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Irregular loci in the Emerton—Gee stack for GL,

By Rebecca Bellovin at Storrs, Neelima Borade at Princeton, Anton Hilado at Burlington,
Kalyani Kansal at Princeton, Heejong Lee at West Lafayette, Brandon Levin at Houston,
David Savitt at Baltimore and Hanneke Wiersema at Cambridge

Abstract. Let K/Q, be unramified. Inside the Emerton-Gee stack X, one can con-
sider the locus of two-dimensional mod p representations of Gal(K /K) having a crystalline
lift with specified Hodge—Tate weights. We study the case where the Hodge—Tate weights are
irregular, which is an analogue for Galois representations of the partial weight one condition
for Hilbert modular forms. We prove that if the gap between each pair of weights is bounded
by p (the irregular analogue of a Serre weight), then this locus is irreducible. We also establish
various inclusion relations between these loci.

1. Introduction

1.1. Emerton—-Gee and CEGS stacks. Let K be a finite extension of the p-adic num-
bers Qp, with residue field k and absolute Galois group Gg. Emerton and Gee [14] have
pioneered the study of certain moduli stacks of d-dimensional representations of Gg. More
precisely, the Emerton-Gee stack X is a formal stack over Spf(Z,) whose A-valued points,
for each p-adically complete Z,-algebra A, are the rank d étale (¢, I')-modules with A-co-
efficients; in particular, the F-points of X; for any finite extension F/F), are interpretable as
Galois representations p: Gg — GL; (F). The book [14] gives several important applications
of this construction, including the first proof that any such p has a lift to characteristic zero,
and still the only proof that any such p has a crystalline lift.

It is expected that the Emerton—Gee stacks will play a central role in a categorification of
the p-adic Langlands correspondence. This expectation is described at length in the survey arti-
cle [15]. As a first indication that the stacks X; have some bearing on the representation theory
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of p-adic groups, Emerton and Gee establish a bijection between the irreducible components
of the underlying reduced substack X .q of X4 in the sense of [12, Definition 3.27], and the
irreducible Fp—representations of GL; (k) (which are traditionally called Serre weights). Let
Xg’re 4 denote the component of X4 .q corresponding to the Serre weight o

The bijection of [14] between Serre weights o and components Xg’re 4 1s characterized by
a description of a dense set of finite type points on each component of X4 .q. Inthe rank d = 2
case, however, more is known: namely, there is a complete description of all finite type points
on each component of X4 4. Recall that, to each p: Gg — GL»(F), the work of [6] associates
a set W(p) of Serre weights. In fact, this set has several descriptions, which are known to be
equivalent due to the work of a number of authors [1, 16—-18]. One such description is in terms
of the existence of crystalline lifts having certain regular Hodge—Tate weights. Then we have
the following; here we recall that a Serre weight is said to be Steinberg if it is isomorphic to
a twist by a character of the representation St := Q- kT, (Sym?~ 1 k?) Ok« F, the tensor
product taken over all the embeddings of k into F),.

Theorem 1.1 ([8, Theorem 1.2], [14, Theorem 8.6.2]). Suppose that p > 2.

(1) If the weight o is non-Steinberg, then o € W(p) if and only if p lies on the component
xg red*

(2) Ifinstead 0 = y @ Stis Steinberg, then y @ St € W(p) if and only if p lies on the union
xg,red U X%(:rge):flt'
In fact, more is true: the cycles X3 ., (in the non-Steinberg case) and X{red + X%féit
(in the Steinberg case) form the cycles in a “universal” geometric version of the Breuil-Mézard
conjecture for potentially Barsotti—Tate representations.

The proof of Theorem 1.1 makes essential use of another stack Z%4 first defined in [7],
whose A-valued points are rank 2 étale g-modules with tamely ramified descent data, and
whose F-points are interpretable as Galois representations p: Gxg — GL;(F) having tamely
potentially Barsotti—Tate lifts, or equivalently Galois representations that are not tres ramifiée
up to twist.

The irreducible components Z (o) of the underlying reduced substack of Z4 are in bijec-
tion with the non-Steinberg Serre weights. To prove Theorem 1.1, one first establishes the
following analogue of Theorem 1.1 (1) for the components Z (o).

Theorem 1.2 ([8, Theorem 1.4(1)]). Suppose that p > 2. If the weight o is non-Stein-
berg, then o € W(p) if and only if p lies on the component Z(0).

The authors then transfer this result from Z4 to X, using the fact that these stacks have
the same versal deformation rings.

One of the main results of this paper is that certain closed substacks of X, and Z%
are in fact isomorphic (we will be more precise in a moment about exactly which substacks).
Although this is wholly expected, it is quite useful, for the following reason. The existence of
substacks of mod p Galois representations satisfying various p-adic Hodge theoretic conditions
is known on the side of the Emerton—Gee stacks (we will denote these stacks by the symbol X
with various decorations), but not on the side of the CEGS stacks (which are the stacks here
denoted Z with various decorations). On the other hand, calculations are generally easier on the
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Z side than on the X side. Thanks to the isomorphism between the two sides, we can pass the
existence of p-adic Hodge theoretic loci from the X side to the Z side, study their properties
on the Z side, and then transfer these results back to the X side, which is the side of greater
intrinsic interest.

1.2. Irregular loci. The other main results of our paper are applications of the above
method to the closed substacks of X r.q of mod p Galois representations having certain irreg-
ular Hodge-Tate weights; these substacks have positive codimension in X 4. The condition
of being irregular is the analogue for Galois representations of the partial weight one condition
for Hilbert modular forms.

To discuss these results, we assume for the remainder of the paper that the extension
K/Qp is unramified and write f = [K : Qp]; there is probably no conceptual barrier that
would prevent us from studying the ramified case, but the analysis would become considerably
more complicated. Let  denote the collection of integers

{rK,la rK,2}K:k‘—>Fps with 0 < Te,l — T2 = P

In the terminology of Definition 4.7, we say that r is a p-bounded Hodge type.

Let us write Xoq for the reduced closed substack of X 2.red Whose F-points are represen-
tations p: Gg — GL,(F) having crystalline lifts with labeled Hodge—Tate weights {ry 1. 7¢,2}
Thanks to the results of [17] on the weight part of Serre’s conjecture, the condition o € W(p)
is equivalent to a statement about the existence of crystalline lifts of p. As a consequence, if
the Hodge type r is regular, meaning that r 1 > r, 2 for all «, then Theorem 1.1 says pre-
cisely that Xeq is one of the irreducible components of X3 req (or a union of two irreducible
components, in case all the differences r ;1 — r¢ 2 are equal to p).

We are interested in saying something about the stacks Xieq in the irregular case, i.e.,
when r,1 = ry 2 for one or more embeddings « (in which case er*ed has codimension in X3 red
equal to the number of embeddings « such that r, 1 = r¢,2). To explain how we do this, we
need to introduce the companions of the stacks Xreq on the side of the CEGS stacks.

By construction, the stack Z¢ is equipped with a morphism

(1.3) BT . Z4d,

where €44BT ig the stack of Breuil-Kisin modules of height at most one with tame descent
data and satisfying a Kottwitz-type determinant condition. Indeed, Z% is defined to be the
scheme-theoretic image (in the sense of [13]) of ©ddBT ip the stack of étale @-modules with
descent data.

