the Onsager transport
coefficients for the various chemical species (including defects) in terms of
the properties of these states.

To do this, the Green’s function method in [42] starts with the ‘Master
Equation’ for mass transport,

ap” = Z Wn%n Pn + Z Wn '—sn Pw (2)

Here, p, denotes the thermodynamic probability of a state n, and W,_,,»
denotes the rate of transition of the system from state n to state n’ per unit
time. The Master Equation stems from the assumption that diffusion is a Mar-
kovian process, where the residence time of the system at each state is large
compared to the time it takes for the system to transition from one state to
another. This means that the transition to the next state depends only on the
current state.

Considering Equation (2) for every state n, the resulting system of equations
can be written as

a
0 _wrp (3)

ot

where the vector p has the probabilities of all the states # as its components and
the transition rate matrix, W, is given by

Wt if n#n
nn — Z Wnﬁn” lf n= }’l/ (4)
n'#n

We work with a grand canonical ensemble of atoms, in which each species « in
state n with chemical potential u, have their total number fixed at N* at all
times during the diffusion process. The equilibrium probability distribution
of the states is then given by

po = exp |:le ((I)o + Z N — H(n))i| (5)

where kp is the Boltzmann constant, T is the temperature, H(n) is the total
energy of the atoms in the system in state n and @, is the grand potential
and corresponds to a normalisation factor for the state probabilities.

We also assume that the transition rates satisfy detailed balance, which is a
sufficient, but not a necessary condition for steady state, and is written as

Pg Wn»n’ :Pg« Wn’»n (6)
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With the above definitions, the Onsager transport coefficients are given by [42]

1 1
L = =Y PW, w85 (n— 1) ® oxP(n — n') + v ® Gn,n/vﬁ,i|
VokgT [2 Z Z "

(7)

Here V) is the volume of the system and 6x*(n — ') is the displacement of
species « when the system transitions from state n to state n'.
The velocity vector v of species « in state n is defined by:

VE=Y Wisw &%(n — 1) (8)

The matrix G is called the Green’s function. It is the pseudo-inverse of the tran-
sition rate matrix and analogously to the lattice Green’s function [44,45]
satisfies

Z Wn,n’ Gn’,n” - 5n,n” (9)
oy

where § denotes the Kronecker delta.

The first term within the brackets in Equation (7) is the uncorrelated contri-
bution to the transport coefficient. The second term, through the Green’s func-
tion, takes into account all correlations between states, with G, being related
to the total probability that the system ends up in state #’ having started at state
n [26,46]. To compute the transport coeflicients, we must therefore compute
the Green’s function.

2.2. States and transitions in dumbbell-mediated diffusion in dilute
systems

2.2.1. Solute-dumbbell states

As the first step towards evaluating the Green’s function, we need to know
the possible states of the system and the transition rates between these
states via atomic jumps. In the present work, we consider the dilute limit,
limiting ourselves to the interactions between a single solute with a single
dumbbell in a lattice of N unit cells, where N — oo. The solute and SIA
site concentrations in our model (¢; and ¢; respectively) is considered to
be 3.

Figure 1 shows a schematic representation of the various types of states that
can exist in an arbitrary crystalline lattice, along with the possible types of tran-
sitions among them during dumbbell-mediated diffusion. We can see from the
figure that all the possible states of the system can be classified into two
categories:
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Figure 1. Mechanisms of dumbbell motion generally applicable to any crystalline system. The
blue circles correspond to solute (S) atoms while the red circles correspond to solvent (A) inter-
stitial atoms. The grey dots represent regular lattice sites occupied by A atoms. The classes of
dumbbell motion considered are : w° and @' (top)- The ° class consists of the motion of an AA
dumbbell, outside the sphere of interaction with a solute (shown by the green circle around the
solute), by either on-site rotation, translation or roto-translation. The w' class of jumps consists
of these same AA transitions within the solute’s interaction range, along with association and
dissociation with the solute by entering or leaving this interaction range, respectively; w?
(bottom-left)- Motion of an AS mixed dumbbell, which may include translation or roto-trans-
lation between sites, or on-site rotation; »* and w® (bottom-right) — The formation of an AS
dumbbell from a solute and a neighboring AA dumbbell, and the annihilation of an AS dumb-
bell to form an associated solute-AA dumbbell pair, respectively. Although shown here with
roto-translation mechanisms, these jumps can occur via other mechanisms as well such as
rigid translations.

(1) Complex states — where a solute is at a substitutional site and a pure
dumbbell is at any other site; we note that in our dilute limit analysis,
pure dumbbells can only be formed by solvent SIAs. A complex state
can be completely defined as (RsusRquqoq). Here, Ry is the lattice
vector to the unit cell containing the solute, while Ry is the lattice
vector to the unit cell containing the pure dumbbell, with Ry as the refer-
ence. ug (ug) is a vector within the unit cell, pointing to the solute
(dumbbell) location within the unit cell. The vector o4 joins the two
interstitial atoms in the pure dumbbell and gives its orientation in
space. We note that the complex state {RyusRgqugo4} is identical to
{RsusRqug( — 04)} since the two atoms forming the pure dumbbell are
the same.
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We define the formation energy of a complex state as
AEf(RsustudOd) = AEf(RsuS) + AEf(Rdudod) + (SE(RSUSRdudOd) (10)

where AE(Rgus) is the formation energy for a solute at (R + u),
AEf(Rqug0q) is the formation energy for a pure dumbbell at (Rq + ugq)
with an orientation vector o4 without considering solute interaction,
and is dependent in general on the orientation of the dumbbell.
OE(RsusR4u404) is the binding energy between the solute and the pure
dumbbell. Due to translational symmetry, we also note that all states
related by a translation of the solute have the same energy, i.e.,
AEf(RSuSRdudod) = AEf(OllstlldOd).

We then define as the thermodynamic shell the region around the
solute, such that SE(RsusRqugoq) # 0. If a pure dumbbell is present
outside of the thermodynamic shell, such that it has no energetic inter-
actions with the solute, then we have SE(RsusRqugo4q) = 0 and the for-
mation energy of such a complex state is a simple sum of the
formation energies of the solute and the pure dumbbell.

(2) Mixed states — these are the mixed dumbbells, where the solute atom is
itself a part of the dumbbell, and which can move around by mixed
dumbbell jump mechanisms as shown in Figure 1. Similar to complex
states, a mixed state can be completely defined as (Ryuy0), Where
R,, and u,, characterise the location of the site at which the mixed
dumbbell is present and o, is the orientation vector for the mixed
dumbbell, which points to the interstitial solute atom by our convention.
The mixed dumbbell formation energies AEf(Rmumom) may be com-
puted in the same manner as pure dumbbell formation energies
AEf(Rqug0q). Also, due to translational symmetry
AEf(Ryupmorn) = AEf(Oup,0p,)

2.2.2. Equilibrium state probabilities

Once we have identified the types of states, we can compute their equilibrium
probabilities from their formation energies. We start by computing the par-
tition function Z, the sum of the Boltzmann factors for all states, i.e.

7 — Z e_AEf(Rsustudod)/kBT + Z e—AEf(RmumOm)/kBT (11)

RiusRyug04 Ryun0n

We can separate out the complex state contributions to Z into two further con-
tributions - those from complex states where the pure dumbbell is within the
thermodynamic shell around the solute at (Rs+u), denoted as
Rqugoq4 € TS(Rsuy), and those when the pure dumbbells are outside the ther-
modynamic shell (Rquqoq & TS(Rsu,)) with respect to the solute. From
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Equation (10), for a complex state with Rqugoq & TS(Rsuy), the Boltzmann
factor will be the product of the Boltzmann factors of the solute and the pure
dumbbell forming at their respective sites without affecting each other. Their
contribution to the partition function will be

Z Z o~ AEr(RusRqugoq)/kpT Z o~ AEr(Rous)/kp T Z o AEr(Raugoq)/kpT

Rous Ryug04 TS Rsug Ryugq04 & TS(Ruy)
_ NZ eAEf(Ous)/kBT< Z o~ MEf(Rqugoq) kT _ Z eAEf(Rdudod)/kBT>
ug Ryug04 Ryugq04 ETS(0uy)
— N2 E e_AEf(Ous)/kBT E e—AEf(()lldOd)/kBT
Ug U404
_ N E e*AEf(Ous)/kBT E e*AEf(Rdudod)/kBT
Us Ryugq04 ETS(0uy)

(12)

Since N — o0 and the thermodynamic shell encompasses a finite number of
dumbbell states, we can retain only the leading order contribution in N so that

Z Z e—AEf(RsustudOd)/kBT ~ NZ Z e—AEf(Ous)/kBT Z e—AEf(Oudod)/kBT
Rsus Rdudod$TS(Rsus) Uy ug04q
=N°Z
(13)
with Z = )" e 80w/l 37 =8 0u0d/T Note that we only need states

within a single unit cell to compute Z. The contributions from complex states
with non-zero solute-dumbbell interaction will be O(N) since

Z Z e—AEf(RsustudOd)/kBT — N Z e_AEf(oustudod)/kBT

Ryus Ryug04ETS(Rguy) us,Rgug04 ETS(0uy)
— NZ e_AEf(Ous)/kBT Z e—AEj'(OudOd)/kBTe—SE(OustudOd)/kBT
ug Rgugq0q
(14)
and contributions from mixed dumbbell states will also be O(N), since
Z efAEf(Rmumom)/kBT — N Z efAEf(oumom)/kBT (15)

Rnup0n up Ry

From Equations (13), (14) and (15), we can see that in the dilute limit, the con-
tribution of the complex states with the dumbbells outside the thermodynamic
shell will dominate, i.e.

7~ N*Z (16)
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The equilibrium probability of a complex state then becomes

o 1 e—AEf(RSUSRdudOd)/kBT e_AEf(OustudOd)/kBT
p == = = CGi = (17)
RsusRqug0q N2 7 7
while that of a mixed dumbbell state becomes
0 1 e—AEf(lelmOm)/kBT e—AEf(OumOm)/kBT
PRmumom = ﬁ Z = GsCi Z (18)

where ¢, = ¢; :ﬁ are our model’s concentrations for the solute and the
interstitial.

2.2.3. Transitions
The transitions among various pairs of states as schematically shown in Figure 1
can be classified as follows:

e o'and o’ jumps - these jumps are of a pure dumbbell in a complex state, via
rotation, translation, or roto-translation, with the solute remaining fixed in
its position. This category also contains those transitions where the pure
dumbbell associates or dissociates with the solute, i.e. it either comes
within or leaves the thermodynamic shell. The rates for these jumps are
denoted as W,

Rou,R 104 Ru,R )0, Note that the solute site does not change

in @' jumps.

