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We study the collective behavior of interacting arrays of nanomagnetic tripods. These objects have six
discrete moment states, in contrast to the usual two states of an Ising-like moment. Our experimental data
demonstrate that triangular lattice arrays form a “tripod ice” that exhibits charge ordering among the effective
vertex magnetic charges, in direct analogy to artificial kagome spin ice. The results indicate that the interacting
tripods have effective moments that act as emergent local variables, with strong connections to the well-
studied Potts and clock models. In addition, the tripod moments display a tendency toward a nearest neighbor
alignment in our thermalized samples that separates this system from kagome spin ice. Our results open a path
toward the study of the collective behavior of nonbinary moments that is unavailable in other physical systems.
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The nanomagnet arrays known collectively as artificial
spin ice have offered an important window into collective
behavior associated with frustrated interactions. The ability
to both design the array structures and probe the resultant
moment configurations microscopically has revealed a
disparate class of phenomena, including topological exci-
tations, effective magnetic monopoles, and various types of
ordering [1-3].

The elementary magnetic degree of freedom in existing
artificial spin ices has most typically been an Ising-like
binary moment associated with a single-domain ferromag-
netic nanomagnet. Experimentally, this has been most
commonly realized as a stadium-shaped island or a wire,
so that shape anisotropy aligns the moment with the geo-
metric long axis [4,5], or a disc with perpendicular magnetic
anisotropy [6,7]. Other groups have examined circular
islands to allow for XY symmetry [8—10], or deployed either
rectangular islands [11] or closely-paired stadium-shaped
islands [12], both of which create effective quadrupole
moments. In each case, the fundamental elements have
direct counterparts in atomic magnetic moments.

In this work, we examine an alternative fundamental
building block, the magnetic tripod, in which the nano-
magnet structure has threefold symmetry and six possible
effective moment states. We experimentally investigate
interacting tripods placed on a triangular lattice, allowing
comparison with the classic kagome structure. Our results
demonstrate that this tripod ice displays qualitatively
distinct collective behavior and suggest a panoply of
new physics in different geometries of tripod arrays.

Our tripods are threefold-symmetric Y-shaped ferromag-
netic nanoislands, as illustrated in Fig. 1. The tripods are
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arranged in a regular triangular lattice array, which we call
“triangular tripod ice” in analogy to naming conventions
for other artificial spin ice systems. We placed the tripods
with identical orientations in this initial study, choosing one
of the simplest possible structures that reflects the threefold
symmetry of the tripods. This geometry has the advantage
that it is directly comparable to the conventional kagome
ice lattice (the triangular tripod lattice can be formed by
connecting every other vertex of the kagome structure). Our
structure therefore allows us to elucidate what new physics
arises from having tripods as the fundamental unit, as
opposed to separated triads of stadium-shaped nanomag-
nets each behaving as a dipole.

Our permalloy structures had thickness of 15 nm, and
were defined by the lattice constant a, the leg length r, and
leg width w, where all parameters are defined in Fig. 1(f).
We parametrize the samples in terms of the gap between
the tripods (¢ = a — r), since the interaction is strongly
correlated with gap size, and we focus on samples with
dimensions of r = 220 nm, w = 80 nm, and varying values
of a (resulting in g = 30-300 nm). A second set of samples
with » =160 nm and w = 60 nm showed qualitatively
similar behavior. The magnetic state of the lattice was
measured with magnetic force microscopy (MFM) after each
sample was thermalized by heating to slightly above the Curie
temperature for permalloy and cooling slowly, allowing the
moments to reach a low-energy collective state [13]. Details
of sample deposition, lithography, and thermalization are
given in the Supplemental Material [14]. For comparison, we
also studied two kagome spin ice samples with isolated
islands of dimension 220 nm x 80 nm and lattice parameters
of 320 and 360 nm, which were grown simultaneously on the

© 2023 American Physical Society
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FIG. 1. Magnetic tripod lattice. (a) Scanning electron micros-
copy image of triangular tripod ice with g = 140 nm. (b) Mag-
netic force microscopy image of the same sample. (c) Map of the
moments of the individual legs from the MFM image. (d) Map of
the tripod moments from the MFM image. (e) Top row: color
scheme for the six possible tripod states, with the arrows
indicating the effective tripod moment direction. Middle row:
Magnetic charges at the tripod centers, with arrows indicating the
dipole moments of the legs. Bottom row: Magnetic charges at
the interstitial vertices between tripods, with arrows indicating the
dipole moments of the legs. (f) Schematic of the tripod lattice,
indicating the lattice constant a, the length of each leg r, the leg
width w, and the gap g.