The map (1.3) can be thought of as a partial resolution of the stack Z%. Resolutions
of moduli of Galois representations by moduli of objects coming from integral p-adic Hodge
theory have played a fundamental role in the deformation theory of Galois representations,
and hence in the study of automorphy lifting theorems, going back to the work of Wiles and
Taylor—Wiles [22,24]. In this particular guise, the inspiration comes from the work of Kisin, as
the map (1.3) can be thought of as a globalization of the maps ®y, of [19].

A large part of this article can be thought of as an analysis of some of the finer properties
of the map (1.3). To say more, we need to introduce some additional notation. The stack €4-ET
has a decomposition

]_[ x€‘c,BT’

T
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where the disjoint union is taken over tame inertial types 7: I[g — GL, (Gp), and the substack
€%BT consists of Breuil-Kisin modules whose descent data has type 7. We write Z? for the
scheme-theoretic image of €%BT in Z%4, By [8, Theorem 1.4 (2)], the underlying reduced sub-
stack Z%! of Z7 is precisely the union of the components Z (o) for Serre weights o that occur
as Jordan—Holder factors of o(7), the reduction mod p of the representation o (t) associated
to 7 by the inertial local Langlands correspondence. We can now state precisely which of the
Emerton—-Gee and CEGS stacks we check are isomorphic.

Theorem 1.4 (Theorem 4.5). The stack ZT is isomorphic to X %8BT, the Emerton-Gee
stack of potentially Barsotti—Tate representations of type t.

Assume henceforth that the type T is non-scalar. The underlying reduced substack € %8BT
of €%BT has precisely 2/ irreducible components €7(J), indexed by subsets J of the set of
embeddings k: k — fp. Write Z7(J) for the scheme-theoretic image of €%(J) in Z%1.

There is a combinatorial formula (which we recall in equations (1.12)—(1.14) below)
which associates to each pair (7, J) a tuple of integers sy, € [-1, p — 1] indexed by the
embeddings k:k — F,, as well as a character © gk — F;;. Define £, to be the collection
of sets J such that sy, € [0, p — 1] for all «, i.e., such that s; , = —1 does not occur. Then,
for each J € &, it makes sense to define the Serre weight

o(1); =(Oso0de) ® X) (Sym*’k?) @ Fp.

k:k—>Fp

Every irreducible component of both €%5T:1 and Z%1 has dimension [K : Q,]. Under the map
€wBT.l . 771 it is proved in [9] that

« if J € P, then the component €7(J) dominates a component of Z%!, that is, Z7(J) is
some irreducible component of Z%!, while on the other hand,

« if J ¢ P, then the scheme-theoretic image of €¥(J) in Z%! has positive codimension.
Following [9], we refer to these €7(J) as “vertical components” of €5BT>1,

The first part is made more precise in [8], as follows.

_ Theorem 1.5 ([8, Theorem 6.2(5)]). IfJ € Py, then ZT(J) is precisely the component
Z (o (1)), in particular, we have p € Z*(J) ifand only if a(t)y € W(p), and Z*(J) depends
only on the Serre weight 6 (1) .

Equivalently, again using the results of [17] on the weight part of Serre’s conjecture,
Theorem 1.5 can be rephrased as follows. (Here Oy is any extension to Gk of the inertial char-
acter identified with ® ; via Artin reciprocity. See Section 1.4.1 for the various normalizations
related to Serre weights and Hodge—Tate weights that we use throughout this paper.)

Theorem 1.6 ([8, Theorem 6.2 (5)], second version). Suppose J € Pr. Thenp € Z*(J)
if and only if p ® @;1 has a crystalline lift with k-labeled Hodge—Tate weights {—syj . 1} at
each embedding k:k — Fp.

In other words, for regular Hodge types r, the companions of the stacks Xeq on the CEGS
side are precisely the stacks Z*(J) for J € #;. It is natural, then, to imagine that the positive
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codimension loci Z¥(J) for J ¢ P, are the companions of the stacks Xeq for irregular r, and
indeed, this is what we show.

Observe that the statement of Theorem 1.6 makes sense even if some sy, is equal
to —1, i.e., if J ¢ P;. The only difference is that, when J € #;, the Hodge-Tate weights
{—s7,,1} are always regular (distinct), while if 57, = —1, then the «-labeled Hodge—Tate
weights {—sy ., 1} are irregular. We prove that the statement of Theorem 1.6 remains valid
even if J ¢ &, that is, we prove the following.

Theorem 1.7 (Theorem 4.16). For general J, p € Z*(J) if and only if p ® @}1 has
a crystalline lift with k-labeled Hodge—Tate weights {—s j i, 1} at each embedding k:k — Fp.
In particular, Z*(J) depends only on the s, and on © .

If one likes, one can therefore view Z%(J) as depending only on the expression for the
“fake Serre weight” & (t); whose definition contains a Sym™! if J ¢ .
As an application, we deduce the following.

Corollary 1.8 (Corollary 4.18). Suppose that 0 < r¢,;1 — 12 < p for all k, with not
all differences equal to p. The closed substack Xieq of X2 .red Whose finite type points are
representations p: Gg — GLZ(E,) having crystalline lifts with labeled Hodge—Tate weights
{ri,1.1k,2} is irreducible.

This result is new in the irregular case. The point is that, by Theorem 1.7, this locus is
isomorphic to one of the stacks Z7(J), and the latter is irreducible essentially by definition.

Since the closed substack Xi=q in the irregular case ha§ positive codimension in X3 red,
it is reasonable to expect that there are inclusions er*ed C Xkq for other collections of Hodge—
Tate weights r’. In the final section of the paper, we establish this expectation in a number of
cases. We define three operators 0, /L, and v, on Hodge types r that are irregular at « (see
Definition 5.1; the first two can be viewed as analogues of partial theta operators and partial
Hasse invariants, as described in the work of Diamond and Sasaki on geometric Serre weight
conjectures [11] and discussed further in [23]. We then establish the following.

Theorem 1.9 (Theorem 5.2). Suppose r’ € {6c(r), pc(r), vic(r)} and assume that r’
remains p-bounded. Then Xieq C Xred.

As a consequence, we deduce that every representation with a crystalline lift of Hodge
type r also has a crystalline lift of Hodge type r/, for r, r’ as in the theorem.

1.3. Outline of the paper. We begin in Section 2 by recalling from [7] the definitions of
various stacks of Breuil-Kisin modules and étale ¢-modules with descent data, and reviewing
many of the results from the papers [7-9] that we will need.

In Section 3.1, we analyze the irreducible components of the tamely potentially Barsotti—
Tate Breuil-Kisin moduli stacks €“BT>! from the point of view of the shape of a Breuil-Kisin
module, as studied in [4, 10, 20]. Using this idea, we give a new description of the irreducible
components of €%BT1 with the advantage that we can characterize all of the Fp-points on each
component €7(J) of €%BT:1_ This stands in contrast to [9], where only a dense set of points
are described. As an application, in Section 3.2, we describe the Fp -points of the stacks Z7(J).
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This is a key ingredient in the rest of the paper, and also leads to a new and purely local proof
of the characterization of the irreducible components of Z% in terms of crystalline lifts.

In Section 4.1, we introduce the Emerton—Gee stacks to the discussion, and establish the
isomorphism between the stacks X *BT and Z¥. One consequence is the existence of a reduced
closed substack Zreq of Z%, for each p-bounded and non-Steinberg Hodge type r, whose Fp—
points are precisely the representations p: Gg — GL, (Fp) having a crystalline lift of type r.
In Section 4.3, we combine the results of Section 3.1 with results from [17] and combinatorial
input from Section 4.2 to prove that the stacks Zreq are equal to the stacks Z7(J) for suitable
choices of T and J. This establishes Theorem 1.7 and Corollary 1.8.

