Downloaded via UNIV OF UTAH on May 24, 2024 at 17:05:20 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

ACS Partner Journal

ACCOUNTS

—of materials research—

pubs.acs.org/amrcda

Multiphysics Modeling Framework to Predict Process-
Microstructure-Property Relationship in Fusion-Based Metal
Additive Manufacturing

Wenda Tan* and Ashley Spear*

Cite This: Acc. Mater. Res. 2024, 5, 10-21 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations

CONSPECTUS: Additive Manufacturing (AM) technology
produces three-dimensional components in a layer-by-layer fashion
and offers numerous advantages over conventional manufacturing
processes. Driven by the growing needs of diverse industrial sectors,
this technology has seen significant advances on both scientific and
engineering fronts. Fusion-based processes are the mainstream Hishspee X ray kmaging of
techniques for AM of metallic materials. As the metals go through
melting and solidification during the printing processes, the final
microstructure and hence the properties of the printed components
are highly sensitive to the printing conditions and can be very
different from those of the feedstock. It is critical to understand the ] . .

. . . Madel prediction of keyhole Model prediction of grain texture Homogenized stress- urves

process-microstructure-property relationship for the accelerated and powder motion in adcitively manufactured mete! to represent effctive praperties
optimization of the processing conditions and certification of the
printed components. While experimentation has been used widely to acquire a mechanistic understanding of this subject matter,
numerical modeling has become increasingly helpful in achieving the same purpose.
In this Account, the authors review their ongoing collaborative effort to establish a multiphysics modeling framework to predict the
process-microstructure-property relationship in fusion-based metal AM processes. The framework includes three individual modules
to simulate the dominating physics that dictate the process dynamics and microstructure evolution during printing as well as the
responses of the printed microstructure to specific mechanical loadings. The process model uses the material properties and
processing conditions as the inputs and simulates the laser-material interaction, multiphase thermo-fluid flow, and fluid-driven
powder motion. It has successfully revealed the physical causes of depression zone shape variation as well as powder motion during
the laser powder bed fusion process. The microstructure model uses the thermal history of the printing process and the material
chemistry as the inputs and predicts the nucleation and growth of multiple grains in the multipass and multilayer printing processes.
It has been used to understand the effects of inoculation and thermal conditions on grain texture evolution. The property models use
microstructure data from simulations, experimental measurements, or statistical analyses as the inputs and leverage various
computational tools to predict the mechanical response of the AM materials. These models have been used to quantitatively evaluate
the effects of grain structure, residual strain, and pore and void defects on their properties and performance. While this and many
other modeling works have significantly grown our collective knowledge of the process-microstructure-property relationship in
fusion-based metal AM processes, efforts should be further invested in developing advanced theories and algorithms for the
governing physics, leveraging data-driven approaches, accelerating simulation speed, and calibrating/validating models with
controlled experimental measurements, among other aspects.
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1. INTRODUCTION parameters and can differ dramatically from those of the initial
feedstock. While great advancements have been achieved in

Additive Manufacturing (AM) technology comprises a group of
g (AM) & P grop understanding the process-microstructure-property (P-M-P)

processes to join materials layer-by-layer to build three-
dimensional (3D) components from computer-aided design

(CAD) models. Fusion-based AM processes, viz., laser powder Received:  June 21, 2023
bed fusion (LPBF) and laser direct energy deposition (L-DED), Revised: ~ November 6, 2023
are the mainstream technologies for metal AM. As the feedstock Accepted: December 16, 2023

materials, usually in the form of powder or wire, are melted and Published: January 12, 2024

solidified to print the geometries, the microstructure and
properties of the products are highly dependent on the printing
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Figure 1. Overall flowchart of modeling framework for fusion-based metal Additive Manufacturing (AM). “Process Model” block shows simulated
depression zone shape and powder motion in laser powder bed fusion. “Microstructure Model” block shows a simulated grain structure for a multilayer
build. “Property Models” block shows a micromechanical simulation of an AM microstructure with applied loading. Relevant inputs and outputs to

each model are depicted in shaded boxes.
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Figure 2. Comparison of depression zone shapes from dynamic X-ray imaging (top row) and computational physics model (bottom row) for three
cases. Three different snapshots are given for case 1 to demonstrate depression zone fluctuation. Only one snapshot is given for cases 2 and 3 because
depression zone is relatively stable. Depression zone in simulation results is colored by the intensity of laser absorption.

relationships, it is still difficult and expensive to optimize the
process and quantify uncertainties in the resultant micro-
structure and properties when a new material or a new geometry
is printed.