same substrate. (A schematic of the kagome ice lattice
parameter is shown in the Supplemental Material [14]).
The MFM images, such as shown in Fig. 1(b), demon-
strate that the tip of each of the three legs of each tripod has
either a north or south magnetic pole, so that the three
points of each island each have a magnetic pole (and a
fourth magnetic pole is at the center of each structure). We
note that the domain structures of similar-shaped (but
larger) magnetic objects were examined previously, and
those showed both complex magnetic domains as well as
the simple three-pole state that we observe, depending on
the interactions [25,26]. Micromagnetics also confirm that
the directions of the leg dipole moments obey the ice rule,
with two pointing in and one out, or vice versa (see
Supplemental Material [14]). If one considers each leg
dipole as having an effective magnetic charge of ¢ = +1 at

each end, the tripod has those effective charges at the ends
of each of its three legs, and an effective net charge of +1 at
the center, associated with a domain wall. These charges
are illustrated in Fig. 1(e), along with the charges of +1 or
43 at the interstitial points.

As noted above, because the legs of the tripods are on the
edges of a kagomelike lattice, the moments of the legs can
be easily mapped onto the moment structure of the well-
studied kagome ice geometry [2,3,5,27-29]. Unlike
kagome ice, however, there is a symmetry breaking
between the tripod centers and the interstitial vertices of
the tripod lattice. The kagome ice vertices on the tripod
centers are always connected, whereas on the interstitial
vertices the islands are separated by the gaps, as illustrated
in Fig. 1(f). In the limit of g = 0, the symmetry breaking is
removed, and the system becomes equivalent to a con-
nected kagome ice [30,31], which experimentally shows a
low energy state very similar to kagome ice composed of
isolated islands. The collective dynamics of connected
artificial spin ice is associated with domain wall motion
through the structure [32], as opposed to individual
moment reversals, and is thus quite different from the
isolated tripods we are examining.

Because of the symmetry breaking, we model tripod ice by
defining a new nonbinary variable, the tripod moment m,
which aligns with the combined net dipole moment of the
three legs and is designated by its orientation, 8. We note that
0 has six possible values, as shown in Fig. 1(e) (top row).
Thus, m can be considered a six-state Potts variable [33,34],
or, equivalently, a clock variable. Potts variables and Potts
model Hamiltonians have been the subject of theoretical
studies since the 1950s, when they were introduced as a
generalization of the Ising model, and have since found
applications ranging from magnetism [35], including artifi-
cial spin ice [11,12], to computational biology [36,37] and
complex networks [38]. We are unaware, however, of
previous experimental systems in which a six-state Potts
variable has been examined in detail. We also note that the
thermal magnetic reversal processes of these structures are
likely to be constrained to rotate m in increments of
60 degrees when a single leg domain flips orientation, thus
putting interesting constraints on the dynamics.

We now turn to the statistics of the measured magnetic
configurations, obtained from the MFM images of our
thermalized arrays. We first perform a comparison to
expectations for the thoroughly examined kagome ice
system [2,27,30,39,40]. By mapping the tripod charges
onto a kagome ice structure, we find a configuration
exhibiting crystallites of charge ordering among the mag-
netic charges on the tripod centers and interstitial vertices.
This is demonstrated in Fig. 2(c), where we show an
example of real-space charge ordering from one of our
MFEM scans. We note that these data are qualitatively
similar to charge crystallites observed experimentally in
thermalized kagome ice, which reproducibly are near the

126701-2



PHYSICAL REVIEW LETTERS 131, 126701 (2023)

0.4
(a) . (b) - . : : ; :
O )
0.2 |
)
O
§ 00 \ N
K
g !
g -0.2 3 4
© —=— Gap =30 nm
% Gap =50 nm
57041 —+—Gap=80nm -
—»— Gap = 140 nm
L —*— Gap = 300 nm
06 1 —o— Kagome 4
1 1 1 1 1 1
1 2 3 4 5 6
Distance D (lattice constants)
(d) : ] . . .
0.25 . i
501 ht
~ a s
[a) = : 9
= 0.20 |- i f i
g G -
o - 0.01 R |
- 015 9
il .
© 500 1000 1500
© 010 Distance D (nm) B
<3
O
"E’, 0.05 i
@®©
&
000|---J--=-== - -
-0.05 L L I | .
1 2 3 4 5 6

Distance D (lattice constants)

FIG. 2. Charge correlations. (a) Schematic showing the charge-charge distance order between tripod centers and interstitial vertices,
labeled by increasing neighbor distance. (b) The charge correlation as a function of vertex separation and comparison with the result
from our measurement of the 320 nm kagome ice. (c) A typical map of the magnetic charges in tripod ice from an MFM image.
Crystallites of charge ordering are shaded grey and purple, and the charges at the tripod centers and interstitial vertices indicated with red
and blue dots. The image was taken from the g = 30 nm array. (d) The charge correlation between the tripod centers as a function of
distance. The inset shows the data for the g = 30 nm array on a semilog scale, suggesting an exponential dependence. The error bars in

(b) and (d) are the standard error from multiple MFM images.