Finally, in Section 5, we prove Theorem 1.9. In fact, we give two proofs. One argument
is relatively direct and computational. The other is more geometric, but also somewhat more
involved, making use of the description of the components of €“BT! in terms of shape.

1.4. Notation and conventions. Let p > 2 be a prime number. Throughout the paper,
we fix K/Qp, an unramified extension of Q, of degree f with residue field k.

We also fix an algebraic closure 61, of Qp, with residue field Fp. Our representations of
the Galois group Gk will have coefficients in these fields. Let £ be a finite extension of Q,
contained in 61,, with ring of integers (@, uniformizer w, and residue field F. As usual, we will
assume that the coefficient field £ is “sufficiently large”, in a sense that we make precise in
Section 1.4.2 below.

Since K/Q, is unramified, we can (and do) identify the embeddings K — Gp with
embeddings k — E,. We fix some embedding «g: k —> Fp and recursively label the remaining

embeddings by elements of Z/ f Z by taking KIP T

=K.
1.4.1. Hodge-Tate weights and Serre weights. Throughout this paper, we will use
notation and conventions as in the series of papers [7-9]. Hodge—Tate weights are normalized
so that the cyclotomic character has all Hodge—Tate weights equal to —1. We normalize local
class field theory so that uniformizers correspond to geometric Frobenius elements.
A Serre weight is an irreducible E, -representation of GL, (k). Each Serre weight has the

form
f—1

075 = ®(dettf Sym®/ k?) Qk k; F,
j=0
for integers #; and integers 0 < s; < p — 1. If we furthermore assume that0 <7; < p — 1 and
not all 7; are p — 1, each Serre weight has a unique representation as one of the 07 5’s.
To each representation p: Gxg — GL, (Fp), one associates a set W(p) of Serre weights.
In our conventions, we have 675 € W(p) if and only if p has a crystalline lift with Hodge—Tate
weights {—s; —t;,1 —t;} for the embedding «; (cf. [9, Definition A.3]).

1.4.2. Tame types. Throughout the paper, we write T for a non-scalar tame inertial
type Ix — GL,(0O). Such a representation is of the form 7 ~ n @ n/, and we say that t is
a principal series type if 1,1 both extend to characters of Gg. Otherwise, n = n?, and n
extends to a character of G, where L denotes the unramified quadratic extension of K. In this
case, we say that t is a cuspidal type.
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Throughout the paper, we will often need to handle the principal series and cuspidal cases

separately. We define

e { f if  is principal series,
2f if T is cuspidal,

and set ¢/ = p/’ — 1. Fix a uniformizer 7 of K and choose 7’ such that (7/)¢" = 7. In the
principal series case, we define K’ = K(xr’), while in the cuspidal case, we define K/ = L(z'),
so that, in either case, K’ is a finite tamely ramified Galois extension of K with inertial degree
/' and having the property that 7|7, is trivial. We assume that E is sufficiently large in the
sense that all embeddings K’ < Q), have image in E.

Write k’ for the residue field of K, and let «: k" — Fp be any extension of ko to k’.
Recursively label the embeddings k" < F, by elements of Z/f'Z by taking (k[ ;)P = «;.
For all g € Gk, we set h(g) = g(x’)/n’ € we (K'). Identifying per(K') with per (k'), we
can then define fundamental characters w; of level f by setting w; = k; o h: [g — F; for
eachi € Z/fZ (cf. [9, Lemma 1.4.1] and the discussion following). Similarly define funda-
mental characters ; of level f' by setting ] = k] o h: Ix — F; for each i € Z/f'Z. Let
o lg — Q; denote the multiplicative lift of w;, and similarly for &;.

In the cuspidal case, let ¢ € Gal(K’/K) denote the unique nontrivial element fixing 7’.

1.4.3. Inertial local Langlands and Serre weights. Henniart’s appendix to [5] asso-
ciates a finite-dimensional irreducible E-representation o () of GL2(Og) to each inertial
type t; we refer to this association as the inertial local Langlands correspondence. The reduc-
tion modulo p of o (7) is not well-defined, but its Jordan—Holder factors are. We normalize the
inertial local Langlands correspondence as in [9, §1.4], so that p has a potentially Barsotti—Tate
lift of 7 if and only if at W(p) contains at least one Jordan—Holder factor of the reduction mod
p of o(r) by [9, Lemma A.5].

We now give an explicit description of the Jordan—Holder factors of the reduction mod p
of o (1), following the recipe from [9, Appendix A]. Recall that we assume t to be a non-scalar
tame type. We define 0 < y; < p — 1 (fori € Z/f’Z) to be the unique integers such that

f-1
(1.10) nm)~ =TT @)
i=0
Observe in the cuspidal case that y; + y; 4+ 5 = p — L.

Definition 1.11. Let us say that a subset J C Z/f'Z is a profile if either
* 7 is non-scalar principal series and J is any subset, or

e 7 is cuspidal and, for all i, we have i € J ifand only if i + f & J.

For each profile J, we define tuples of integers (s ;); and (¢7,;); indexed by Z/f'Z, as
follows:

— 1=y —=38y5c(i ifi —1elJ,

(1.12) srii= 17 Vi —8ye(i) ifi - 1¢
vi —385(i) ifi —1¢J,

(1.13) by =" +38ye(i) ifi—1e
ifi —1¢J.
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Note that s7; € [-1,p — 1], t5; € [0, p], and 57 is f-periodic. Define ® y: k> — F* to be
the unique character such that

(1.14) Oy oNpy/p = 7 ® l_[ (Kl{)tj.i‘
i€/ f'Z
Here we regard 1’ as a character of k" via the Artin map for K’, and Ni//x denotes the norm
map. (It is true, but not obvious, that the right-hand side of (1.14) factors through N/ .)

Definition 1.15. Define S*(J) :={i € Z/fZ | s;; = —1} and take $; to be the set of
profiles J such that S*(J) is empty. Then, for each J € #;, we define

6(1)y =(@so0deh ® (X) (Sym™ k?) R, Fp.
i€Z/fZ

Theorem 1.16. The Jordan—Hdlder factors of the reduction mod p of o (t) are precisely
the Serre weights o (t) y for J € Pr.

2. Stacks of Breuil-Kisin modules and étale ¢-modules

As we have explained in the introduction, the main objects of study in this paper are
certain stacks €%BT of Breuil-Kisin modules and Z? of étale p-modules, as well as the map
€%BT _ ZT between them. We begin with a brief recollection of the definitions and basic
properties of these objects.

2.1. Breuil-Kisin modules. As in [9], we will consider Breuil-Kisin modules with co-
efficients and descent data. Let © := W(k’)[u]), and extend the arithmetic Frobenius on W (k")
(i.e., the homomorphism ¢: W(k’) — W(k’) induced by x +> x? on k') to a self-map ¢ of
by setting ¢(u) = u?. We extend the action of Gal(K'/K) on W (k') to @ via g(u) = h(g)u.

If A is a p-adically complete Z,-algebra, we set ©4 := (W(k') ®z, A)[u] and extend
the actions of ¢ and Gal(K’/K) A-linearly. Setting v := u¢K'/K) we define the subring
©Y := (W(k) ®z, A)[v], which is preserved by ¢ but on which Gal(K'/K) acts trivially.
Let E(u) denote the minimal polynomial of 7’ over W (k).