Experimental methodologies are frequently utilized to garner
insight into this topic, but fusion-based AM processes present
some unique challenges for experiments. The processes involve
high temperatures above the melting/boiling points of the
metals, significant variances in temperature and flow velocity
occur across several hundred micrometers within microseconds,
and the resulting microstructures often possess critical features
at the micrometer/nanometer scale. Furthermore, these
quantities are buried within the domain and are difficult to
measure from the exterior. Given the limitations of current
technologies, achieving the necessary spatial and temporal
resolutions for many of these quantities is either expensive or
even unfeasible.

Computational modeling, by solving appropriate governing
equations to capture the relevant physics, can provide
quantitative predictions of the physical terms at any moment
and location. It complements experimental approaches and
plays an indispensable role in acquiring a complete under-
standing of the P-M-P relationships in metal AM. There have
been multiple salient literature reviews for AM modeling,' ~ and

this accounts article is instead intended to describe the authors’
experience and perspectives regarding this topic.

The Laboratory of Computational Manufacturing at the
University of Michigan (previously located at the University of
Utah) and directed by Dr. Wenda Tan, and the Multiscale
Mechanics and Materials Laboratory, located at the University
of Utah and directed by Dr. Ashley Spear, have been
collaborating to establish a multiphysics modeling framework
to predict the P-M-P relationship for fusion-based metal AM
processes (see Figure 1). The processing conditions and
materials properties are fed into the process model to simulate
the physical phenomena in and around the molten pool. The
model generates thermal histories of the printing processes and
feeds them into the microstructure model, which simulates the
nucleation and growth of all grains during molten pool
solidification and ultimately predicts the final grain texture
within the printed materials. This is fed into the property models
to simulate the responses of the printed materials under certain
mechanical loadings. In this Account, the basic modeling
approaches and typical results of the three models are reviewed.

2. PROCESS DYNAMICS MODELING

In fusion-based metal AM, the process dynamics are governed
by the interplay of multiple physics, including energy absorption,
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Figure 3. Laser absorption on front wall of depression zone. (a) Definition for inclination angle 6 of front wall. (b) Definition for incident angle & of a
laser ray on front wall and demonstration of spread of this laser ray of size Sy to an area of Sgyy on inclined front wall. (c) Variation of laser absorptivity as

a function of incident angle according to Fresnel equation.

5 bar @ 660 us 1 bar @ 620 us

10 mbar @ 550 s

Gauge
Pressure
(Pa)

100000
81000
62000
43000
24000
5000

V (m/s)

1500
1220
940
660
380
100

Gauge
Pressure
(Pa)

Vi (m/s)

180
140
100
60
20

Figure 4. Gas flow structure at quasi-steady state for cases of different ambient pressure (5 bar, 1 bar,and 10 mbar). (a) Gauge pressure and streamlines
on vertical plane at laser beam center, and (b) velocity magnitude. (c) Gauge pressure and streamline on a horizontal plane cutting through powder
bed, and (d) velocity magnitude. Dashed circles in (c) and (d) indicate laser illumination zone. All scale bars are 200 ym.

phase change, multiphase heat transfer and fluid flow, dynamic
interface movement, and fluid-particle interaction. These
physics collaborate to cause complex, and sometimes unstable,

process dynamics, which are considered a major contributor to
multiple quality-critical phenomena, e.g, pore formation and
powder denudation/ejection.
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Tan’s lab has been working on a computational physics model
to simulate the process dynamics for fusion-based AM
processes.”® This model includes (i) a ray-tracing subroutine
to predict the laser absorption by the metal surface; (ii) a
computational fluid dynamics (CFD) subroutine to simulate the
thermo-fluid flow in gas (environmental gas and metal vapor),
liquid (molten pool), and solid (substrate and unmelted
powder); (iii) a Level-Set subroutine to capture the movement
of molten pool surface; and (iv) a discrete element subroutine to
capture the particle motion driven by gas-particle and particle—
particle interaction. It has been calibrated and validated for
multiple engineering materials by comparing the modeling
predictions with the in situ X-ray imaging of depression zone
geometry and ex situ optical imaging of the molten pool cross-
section shape. The simulation results provided insight into the
depression zone behavior and powder motion in LPBF.