We define W%judod%Réuéoé to be the rate of a w' jump when the dumbbell
does not ‘see’ the solute, i.e., the rate of the same dumbbell jump if the solute
was absent and a regular solvent atom was present in its place. We then say
that the rate of every w! jump is the corresponding W% value, along with a
correction term 8W', that accounts for the interaction effects with the solute,
ie.

1 _ ,d 1
WRsustudodﬁRsusRéuéo’d - Rdudod_)Réiuéioé + SWRsustudodeRsusRéuéoé (19)

We note that when the pure dumbbell is outside the thermodynamic shell,
the value of the correction term is zero, since the solute exerts no energetic
. 1 — Wod
influence on the dumbbell, so that WR uRsus0i> R0, = WRiugo, R, W,
Such pure dumbbell jumps where the solute is not considered to pfay a
role in modifying the pure dumbbell jump rate are referred to as @” jumps.
The mechanisms of the @' jumps place a few restrictions on their tran-
. 1 _ 0.d
sition rates. We note that SWRsustudodeRsusRsuso; = —WR 04> Rouo,> SO
that WIIISUSRdudOd_)RSusRSHSO, = 0, since it is unphysical for a pure dumbbell
to jump on to the same site as the solute and still remain a pure dumbbell.
.. 1 _ d . I
Similarly, 6Wg , ¢ . 01> R R0, = _Wﬁsusod%R’ w0, SDCE it is also unphy-
sical for there to be an initial complex state where a pure dumbbell is at

the same site as the solute. Also, as noted before, for any pair of complex
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states (RyusRqug04) and (Riu Rjuj0)) we have

1 1
V‘/Rsustudod,R;ugR(’iuéoi1 = Ry +us — R; - u;)WRsustUdOd,RsusRé“é(’é (20)
where
1 ifx=0
o(x) = { 21
) 0 otherwise 21)

Equation (20) says that unless the two complex states have the solute at the
same location, the transition rate between one to the other is zero by
definition.

We then define as the kinetic shell the region bounded by those sites
around the solute, such that if a pure dumbbell were to form at one of
these sites, then while it would have no energetic interaction with the
solute (8E = 0), one or more types of @' jumps from such a site would be
an association jump (Figure 1), with SW! # 0. As we shall see in Section
2.4, even for systems without inversion symmetry, we only need complex
states within the kinetic shell to compute the transport coefficients.

e  jumps - these are the jumps of a mixed dumbbell through which the
solute can move as an interstitial defect via mixed dumbbell rotation, trans-
lation and roto-translation mechanisms as shown in Figure 1. The rates for
these transitions are denoted as W3

Rpunon—R) u/ of
e o’ and ! jumps - @’ jumps correspond to the annihilation of a mixed
dumbbell into a complex state. The solute returns as a substitutional
defect to the site about which the mixed dumbbell was present, and the
solvent interstitial atom forms a pure dumbbell at another site. The jump
rates for this type of jump are denoted as Wg . o g gy, The
reverse of the @’ jumps are called the w* jumps and correspond to the for-
mation of a mixed state from a complex state. One of the interstitial solvent
atoms from a pure dumbbell jumps to the substitutional solute’s site to form
a mixed dumbbell. The rates for these jumps are denoted as

RouRyugoy>Ruo,. @ and @' jumps also have a similar restriction as
Equation (20) due to the nature of their mechanisms, since not every
mixed state can form from every complex state and vice versa. For any
complex state (RsusRqug04) and mixed state (Ry,u,0,,,) we have the follow-

ing two conditions

4 4
WRsustudod»Rmumom = 8(RS - Rm)a(us B um)WRsustud0d>Rsusom (22)
3 _ 3
WRmumomaRsustudod - a(RS - Rm)a(us - um)WleImOm,RmudeUdOd (23)

We assume that @’ and w* jumps always involve complex states within the
kinetic shell, since they usually occur when the pure dumbbell and solute are



12 (& S.CHATTOPADHYAY AND D. R. TRINKLE

nearest neighbours to each other, while the range of solute-dumbbell inter-
actions can extend further.

From these definitions of our states and transitions amongst them, the
Onsager transport coeflicients can be written as:

VokpTLYE = Z Z

nE{RsusRquqoq} ' E{RsusRyuq0q}

1
P |:§ W, &x%n—n)® xP(n — n') + Vi ® Gn)n,vf/]

>

nE{RLun0n} ' E{Ryuy,0n}

1
P |:5 W2 &x%n—n)® oxP(n — n') + vy ® Gn,n/vnﬁ,]

DI

NE{RRULOn} 7' E{RURyug04}

(24)

1
P |:5 W) &xn—n)® 5xP(n — ') + vy ® Gn,nrvnﬁ,]

o)

nE{RsusRqu404} 7 E{RimUm0m}
1
P |:§ Wi &xn—n)® oxP(n — n') + vy ® Gn,nrvf,]

where {RsusRqug04}({Rpyup,0p}) is the set of all possible complex (mixed) states
that can form involving a single solute and interstitial dumbbell defect in an
infinitely large solid.

2.3. The diffusion subspaces

We note that expression for the transport coeflicient in Equation (24) is
different from the case of vacancy-mediated diffusion, where, only one type
of solute-defect configuration/state exists, the solute-vacancy complexes. A
solute in a complex state can move when a vacancy is its neighbour. Hence,
the last three terms in Equation (24) become irrelevant. In dumbbell-mediated
diffusion, the solute is strictly immobile in complex states, whereas it is strictly
mobile during w® jumps. Thus, there are two distinct types of states and two
resulting diffusion subspaces - the complex states where the solute never
moves during atomic jumps, and the mixed dumbbell states where the solute
always moves during atomic jumps, and the solute entering and leaving these
two subspaces leads to its net diffusion. However, as we shall show in the fol-
lowing development, a formalism closely following that developed for the
case of vacancy-mediated diffusion in [42] can be applied in dumbbell-
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mediated diffusion, with necessary changes to account for this additional
diffusion space of mixed dumbbells.

From Figure 1, Equation (24) and the discussion in the previous paragraph,
we can see that the complex and mixed dumbbell states divide the total tran-
sition rate matrix between states into a blocked structure of the form

1 4
W= [m m] (25)

The upper left diagonal block which consists of transitions only among
complex states and constitutes the complex diffusion subspace, while the
lower right diagonal block, which consists only of transitions among mixed
states constitutes the mixed diffusion subspace. The off-diagonal blocks
connect these two subspaces, through w* (upper-right block) and w® (lower-
left block) jumps in W. Note that for complex states, there can be O(N) sites
for the solute to occupy in the solid and O(N) sites for the pure dumbbell,
leading to O(N?) possible complex states. Accordingly, the block W' is of
size O(N? x N?), although highly sparse due to each complex state being con-
nected to only a few other complex states via atomic jumps. Since the mixed
dumbbell can occupy O(N) sites, leading to O(N) mixed states, the block W?
is O(N x N).
The Green’s function correspondingly has a blocked structure

1 (4
G= |:g3 gzj| (26)

where the upper left and lower right diagonal blocks contain correlations only
within the complex and mixed diffusion subspaces respectively, and the off-
diagonal blocks contain correlations between states in the two different
diffusion subspaces. Unlike the transition rate matrix, the Green’s function is
in general a dense matrix, with the same dimensions as discussed above.

Clearly, explicit inversion of the transition rate matrix to compute the Green’s
function is an impossible task when N — co. However, as shown in Appendix 1,
due to translational symmetry we do not require individual elements of the
Green’s function matrix, but rather the sums of the elements over all final state
unit cell locations of the solute. This can be used to re-write the correlated con-
tribution to the transport coefficient L% in a reduced form as

Vo a «[G! Gt T

Yo af _ 0 0 B |vB

STl = [V [ V)%][@ @][VXOW%] (27)
The columns of the matrix block V§ ' contain the velocity vectors of species « in
those complex states where the solute is at Ry = 0. Similarly, the columns of Vg
contain the velocity vectors of species « in mixed states with Ry, = 0. The
matrix blocks (POV)XO and (P°V)9 o have the same columns, but each is also
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multiplied by the equilibrium probability of the corresponding state. The blocks

of the reduced Green’s function in Equation (27) now contain elements of the
form

G! i _1 Gl
uRqugoq,w/Ryw 0, — N Ru;Rqug04,RiuiR) ;0

R.R
_ 1
- ; GOuSRdudod,RgugRéluzloLl (2861)
— 1
2 _ 2 2 _ 2
G umo""u;ﬂo;n - N GRmumom>R;nll;nO;n - GOllmOm,R;nll;no;n (28b)

Ru,R/

m

R,

G e =) G (28¢)
Uy O, usRqugog — N Rnumom,RausRqugoq — Ou,om,RyusRyugoq
Rin,Rs R,

— 1
4 _ 4 _ 4
G uRaug04, Um0 = N Z GRsustud0d>Rmum0m - Z GoustudOd)Rmumom (284)
R Ry, Ry

where the last equality in each of these equations follows from translational sym-
metry. As shown in Appendix 1, translational symmetry also provides that the
reduced Green’s function can be written as the inverse of a similarly reduced

& @] _[w Wi
G @ ww (29)

transition rate matrix

Here, the blocks of the reduced transition rate matrix on the right hand side have
the same form as the reduced Green’s function in Equation (28). For clarity, we
write out these elements below as well

1 — 1
W uRyugoq,wRywi0, — E WOuSRdudod,R;ugRéuéoé (30a)
R
_ 2
qumom,uﬁno;n - E WOUmOm,R;nuLno;n (30b)
R,
3 — E 3
w Uy O, usRgugoqg — WOllmOm,Rsustudod (306)
R;
4 _ § 4
W U;RqU404,UmOm Woustudod)Rmumom (30d)
Rl]"l

We only need to compute the reduced Green’s function for a finite number of
states in the mixed dumbbell subspace since the indices (u,0,,) and (u) 0/ )
span the mixed dumbbell states allowed to occur in a single unit cell making
the block G? finite-dimensional. However, the dumbbell unit cell locations
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denoted by R4 and R}; cover all unit cells in the infinitely large solid, making the
block G! of size O(N x N), and the blocks G* and G* of size O(N) along the
column and row dimension respectively. Thus, we see that even though transla-
tional symmetry reduces the dimensions of the matrix blocks by a factor of N,
directly computing the matrix elements of Equation (28) is still not possible
because of the infinitely large number of complex states that still need to be con-
sidered. In the next few sections, we first show that we don’t need to consider all
such complex states, and then discuss how to calculate the reduced Green’s func-
tion elements corresponding to the complex states we do need.

2.4. Velocity vectors of complex states in arbitrary lattices

Beyond the kinetic shell, the velocity vectors of the solvent become identical to
the case of just a pure dumbbell moving around without any solute in the solid
due to no energetic interactions between the pure dumbbell and the solute, i.e.