Definition 2.1. A Breuil-Kisin module with A-coefficients and descent data is a finite
projective ©4-module 9t together with semilinear maps
ogp: M — M,
M —->M, geGaK'/K).

Write p*I := G ®,, g M. We impose the further requirements that the linearization
Ogp:* M — M

of @9y is an isomorphism after inverting E(u), that each g commutes with ggy, and that
21082 = g18> for all g1, g, € Gal(K'/K). We say that the Breuil-Kisin module )t has
height at most h if the cokernel of ®gy, is killed by E (u)".

Morphisms of Breuil-Kisin modules are morphisms of &4-modules that commute with
the actions of ¢ and Gal(K'/K).
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Recall from Section 1.4 that we have fixed a coefficient field £/Q, with ring of inte-
gers (9, uniformizer @, and residue field F, and that E is sufficiently large in the sense that it
admits embeddings of the field K.

Definition 2.2. For each embedding «/: k" — Fp, which we can and do identify with
its lift W(k') < Q,, there is a corresponding idempotent e; € W (k') ®z, O such that x ® 1
and 1 ® «;(x) have the same action on ¢; (W (k') ®z, O).

For any O-algebra A and any W(k') ®z, A-module N, we set M; := ¢; M. In case M
18 a Breuil-Kisin module, we write

Dgp,i " (Mi—1) — My
for the morphism induced by ®gy, which we call the i-th partial Frobenius morphism.

We note the following lemma, which is an immediate consequence of [13, Proposi-
tion 5.1.9 (1)].

Lemma 2.3. Let A be a p-adically complete O-algebra, and let W be a Breuil-Kisin
module with A-coefficients and descent data. Then each YR; is Zariski locally on Spec(A) free
as an Alu]-module.

Definition 2.4. Let t be a tame inertial type, and let A be a p-adically complete 9-al-
gebra. We say that the Breuil-Kisin module )t with A-coefficients and descent data is of type
7 provided that, Zariski locally on Spec(A), there is an I(K’/K)-equivariant isomorphism
M /udlt; = A R t foreach i.

Definition 2.5. We define €%BT to be the stack over Spf((9) which associates to any
O /w*-algebra A the groupoid of rank 2 Breuil-Kisin modules with A-coefficients and descent
data, of type 7, and of height at most 1, and additionally satisfying the Kottwitz-type strong
determinant condition of [7, §4.2].

We define €94BT to be the union of the stacks €%BT for varying 7 (including scalar
types), and further write €44-BT-1 and €44-BT-1 for the special fibers

CYBT wwF and €7BT xp F

respectively.

Remark 2.6. We do not write out the strong determinant condition explicitly, because
we will not need it. However, we recall from [7, Lemma 4.2.16] that this condition guarantees
that the Spf(©)-points of €%BT correspond to potentially Barsotti—Tate representations with
Hodge-Tate weights {0, 1} (rather than contained in {0, 1}) at each embedding.

Proposition 2.7. Suppose that A is a reduced F-algebra and let W be a rank 2 Breuil—
Kisin module with A-coefficients and descent data, of type t, and of height at most 1. Then
M is an object of €TBT(A) (i.e., it satisfies the strong determinant condition) if and only if,
locally on Spec(A), the determinant of each partial Frobenius map ®qy, ;, with respect to some
(hence any) choice of bases, lies in u® - A[u]*.
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Proof. In case A = F’ is a finite extension of F, the “only if” direction is given by
[7, Lemma 4.2.11 (2)]. The converse to [7, Lemma 4.2.11 (2)] is false in general, because the
type 7 in that reference is allowed to be mixed (cf. [7, Definition 3.3.2]). Since we assume
here that the type is unmixed, the A[v]-determinants of the maps ®gy ; ¢ (the &-isotypic part
of ®gy; for some character £ of /(K’/K), in the notation of [7]) are all equal up to units,
and indeed equal up to units to the Au]-determinant of ®gy ;, and then the argument for
[7, Lemma 4.2.11 (2)] runs in the reverse direction as well.

For general coefficients, we reduce immediately to the case where A has finite type as an
F-algebra. Since A is then both reduced and Jacobson, the strong determinant condition for 91t
is equivalent to the strong determinant condition for the base change of JJt to each closed point
of A. The result then follows from the case F’/F finite of the previous paragraph. m)

The following results are proved in [7, Corollaries 3.1.8, 4.5.3, Proposition 5.2.21] and
[9, Theorem 5.4.3].

Theorem 2.8. The stacks €4-BT1 and €TBT-1 gre algebraic stacks of finite type over
O, while the stacks €8T and €8T gre w-adic formal algebraic stacks. Moreover,

(1) €%BT is analytically normal, Cohen—-Macaulay, and flat over ©.
(2) The stacks €BT1 gnd € BB gre equidimensional of dimension [K - Q]
(3) The special fibers €YBT1 and €TBT gre reduced.

(4) If T is non-scalar, then €% has 27 irreducible components €%(J), in bijection with the
set of profiles J .

2.2. Etale @-modules.

Definition 2.9. If A is a Z/ p?Z-algebra for some a > 1, then a weak étale ¢-module
with A-coefficients for K’ is a finitely generated ©4[1/u]-module M together with a semilinear
morphism ¢@pr: M — M such that the linearization

Ppp*M =G Qe M > M

is an isomorphism. Weak étale modules with A-coefficients for K are defined identically, but
with @4[1/v] in place of G4[1/u].

A weak étale p-module with A-coefficients and descent data from K' to K is a weak étale
@-module with A-coefficients for K’ together with additional semilinear morphisms

&M — M, geGa(K'/K)

such that each g commutes with @p7, and g1 o0 g» = g1g» forall g1, g» € Gal(K'/K).
An étale p-module is a weak étale p-module such that M is furthermore projective as an
©4[1/u]-module (resp. as an @[1/v]-module, for étale p-modules for K).

Definition 2.10. We define R4 to be the stack over Spf(¢)) which associates to any
O /w*-algebra A the groupoid of rank 2 étale ¢ modules with A-coefficients and descent data.

We will also sometimes want to make use of étale ¢-modules without descent data. Write
R, for the Spf(O)-stack of rank 2 étale ¢-modules for K (without descent data). The functor
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Ry — R sending M ~> M ®@or1/y] ©[1/u] is an equivalence, with inverse given by taking
Gal(K’/ K)-invariants; cf. [14, Corollary 2.3.21].

If 9N is a Breuil-Kisin module with A-coefficients and descent data, then evidently
IN[1/u] is an étale p-module with A coefficients and descent data. Inverting u thus defines
morphisms

(2.11) BT RUEBPT R

Definition 2.12. We define Z%! and Z7 to be the scheme-theoretic images (in the sense
of [13]) of the morphisms given in (2.11). We further define Z%%!, Z%!, and Z*(J) for each
profile J to be the scheme-theoretic images of €44-BT:1 €©BT.1 "e7( J) ynder the morphisms
of (2.11).

Note that Z9%! and Z™! are reduced as a consequence of Theorem 2.8 (3), but need not
be (and in general presumably will not be) the special fibers of Z% and Z7.

We recall some of the important properties of these stacks as established in [7, Theo-
rem 5.1.2, Proposition 5.1.4, Lemma 5.1.8, Proposition 5.2.20] and [8, Theorem 6.2].