2.1. Behavior of Depression Zone

In LPBF, metal evaporation can be induced by laser heating and
generates recoil pressure on the molten pool surface that creates
a depression zone. Experiments have shown that the shape of the
depression zone can change significantly by the variation of
process parameters, particularly laser power and scanning
speed.” The computational physics model has reproduced the
different depression zone shapes (see Figure 2) and provided
physical explanations.®

A higher laser power generates a higher recoil pressure, and a
lower scanning speed allows the laser to dwell in a region so that
the recoil pressure can accelerate the liquid flow for a longer
time. Both lead to a higher drilling velocity and hence a large
inclination angle 0 (defined in Figure 3a) for the Front Wall
(FW) of the depression zone. As @ increases, the incident angle &
(defined in Figure 3b) of the laser on the FW becomes larger,
and the laser absorptivity changes according to the Fresnel
equation (as plotted in Figure 3c). Furthermore, any laser ray
with an initial size of Sy illuminates an area of Sgy; on the FW (as
shown in Figure 3b). Spy becomes larger as € increases, which
effectively decreases the power density of laser absorption on the
FW. Therefore, the FW temperature decreases, and the
evaporation is reduced. A lower recoil pressure is available,
and thus the large inclination of the FW becomes difficult to
maintain. To still maintain a large FW inclination, protrusions
need to form on the FW. The upper side of the protrusions can
effectively obtain a high density of laser absorption, which
induces intensive local evaporation and hence strong recoil
pressure. The recoil pressure pushes the protrusions to move
downward rapidly, which keeps the FW at a large inclination
angle. The downward motion of these protrusions, however,
introduces instabilities into the system. Each protrusion
generates a wave of rapid flow that propagates across the
molten pool and can potentially alter the depression zone shape.
If the shape change is too severe, the depression zone can
collapse occasionally, generating bubbles in the molten pool that
can ultimately become pores in the final part.

In the opposite cases with a lower laser power and/or a higher
scanning speed, the FW is less inclined. The incident angle of the
laser on the FW is smaller than the Brewster’s angle, and the laser
absorptivity becomes less sensitive to the incident angle. This
significantly reduces the spatial variation of laser absorption on
the FW of the depression zone, where protrusions, even if
formed, cannot survive. As the FW is stabilized in these cases, the
entire depression zone experiences fewer fluctuations.

2.2. Gas Flow and Powder Motion

Another outcome of laser-induced evaporation is a high-speed
and high-temperature vapor jet, which drives the environmental
gas to flow. The flow of the metal vapor and environmental gas
drives the powder motion (e.g., denudation and ejection), which
can lead to a series of deleterious features in the final builds. The
computational physics model in Tan’s lab can reveal the gas flow
structure and the gas-driven particle motion.

Simulations were performed for LPBF cases with a stationary
pulse laser and different ambient pressure levels,”® and a
consistent gas flow pattern was observed in all cases. Metal vapor
was generated at the bottom of the depression zone due to laser-
induced metal evaporation. Driven by the large pressure gradient
from the bottom of the depression zone to its opening (Figure
4a), the metal vapor flux developed into a high-speed jet (Figure
4b). A low-pressure ring was generated around the vapor jet,
right above the substrate (Figure 4c). The pressure gradient
from the ambient to the low-pressure ring induced an
entrainment flow that drove the ambient gas to flow toward
the vapor jet (Figure 4d).

As the ambient pressure varied from hyper-atmospheric (5
bar, first column in Figure 4) to atmospheric (1 bar, second
column in Figure 4) and then to hypo-atmospheric (10 mbar,
third column in Figure 4) levels, the vapor jet velocity increased
from 200 to 1500 m/s, the entrainment flow velocity increased
from § to 50 m/s, the divergent angle of vapor jet significantly
increased, the vapor jet temperature decreased from 3400 to
2100 K, and the Knudsen number (Kn) of the gas flow increased
from the range (0.0004 ~ 0.004) to (0.05 ~ 0.5). Note that the
continuum assumption of the gas flow may break down when
the ambient pressure is below 10 mbar (Kn 2 0.2).

The simulations also revealed the interactions between the gas
flow and powder particles that drive the powder motion. Four
characteristic modes of powder-gas interaction were identified
according to the dominating physics and the total force direction
of the powder particles.

® Recoil mode is defined when significant evaporation
occurs on the powder particle surface, and the recoil
pressure dominates over the drag force of the gas flow on
the particle surface. The powder particle is driven away by
the vapor jet generated by the evaporation on the particle
surface.

e Entrainment mode is defined when the particle is
surrounded by the entrainment flow. The particle is
driven by the drag force of the entrainment flow and
moves toward the laser illumination zone.

e Expulsion mode is defined when the particle is
surrounded by the expanding vapor jet. The particle is
ejected by the drag force of the vapor jet with a relatively
large divergence angle.

e Elevation mode is defined when the particle is
simultaneously subject to the entrainment flow and the
vapor jet expansion. The simultaneous effects of the two
flows drive the particle to move upward with a relatively
small divergence angle.