.d N
VguSRdudod = Vgudod = Z Wgudod,Réu"doé SXA(Oudod - Rdudod) (31)
Rjuj0;

for all complex states with the pure dumbbell outside the kinetic shell, where A
denotes the solvent and W is the transition rate matrix for a pure dumbbell
diffusing in a solid without any other defect in it. For systems with inversion
symmetry, this velocity will be zero because any jump of the pure dumbbell
will always have an equal and opposite symmetric counterpart. For such
systems, we therefore only need to consider complex states with the pure dumb-
bell within the kinetic shell around the solute in Equation (27) to compute the
correlated contribution to the transport coefficient.

For systems that do not have inversion symmetry, there may be non-zero
velocity vectors for the solvent in complex states where the pure dumbbell is
outside the kinetic shell. For such cases, we use the invariance principle of
transport coefficients under modified displacements [46] to limit the state
space to the same finite number of complex states as for systems with inversion
symmetry. We first modify the solvent displacements during pure dumbbell
jumps (with the solute remaining fixed) as

gXA(OuSRdudod — Ou,Rjuj0)) = 5x* (Rquq0q
— Rjuj0}) + y*(0uj0)) — y*(0ugo4) (32)

Where y#(0ug04) is an arbitrary (bounded) vector assigned to complex states
OusRyug04 for all ug and Ry. If we then use these modified solvent displace-
ments to compute the transport coefficients, the invariance principle dictates
that they remain unchanged. We can utilise this by modifying the solvent dis-
placements in a way that makes their velocity vectors zero for states where the
pure dumbbell is outside the kinetic shell. Using Equation (32) to modify the
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displacements in Equation (31), we’ll get modified velocities of the form

VouRausos = Vousos T D_| > WH(R)) vioujel)  (33)

d !
udod,udod

In order to then make these modified velocities zero, we can use

il
v*(0uR4uy04) = y*(0ugos) = — Z Z Wo(R) Vo,

/ / ’
u,,04 R

o, 39

u404,u;0)

with 1 denoting pseudo-inverse. Using these vectors to modify the solvent dis-
placements during pure dumbbell jumps, we can see from Equation (33) that its
velocity vectors become zero in complex states where pure dumbbells are
outside the kinetic shell. We therefore don’t need to consider these states in
equation Equation (27), just like systems with inversion symmetry. Note that
this procedure needs to be repeated at every temperature due to changing tran-
sition rates.

2.5. Matrix symmetrization

As a prior step to computing the required Green’s function elements in
Equation (28), we first rewrite this equation in terms of symmetrised matrices
since they are numerically more favourable. We first symmetrise the rate matrix
in Equation (25) by defining

D = (P2 Ww (p2) 2 (35)

where the states n and n’ can correspond to complex or mixed dumbbell states.
Using detailed balance, it can be shown that €),,, = €),,,. The inverse of this
matrix is then the symmetrised Green’s function g, with elements

g = (P°)2Gou (p°) 2 (36)

with g,» = gwn. Note that ) and g also have the same blocked structure as
W and G as discussed before. We then define bias vectors for species « in
state n as

be = (p)ve (37)

where for complex states, we use the modified velocity vectors as discussed
in the previous section.

Noting that the state probabilites are translationally invariant, the correlated
contribution to the transport coefficient can then be written in terms of the bias
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vectors and g as
Vo aB _ a L 1 3T B KB T
ke TLEE = [bg b | [% £ }[bmlb ] (38)

where the indices x,, and ¢, have the same meaning as in Equation (27) and the
symmetrised Green’s function elements are obtained by symmetrising the
reduced Green’s function in Equation (28) as

1
p() 2
ol _ OusRqugoq4 | ~7
g uRqugoq,w;Rjul0, — 0 G usRyug04,u R )0/ (390)
pOugR;uéo"i
pO 2
_2 J— Oumom _2
g UpmOm, Uy 0, pO , G Um0, 0 (39b)
Ou, o
pO 2
o3 _ Ounom | 73
& unomuRyugo; — 0 G UnmOm,UsRqug0q (39¢)
poustlldOd

As in Equation (28), the blocks in Equations (39a), and (39c) are infinite
dimensional. Thus, we cannot evaluate the matrix elements in Equation
(39) directly. As discussed in the previous section, however, in Equation
(38), we need to consider contributions from only complex states with
the pure dumbbell within the kinetic shell, and thus we only need to
compute those elements of these two blocks that have these complex
states in their indices. In the next few sections, we’ll discuss how to
compute these elements. The relationship at the heart of this procedure
is the inverse relationship between the reduced Green’s function and tran-
sition rate matrix in Equation (29), which using their symmetrised forms

can be written as
g [o o]
g @l |0 o 0

Here, the blocks of the symmetrised transition rate matrix on the right
hand side are obtained by symmetrising the blocks in Equation (30)
using the same probability square root factors in Equation (39).

2.6. Green'’s function calculation

To compute the required elements of the Green’s function in Equation (40),
we follow the Dyson equation approach for infinitely large crystalline
systems analogous to the case of vacancies in [42]. This approach is
based on the fact that in the complex diffusion subspace, since the solid
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is infinitely large, most of the transitions correspond to pure dumbbell
jumps without the influence of the solute, and local modification to these
pure dumbbell transition rates occur only for a few transitions involving
pure dumbbell jumps within the kinetic shell, extending up to a few
nearest neighbours from the solute at most. Thus, we can separate the tran-
sition rate matrix on the right hand side of Equation (40) into two contri-
butions: one that contains only pure dumbbell transition rates between
complex states without any solute interaction accounted for, and a correc-
tion that only locally corrects the first term for complex states in the kinetic
shell. This correction term is therefore extremely sparse and as we shall see,
it allows us to compute the required Green’s function sums in Equation
(39) directly. To this end, we first do this separation and write the
reduced symmetrised transition rate matrix as

— —T — — —T
o 9 |_[Q o| |0 o (41)
0> 02 0o Q° PO

Qoz Qeor

and then write Equation (40) as the Dyson equation

— =T

g_l gi = (1 + ﬂozilﬂcor)ilﬂozil (42)
g ¢

The matrix block Q° in €y, in Equation (41) includes just pure dumbbell

transition rates without accounting for any solute interaction. It has

elements of the form

0 2
Y _ / p Ougoq ,d
Q usRyugoq,u R w0, = 8(115 - us) 0 Wﬁd“dod)Réuéoé
ou0)
’ 0,d
— 5(u/ — u,)Q

/
Rqugoq4,Ru) 0}

(43)

where Q% is the symmetrised transition rate matrix of a pure dumbbell in
a solid without any other defect in it. The matrix block Q* block is the
finite-dimensional mixed dumbbell subspace part of the total reduced tran-
sition matrix. Note that in addition to mixed dumbbell transition rates, the
diagonal elements of Q? also contain the escape rates due to mixed dumb-
bell annihilation(w® jumps) as per the sum rule in Equation (4), and hence
this block is invertible. The matrix ¢, corrects 2o, by putting in the
effect of solute-pure dumbbell interactions on the complex subspace tran-
sition rates, and mixed dumbbell formation and annihilation rates in the
block 6Q' = Q' — Q° and the off-diagonal blocks respectively. Note that,
8Q' contains the escape rates due to w® jumps jumps in its diagonal
elements as well.
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To compute the reduced symmetrised Green’s function in Equation (42), we
therefore need to invert {)g,, which we write as

] ir (a4)
0 g% 0o Q?

The lower-right diagonal block g2 is finite-dimensional and therefore can be
computed by direct inversion, g2 = (*)"'. We then note that the block
8Q! is highly sparse and contains non-zero elements only between complex
states within the kinetic shell. Similarly, the blocks Q* and Q3 are also non-
zero only for some complex states within the kinetic shell, since mixed dumb-
bell formation (annihilation) jumps cannot be executed from (to) complex
states outside the kinetic shell. Due to this sparsity, an infinite series expansion
of (14 Q¢ 'Qeor) ! can be used to show that we only need to compute
elements of g% between complex states with the pure dumbbell within the
kinetic shell to be able to compute the elements of the blocks g! (Equation
(39a)) and ? (Equation (39¢)) containing these states in their indices. As dis-
cussed in the previous sections, these are the only matrix elements from these
blocks that we will need to compute to evaluate the correlated contribution to
the transport coefficient. To compute these elements of g%, we use the inver-
sion method described in detail in [42] and briefly outlined in the next
section. It involves Fourier transforming the symmetrised matrix Q° and eval-
uating its inverse in Fourier space, and then transforming the inverse back to
real space.

2.7. Green'’s function for pure dumbbell states

To compute the upper diagonal block elements in Equation (44), we first note
from Equation (43) that with respect to us, the matrix Q° (and therefore @) is
block diagonal, and since we don’t account for solute interactions, all these
blocks are the same. Thus, it suffices to compute just one block of g% for
some given u;. We can thus remove u; from our indexing and write

= [(lo,d]l;dludc’d,R"iu"io"i (45)

00 _ ,0d
g uRqugo4,w/Ryw 0, — ngudOd,R:iué():i

We then follow an analogue of the procedure in [42] for vacancies to calculate
the matrix elements of g»¢. The first step in the procedure is to solve the eigen-
value equation

0,d a __,aa
2 : z :‘QOudod,Réuéoé Su:io:i =T Sudod (46)

’ / ’
u,0, R}

. . 0d . . . .
for eigenvalues r* and eigenvectors s”. 27 is a symmetric negative semi-
definite matrix [26], and hence the (normalized) eigenvectors s* are
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orthonormal. This allows us to write the Fourier transform for Q% using

rotated orthonormal basis functions of the form fﬁsﬁdod exp [iq - (Rq + uqg)] as

~ 1 ’ ’
N — E —iq-(Rq+uq) 0,d b (R} +u))
Qa,h (q’ q ) - IT] lq i Sfldod QRdudod R/ u’ 0/ su’ ()/ elq T (47)

Ryug0q4, R’du;lo,’d
where q and q’ are reciprocal space vectors in the first Brillouin zone. Using

. . . . 0d .. .
translational invariance in "¢, this can be written as

Qab(q’ ') =8(q— q)Qah( ) (48)

where

0 = Y s, 00 b i (Ryhuy—ug)
Q“’b (q) - SudonOudod Réu;o:is "iod 47 (49)
4,04, R v 0’

d~dd
~ ~—1 .
We then evaluate g(q) = Q (q), the Fourier transform of g®4, and use an
inverse transformation to get the elements of g¢