Theorem 2.13. The stacks Z%! and Z>! are algebraic stacks of finite type over O,
while the stacks Z% and Z* are w-adic formal algebraic stacks. Moreover,

(1) the stacks Z9%' and Z%' are equidimensional of dimension [K : Qp).
(2) The stacks ZY%! and Z®' are reduced.

(3) The irreducible components Z(c) of Z%! are in bijection with non-Steinberg Serre
weights o. Furthermore, for each finite extension ¥’ /F, the ¥ -points of Z (o) are pre-
cisely the Galois representations p: Gg — GL,(F') having o as a Serre weight.

(4) If T is non-scalar, then Z¥(J) = Z(5(t)y) for each J € Py, and these are precisely the
irreducible components of Z%!.

2.3. Galois representations. We fix a compatible sequence {m,} of p"-th roots of ;
since ged(e(K'/K), p) = 1, this determines a compatible sequence {x,} of p”-th roots of
' such that ()¢ K'/K) = 7, Let Ko 1= U, K(m,) and let K. :=|J,, K'(n;,). Then we
identify Gal(K'/K) and Gal(K},/Koo)-

By Fontaine’s theory of the field of norms, if |A| < oo, then the category of weak étale ¢-
modules with A-coefficients is equivalent to the category of A-representations of G . There
are various ways to write down such a functor, and in particular, we will need to compare the
functors to Galois representations of [9] and [17]. For this reason, we now recall the explicit
descriptions of these functors.

Let Og denote the p-adic completion of @[%]; it is a discrete valuation ring with uni-
formizer p and residue field k’(u)). We let € denote the field of fractions of Qg. Note that the
actions of ¢ and Gal(K’/K) extend naturally to Qg and &.

Fix an algebraic closure K of K with ring of integers O and an embedding K, — K,
and set

R = 1(11‘_n (9?

Xt=>xP
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Write 77 := (7p)n, 1’ 1= () € R and write [r], [z'] € W(R) for their multiplicative lifts in
the Witt vectors W(R).

We may define a g-equivariant inclusion & < W(R) by sending u > [z’], and this
restricts to a g-equivariant inclusion & < W(R) sending v to [r]. This injection extends to
inclusions

1
Og — W(Frac(R)) and & — W(Frac(R))[—].

p
The residue field Frac(R) of W(Frac(R)) contains a separable closure k’((1))*P of the residue
field of Og, and this extension of residue fields corresponds to an unramified extension &"
of &. We let &™ denote its p-adic completion, and we let Qg C E™ denote its (p-adically
complete) ring of integers.

Definition 2.14. We define the covariant functor 7" from weak étale ¢-modules with
A-coefficients to Galois representations, given by

T(M) = (06 @1 M)?=".

If M has descent data from K’ to K, this is actually a representation of Gg__ because
Gk, acts on both Og and M (the latter through its quotient Gal(K [,/ Koo) = Gal(K'/K)).
Equivalently, since [K’ : K] is prime to p, we have that M? := M Gal(K'/K) s an étale -
module with A-coefficients for K, and the natural map G[1/u] ®gory /) M 0 — M is an iso-
morphism. Write

Tg(M°) := (0 ®gop1 /) M)*=!

for the analogous functor on weak étale ¢-modules with A coefficients for K, without descent
data. Then Tg (M) = T (M) and the right-hand side becomes a representation of Gk, by
transport of structure.

Definition 2.15. There are further (contravariant) functors 7* on weak étale ¢-modules
with A-coefficients (with descent data from K’ to K, or for K, respectively), defined as follows:

T*(M) := Homg(1 /o (M. E™/Ogw), Tg(M®) := Homgop /y1,(M°, E™/Ogw).

These are naturally an A-linear representation of Gg__, and when M 0 — pGal(K'/K) then evi-
dently 7*(M) = Tg(M 0). When pre-composed with the functor from Breuil-Kisin modules
to étale p-modules, TI? is the functor used in [17] (and denoted Tg in [17, §3]).

If AisaZ/p®Z-algebra and M is a Breuil-Kisin module with A-coefficients and descent
data, so that 9t[1/u] is an étale p-module with A-coefficients and descent data, then we will
freely write

TOM) := TOM[1/u]), T*EM) := T*(M[1/u]).

Lemma 2.16. Suppose that A is a finite extension of ¥, and M is an étale ¢-module
with A-coefficients and descent data, and set M 0 — pGAK'/K) [ o

MY = Hom@A[l/u](M, @A[l/u]), (MO)V = H0m6g[l/v](M0’ Gg[l/v])

be the (A-linear) dual @-modules with coefficients (and descent data, in the first case). Then
we have a functorial isomorphism T (M) = Tg (M 0V as representations of Gk __ .
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Remark 2.17. The Frobenius on MY is defined by the formula
@ (D siwtmn) =D sig(fm)
i i
for any s; € G4[1/u] and m; € M, and similarly for (M°)V.

Proof. As M is a finite projective A ® Og = ©4[1/u]-module, we have M =~ (M")V
and (M°)V = (M V). By the discussion in the preceding paragraphs, we can therefore reduce
to proving that 7(M V) = T*(M). Furthermore, we have a natural isomorphism

(2.18) E™ /06 ®9, MY = Homg, (M, E™/Ogw)

which is ¢- and Gg__-equivariant. Since M (and hence M ") is p-torsion, the left side of (2.18)
is isomorphic to O ®, M" and its p-invariant subspace is simply 7(M ). On the other
hand, the g-invariants of the right side of (2.18) are 7* (M) by definition, so we are done. 0O

3. Points of €7 (J) and Z7 (J)

In [9], the irreducible components of the stack €%BT>! are studied by analyzing a mor-
phism from €%BT (o a certain auxiliary stack &, (the “gauge stack”). Our goal in the first part
of this section is to explain another approach to describing the components of €“BT>1 in terms
of the notion of shape, and then to relate this description to the one from [9]. The advantage
of our approach is that we are able to give a complete description of all of the points of each
component of €%BT-1 whereas [9] only describes a dense set of points; see Corollary 3.15.
As an application, in Section 3.2, we are able to characterize the F’-valued points of the stacks
Z*(J) for each finite extension F’/F; see Theorem 3.16.

3.1. Irreducible components via shape. Shapes for rank 2 Breuil-Kisin modules with
tame descent were introduced by Breuil in [4], further developed by [10] to study tamely
Barsotti—Tate deformation rings (and called genre there), and eventually generalized to higher
dimensions in [20, 21]. Each field-valued point of €%BT-! has an associated shape which
describes the divisibility by u of certain entries in the matrices of the partial Frobenius maps.

Throughout this section, we fix a non-scalar tame inertial type T = 7 @ n’. We will need
the following notation. For each i, we let k;, k] € [0, p/" —1) be such that n = (@) Yki and
! )kf. Let y; € [0, p — 1] be the unique integers such that

n = (5,'
77n/—l — 1_[ (51{)%'.
i€Z/f'Z

Note that we are implicitly considering 7 and " as an ordered pair of characters. The formula
3.0 plki_y —kima] = [k = kil = (p7 = D(p =1 = 1)

is often useful, where for any a € Z/f'Z, [a] denotes the unique element of [0, p/" — 1) such
that [a] is congruent to ¢ mod p/" — 1. For brevity, we will shorten [k; — k!] and [k — k;] to
¢;, €} respectively, so that n/n" and n’/n are equal to (&; )i and (@] )¢i respectively. Since the
type T is non-scalar, {; and {; are always both nonzero, and we have ¢; + ¢} = pr =1
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Definition 3.2. Suppose that A is an F-algebra and let 9 be an object of €FBT-1(4).
By Lemma 2.3 and the hypothesis that /(K’/K) has order prime to p, Zariski locally on A,
one can choose a basis B; = (e;, fi) of IM; such that Gal(K'/K) acts on e;, f; via n,n’
respectively. Furthermore, in the cuspidal case, we can and do suppose that c(¢;) = f; 4 y and
c(fi) = ey r. Asin [20], we call B = (B;);ecz/ f'z an eigenbasis of IN.