These four interaction modes, individually or collectively,
control the motion of each particle. Sometimes one mode
dominates the entire particle trajectories and sometimes several
modes sequentially dominate the particle trajectories.

https://doi.org/10.1021/accountsmr.3c00108
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Figure 5. Grain texture of two cases in electron-beam additive manufacturing of Inconel 718 alloy. Left insets show experimental results obtained from
electron backscatter diffraction characterization, and right insets show simulation results obtained from Cellular Automata model.
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Figure 6. Explanation of thermal conditions and grain texture evolution in electron-beam additive manufacturing of Inconel 718. (a) Distribution of
thermal conditions for molten pool solidification, with inset showing locations of selected points in molten pool. Points were colored by their vertical
coordinates, with zero coordinate indicating top surface and negative values indicating locations beneath top surface. (b) First three molten pools in
first layer, with columnar-to-equiaxed transition occurring in each molten pool. (c) Locations of all molten pools and final grain texture after one layer.

(d) Fusion lines of five layers and grain texture after five layers.

3. GRAIN STRUCTURE MODELING

In fusion-based metal AM processes, the feedstock materials are
deposited, remelted, and solidified on the top of the printed
components. The grain texture, dictated by the size and
crystallographic orientation of all grains in the domain, is
determined by the collaboration of the material properties and
processing conditions. It is critical to control the grain texture,
which poses decisive influences on the final properties of the AM
parts.

In Tan’s lab, a 3D Cellular Automata (CA) model has been
developed to simulate grain growth during fusion-based metal
AM processes.'”"" The model takes 3D thermal histories from a
process model as the input, uses certain analytical models for
dendrite growth (e.g, KGT model'”) to calculate the grain
growth kinetics (i.e., the grain growth velocity as a function of

the material composition and local temperature), and utilizes a
decentered square algorithm to explicitly track the envelope
expansion of each grain during its growth. The solute
redistribution and subgrain dendritic growth within the grains
were not explicitly simulated in this model but were implicitly
considered in the analytical model for the growth kinetics
calculation. An additional algorithm is included to simulate the
heterogeneous nucleation with which new nucleation sites
appear in the molten pool to initiate the growth of new grains of
arbitrary crystallographic orientations. Ultimately, the model
can simulate the growth and remelting of all grains during the
complex thermal histories of the printing processes and predict
the final grain texture in the final parts. The model has been
validated by comparing the predicted grain textures with the
Electron Backscatter Diffraction (EBSD) characterization
results for cases of different processing conditions and

https://doi.org/10.1021/accountsmr.3c00108
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Figure 7. Grain textures with different nucleation frequencies. In each case, left inset shows experimental results of electron backscatter diffraction
(EBSD) characterization, and right inset shows simulation results from Cellular Automata model.

engineering materials and has been used to investigate the effects
of the processing conditions and the nucleation events on the
final grain texture in metal AM builds.

3.1. Effects of Processing Conditions

Abundant experiments have demonstrated grain texture to be
highly dependent on processing parameters, including but not
limited to the heat source power and scanning speed, hatch
spacing, and scanning pattern. The CA model offers a feasible
approach to understanding grain texture evolution during the
printing processes with different parameters.

In collaboration with Oak Ridge National Laboratory, Tan’s
lab applied the CA model to investigate the grain texture
evolution as a function of processing conditions for the Electron-
Beam Additive Manufacturing (EBAM) of Inconel 718."° In that
work, a complex scanning strategy was used. In each layer, a
series of spot heatings was applied on the powder bed according
to a specific sequence. This spot-heating sequence was applied
to every layer with a shift within the build plane between
consecutive layers.

Different electron beam (e-beam) currents and spot times
were used in different cases, producing significant variations in
thermal histories and, hence, grain textures. In the case with long
e-beam spot time and high e-beam current values, the molten
pool created by each spot heating was larger in size and survived
longer in time, so all of the molten pools in the later stage of each
layer were connected to produce one integrated molten pool.
The temperature gradient (denoted as G) of this integrated
molten pool was relatively low during its solidification, which
encouraged the formation of equal grains throughout each layer.
As a result, the entire build was dominated by equiaxed grains
(see Figure Sa). In the cases with short e-beam spot time or low
e-beam current values, the grain texture was dominated by
columnar grains (Figure Sb), but the grain texture evolution was
found to be more complicated.