0,d _VOJ dq

ngudod Rd“d"d - N B2 (27T)3

iq-(R+u;,—Rg—uq) s b
i (R} +u—Ra—ug Zsﬁd,ociga,b(q)su;)% (50)
a,b

where the integral is over the first Brillouin zone and % is the unit cell volume.
g(q) is computed in a block-wise manner which we next discuss briefly. We
note that for an ergodic system, Equation (46) gives an eigenvalue of zero,
which we identify as r* = 0. Corresponding to this eigenvalue, the eigenvector

s’ has the square roots of the probabilities of the pure dumbbell states within a

0 l
unit cell as its components, i.e., s, , = (p) , )% Where

e—AEf (Oudod)/kB T

0
_ (51)
pOudod Zudod e AE(0ug04)/kpT

We then write ﬁ(q) in a blocked structure as follows:

5 _ [DPD@ DR(@
Q(“)‘[RD(q) RR(q)] &2

where DD(q) is a 1 x 1 matrix, corresponding to a = b = 0 in Equation (49).
The block RD(q) is a column vector containing elements with a # 0 and b =0.
DR(q) is the complex conjugate transpose of RD(q), and RR(q) contains all
remaining elements with a # 0 and b # 0 in Equation (49). The block inver-
sion of £2(q) then becomes exactly the same procedure as for vacancy-mediated
diffusion in [42], which we describe in brief below.
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We first employ a coordinate transformation in reciprocal space to make the
Schur complement of the RR(q) block

D(q) = DD(q) — DR(q)[RR(q)] 'RD(q) (53)

isotropic in its leading order term.
To the leading order in q, D(q) is given by

D(q) = —q-D*- q+ O(g") (54)

where DY is the diffusivity tensor of a bare dumbbell diffusing in the lattice
(without any solute) given by

Z Zp(,udod OudOd Ry, ,8XA(0udod — Rjuj0}) ® &x"*(0ugoq — Rjjuj0))

“d Od R/
oy
+ bl s&(r) s I
Oug0q Oug0q Ouéo; Ou’ o’
ug04,u d d a>0

(55)

where A denotes the solvent species and b
dumbbell given by

ougo, 1S the bias vector of a pure

1
0 21,,0,d
boy,0, = E ( Pgudod) WOOllclocl Riu0! 8x*(0ugoq — R, ujj, o) (56)

” r o
R d

D¢ being symmetric and positive definite has an orthogonal set of eigenvectors.
We denote its (eigenvalue, eigenvector) pairs as (d;, e;), i € {1, 2, 3}. Using
these eigenpairs of DY, we transform the reciprocal lattice coordinates q and
the real space coordinates x, using the relations

pi=(di)(e;i-q) yi=(d)(e;-x), i € (1,2, 3} (57)

In the transformed coordinates p, the Schur complement in Equation (53)
becomes isotropic in leading order and is given by

D(p) = —p* + O(p") (58)

The Fourier transform of the Green’s function in the transformed reciprocal
space can then be computed as

D~ !(p) ‘ —D~'(p)DR(p)RR'(p)
—RR'(p)RD(p)D~'(p) ’ RR™'(p) + RR™'(p)RD(p)D~'(p)DR(p)RR ' (p,
(59)

g(p) =
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where D7!(p) and RR™!(p) are isotropic in their leading order terms, which
are }% and (r“)_lﬁaﬁ respectively. Computing g in reciprocal space in this
block-wise manner is necessary as it allows us to handle complications with
poles and discontinuities that arise as p — 0 during inverse Fourier transform-
ation. In this limit, the D~!(p) block has a second-order pole, while the other
blocks have poles and discontinuities depending on the direction of approach
towards the origin (see section 2.1 in [42] for details). To mitigate these pro-
blems, the blocks of g(p) are written as a sum of terms that have the same
poles and discontinuities as p — 0 as the corresponding blocks in g(p) but
can be analytically inverse transformed, and a remaining correction term
called the semi-continuum piece which is the difference of the sum of these
terms from {2  at all points in the first Brillouin zone.

The semi-continuum piece is a smooth function in the first Brillouin zone,
and its inverse transform is computed using numerical integration in the first
Brillouin zone. In Appendix 4, we have shown that the resulting estimated inte-
gration errors in g% can be made as small as ~ 10~% with grid sizes small
enough for computation times of a few seconds. Moreover, we note that the
evaluation of @ is independent of the solute. So, elements of this block can
be reused for multiple solutes. This makes the present method highly suitable
for computations such as uncertainty quantification [43] and other such
high-throughput studies, where transport coefficients for several different
solutes need to be computed under varying conditions.

2.8. Symmetry grouping of states

To accelerate the computation of the transport coeflicients, we adopt a strategy
to group states by symmetry in a manner similar to the case of vacancy-
mediated diffusion as described in [42]. We start by forming state orbits (ana-
logous to ‘crystal stars’ in [42]), which are sets of states such that any two states
in the same state orbit are related by a symmetry operation. All states in the
same orbit will then have the same formation energy and hence the same prob-
ability. We therefore need only compute these quantities for a single state in
an orbit. From state orbits, we can next form state-vector orbits (analogous to
‘vector stars’ in [42]). A state-vector orbit is a set of (state (n), unit vector
(a,)) tuples, so that any two such tuples in the same state-vector orbit are
related to each other by symmetry in the sense that the symmetry operation
that transforms the state n to #/, also transforms the unit vector a, to a,.
This also implies that if a symmetry operation leaves a state unchanged, it
also leaves the unit vector associated with it unchanged. We then define as S,
the subspace of real space that corresponds to the space of fixed vector
points of the little group of a state n. Corresponding to each state orbit, there
will be as many state-vector orbits as the dimensionality of S, for any represen-
tative state n from that orbit. It also follows that if two states n and n’ are related
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by symmetry, then S, and S,, will also be related by the same symmetry oper-
ation. It’s important to note that vector-valued state functions must map on to
S, when evaluated on state n.

Now, no two state-vector orbits have a common (state, unit vector) tuple,
and every state n must occur in as many state-vector orbits as the dimension-
ality of S, (associated with a different independent basis vector for S, each
time). These facts imply that the state-vector orbits can be used to construct
a complete set of basis functions to expand vector-valued functions of states.
For every state-vector orbit (denoted by &), we can define such a basis function
Agas

Ae(n) > agdy(n) (60)

1
VI8l (n'a,)€E

where | €| is the number of unique (state, unit vector) tuples in the state-vector
orbit and

1 ifn =n
8,y (n) = { 61
() 0 otherwise (61)

These vector functions can then be used to represent vector-valued state func-
tions. For example, the velocity vector of a species « in state n can be written as

Ve = vEhg(n) (62)
3
where
1
vi=—e Y VE-ay (63)
|§| (n/,an/)Ef

These basis functions can also be used to represent matrices such as the tran-
sition rate matrix as:

w W Ne(n) - Ng(n)
& = TII Z én) - Ag(n

] (64)

y—— Wnn’an sy
€€ nameewance

We can also calculate the Green’s function by evaluating the Dyson equation in
the basis of the state-orbit basis functions. To do this, we use equations similar
to Equation (64) above to construct representations of various pieces of the
Dyson equation shown in Equations (42) and (44). In this representation,
there are fewer quantities to be calculated. For example, in Equation (63), the
term V¢ - a, is the same for all (n, a,) € & since symmetry operations that
rotate both v§ and a, simultaneously will leave their inner product
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unchanged. For every vector orbit, this inner product then only needs to be
computed once for a representative (state, unit vector) pair. Similarly, instead
of computing the transition rates for all jumps individually, we can form
orbits of transitions, such that if a pair of states n; and n, are transformed
by the same symmetry operation to produce the states n; and ny4 respectively
in the same transition orbit, then W, ,, = W,,,,. We therefore need to
compute the rate only once for a representative from each group of transitions
related by symmetry. A similar method may be employed to reduce the number
of elements of g% in the Dyson equation that need to be calculated explicitly, by
grouping together symmetrically related pairs of complex states (we only need
those with the pure dumbbell within the kinetic shell). For systems where a lot
of states are related to each other by symmetry, the number of state and state-
vector orbits can be considerably fewer than the number of states so that this
approach can allow substantial reduction in the cost of computing the transport
coefficients.

2.9. Data for alloy simulation

To compare our implemented Green’s function approach with existing results
in the literature, as well as to gain additional insights into dumbbell mediated
solute diffusion, we compute transport coefficients for two types of alloys
using energetic data already available in the literature. For dilute BCC Fe-S
alloys (S = Cr, Mn, Cu, Ni, Si), we used the energetic data available in the
database in [47], based on the calculations in [48]. In these calculations, ener-
getic interactions were considered up to the fifth-nearest-neighbour separation
between solutes and pure dumbbells in complex states. For all the dilute
alloys, the 60° roto-translation mechanism was considered for all the jump
types in Figure 1. In addition, migration barrier data were also available
and considered for pure and mixed dumbbell jumps (0’, ' and @? jumps)
via rigid translation in the Fe-Mn, Fe-Cu, Fe-Ni and Fe-Si dilute alloys and
pure dumbbell on-site 60° rotations were also considered for the same four
alloys. Also, on-site 60° rotations for mixed dumbbells were considered for
the Fe-Mn alloy. The transition rates for these mechanisms were computed
from the migration barriers as

AEypig

W = ve *T (65)

where v is the attempt frequency, and AE,,;, = Ers — E;, with Ers, the tran-
sition state energy being the same for forward and reverse jumps, thus preser-
ving detailed balance. E; is the energy of the initial state.

We used the data available in [19,49] for calculations on dilute FCC Ni-S
alloys (S = Cr, Fe). In these calculations, only nearest neighbour solute-
dumbbell energetic interactions were considered in complex states. The
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Table 1. Binding energies (in eV) of solute(S)-dumbbell configurations in FCC Ni, as defined in
[19], calculated from jump migration barriers in Table D.4 in [19], using detailed balance.
Negative energies indicate attraction. The binding energies indicate the relative stabilities of
the states compared to a far-separated solute-(100) pure dumbbell complex state.

Configuration S=Cr S=Fe
Ni-S mixed dumbbell -0.42 0.1
a-type -0.11 0.06
b-type —0.11 -0.02

jump mechanisms considered for both pure and mixed dumbbell diffusion
are the 90° roto-translation mechanism along with on-site rotations. An
important point needs to be addressed regarding the solute binding energies
n [19], which is that they do not satisfy detailed balance between forward
and reverse jumps. From the migration barriers for the various jump mech-
anisms given in Table D.4 of [19], and the formation energy of the pure Ni-
Ni dumbbells (reported as 4.07eV in [19]), we computed and used the
binding energies such that the transition state energies are the same for
forward and reverse jumps. These binding energies are shown in Table 1.
This is also discussed in [49] and similar binding energies are reported
there in Table 3.15. We identify a maximum deviation of 0.08 eV between
the two sets of binding energies. In Table 1, an ‘a-type’ complex (following
the notation in [19]) is a nearest neighbour solute-pure dumbbell complex,
formed such that the pure dumbbell can execute a w* jump via the roto-
translation mechanism to form a mixed dumbbell. A ‘b-type’ orientation is
also a nearest neighbour solute-pure dumbbell complex, but from which
no such w* jump can occur.