Ice-II transition and in good agreement with Monte Carlo
calculations [28-31,41,42].

To further analyze our observed charge ordering, in
Fig. 2(b) we plot the charge correlation vs the separation
between charges (D), with the neighbor distances illus-
trated in Fig. 2(a). The charge correlation is defined as
C(D) = (q,q;), where g; and g; have distance D between
all effective magnetic charges on both the tripod centers and
the interstitial center points between tripods. For compari-
son, we also plot the charge correlations from our mea-
surements of kagome ice, and the agreement is striking.

Figure 2(d) shows the correlation of charges just on the
tripod centers, Cipoa(D), demonstrating that those corre-
lations decrease monotonically with separation on the
lattice, and that there is strong dependence on the gap
size. The inset to Fig. 2(d) shows that, in the case of the
strongest correlation (¢ = 30 nm), the charge correlation
has an apparent exponential decay with distance, with a fit

that indicates a decay length of 277 + 7.4 nm. The expo-
nential decay suggests equilibration just above the charge
ordering transition [28,41], where charge correlations are
expected to decay exponentially with a correlation length
diverging at the transition. Our kagome ice data in Fig. 2(b)
show similar exponential behavior over the limited range in
which we have results. To the best of our knowledge,
experimental observation of such behavior has not been
previously reported for artificial spin ices.

Having compared the charge correlations with the
kagome structure, we now consider the correlations among
the effective magnetic moments associated with the tripods.
Figure 3 shows the correlation M(D) = (m; - m;) among
neighboring tripods, versus their separation distance. We
see a clear correlation among nearest-neighbor tripods,
which decays rapidly with separation. The positive value of
M for the closest spacing suggests that there is a net
effective ferromagnetic interaction between neighboring
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FIG. 3. Tripod moment correlations. The moment correlation

for various tripod ice lattices as a function of distance between the
tripod moments. The equivalent for the 320 nm kagome ice is also
shown. The error bars are the standard error from multiple MFM
images.

tripod moments. In the same figure, we compare with the
equivalent correlations from our measurements of the
320 nm kagome ice, extracted by ascribing to every other
vertex in the kagome ice structure a net moment with six
possible directions, as described in Supplemental Material
[14]. The much larger value of the nearest neighbor M for
the tripod ice samples compared with the kagome ice
samples indicates that the tripod ferromagnetic correlation
is not due to the small background magnetic field that is
present during thermalization. Furthermore, the measured
correlation demonstrates that the tripod ice system has
novel collective behavior that is associated with the tripod
as a fundamental building block.

In Fig. 4 we examine the gap dependence of nearest-
neighbor charge and effective tripod moment correlations for
both sets of tripod ice samples, using the gap as a tuning
parameter for the strength of the pairwise tripod interactions.
We also compare with results from Metropolis Monte Carlo
simulations of dipolar kagome ice [43], mapping each gap
value to an effective temperature determined by minimizing
the overall difference between the experimental and simu-
lated charge correlations for different neighbors (as described
in the Supplemental Material [14]). In Fig. 4(a), we see that
the charge correlations track almost perfectly between tripod
ice and kagome ice [as might have been expected from
Fig. 2(b)], validating the choice of the charge correlators for
bridging between the two structures. By contrast, there is a
striking difference in the development of the nearest-
neighbor tripod moment correlations [Fig. 4(b)], where
the kagome ice tripod moment correlation is determined
as described above for Fig. 3. This affirms that the tripod
moments have a net positive correlation with each other,
which distinguishes them from the kagome system. We note
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FIG. 4. Gap dependence of correlations. Various measures of
correlations for nearest neighbors (D,,;,) in triangular tripod ice
(experimental data) and kagome ice (simulations). Note that D,
has a different definition for the different quantities plotted. (a) The
charge correlation C(D,,). (b) The tripod moment correlation
M (D). (c) The fraction of nearest neighbors with the same
effective moment orientation f s g— (D )- Data are shown for both
shapes of tripods studied and for Monte Carlo simulations of
the dipolar kagome ice system. The value of the gap used for the
kagome simulation data is obtained as described in the text. The
error bars are the standard error from all MFM images.

that the Monte Carlo values for dipolar kagome ice are lower
than those observed experimentally for the kagome ice
system in Fig. 3, possibly due to a small background
magnetic field during thermalization or lack of full ergodicity
in the thermalization process.