Due to the lower e-beam energy input at each spot, each
molten pool was relatively small and separate from other molten
pools. In every molten pool, the early stage of its solidification
took place near the fusion zone edge (e.g., at the diamond,
triangle, and circle positions in Figure 6a). The local G was high
enough to encourage the growth of columnar grains (Figure 6b).
In the later stage of the molten pool solidification, the
solidification front moved to the fusion zone center (e.g, at
the square location in Figure 6a). The local G became relatively
low and encouraged the growth of equal grains (see Figure 6b).

The columnar-to-equiaxed transition (CET) occurred during
the solidification of all molten pools. As multiple molten pools
occurred sequentially in each layer, the final grain texture at the
end of each layer was predominantly columnar on the bottom
and equiaxed at the top (Figure 6c). But the equiaxed grains did
not survive in the final parts as they were completely remelted by
the next layers. Only the columnar grains located at the bottom
of the layer remained (see Figure 6d), and as a result, only
columnar grains survived in the final grain texture (see Figure
Sb).

3.2. Effects of Nucleation

Nucleation during metal solidification in metal AM has been
found to significantly alter the grain structure and hence the
properties of the products,” but the effects of nucleation had
not been previously understood from a quantitative standpoint.
Tan’s group performed a Farametric study using the CA model
to investigate this matter. !

In that work, nucleation was treated as a stochastic event
dictated by the nucleation density (denoted as N,) and the
critical nucleation undercooling (denoted as AT,), both of
which were material dependent. Parametric simulations of
varying nucleation parameters were performed with the CA
model. The nucleation events became more frequent by
increasing N, or decreasing AT,, and the model predicted very
different grain textures, all of which were found to well resemble
experimental results.

e In the case of rare nucleation events (see Figure 7a), every
layer was dominated by columnar grains, all of which
continued to grow in the following layers and competed
with each other along the building direction. Competitive
growth existed throughout the entire build, and only
several grains survived the competition. They dominated
the entire domain, with each being very large in size.

e In the case of a moderate number of nucleation events
(Figure 7b), some new equiaxed grains appeared
(primarily in the top portion of the molten pool) due to
the nucleation events and they mixed with the columnar
grains in each layer. When the next layer was printed, it
remelted the top portion of the previous layer. The
partially melted grains on the fusion line, either columnar
or equiaxed ones, grew to become columnar grains in the
next layer. As this process repeated in every layer,
equiaxed grains were introduced as the new “competitors”
in the competitive growth, and it became almost

https://doi.org/10.1021/accountsmr.3c00108
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Figure 9. Automated workflow for ingesting microstructure from physics-based models, performing high-throughput micromechanical simulations,
and generating maps of effective (homogenized) mechanical properties for metal additive manufacturing.

impossible for a few grains to outgrow all other grains.
Therefore, a large number of grains existed in the final
structures, all presenting small sizes and needle-like
shapes.

o In the case of excessive nucleation events (see Figure 7¢),
CET occurred in each layer and the top portion of each
layer was completely occupied by equiaxed grains. When
the next layer was printed, only a portion of the “equiaxed
region” in the previous layer was remelted, and the
partially remelted equiaxed grains grew to become the
columnar grains in the next layer. As this pattern repeated
layer upon another, the columnar and equiaxed layers
formed alternatively.

4. MECHANICAL RESPONSE MODELING

In general, the bulk mechanical response of a polycrystalline
material is governed by anisotropic deformation mechanisms
that act across length scales. Accounting for the combination of
intrinsic deformation mechanisms (e.g,, crystallographic slip and
twinning), microstructural heterogeneities, and complex
neighbor-neighbor interactions among microstructural features
presents a unique challenge for accurately modehng micro-
mechanical behavior of polycrystalline metals."* In metals
produced via AM, this modeling challenge is exacerbated'>~"”
due to the presence of residual strains and pore or void defects,

which can significantly modify the mechanical properties and
performance of structural components.