As in [19], temperature-dependent electronic contributions were also con-
sidered for the migration rates using a Sommerfeld approximation to the tran-
sition rates. We also use the approximation in [19] that the rate of every jump

!, @ and w* jumps have the same elec-

involving a Ni atom hop, i.e. the «°,
tronic contribution to their jump rates. The transition rates then have the

form

B

W =vEc(T)e =T (66)

where E¢ is the electronic contribution. As mentioned in [19], however, the
largest contributions to the migration rates are the activation energy barriers
and not the electronic contributions. We also verified that excluding the latter
by setting Ec(T) = 1 does not significantly impact our results. We therefore
do not go into further details of these contributions. The interested reader
is referred to Appendices C.2, D and Table D.4 in [19], for further details
and data for these contributions.
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3. Results and discussion
3.1. Diffusivities in the dilute limit

In the dilute limit, the transport coeflicients in Equation (24) can be written as
terms that are simply scaled by the species concentrations as

1%
ﬁOkBTLAA = I 4 el = D (67a)
E SS _ . .18S _ S
kgTL> = c¢;cil)” = D (67b)
N
v
WOkBTLAS = ¢l (67¢)

with X being the volume of a unit cell, and D® is the commonly used diffusion
coefficient, which relates the flux of species « to its own volume concentration
gradient. The concentration factors arise from the equilibrium state probabil-
ities (Equations (17) and (18)), and the relationship to the diffusion coefficients
comes about as Vu = (kgT/c)Vc in the dilute limit. In addition, the use of
translation symmetry as mentioned in Equation (A2) and the invariance prin-
ciple discussed in Section 2.4 would also be required to restrict correlations
within the kinetic shell.

In our implementation, we compute A, l’f‘A, l‘l“s and lfs. The term IQA corre-
sponds to the contribution to L44 due to the diffusion of a pure interstitial dumb-
bell with no solute being present (W' =0 for all dumbbell jumps). The
contribution by this term does not depend on the solute concentration and
scales with only the solvent interstitial concentration c;. The next term 44 consists
of the corrections to the first term due to solute-dumbbell interactions and corre-
lations within the kinetic shell, i.e, due to w! jumps with SW' # 0, as well as due
to @?, @® and w* jumps. This correction term, and the terms S and 15, which also
depend on mixed states and solute-dumbbell complex states within the kinetic shell
scale with the product ¢c; to produce the transport coefficients. We next discuss
the range of concentrations over which the present model may be valid.

We note that /44, 45 and 1%, which contain all the correlations contained
within the Green’s function, are computed based on the diffusion of a single
interstitial dumbbell in the presence of a single solute and do not include
more complex interactions between more than these two defects. For
example, in concentrated irradiated systems, a defect species that arises is a
dumbbell involving two solute atoms [14], which we clearly do not consider.
Neglecting the effect of such interactions on the jump mechanisms and there-
fore the Green’s function places a limitation on the validity of our model’s
transport coefficients when compared to values observed in experiment. As a
rough approximation, with dumbbell concentrations assumed very low, we
can consider the limiting solute concentration for our model to be accurate
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to be at most - where Nk is the number of sites within a solute’s kinetic shell.

Solutes need to be separated far enough for simultaneous interactions between
two solutes and a dumbbell to be rare or absent. Furthermore, a mixed dumb-

bell should also annihilate before reaching the neighborhood of another solute.
The next-order correction to the dilute limit will scale as the concentration of
solute; it is worth noting however, that even for concentrated systems, dilute
limit results have been successfully used to qualitatively explain observed
phenomena in irradiated systems [48]. This indicates that the two-body
effects between a single solute and a dumbbell are still physically relevant at
higher concentrations, though quantitative disagreements are likely to arise.

3.2. Tracer correlation factors

The tracer correlation factor, f, defined as the ratio of the transport coeflicient of
a chemical tracer atom to its uncorrelated value [50] is a measure of the depen-
dence of successive atomic jumps on each other during diffusion. For a given
type of defect that induces a given jump mechanism, it depends only on the
underlying crystal structure and the diffusion mechanism induced by the
defect and is independent of state energies, jump rates and the lattice parameter
of a crystal. We can thus use f as a means of validating our implementation of
the Green’s function approach by comparing our computed values with those
in the literature obtained with other methods. For dumbbell-mediated diffusion
in systems with inversion symmetry, f can be written as
[AAY

f=1xx (68)
where A* corresponds to a chemical tracer atom of the solvent, and A to a
solvent atom.

We verified f for three types of dumbbell diffusion mechanisms that are of
interest in FCC and BCC (mainly Fe-based) alloys for structural applications
in irradiated environments. In Fe-based BCC alloys, the most stable dumbbell
configuration has been shown to be (110) oriented dumbbells [15,16]. The
dumbbell diffusion mechanisms for which f was calculated in the BCC crystal
structure were the (110) — (110) dumbbell transitions to nearest neighbour
sites, involving a 60° reorientation of the dumbbell configuration, and rigid
translation of a (110) oriented dumbbell to a nearest neighbour site, as
shown in Table 2. For FCC systems, the most stable dumbbell configurations
have been found to be the (100) oriented dumbbells [17]. The mechanism in
FCC systems for which we computed f is the (100) — (100) dumbbell tran-
sitions to a nearest neighbour site with 90° reorientation. The results of our cal-
culations are shown in Table 2. These mechanisms are the most favourable
dumbbell diffusion mechanisms in these systems [16,39], and have been
studied by other authors as well, including those we refer to in Table 2.
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Table 2. Tracer correlation factors for dumbbell diffusion mechanisms in FCC and BCC lattices.

Mechanism BCC (110) < (110) BCC (110) < (110) FCC (100) <> (100)
60° roto-translation riaid translation 90° roto-translation
- L ]
O .
9 .t. ° °
r /
L]
o o
This work 0.412 6434 0.494 3020 0.439 50809
Schuler et al. [41] 0.412 6439 0.494 3235 0.439 45498
Bocquet[34] (BCC Only) 0.413010 0.494 3235 -
Wolff [24] 0.407 + 0.004 0.475 + 0.005 0.442 + 0.004

It can be seen from Table 2 that our results show good agreement with the
SCMEF results in [41] and with the stochastic ‘Encounter Model’ results in [24],
and also for the BCC mechanisms, with the values given in [34] (in [34], we
refer to the case when square of the nearest neighbour jump distance is con-
sidered to compute the uncorrelated contribution to the tracer transport coeffi-
cient instead of average squared displacements of so-called ‘macrojumps’ of the
tracer consisting of multiple mixed dumbbell formation, diffusion and annihil-
ation steps). This indicates that our implemented Green’s function approach
handles the symmetries of the crystal structures correctly. In Appendix 2, we
discuss some special cases that arise in non-ergodic diffusion mechanisms in
Table 2 (the FCC 90° roto-translation mechanism and the BCC rigid translation
mechanism) and the necessary measures to compute their tracer correlation
factors.

3.3. Drag ratios

We next analyse the drag ratios for the dilute BCC Fe-S (S = Cr, Mn, Cu, Nj, Si)
and FCC Ni-S (S = Cr, Fe) alloys for dumbbell mediated diffusion. The drag
ratio is defined as %, where S and A represent solute and solvent species
respectively. The sign and magnitude of the drag ratio give the relative direction
and amount of diffusion flux of SIAs compared to solute atoms under a solute
CPG respectively. As no directional bias is produced in pure dumbbell diffusion
by a solute CPG, the drag ratio is governed mainly by mixed dumbbell
diffusion. Since the solute and the SIA both move in the same direction
during mixed dumbbell diffusion, the sign of the drag ratio always remains
positive and its magnitude is greater than or equal to one. The variation of
the drag ratio with temperature depends on competing jump mechanisms
that affect mixed dumbbell diffusion.

The drag ratios for the Fe-S (S = Cr, Mn, Cu, Ni, Si) alloys are shown in
Figure 2. For these alloys, we also show our results in comparison to results
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Figure 2. Drag ratios for solutes in BCC iron for dumbbell-mediated diffusion as a function of
temperature. Green'’s function (GF) method results are compared with SCMF results of Messina
et al. in [47,48] for the 60° roto-translation mechanism (60°RT) showing good agreement for all
the solutes. GF method results with all mechanisms for the respective solutes mentioned in [47]
are also shown. Values at the infinite temperature limit computed with the Green’s function
method are indicated with horizontal lines. Increasing drag ratio with temperature indicates
higher self-interstitial flux under a solute chemical potential gradient than solute flux. The
drag ratios for Cu, Ni and Si are found to exceed the infinite temperature limit at low tempera-
tures, and then decrease towards that limit as temperatures increase.

provided in the database [47] where only the 60° roto-translational mechanism
was considered operative. We first note that since the drag ratios are greater
than one at almost all temperatures, a higher amount of SIA flux occurs com-
pared to solute flux against the solute CPG direction. We next observe that the
BCC Fe alloys show two types of behaviour. In the Fe-Cr and Fe-Mn alloys, the
drag ratio increases with temperature monotonically towards the infinite temp-
erature limit. On the other hand, in Fe-Cu, Fe-Ni and Fe-Si, with increasing
temperature, the drag ratio first increases and exceeds the infinite temperature
limit, reaches a maximum and then decreases towards the infinite temperature
limit.

To understand this variation in the behaviour of the drag ratios, we first try
to identify the source of the excess SIA flux compared to solutes. Since in our
dilute limit model both solute and dumbbell concentrations are fixed, the excess
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flux of the SIA originates from excess velocity it gains during mixed dumbbell
diffusion under a solute CPG. The origin of this excess velocity is schematically
shown in Figure 3, with the 60° roto-translation mechanism in BCC alloys as an
illustrative example. From the figure, we can see that during diffusion under a
solute CPG, a mixed dumbbell alternates between orientations that are geome-
trically more suited for w? jumps (the ‘+” orientations) as well as less suited for
w® jumps (the ‘= orientations) against the solute CPG. If we assume all
migration rates to be equal to each other in the absence of any CPG (as they
would be for a tracer atom for example), then under a solute CPG mixed dumb-
bells with ‘+” orientations will have more propensity to migrate via @* jumps
than annihilate via @’ jumps, while those with ‘— orientations will have
more propensity to annihilate than migrate. Since @® jumps have no contri-
bution to solute velocity (as it does not leave the mixed dumbbell site), they
provide an excess velocity to the SIA over the solute as they jump to atomic
‘" oriented dumbbells, leading
to an excess flux over the solutes. Thus L5* becomes greater than L% and the
drag ratio exceeds one.