Definition 3.3. If the étale ¢-module M is free and has basis § = (B;), then the matrix
of the partial Frobenius map ®p; with respect to the basis B is the matrix of ®ps; with
respect to the basis (1 ® Bi—1) of ¢*M;_; and the basis §; of M;. We will also use the same
terminology in the context of a Breuil-Kisin module 9t and a basis for 9t[1/u] (which need
not be a basis for ).

Suppose that It has an eigenbasis f, and let Cg; denote the matrix of the partial Fro-
benius map Pgy; with respect to B. Since Pgp; commutes with the descent data, we find

that
(3.4) Cpi = ( o ”e;b")
' pi = ueici d;

for some a;, b;, c;,d; € A[v], meaning that Ogp ; (1 ® e;—1) = a;e; + uti ¢; fi and similarly

for ®gp ; (1 ® fi—1). In the cuspidal case, we additionally compute that

0

(3.5) Cpisr = Ad(1

1
O) (Cg.i)s

where Ad A(B) = ABA™ L.
Any change of basis from an eigenbasis 8 to another eigenbasis B’ is similarly encoded
by an f’-tuple of matrices of the form

l
Xi Uty
u'tz; wj

so that ] = B; - U;. The matrix U; has x;, y;, z;, w; in A[v] and determinant in A[v]*, and
in the cuspidal case, one again has

0 1
Uiy r =Ad Uy).
i+f (1 0)( i)
Under this change of basis, the matrices Cg ; change by the formula
Cpri = U7 -Cpi-p(Ui-1).

Observe that the matrices U; are diagonal modulo u, so that the diagonal entries x;, w;
must be units in A[v]. In particular, whether or not the entries a;, d; of Cg ; are divisible by v
is unchanged under change of eigenbasis. We can therefore make the following definition.

Definition 3.6. Suppose that 9t has an eigenbasis. We define the shape of It at i to be
e I,ifv|a;andv ¢} d;,
e Iyifv {a; andv | d;, and
e Iifv | a;, d; both.
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The argument in Lemma 3.8 below proves that if JJt has an eigenbasis and A is a domain, then
N has a shape, but in general, v may divide neither a; nor d;, in which case the shape of It
at i does not exist. The shape of M, if it exists, is the f”’-tuple whose i-th entry is the shape
of M ati.

In the cuspidal case, we observe from (3.5) that the shape of It at i is I, if and only if
the shape of Mt at i 4 f is I,, and the shape of I at i is II if and only if the shape of It at
i+ fisalsoll.

We remark that having shape I, or II (Zariski locally) at i is a closed condition, and
similarly for having shape I,;» or II at i, and their intersection is the condition of having shape
IT at i. Having shape I, (respectively I,) is not a closed condition, but it is locally closed.

Definition 3.7. Let J C Z/f'Z be a profile. We define £7(J) C €“BT:! to be the sub-
stack such that an object I € €TBT-1(A4) lies in £7(J)(A) if and only if, Zariski locally on A,
the Breuil-Kisin module )t has shape I, or I when i € J, and shape I,/ or Il when i ¢ J.
The inclusion £7(J) C €%BT:1 is a closed immersion (since the condition of being a closed
immersion is checkable locally on A).

Lemma 3.8. We have €581 = )| £7(J)|, the union taken over profiles J .

Proof. Suppose that A is a field and I € €“BT-1(4). The Breuil-Kisin module 90t has
an eigenbasis B, and Proposition 2.7 implies det Cg; € vA[u]* for each i. Comparing with
(3.4) and recalling that uli -uti = v, we find in particular that v | a;d; as elements of A[v].
We conclude that either v | a; or v | d;. Therefore, It has a shape and lies in £¥(J)(A) for
some J (possibly more than one). |

In some computations (such as the one upcoming), rather than working with the matrices
of ®gy ; with respect to an eigenbasis, it is more convenient to write the matrices of ®gy ;
in terms of bases for the n’-eigenspaces of ¢*IN;_1 and IM;. Concretely, if § = (B;) is an
eigenbasis with 8; = (e;, f;), then the n’-eigenspace of 9N; has a basis given by (ue;ei, fi),
while that of ¢*9%;_; has a basis given by (u£§ ®ei—1,1 ® fi—1). The matrix of ®gp ; in
terms of these bases is

v
u b 0 a; b,')

3.9 Ag,; == Ad Cp:) = .

(3.9 B.,i ( 0 1)( B,z) (vCi d;

Note that this is not the same as “the matrix with respect to the basis (ua' ei, fi)i” since
’ ’ . . . .
1 ® uéi—lei #* uli @ ej—1 in general. These matrices have entries in AJv]; for that reason,
this process is sometimes called “removing the descent data”. In the cuspidal case, one checks
. / / _ . f
using ¢; +£i+f = p/ —1 that

0 1 di ¢
(3.10) Agit+f = Ad Ag; = )
’ v O ’ vb; a;

Setting
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we get the change of basis formula

. vPl=vi
Apgri = 1I; Aﬂ,iAd( 0 1)((/?(11'—1))

using (3.1). In the cuspidal case, the matrices /; and /; ;  are related by the formula

0 1 wj Zj
Ii—i—f = Ad I, = .
v O vy Xi

Let L™ GL, denote the positive loop group over F with variable v, i.e., the group ind-
scheme whose A-points are L GL,(A) = GLy(A[[v]). Write €%! for the F-stack of rank 2
Breuil-Kisin modules with coefficients and descent data, of type t, and of height at most 1; in
other words, all of the defining conditions of €%BT-1 except the strong determinant condition.
There is a map

(3.11) (LT GLy), — ev!

given by sending the f-tuple of matrices B; € GL(A) for 0 <i < f to the Breuil-Kisin
module M with M; = Afule; ® Au] fi fori € Z/f'Z, an eigenbasis § with B; = (e;, fi)
for i € Z/f'Z, and partial Frobenius maps ®gy ; such that the matrices Ag ; as in (3.9) for
0 <1i < f are given by the formulas
B; (” O) ifieJ
0 1

1 0
( )B,- ifi ¢ J.
0 v

In the cuspidal case, this means that the matrices Ag ;4 r for 0 <i < f are determined in
terms of Ag ; by formula (3.10).

(3.12) Ag; =

Lemma 3.13. The map of (3.11) factors through the closed immersion £¥(J) C €%}
to give a surjective map
7 (LY GLy) — £7(J).

Furthermore, £¥(J) is reduced and irreducible.