In Spear’s lab, a suite of microstructure—property models has
been integrated into a modular workflow in which micro-
structural features are represented with high-fidelity (viz., with
respect to current 3D materials imaging resolution limits) to
capture their influence on the mechanical properties of AM
metals. Modularity enables the microstructure data from
different sources to be leveraged. As shown in Figure 8,
microstructure data can be ingested from the physics-based
process models presented above, from experimental measure-
ments (e.g., high-energy X-ray diffraction microscopy or X-ray
computed tomography), or from statistical measures of
microstructural features. The ingested data are used to
instantiate a model in which the features of interest (grains,
residual strains, and pore and void defects) are represented with
high fidelity. Subsequently, the high-fidelity model is passed to
an appropriate numerical solver capable of modeling the
mechanical response of interest. Within this framework, Spear’s
group has developed, adopted, and augmented various
computational tools to address some of the unique challenges
associated with predicting the structure—property linkages in
metal AM. Several case studies are presented below to illustrate
the range of predictions to date.
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Figure 10. Tensile specimen with magnified view of experimentally characterized microstructure of IN625 manufactured by laser powder bed fusion
for the AFRL AM Modeling Challenge.”*** At right is the predicted axial strain field from micromechanical modeling.**

4.1. Site-Specific Maps of Effective Mechanical Properties

Due to the variation of thermal conditions in the printing
process, the final grain texture can be significantly different from
one location to another within a single part. The effective
(homogenized) mechanical properties, therefore, can also vary
spatially throughout a given build domain. A convenient way to
assess the spatial variability of effective mechanical properties is
by generating property maps, analogous to those generated in
2D from indentation tests (e.g., see ref 18). Two challenges with
mapping the effective mechanical properties throughout an
entire AM build domain are (1) the effective mechanical
properties inherently depend upon the 3D grain structure, such
that the latter must be explicitly modeled to obtain accurate
mechanical-property predictions, and (2) meeting the first
challenge is computationally expensive and can become
intractable depending on the numerical solver employed and
the size of the AM build domain (hence, simulation domain
size).

Spear’s lab recently implemented an automated workflow that
integrates with Tan’s microstructure-prediction framework and
addresses the aforementioned challenges to provide site-specific
maps of effective mechanical properties in AM metals.
Succinctly put, the workflow ingests the grain-resolved build
domain from the microstructure simulations in section 3, divides
the build domain into subvolumes of a user-specified size,
prepares and passes a data file for each microstructural
subvolume to an elasto-viscoplastic Fast Fourier transform
(EVPFFT) code, simulates mechanical loading for each
microstructural subvolume, retrieves and postprocesses the
results, and plots the results as a heat map of effective mechanical
properties.

The key to generating the spatial property maps using high-
fidelity microstructural modeling is the integration of a
parallelized version of the EVPFFT code, called MASSIF,"’
into the automated workflow to enable high-throughput virtual
mechanical testing of microstructural subvolumes. As an example,
the workflow was used to generate maps of effective yield
strength throughout four distinct build domains of L-DED
stainless steel 316L by performing 7680 microstructure-sensitive

numerical simulations (each to 1% total strain, well beyond
macroscopic yielding).”* Figure 9 shows a property map in a
single layer of one of the AM builds. The MASSIF code was
originally implemented by Rollett'” and is based on the
EVPFFT formulation by Lebensohn.”' Spear’s group adopted
the MASSIF code and augmented it to account for grain-
boundary strengthening by implementing a scaling relationship
between the initial critical resolved shear stress (7,) and the slip-
directed-distance to nearest grain boundary. The slip-directed
distance is defined as the distance parallel to the Burgers vector
from a given point in the simulation domain to the nearest grain
boundary; thus, a unique 7, is defined for each slip system at each
point in the simulation volume. A composition-dependent solid-
solution strengthening model is not currently included in the
model, and its future incorporation could serve to further
improve the constitutive representation in the EVPFFT code.

The ability to estimate effective, microstructure-dependent
mechanical properties, throughout entire AM build domains has
important implications for the design and qualification of metal
AM. For example, the property maps can be used to assess the
degree of effective anisotropy, spatial variability from expected
nominal properties, and prevalence of “hot spots” throughout a
given build, enabling design engineers to determine whether a
particular build meets quality assurance metrics for structural
applications. From a scientific standpoint, the maps also provide
new insight into the relationship between the building process
and the distribution of mechanical properties. For example, the
map of effective yield strength in the transverse direction (0'}; %)
for the particular L-DED build domain and layer depicted in
Figure 9 exhibits a banding pattern aligned with the laser scan
tracks, where O'}:g(f is generally lower along the scan tracks and
higher in between scan tracks. The integrated multiphysics
modeling framework was able to reveal this unique phenomen-
on, which is fundamentally related to the simulated thermal
history and microstructural evolution for the multipass,
multilayer L-DED process.
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Figure 11. Automated workflow for instantiating high-fidelity models with microstructure porosity to evaluate its effect on the failure of AM metal.