We use this hypothesis to first qualitatively understand the behaviour of the
drag ratios of BCC alloys. For simplicity, we assume that the 60° roto-trans-
lation mechanism, being the lowest barrier dumbbell translation mechanism,
is the main mechanism of interest. We also assume in our qualitative discussion

sites against the solute CPG direction from

that the w’ and o' rates are the same. As shown in the contour plot to the left of
Figure 4, we first try to understand the variation of the drag ratio due to

.v“ g

Figure 3. Schematic representation of mixed dumbbell configurations in a BCC crystal that
form during diffusion under a solute CPG (applied to the left as shown by the arrow). The
red circles represent the self-interstitial atom while the blue circles represent the solute.
During diffusion, a mixed dumbbell can form with three types of configurations relative to
the CPG direction. The ‘+' configurations are oriented geometrically for w? jumps strictly to
sites against the CPG direction and w® jumps to sites along the CPG. w? jumps from ‘—' oriented
mixed dumbbells are strictly to sites along the CPG, and w® jumps opposite to the CPG. The ‘0’
orientations can geometrically execute these jumps to sites both along or opposite to the CPG
direction. Under a solute CPG, the higher propensity of ‘—’ oriented dumbbells to execute w®
than ? jumps impart an excess velocity to the self-interstitial atom over the solute in a direc-
tion opposite to the CPG.
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Figure 4. Variation of the drag ratio for a solute (S) in a BCC system under dumbbell-mediated
diffusion by the 60° roto-translation mechanism shown in Table 2. From the contour plot on the
left, we see that as the w? rate is made much faster (top left region) or much slower (bottom
right region) compared to the w? rate, the drag ratio decreases towards 1. The intersection of

the two white lines is the tracer condition where all rates are the same. On the right, we see that

when the w* rate is slower than the «? rate, the drag ratio (the blue line) is higher and

decreases as the w* rate approaches the same value as ®, towards the inverse of the tracer
correlation factor (indicated by the dotted horizontal line).

competing w* and @’ rates. We see that when the «” rate is high and «’ rate is
low, the drag ratio is lower and close to one. This is because the annihilation of
mixed dumbbells with ‘—" orientations becomes slower compared to migration,
leading to the loss of the excess SIA velocity over the solute. This is analogous to
the behaviour of Fe-Cr and Fe-Mn alloys at low temperatures, which have @’
barriers of 0.241eV and 0.316 eV and higher ’ barriers of 0.365eV and
0.448 eV respectively. Thus, at low temperatures, the @’ rates will be higher
than ’, leading to a low drag ratio. As the temperature increases, the ’
rates start to approach o’ rates, so that the excess SIA velocity due to preferred
annihilation of ‘-’ oriented dumbbells increases, leading to an increasing drag
ratio.

From the same contour plot, we can see that when ? rates are low and «?
rates are high, then too, low drag ratios are observed. This is because due to
easier mixed dumbbell annihilation, ‘+’ oriented dumbbells also start to
annihilate easily, inducing SIA velocity along the solute CPG, and thereby pro-
viding opposition to the excess SIA velocity due to preferred annihilation of ‘-’
oriented dumbbells. This is analogous to the low temperature behaviour of Fe-
Cu, Fe-Ni and Fe-Si alloys. They have w? barriers of 0.364 eV, 0.464 ¢V and
0.568 eV, and much lower ® barriers of 0.0 eV, 0.083 eV and 0.069 eV respect-
ively, indicating a higher mixed dumbbell annihilation probability for all mixed
dumbbell orientations than migration. With increasing temperature, the rela-
* and o’ jumps starts to decrease in these
solutes, leading to increased migration rates of ‘+ oriented mixed dumbbells

tive rate difference between w
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aided by the solute CPG compared to annihilation than ‘-’ oriented mixed
dumbbells and thus a higher drag ratio.

The subsequent decreasing behaviour of the drag ratios in Fe-Cu, Fe-Ni and
Fe-Si alloys with increasing temperatures can be attributed to w* jumps, which
have barriers of 0.445 eV, 0.339 eV and 0.345 eV for the three alloys respect-
ively. At low temperatures, therefore, the w* jumps rates would clearly be
low compared to @’ jump rates, thereby providing an additional bias for SIA
motion away from the solute site against the solute CPG direction after annihil-
ation of ‘—’ mixed dumbbells. This is also shown schematically on the plot to
the right in Figure 4, where we can see that when the " rate is lower compared
to the w’ rate, the drag ratio is higher and as the w* rate approaches the ” rate,
the drag ratio decreases towards the limiting value.

Finally, we note that in the dilute Fe alloys the drag ratio also depends on
other jump mechanisms in addition to the 60° roto-translation mechanism at
high temperatures when they become significant. They also generally show a
trend of decreasing the drag ratio for all the solutes compared to only when
the 60° roto-translation mechanism is considered. This is because these mech-
anisms provide additional diffusion pathways for a pure dumbbell to return and
form a mixed dumbbell with the solute, as well as more diffusion pathways for
the mixed dumbbell itself to diffuse, leading to more solute flux along with SIA
under a solute CPG and a lower drag ratio.

It is worth noting here that in the case of vacancy-mediated diffusion, drag
ratios can have both positive and negative values and it behaves monotonically
with temperature, governed mainly by the jump-rate dependent probabilities of
the vacancy to turn around towards the solute site to produce vacancy-solute
exchange jumps successively after each jump [51]. On the other hand, the direc-
tional nature of the dumbbells, its alignment with the chemical potential gradi-
ent and the existence of the additional mixed dumbbell jump mechanisms and
their interplay can make the behaviour of the drag ratio non-monotonic with
temperature and dumbbell-mediated drag ratios are always positive. We note
however that for almost all of the solutes in the Fe-based alloys, these mechan-
isms start to become significant at temperatures that are too high for relevance
in real-world applications.

The drag ratios of the Ni alloys are shown in Figure 5. In Ni-Fe and Ni-Cr
alloys, the drag ratio seems to be predominantly controlled by the on-site
rotation rates of the mixed dumbbells in agreement with previous results in lit-
erature [35]. In Ni-Fe and Ni-Cr, on-site 90° mixed dumbbell rotations have
barriers of 0.87eV and 0.75eV, while the 90° roto-translation mechanism
has a barrier of 0.16 eV and 0.08 eV respectively. Thus, we can expect that at
low temperatures, compared to mixed dumbbell roto-translation, on-site
rotations will almost never occur. As shown in Figure 6, in such a situation,
mixed dumbbell diffusion is geometrically restricted to within octahedral
cages [18,35], and unlike the BCC alloys, no long-ranged mixed dumbbell
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Figure 5. Drag ratios for in dilute Ni-S (S = Fe, Cr) for dumbbell-mediated diffusion computed
using the Green’s function method. For both Fe and Cr, the drag ratio remains consistently
greater than one, indicating greater dependence of solute diffusion on self-interstitial CPG com-
pared to solute CPG. The drag ratio decreases monotonically with increasing temperature
because of increasing on-site rotation of mixed dumbbells that facilitate long-ranged
diffusion of solutes under a solute CPG, thus increasing L.

Figure 6. Restriction of (100) oriented mixed dumbbell diffusion within an octahedral cage in
an FCC lattice, with 90° roto-translational jumps being the only solute jump mechanism [18,35].
The red atoms represent the solvent self-interstitial atoms and the blue atoms represent the
solute. The face centres are indicated via the intersections of the dotted lines running along
the face diagonals. Since mixed dumbbell diffusion involves solute atoms jumping from one
site to the next to form mixed dumbbells, it can be seen that only mixed dumbbells within
an octahedral cage can form from one another via w? jumps occuring via the 90° roto-transla-
tional mechanism shown in Table 2 for FCC lattices. The solute atom thus cannot escape this
octahedral cage and there is no long-ranged mixed dumbbell diffusion under a solute chemical
potential gradient. On-site rotations of the mixed dumbbells can help the solute atom escape
the octahedral cage.
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diffusion can occur, making LSS smaller than LN, As the temperature increases,
the on-site rotation rates approach the roto-translation rates, allowing for
mixed dumbbell diffusion beyond the octahedral cage leading to higher
solute flux. Thus, the drag ratio starts decreasing. This can also be seen in
Figure 7, where we artificially keep all jump rates to be the same and only
vary the on-site mixed dumbbell rotation rate relative to the roto-translation
rate. We can clearly see that the drag ratio for such a situation starts at the
inverse of the tracer correlation factor for the 90° roto-translation mechanism
and decreases as the on-site rotation rate increases towards 1.0 (as also seen in
[35]), analogously to the two FCC alloys.

3.4. Partial diffusion coefficient ratios

We next discuss the Partial Diffusion Coefficient (PDC) ratios for the Fe-S (S =
Cr, Mn, Cu, Ni, Si) and Ni-S (S = Fe, Cr) alloys. This ratio is defined as
LS4 /c,LA4, where A is the solvent and ¢ is the solute concentration. From
Equation (67a), since in the dilute limit the contribution by 44 is proportional
to #, for large N, we can only consider the leading contribution to LA4, The
PDC ratio, L% /c,LA4 ~ I34 /144, is then independent of ¢, and ¢; and only
depends on correlation effects between a single solute and a single dumbbell.
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Figure 7. Variation of the drag ratio (indicated by the blue line) in a FCC system under dumb-
bell-mediated diffusion by the 90° roto-translation mechanism shown in Table 2, along with on-
site 90° rotations. All rates are kept the same and only the on-site rotation rate (W) is then
varied with respect to the roto-translation rate (W3;). The inverse of the tracer correlation factor
without on-site rotations rates is indicated with the horizontal dotted line. We see that an
increasing W™ relative to W3, leads to a decrease in the drag ratio. This is because the on-
site rotations allow the mixed dumbbells to escape the octahedral cage as shown in Figure
6, leading to increasingly long-ranged mixed dumbbell diffusion.
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The PDC ratio is a measure of the relative amount of solute and solvent flux
that is observed under a SIA CPG and is thus informative of the segregation
behaviour of solutes [48]. If the PDC ratio is high, it indicates higher solute
flux than solvent flux towards SIA sinks, thus leading to solute segregation,
while a low PDC ratio indicates a lower amount of solute segregation. Since
relative pure and mixed dumbbell diffusion fluxes determine the PDC ratio,
it can be inferred from their relative formation energies and migration rates.