Proof.  Since the loop group L™+ GL, is reduced and the determinant of each matrix 4 B.i
in (3.12) lies in vA[v[*, it follows from Proposition 2.7 that the map (3.11) factors through
the closed immersion €%BT:1 C €%, Since by construction the upper-left entry of Ag; is
divisible by v if i € J, and similarly for the bottom-right entry if i ¢ J, the image in fact lies
in £7(J). We therefore obtain the claimed factorization 7. In fact, since LT GL, is reduced,
by [25, Tag 050B], the map = must factor through the closed immersion £%(J)eq C L7(J);
here £7(J )req denotes the underlying reduced substack of £7(J).

Let A be aring and suppose that I € £7(J)(A) admits an eigenbasis B. Foreachi € J,
we have v | a;, say a; = va;, and Ag; has the factorization

v 0 ) a. b;
ABJ = B; with B; = L s
0 1 ¢ d;
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and analogously when i ¢ J. It follows that )t is in the image of 7. As every It € £7(J)(A)
admits an eigenbasis Zariski locally, we deduce the surjectivity of . The irreducibility of
£7(J) now follows from the surjectivity of 7 and the irreducibility of (LT GL,)/ .

Now consider any morphism X — £7(J) with X a scheme over F. Cover X by affine
opens Spec A such that the induced object of £7(J)(A) admits an eigenbasis. By the argument
in the previous paragraph, each of the maps Spec A — £7(J) lifts through 7, and there-
fore factors through £%(J)req C £7(J). It follows that the morphism X — £7(J) itself fac-
tors through £7(J)req. Thus £T(J)(X) = L¥(J )rea(X) for all schemes X; it follows that
L7(J) = £7(J )req and therefore L£¥(J) is reduced. ]

Theorem 3.14. We have £*(J) = €*(J) for all profiles J.

Proof. 'We have just proved that the stacks £7(J) are reduced and irreducible, and by
Lemma 3.8, their union is €%BT:1 On the other hand, there are 2/ stacks £7(J), and €%BT1
has 27 irreducible components. It follows that each £7(J) must be a different one of the
irreducible components.

By [9, Proposition 5.4.2], the union | J ;5; €7 (/) (the union over profiles J containing i)
is the zero locus in €%BT:1 of the n-isotypic part of agmsl'l (M /uM)i—1 — M/uM);,ie.,
the map induced by Egm,i between the n-eigenspaces of its source and target. In the eigenba-
sis B, this map is multiplication by a; (mod u). Since a; € Av], we have u | a; if and only
if v | a;. Therefore, | J;5; €°(J) = U 5; £7(J). Since this equality holds for each i, we
deduce that £7(J) = €%(J). |

Corollary 3.15. If A is an F-algebra, then Zariski locally on A, €*(J)(A) is precisely
the groupoid of Breuil-Kisin modules with partial Frobenius matrices Ag ; of the form

B(v O)f'eJ d (1 O)Bf'¢J
i ifi , an i 1f 1 ,
“\o 1 0 v

for some B; € GLy(A[v]).

3.2. Finite type points of Z* (J). As an application of Corollary 3.15, we are able to
give a direct description of the finite type points of Z%(J), by which we mean the points of
Z*(J)(F’) for each finite extension F'/F. Recall from Section 1.4.3 that, to the pair T and J,
we have associated a tuple of integers 57 ; and a character ® y, which is identified via the Artin
map with the character © y: k™ — F* such that

OroNp/k=1'® l_[ (k)
iez/f'Z

see equations (1.12), (1.13), and (1.14). Write

f-1
O = 1—[ a)ig./,i
i=0

for some integers 67 ;. In the cuspidal case, by definition, we have 65 ;  r = 0, ; for all i. The
main result of this section is the following.
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Theorem 3.16. Suppose ¥'/F is a finite extension and let M be an étale-p module
with F'-coefficients and descent data from K' to K. Write M° for the Gal(K'/ K)-invariants
of M. Then M is a finite type point of Z*(J) if and only if (M°); has a basis x;, y; for each
i € Z/ Z such that the partial Frobenius maps ® p0 ; with respect to the basis (X;, yi)icz) fz

have matrices
B: v 0 v07.
‘\o vsvi

Remark 3.17. In the statement of the proposition, the ordering of the diagonal elements
of the diagonal matrix is irrelevant, in the sense that they can be swapped by a suitable change of
basis. Specifically, if J' C Z/fZ is any subset, then replacing (x;—1, yi—1) with (y;—1, xi—1)
foreachi € J’ swaps the order of the diagonal elements, at the cost of multiplying B;_; and B;
on the left and right by (9 }) respectively for each i € J'.

for matrices B; € GLy(F'[v]).

Proof of Theorem 3.16. The stack Z®(J) is the scheme-theoretic image of the mor-
phism €7(J) — RI41; this morphism is proper because it is the composition of the closed
immersion €%(J) — €%BT1 with the proper morphism €%BT-1 — R4 Tt follows from
[13, Lemma 3.2.14] that the F’-points of Z(J) are precisely the F'-points of R9%1 whose
fiber in €7 (J) — R4 is nonempty, in other words, which have a eigenbasis 8 = (B;); such
that the partial Frobenius maps ®js; have exactly the form given in Corollary 3.15, i.e., such
that the matrices Ag ; are

(v O\ ... 1 0\ ,.. .
B; ifi e J, and B;ifi ¢ J,
0 1 0 v

for some B; € GL,(F'[v]). Note that these matrices can be written in a single formula as

10 (37D 0
©-18) Ap.i = (o v%c(i))Bl’( 0 1)'
Before continuing the proof, we need to introduce some additional notation. Write
S

=Tl @)™
i=0

for integers u; € [0, p — 1]. Using that ' = (5{)"1{ for all i, we have

S
ko= p" " hitja,
j=0

and
(3.19) pki_y —ki = (p"" = Dy

Next, the equality
f-1 f-1

Oy = 1_[ (wl{)OJ,i — 1_[ (wl{)ui-i-tJ,i
i=0 i=0
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implies the existence of integers v; such that
(3.20) 07 =pi +15i+vi—pvia

forall i. Now, foreach i € Z/ f'Z, we define a basis (m;,n;) of the inertial invariants M (K'/K)
by the formula
Vi
_ u 0 —k, —14v;
(mi ni)_(ei fl)(o USJC(i))M ' .

Then one computes directly using equations (3.9), (3.18), (3.1), (3.19), and (3.20) that the
matrix of @y ; with respect to the basis (m;,n;);cz; /7 is

V87 D =vi+ty,; 0
B v 07
i 0 pP8re(i—=D)—(p—D+1y '

Substituting the definition of 77 ;, we obtain

0 —S1i ()
B! (v )u—"u iti—1eJ, B (” )u—eu iti—1¢J.
0 v787 0 v

Finally, defining (x;—1,yi—1) = (mj—1,n;—1) if i =1 € J and (x;—1, yi—1) = (nj—1,m;i—1)
ifi —1 ¢ J, then by Remark 3.17, the matrix of ®y; with respect to the basis (x;, y;)iez/ 'z

is
0 .
Bi (U )U_OJ,I
0 v_s./.i
for suitable B;.

In the principal series case, where I(K'/K) = Gal(K’/K), this completes the proof of
the “only if” direction of the proposition, and the “if”” direction follows on observing that our
change of basis from the eigenbasis (e;, f;); of M to the basis (x;, y;); of M is reversible
and depends only on the initial data of 7 and J.