4.2. Full-Field Micromechanical Response Accounting for
Residual Strains

It has been well documented that laser-based AM processes can
induce non-negligible residual stresses, which can lead to part
distortion and impact mechanical performance of the final
part.”” Depending on the severity of the residual stress, postbuild
heat treatments can be applied, and identifying optimal heat
treatments for specific build parameters and materials remains
the topic of ongoing research in the community.

Spear and collaborators recently leveraged the micro-
structure—property workflow depicted in Figure 8 to assess
approaches for incorporating residual strains into the EVPFFT
modeling framework and the relative impact of each approach
on micromechanical predictions.23 The investigation was
performed within the context of the Air Force Research
Laboratory (AFRL) AM Modeling Challenge Series. Specifi-
cally, Challenge Problem 4 in the Series solicited participants to
make blind predictions of grain-averaged strain tensors in 28
challenge grains at six specific stress states given a 3D
microstructural image of a tensile specimen and its correspond-
ing macroscale engineering stress—strain response.“’25 The
tensile specimen was produced using LPBF with IN62S powder.
The microstructure data and grain-averaged elastic strains
provided by AFRL were experimentally characterized with high-
energy X-ray diffraction microscopy (HEDM) during an in situ
tensile test performed at the Advanced Photon Source 1-ID-E
beamline at Argonne National Laboratory.”*~*’ Given the time
constraints of the challenge, Spear’s team neglected residual
strains in the EVPFFT model used for challenge submission.
Nonetheless, among all submissions, the EVPFFT-based

predictions submitted by her team achieved the lowest total
error in comparison to experimental results and received the
award for Top Performer. Figure 10 depicts the AM IN62S
microstructure and simulated strain field.

Spear’s team performed a postchallenge investigation to assess
improvement relative to the submitted predictions by
incorporating initial elastic strains. Of the five approaches
considered for incorporating initial elastic strains, all out-
performed the model in which initial elastic strains were
neglected. However, the best predictions were achieved by
initializing an eigenstrain field*’ using an Eshelby approxima-
tion,>" which, for the first time in the context of EVPFFT
modeling, was carried out using an ellipsoidal grain-shape
approximation. The method for calculating the eigenstrain field
from the initial elastic strain field was subsequently incorporated
into the open-source software DREAM.3D.>”

The findings from this case study provide a quantitative
assessment of the impact of residual strains on the micro-
mechanical (grain-scale) response of an AM metal. In this
example of the microstructure—property workflow, the ingested
microstructure data were derived from experiment, and a high-
fidelity model was instantiated to include both the grain
structure and experimentally measured residual strains. With
this experimentally validated approach as a backdrop, future
micromechanical models will be seamlessly integrated with
Tan’s framework to instantiate models with residual strain fields
from physics-based process modeling.

4.3. Failure Response Due to Void Defect-Induced Fracture
Pore and void defects caused by keyholing, lack of fusion, and

gas porosity are common outcomes of the AM process and
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exhibit varying degrees of severity depending upon processing
parameters.”” These microstructural defects can significantly
change the mechanical performance of AM parts** and should
therefore be considered when modeling structures for use in
fracture-critical applications.

Following the workflows depicted in Figures 8 and 11, Spear’s
lab assessed critical characteristics of pore networks that impact
fracture behavior in AM metals by implementing an approach
for automatically instantiating models with realistic pore
structures and simulating loading to failure.”> Based on
experimentally derived pore data in AM 17-4PH stainless steel
produced by LPBF,*® distributions of pore count and pore
diameter were created and sampled to generate 120 unique
realizations of pore structures in the gauge section of a standard
tensile specimen. The models were then analyzed by using the
finite-element method. Based on findings from the Third Sandia
Fracture Challenge,”””® Spear’s group leveraged an element-
deletion approach to simulate material degradation and failure of
the specimens, and mechanical properties (e.g., yield and
ultimate strengths, ductility, and toughness modulus) were
recorded. Subsequently, a correlation analysis was performed
between the mechanical properties and commonly reported
pore metrics (e.g., volume fraction porosity, maximum pore
diameter, and maximum and average cross-section-area
reduction). Additionally, a new metric, called the void descriptor
function (VDF), was derived to characterize pore networks by
accounting for the pore size, pore clustering, and pore position
relative to free surfaces. The VDF metric was found to have
stronger correlations with post-yield mechanical properties than
did all other pore metrics that were considered. Furthermore,
the location of the maximum VDF was found to serve as a good
indicator of fracture location. More recently, the VDF was
modified to account for neighbor-neighbor interactions and
stress concentrations associated with nonspherical pores, and
the modified VDF was experimentally evaluated by comparing
to tensile test results for AM IN718 mesoscale specimens
produced by LPBE.”