The results of our PDC calculations on the BCC Fe-S alloys are shown in
Figure 8, along with comparisons with the results in [48]. As discussed
before, in BCC systems the 60° roto-translation jump is the lowest barrier
jump. For Fe-Fe pure dumbbells, the migration barrier for this jump is 0.335
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Figure 8. Partial Diffusion Coefficient ratios for solutes in BCC iron for dumbbell-mediated
diffusion. Results calculated for the 60° roto-translation mechanism (60°RT) using the
Green's function (GF) method are compared with the SCMF results of Messina et al. in
[47,48] showing good agreement. GF method results with all mechanisms for the respective
solutes mentioned in [47] are also shown. For both Cr and Mn, the mixed dumbbells formation
barriers are low, while the mixed dumbbell annihilation barriers are high. As a result, the solute
transport by the mixed dumbbell diffusion is more effective at lower temperatures, since
annihilation is less probable than at high temperatures. For Ni, Cu and Si, the mixed dumbbell
is less stable than the most stable nearest neighbour solute-pure dumbbell configuration and
hence solute transport by mixed dumbbell diffusion can occur at higher temperatures, where
thermal energy can assist in mixed dumbbell formation.
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eV. In Fe-Cr and Fe-Mn alloys, the migration barriers for mixed dumbbell roto-
translation jumps are lower at 0.241 and 0.316 eV respectively, and also mixed
dumbbells are more stable than complex states. As a result, at lower tempera-
tures, mixed dumbbell fluxes are higher than pure dumbbells. Thus, at low
temperatures, these solutes can show radiation-induced segregation (as
seen in [14] for Fe-Cr alloys). As the temperature increases, thermal energy
helps Fe-Fe dumbbells move increasingly as fast as the mixed dumbbells and
also brings their formation probabilities closer, thus decreasing the PDC
ratio. On the other hand, for the solutes Cu, Ni and Si, mixed dumbbells are
less stable than complex states, and the mixed dumbbell roto-translation
migration barriers are 0.364, 0.464 and 0.518 eV respectively, leading to more
flux of pure dumbbells than mixed dumbbells at lower temperatures and
hence the PDC ratio for these solutes are low at lower temperatures and
increase with increasing temperature, indicating a higher segregation tendency
as temperatures increase. Finally, our obtained results are in agreement with
results in [48].

The calculated PDC ratios for the FCC Ni-Cr and Ni-Fe alloys are shown
in Figure 9. From Table 1, it can be seen that mixed Fe-Ni interstitial dumb-
bells are less stable than far separated Fe — Ni/Ni pure dumbbell complex
state by 0.11 eV. This high repulsion makes the PDC ratio low at low temp-
eratures, while it increases with increasing temperatures due to increasing
thermally assisted mixed dumbbell formation and diffusion. In contrast,
Ni-Cr interstitial dumbbells are more stable than a far separated Cr - Ni/
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Figure 9. Partial Diffusion Coefficient (PDC) ratios for solutes in FCC Ni for dumbbell-mediated
diffusion. For Fe, the PDC ratio increases with increase in temperature, due to some thermally
assisted formation and diffusion of mixed dumbbells. Cr almost always exists as mixed dumb-
bells, and hence the PDC ratio remains within the same order of magnitude, varying relatively
weakly compared to Fe. It initially increases with temperature, due to increased diffusion via
mixed dumbbell rotations, and shows a decreasing trend at high temperatures due to thermally
assisted mixed dumbbell annihilation and pure dumbbell diffusion.
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Ni complex state by 0.42 eV. Additionally, as reported in [19], the energy
barrier for a mixed dumbbell formation jump from an a-type complex is
0 eV, which implies that as soon as Cr encounters a Ni-Ni dumbbell in a
type-a configuration, it almost immediately forms a Ni-Cr mixed dumbbell
via an w* jump. Hence the PDC ratio remains consistently higher than Ni-Fe
at all temperatures, and varies within the same order of magnitude. As
shown in Figure 6, at low temperatures, where on-site rotation rates are
very low, mixed dumbbell diffusion is restricted to octahedral cages. The
initial increase of the PDC ratio for Cr with temperature can be attributed
to the increase in on-site rotation rates which assists long-ranged
diffusion of Ni-Cr dumbbells upon escaping the octahedral cage. The sub-
sequent decrease at higher temperatures can be attributed to increased
mixed dumbbell annihilation as well as increasing pure dumbbell formation
and diffusion probabilities.

4. Summary

The Green’s function method in [42] was extended to compute transport coeffi-
cients in the dilute limit for solute transport in crystalline solids via dumbbell
mediated diffusion with non-truncated correlations. The implemented meth-
odology was validated by computing tracer correlation factors and comparing
them to existing data in the literature. Transport coefficient ratios were then
computed for several solutes in BCC Fe and FCC Ni based on energetic data
available in existing literature. Solute drag ratios in BCC Fe-S alloys exhibit a
dual characteristic depending on competing @?, @’ and w* rates, while in
FCC Ni-S alloys, the drag ratios show monotonic behaviour predominantly
controlled by on-site rotations of mixed dumbbells. The partial diffusion coeffi-
cient ratios were found to depend on the relative stabilities of mixed dumbbells
compared to complex states as well as the relative mixed and pure dumbbell
migration rates.
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The Green’s function method for interstitial dumbbell-mediated transport,
implemented in Python 3 along with Jupyter notebooks for the dilute FCC
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Ni-S (S=Fe, Cr) and BCC Fe-S (S=Cr, Mn, Cu, Nij, Si) alloys and associated data
are publicly available at [52].
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Appendices

Appendix 1. Translational symmetry

We use translational symmetry to show that we do not need to evaluate every individual
element of the Green’s function matrix but rather their sums over the solute unit cell
location in the initial state; this reduced Green’s function can be evaluated as the pseudo-
inverse of a similarly reduced transition rate matrix. We denote with y generic states
(complex or mixed) without considering the solute unit cell location. This means that for
a complex state RyusRquq04, y represents the part usRquq04, so that Ry = Ryu;Rqug04.
Recall that in a complex state, the vector Ry gives the dumbbell unit cell location relative
to the solute’s. Similarly for a mixed state Ry,up,0m,, ¥ would represent the part uy0p,, so
that Rpx = Rypuy0y, (recall that the solute is a part of the mixed dumbbell and is
present at the same location Ry, + uy). A sum of the form ZRSX then represents a sum
over all states, both complex and mixed, i.e., we track the solute unit cell separately. The
transport coefficients can then be evaluated as,

1
VoksTL =237 > piu Wiy 05" (Rox — RY) ® 8" (R — RIY)
Rox Ri/\/

+ Z Zp(l){; vﬁsx ® GRS)(,RQ/\/VB;)(

Rox RY

(A1)

Since the probabilities, velocities, displacements, Green’s function and rates all obey trans-
lational invariance, we can write

VO « 1 a /1. 1./
NkBTL B ZEXX:RX);I)SXWOX,R;A/SX (0x — RY)® SX'B(O)(—> R Y)

+ Z ZP nggx ® Z Goxry Voﬁy
X X

R

(A2)

where N is the number of unit cells in our solid. We then define the reduced Green’s func-
tion matrix as G so that G,y = ZR; Goy,r x> Which has the blocked structure of the form
shown in Equation (28) depending on when y and y’ represent complex or mixed dumbbell
states.

We next outline the derivation of the inverse relationship between the reduced Green’s
function and transition rate matrices, i.e., Equation (29). We first express the transition rates
between states as the representation of a transition rate operator W in the state space
spanned by state basis vectors |Rg)) as

Wiy = (R WIR(Y ) (A3)

We then define a unitary translation operator T, that translates the solute unit cell position
by a vector a so that for any state vector |Rgy)

TolRox) = |(R, + a)x) (A4)

Due to translational invariance in terms of solute unit cell location, the transition rate oper-
ator will commute with the lattice translation operator since

Warsam o = (R + QM WIR +a)y) = (R TIWTRY)  (a9)
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and from Equations (A3) and (A5), due to the invariance of the transition rates under the
same lattice translation of the states,

TIWT, =W (A6)
or
WT, = T, W (A7)

Due to this commutation relationship, the representation of the transition rate operator in
the basis of the eigenfunctions of i, can be made block-diagonal. We first note that we can
choose eigenfunctions ¢, , of T, to be indexed by reciprocal lattice vectors g and states y,
so that in the state space they can be represented as ¢y = \/Lﬁ ZR; Y ek 6)(% IR Y') (here
8 denotes the Kronecker delta) with the corresponding eigenvalue being % for all ¢, ,
with  the same q,.  These  eigenfunctions are  orthonormal, ie.
(g x| Pq.x) = Sxy 6(q, — q) for g, and q] in the first Brillouin zone and they block-diag-
onalise the transition rate operator with respect to q, since

Wi (@0 @) = (.| Wleby, )
1 iq, R i R
- EZ Z e G Wy ri e ¥ 8y
Rex" Rx"

1« -
E— E q; R e 1R
= NR - e WRsX>Rs)(e (AS)

1 . , (R
—q)).R, —iq-(R—R,
=% E ¢4 E Wa, R0y € iq,-(R;—R;)
R R,

= 8(q,— q) ) Woyree®™
R,

The Green’s function G, the inverse of the transition rate, will then also share the same block
diagonal structure, and for every q,, their blocks will be inverses of each other, i.e.

[G(@)],,= [W@)], (A9)

where Wy (q,) = 2 g Woyry eE‘R; and Gy (q,) = 2_p, Goyriy ¢ At q, =0, W(q)
and G(q,) become the matrices W and G in Equations (30) and (28) respectively.

Appendix 2. Non-ergodicity in low-dimensional jump networks

In the FCC 90° roto-translation mechanism shown in Table 2, we can see that once we fix
the initial site, the initial orientation and the final site of a pure dumbbell after a jump, the
final pure dumbbell orientation is uniquely determined. This leads to a non-ergodic
diffusion process for the pure dumbbells, with disconnected jump networks depending
on the initial starting state. A simplified example of this is shown in Figure A1, where we
have 90-degree roto-translation of dumbbells on a 1D chain of sites. As can be seen in
the figure, there are two types of distinct jump networks that can arise depending on how
we fix the starting dumbbell orientation, with no dumbbell jump connecting the two net-
works, leading to non-ergodicity. In Appendix 3, we show the implications of non-ergodi-
city for this example jump network in Fourier space. Although geometrically more complex,
the FCC roto-translation mechanism for pure dumbbells is conceptually similar to this 1D
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jump mechanism, and depending on the chosen starting (100)-type dumbbell orientation at
a certain starting site, we’ll have three disconnected jump networks in the solid, leading to
the matrix W in Equation (3) being block diagonal with three diagonal blocks, representing
each such jump network. Such non-ergodicity reduces the symmetry of the system, and we
get singular matrices €2(q) for other reciprocal lattice vectors q at the first Brillouin Zone
edges as well, instead of just at q = 0 (see Appendix 3). In our calculations, the Moore-
Penrose pseudo-inverse of €2(q) instead of the inverse is computed and used in the semi-
continuum approach to inverse transform g(q).