We further explore the nearest neighbor ferromagnetic
correlations among the tripod moment by defining the
fraction of neighboring tripods with angular differences
between their moments of Af =6, —60; = 0. We define
this correlated fraction as

Total number of (m;,m ;) pairs whenm; m ;align
fao—o(D)=

Total number of (m;,m;) pairs

126701-4



PHYSICAL REVIEW LETTERS 131, 126701 (2023)

L)
‘GEE'EEEEQEE‘—

S

.
50

06 0.7 08 09 1.0

-0.10t . - : : :
0.0 0.2 0.4 0.6 0.8 1.0
rla
(b) 010 Kagome'Spin Ice
. Lt 0.002
T’ 0.001
5 oosf il B ——
T e ~0.002 o
= 06 0.7 0.8 09 1.0

-0.10 .
0.0 0.2 0.4 0.6 0.8 1.0
rla
(c) e/o Polarized w/0 Stripe /o Vortex (KLRO)
0:0:0:0:0:0:0 Oo oﬂo oo° oo :06::06:
0000000 02020 00209
0“00000000000 0“ 0‘, o° 0 °0¢o°0°“
000000 05050 QG000
FIG. 5. Energetics of ordered states of tripod ice. Relative

energy differences with respect to a polarized state for different
magnetic textures as a function of leg length ratio r/a. (a) Data
for a magnetic tripod lattice. (b) Data for a dipolar kagome spin
ice lattice. (c) Color-coded schematics of three possible ground
state candidates: black for polarized state, violet for stripe state,
and green for vortex state (equivalent to the kagome long-range-
ordered state). The filled symbols with solid lines are calculated
using the Coulomb interaction model and open symbols with
dashed lines are calculated employing the point dipole approxi-
mation. The insets give magnified plots around r/a = 1.

as a function of the distance D between the tripod centers of
m; and m;. For a random distribution of moments, fxg—o
should be 1/6, and we see that the data are well above that
value, indicating a tendency for alignment of neighboring
tripod moments. We note that f,_ is a different measure
from M, since fry—o measures whether neighboring pairs
have exactly the same tripod moment or not. The values of
[ ao—o greater than 1/6 in Fig. 4(c) suggests that the low
energy state of the system has effective ferromagnetic
nearest neighbor interactions among the tripod moments,
again confirming the difference with dipolar kagome ice,
and indicating that the tripod collective behavior is quali-
tatively different.

Since the ground state of dipolar kagome ice was
somewhat complex to ascertain originally [28,41,44],
and we expect a similar near degeneracy of multiple states
in tripod ice, we consider possible low-energy states of the
tripod ice system without definitively identifying a ground
state. Toward that end, we examine the dependence of the
system energy on the ratio of the leg length to the lattice
parameter, i.e., r/a, both within a Coulomb description and
a point dipole description as shown in Figs. 5(a) and 5(b)
(see Supplemental Material [14] for details). Specifically,
we examined simple ordered states of the tripod moments
in which the charges are also ordered, choosing a polarized
(ferromagnetic) state, a stripe state, and a vortex state that
corresponds to the ordered ground state of dipolar kagome
ice drawn in Fig. 5(c). As seen in Fig. 5(a), the polarized
state is the lowest in energy, except for larger values of r/a,
where the energy hierarchy between the considered mag-
netic configurations displays a high sensitivity to this ratio.
This contrasts sharply with the same calculation for the
kagome lattice in Fig. 5(b), for which the vortex state has
the lowest energy (as expected from previous work
[28,41]). The ferromagnetic correlations between nearest-
neighbor tripod moments in Figs. 4(b) and 4(c), as well as
the nonmonotonic behavior in M as a function of gap size,
are consistent with the tendency for a polarized state in
close energetic proximity to other ordered states. We note
that minor lithographic imperfections in the experimental
structures will also affect the superparamagnetic freezing of
the system in any thermalization process, further obscuring
the range of possible ground states for the structure.

The combination of the results in Figs. 3—5 demonstrate
that interacting tripods, each representing sixfold Potts states,
have collective behavior that is fundamentally different from
Ising-like stadium-shaped moments used in the preponder-
ance of previous artificial spin ice studies. While we only
explored one of the simplest possible lattices, our demon-
stration opens the door for exploring potentially novel spin
textures and collective spin dynamics in mesoscopic mag-
netic architectures, beyond the Ising framework. Unlike the
quadrupolar units created previously in square islands or
pairs of stadium-shaped islands [11,12], this system is
comprised of building blocks with a fundamental symmetry
that has no obvious previous experimental analog either in
artificial spin systems or atomic magnetic structures. We
expect that the tripods can be combined into a wide range of
lattices to realize a variety of new frustrated systems,
including hybrid behavior that combines Ising states with
Potts states. The advent of tripod systems also opens the
possibility of experimentally exploring collective behavior of
such magnetic elements, e.g., by incorporating real-time
XMCD-PEEM imaging to study the dynamics of Potts states,
offering novel vistas for exploring previously inaccessible
statistical mechanical properties.
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