The ability to simulate failure response by accounting
explicitly for microstructural porosity and void defects has
important implications for structural prognosis and reliability
assessment of AM metal parts. Furthermore, a significant
outcome from this work—enabled by the high-fidelity
representation of pore structures—is the derivation of the
VDF as a novel descriptor of pore networks, which could be
incorporated into a screening tool to aid in predicting, a priori,
likely locations of fracture and post-yield mechanical properties.

5. CONCLUSIONS, CHALLENGES, AND PERSPECTIVES

This Account presents a summary of an ongoing effort to
develop a physics-based modeling framework to predict the P-
M-P relationship for fusion-based metal AM processes.

e A computational physics model has been developed to
simulate the complex physics for depression zone, molten
pool, and powder particles during the process, and it can
reproduce the typical phenomena observed in experi-
ments. The simulations have helped to understand the
causes of different shapes of depression zone and its
fluctuation. The simulations have also quantitatively
revealed the gas flow structure in LPBF and the gas-
powder interaction that drives the powder motion.

e A computational materials model based on the Cellular
Automata method has been developed to predict the

complex grain structures in AM parts. The model has
demonstrated the grain structure evolution during
different complex thermal histories generated by different
processing conditions. It has also disclosed the effects of
heterogeneous nucleation on the grain texture devel-
opment.

e A modular microstructure—property workflow has been
presented, in which microstructural features of interest are
explicitly modeled with high fidelity to capture their effect
on resulting mechanical behavior. For cases in which high-
throughput micromechanical responses are desired to
predict, for example, the spatial variability of effective
mechanical properties throughout an entire 3D build
domain, a parallelized EVPFFT code has been adopted
and integrated into an automated pipeline to generate
mechanical-property maps, accounting for grain-boun-
dary strengthening. For cases in which unique pore
networks and fracture behavior are of interest, a finite-
element-based framework has been adopted and inte-
grated into an automated pipeline to predict distributions
of failure response. Besides enabling predictions that are
relevant for the certification and qualification of AM parts,
the framework enables scientific discoveries relating the
AM process to mechanical properties via explicit
treatment of the microstructure.

While this modeling framework and many other modeling
efforts in the community have already significantly grown our
collective knowledge for fusion-based metal AM processes,
challenges remain for the entire AM modeling community to
further improve our understanding.

e Theories and algorithms should be honed as our collective
understanding of the governing physics is improved. For
example, process models need improved theories to
capture the interaction between laser and the vapor
plume. Microstructure modeling requires more effective
approaches to capture the solidification physics for
complex material systems. Property predictions require
improved constitutive models based on better under-
standing of the governing deformation and failure
mechanisms. Additionally, the multiphysics in the
processes occur on different length and time scales and
must be captured by different models. Better strategies
should be developed to improve the accuracy and
efficiency of data communication between different
models.

e There is a significant opportunity to leverage data-driven
modeling approaches to advance and accelerate the
physics-driven predictions. One recent example by
Herriott and Spear®” demonstrates the use of deep
learning to predict microstructure-sensitive mechanical
properties of AM metals using 3D microstructural images
as input. Once adequately trained, the deep-learning
models are capable of predicting property maps like the
one shown in Figure 9 in a matter of seconds. A recent
review article by Kouraytem et al.*' describes the
similarities and distinctions between physics-driven and
data-driven models for predicting P-M-P relationships in
metal AM, emphasizing that the models are not mutually
exclusive but can be used to inform one other.

e The computational costs for physic-based and data-based
simulations can both be exceedingly high. To mitigate
this, the community should better embrace the fast-
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growing high-performance computing technologies (e.g.,
parallel computing, cloud computing, and GPU comput-
ing) and the efficient software libraries. In addition, the
community can leverage the diverse resources and
opportunities provided by some large-scale initiatives
(such as the U.S. Department of Energy’s High-
Performance Computing for Manufacturing program).

e Continued efforts should focus on validating models.
Round-robin style competitions, like the AM Modeling
Challenge Series by AFRL and America makes and the
AM Benchmark Challenges hosted by the National
Institute of Standards and Technology, provide a
substantial amount of data from well-controlled experi-
ments. The data can help the community to identify gaps
in modeling assumptions/formulations and to calibrate/
validate the models. Additionally, because material
properties can be highly sensitive to chemistry, temper-
ature, and other conditions, future efforts should be
invested to acquire and leverage data for condition-
dependent material properties.
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