For the BCC rigid translation mechanism, pure dumbbells can only maintain a single
(110) orientation throughout the diffusion process, and their diffusion is always restricted
to the corresponding {110} plane which contain the orientation vector. This again leads
to disconnected jump networks depending on the initial starting orientation, and all the
eigenvalues of £2(q) will be zero at q = 0, as shown in Appendix 3 for a simplified case
of a 1D lattice. This leads to the D(q) = DD(q) block becoming a 6 x 6 matrix as all
other blocks are zero. Hence, the block inversion procedure Equation (53) onward
cannot be applied, since Equation (54) is valid for a 1 x 1DD(q) block. However, for this
particular mechanism, we note that dumbbell diffusion is two dimensional. Further, since
diffusion characteristics of dumbbells restricted to {110} planes will be the same by sym-
metry, we can study this diffusion mechanism for a single {110} plane.

To simulate rigid dumbbell diffusion on a BCC {110} plane, we set up a two-dimensional
face-centered rectangular lattice with lattice vectors [0, ao] and [ag+/2, 0], and allow two-
dimensional dumbbells with orientation vectors along [1, 0] for pure dumbbells, and
[1, 0] and [ — 1, 0] for mixed dumbbells. Note that under the two-fold symmetry of this
lattice, there will be no other allowed dumbbell orientations at a site. We then allow both
pure and mixed dumbbell jumps to occur via rigid translation from the corner to face
centre of this 2D lattice, equivalent to the rigid translation jump mechanism shown in
Table 2. The tracer correlation factor for this two-dimensional diffusion mechanism is
then computed as the ratio of the trace of LA™" to the trace of LA™A. This is the value
reported in Table 2 for the rigid translation mechanism.

We note from our results on the BCC and FCC alloys however, that these diffusion
mechanisms are almost always accompanied by either on-site rotations or by other lower

® [ J
.G.—g QO.%.D%O.

Figure A1. Non-ergodic jump networks involving only two types of dumbbell orientations
(atoms shown as red circles), horizontal and vertical, on a 1D chain of sites (shown as grey
circles) with lattice parameter a. A jump by a dumbbell to a neighboring site is always
accompanied by a change of orientation by 90 degrees. The jump network at the top has
the opposite sequence of dumbbell orientations on the sites as the jump network at the
bottom. There is no 90-degree roto-translation jump that can connect these two jump
networks.
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energy diffusion mechanisms (such as the 60° roto-translation mechansim in BCC crystals).
In either case, dumbbell mediated diffusion becomes ergodic and hence these issues don’t
arise.

Appendix 3. Singularities for non-ergodic diffusion mechanisms

We derive the Fourier transform of the symmetrised rate matrix ﬁ(q) for the dumbbell tran-
sitions on a 1d chain of sites shown in Figure A1 involving 90° nearest neighbour roto-trans-
lation jumps of horizontal (4) and vertical (v) oriented dumbbells. This simplified example is
designed to show how additional singularities can arise at Brillouin Zone edges for a non-
ergodic diffusion mechanism. The Fourier transform of the symmetrised rate matrix
(without rotating the basis using its eigenvectors at q = 0) is given by

Qulg) = 305, e (A10)

where Q) b 1S the symmetrised tansition rate matrix element that corresponds to a dumb-
bell with initial orientation a at the origin site, jumping to form a dumbbell with orientation
b at the site located at distance x from it. For this two-state system where a, b € {h, v}, the
matrix £(g) will be 2 x 2 and of the the form

O(g) = ﬁhh(q) ﬁh"(q) —|: —2W° 2W°cos(qa)]
Q(q)_|:§vh(Q) (le(q)}_ 2W° cos (qa) _oW? (A11)

where W is the 90° roto-translation rate.

The variation of the eigenvalues of the Fourier transform matrix in Equation (A1l)
within the first Brillouin zone is shown in Figure A2. It can be seen that the non-ergodicity
in the jump mechanism manifests itself as additional singularities at the edges of the first
Brillouin zone. However, such singularities are removed upon introducing on-site & <> v
rotations with a rate W,. This leads to —W, being added to the diagonal elements of
Equation (A11), and +W, being added to the off-diagonal elements. As can be seen from
Figure A2, this removes the zero eigenvalues at the edges of the Brillouin zone, and thus
we only have a singularity at the Brillouin zone origin.

Appendix 4. Numerical error analysis and computational complexity

We analyse numerical errors in the g** Green’s function values similarly to the case of
vacancies in [42], and provide computational time analysis for transport coefficients. For
this purpose, we choose to simulate tracer diffusion via (110) in a BCC system with the
60° roto-translation mechanism, with a first nearest neighbour thermodynamic shell
(although all interaction energies are set to zero) and all rates are fixed to 1. For the analyti-
cal part of the inverse transformation process of g( p) as mentioned in Section 2.7, the same
threshold parameters were used as for the case of vacancies (see Section 2.1 and 4.1 in [42]
for details) as they were found to provide sufficiently accurate inverse transforms up to 10
decimal places. Any error in g*? values mainly arises from the numerical integration of the
semi-continuum piece.

To analyse the effect of numerical quadrature for our inverse Fourier transform, we
god o, setting both og4, and o
to xy-oriented dumbbells, and see how their errors belllld;{ifzd);;ugo?unction of the number odf
k-points. We note that the BCC lattice being monoatomic, ug = uj = 0. With Rq = 0 we

compute pure dumbbell Green’s function elements
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Figure A2. Variation of the two eigenvalues (A; and A;) of the Fourier transform of the sym-
metrised rate matrix in the first Brillouin zone for the non-ergodic 1D 90° re-orienting nearest-
neighbour dumbbell jump mechanism shown in Figure A1, with varying on-site 90° rotation
rates (W,). As shown with the green arrow, without on-site rotations being allowed
(W, = 0), one of the two eigenvalues becomes zero at the origin and at the left and right
edges of the Brilouin zone. On introducing on-site rotations of the dumbbells with non-zero
rotation rates, the jump network becomes ergodic and the singularities at the Brillouin zone
edges are removed.

evaluate the Green’s function for when R); = 0 (we call this g(0) henceforth) and for when

q= 2i+ 2} + 2k (we call this g(R) henceforth). The second case corresponds to the
Green’s function element between two pure dumbbells with xy-orientations dumbbells
that are separated by the maximum possible distance in the kinetic shell. We also look at
the nature of their difference since it is the difference between Green’s function elements
that contributes to the transport coefficients.

In order to compute the errors arising out of numerical errors, we compute g(0), g(R)
and |g(0) — g(R)] for increasing number of k-points (Nj,) in the Brillouin zone. We then
extrapolate the obtained values to estimate the values at infinite k-points and then subtract
this from the obtained values to get the estimated numerical integration error. Table Al

Table A1. Green's function values as a function of the number of k-points (Ny,) and the
number of symmetrically reduced k-points(Nyg). All values are computed for xy-oriented
(110) dumbbells in a BCC system with unit lattice parameter and for the 60° roto-translation
mechanism, and R = 2i+ 2} +2k.

Grid Nipt (Nred) g(0) g(R) g(0) — g(R)
6x6Xx6 216 (16) —0.151412013 464 —0.008 388 832 684 -0.143 023 180 780
10 x 10 x 10 1000 (48) —0.151 262 509 102 —0.002 422 301 213 —0.148 840 207 890
14 x 14 x 14 2744 (109) —0.151 257 955 867 —0.002 386 185418 —0.148 871770 449
18 x 18 x 18 5832 (210) —0.151 257 350 380 —0.002 385 037 675 —0.148 872312705
22 %22 %22 10648 (363) —0.151 257 202 450 —0.002 384 852 600 —0.148 872 349 849
26 x 26 x 26 17576 (580) —0.151 257 154 493 —0.002 384 798 793 —0.148 872 355 700
30 x 30 x 30 27000 (860) —0.151257 135826 —0.002 384778779 —0.148 872357 048
34 x 34 x 34 39304 (1228) —0.151257 127 554 —0.002 384 770 105 —0.148 872 357 449
38 x 38 x 38 54872 (1689) —0.151257 123 506 —0.002 384 765 917 —0.148 872 357 589
42 x 42 x 42 74088 (2254) —0.151257 121370 —0.002 384 763 723 —0.148 872 357 647
46 x 46 x 46 97336 (2934) —0.151257 120 170 —0.002 384 762 496 -0.148 872[?|[?]357 674

50 x 50 x 50 125000 (3742) —0.151257 119 463 —0.002 384761774 —0.148 872 357 689
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Figure A3. Scaling of the estimated integration errors in Green'’s function values of g(0), g(R)
and |g(0) — g(R)| compared to an extrapolated infinite k-point density value (g*) for each as a
function of the number of k-points in the first Brillouin zone. A Nearly power-law decay is seen
in the errors up to around 10°k-points, beyond which numerical integration errors start to get
dominated by round-off errors.
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Figure A4. Scaling of the calculation time (t) in seconds for a single transport coefficients cal-
culation, as a function of the number of symmetry-unique values of g% to be computed (Ng) for
the 60° roto-translation jumps of (110) dumbbells in a BCC system. All times are reported as
averages over 50 computations with 183k-points in the first Brillouin zone. Linear scaling of
the time is observed with respect to Ng and typically only a few seconds are required to get
the transport coefficients.
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shows the values of the Green’s function elements with increasing k-points, and their devi-
ation from extrapolated infinite k-points density value are shown in Figure A3.

We find that up to ~ 10° k-points, integration errors play a dominant role and the errors
show power-law decay as a function of the number of k-points, which illustrates the con-
trollable behaviour of the errors. We find that g(0) and g(R) errors decay approximately
as ~ N,;j, while [g(0) - g(R)| errors decay approximately as ~ N,:;:/ ’. Around ~ 10° k-
points, numerical round off errors start to dominate over the integration errors and fluctu-
ations are seen to occur in the error trend. In our work, we used 18° grid size keep compu-
tation time reasonably small as well as get small numerical errors of ~ 107% in the Green’s
function differences. A similar controllable behaviour of the numerical integration errors
was also reported for vacancies in [42].

Next, in Figure A4 we show the computation time for the transport coeflicient in the
same system as a function of the number of unique bare dumbbell Green’s function (g*¢)
computations needed to be performed within the kinetic shell, N which gives a measure
of the ‘size’ of the problem. Each computation time was obtained by averaging over 50 com-
putations after all the states and state-vector orbit data were generated. We find that it takes
a few seconds to complete a calculation for even large kinetic shells with Ng > 1000 and that
the time scales almost linearly with Ng.
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