For the remainder of the proof, we assume that 7 is cuspidal. To compute M° from
MIK'/K) e take further invariants under the element ¢ € Gal(K'/K) that fixes 7/ and
lifts the Frobenius element in Gal(K’'/K)/I(K'/K) = Gal(k’/k). Another direct computa-
tion, recalling that c(e; fi) = (fi4+r €i4r), that k; = kz{+f’ and that 87(i) = 85¢(i + f),
shows that

(3.21) c(mi ni) = v (i migy).
where for each i, we have
U+ ki —k! )
£ = lpf’—l—ll +vi —vigr —85(0).

But using (3.1), (3.19) and (3.20), we can compute
péic1—&i = (p—1—yi) =i + iy + (i + 155 —01,)
—(Wiv s +1ritr —Orivr)—pSgi —1) +38;0).
Since 05,; = 07 ;4 7, this simplifies to

péi-1—&i=tyi—tyivr+(p—1—=y)—péyi—1)+68;@)
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and substituting the definition of #7 ; (and recalling thati — 1 € J ifandonlyifi + f —1¢ J),
we conclude finally that

p§i-1—§ =0
for all i. But then, iteratively, we have & = p/ & for all i, and so, in fact, & = 0, and (3.21)
simplifies to
c(mjni) = (njy 5y miyys)

for all i. Therefore, (m; + n;y s, m; ¢y + n;) are Gal(K’/ K)-invariant and are a basis for Ml.o.
Furthermore, the commutation relation between ¢ and ¢ implies that if X; is the matrix of @ ;
with respect to the basis (m;,n;);ez/ 'z, then X; 4 r = Ad((l) (1))(X,~).

Now we can conclude just as in the principal series case: for each integer 0 <i < f, we
define
(m; + it Mt r +n;) ifti—1¢€J,

(xiyi) = o
o (mivr+nimi+nipp) ifi—1¢J,

.....

B; (v 0 )v_ef”'
1 sy
0 v

for suitable B;. D

Remark 3.22. Readers who are familiar with the article [17] will recognize that Theo-
rem 3.16 has a reinterpretation in terms of crystalline lifts. This will be discussed in the
following section at Theorem 4.21, Remark 4.23, and Corollary 4.24.

4. Irregular loci

We are now ready to prove many of our main results about irregular loci in the Emerton—
Gee stacks. We begin in Section 4.1 by proving the isomorphism between the stacks X%BT
and Z7. This establishes the existence of substacks Zreq of Z% whose finite type points are
Galois representations having crystalline lifts of Hodge type r, whenever r is p-bounded and
irregular (cf. Definition 4.7). There is a Hodge type associated to each pair (z, J), and in Sec-
tion 4.2, we prove the combinatorial fact that each p-bounded and irregular Hodge type arises
from such a pair. In Section 4.3, we use this combinatorial input along with the results of Sec-
tion 3.1 to prove that the stacks Zreq are equal to the stacks Z7(J) for suitable choices of ©
and J.

4.1. A comparison of [7] and [14] stacks. In this subsection only, we allow K/Q, to
be an arbitrary finite extension (i.e., not necessarily unramified). Our goal in this subsection
is to establish that the stack Z7 is isomorphic to the Emerton-Gee stack X *BT of potentially
Barsotti-—Tate representations of type t. For this, we need to begin with a few recollections
from [14].

Let X5 be the Emerton—Gee stack of rank 2 étale (¢, I')-modules over K with @-algebra
coefficients, i.e., the d = 2 case of the stack X; discussed in the introduction. As before,
we write R, for the Spf(OQ)-stack of rank 2 étale ¢-modules for K (without descent data).
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We recall from [14, Theorem 3.7.2] that there is a morphism f: X» — &5 such that the map
X2(A) = Ra(A), for each complete local Noetherian (9-algebra A, is given by restriction
from Gk to Gk, on the corresponding Galois representations. We emphasize that, despite
the notation, the map f is not simply “forgetting I"”’, because the (¢, I')-modules of [14] are
cyclotomic, whereas the étale p-modules of R, are Kummer (following the terminology of
[14, Examples 2.1.2-2.1.3]).

Emerton and Gee construct substacks of X, which may be regarded as stacks of poten-
tially crystalline representations with specified inertial and Hodge types. For our purposes, we
make the following definition.

Definition 4.1. A Hodge type of rank d is a tuple of integers r = {ry,j}c:k>E, 1<j<d
withre 1 > -+ > 1 g foralli.

The integers r,; should be thought of as being the k-labeled Hodge—Tate weights of
a d-dimensional representation of Gx. When K/Q, is unramified and we have indexed the
embeddings k;: K < E by i € Z/fZ, we will generally write r; ; in place of ry; ;.

For each inertial type v and Hodge type r of rank 2, [14, Theorem 4.8.12] guarantees
the existence of a closed substack X57*"L of X, that is a p-adic formal algebraic stack, flat
over @, such that X5%%%"(A) for each finite flat O-algebra A is the subgroupoid of potentially
crystalline G -representations having inertial type t and Hodge—Tate weights r.

Let BT denote the Hodge type r with (7,1, r¢,2) = (1,0) for all «, and let triv denote
the trivial inertial type. For brevity, we will write X*BT and X’ in place of X;rys”’BT and
Xgrys’triv’ﬁ respectively, and we will write XEST and Xkq for their underlying reduced sub-
stacks. By [14, Theorem 4.8.12], the finite type points of Xeq are precisely the mod p repre-
sentations with crystalline lifts of Hodge—Tate weights r.

By [14, Theorem 4.8.14], the stack ngf T is a union of irreducible components of X7 req,
and similarly for Xiq provided that r is regular; however, if r is irregular, then Xiq has
codimension equal to the number of elements i € Z/fZ with r; 1 = r; 5.

For a local Artinian O-algebra with finite residue field, let Repy g/, g (A) denote the cat-
egory of A-representations of G that are potentially finite flat and become finite flat over K.
Let Repg,_ (A) denote the category of finite A-representations of Gg__.

Lemma 4.2. Let A be a local Artinian O-algebra with finite residue field, and K'/ K
any tamely ramified finite extension. The functor Repg g/ g (A) — Repg Koo (A) given by re-
striction from G -representations to Gk __-representations is fully faithful.

Proof.  For finite flat representations (as opposed to potentially finite flat), the lemma is
now standard; see for example [3, Theorem 3.4.3].

In the general case, let V, W be objects of Repy g7k (A4), and let f: V' — W be an A-lin-
ear map which is Gg__-equivariant. We need to prove that f is actually Gg-equivariant. As f
is Gk _-equivariant, by the finite flat case, it is Gg/-equivariant. Therefore, f is both Gg_-
and Gg-equivariant. But Gx__ and Gg- generate all of Gx because K’/ K is tamely ramified
and any finite subextension of K,/ K is totally wildly ramified. The lemma follows. |

Lemma 4.3. For each tame type t, the map X*BT — R, given by the restriction of f
is a monomorphism.
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Proof. 'We follow the strategy of the proof of [21, Proposition 7.2.11]. Namely, it suf-
fices to show for any a > 1 and any finite type O/ w*-algebra A that the functor

XTPT(A) — Ra(A)

is fully faithful. In the case that A is a local Artinian (J-algebra with finite residue field, this
follows directly from Lemma 4.2 because X *BT(A) is equivalent to a full subcategory of the
groupoid of A-module representations of Gk that are potentially finite flat and become finite
flat over K’. To see the latter, note that an object of X *BT(A) specializing to the Galois repre-
sentation p: Gxg — GLy(A/1m4) is pulled back from a versal morphism Spf(R%’BT) — XTBT,
where R%’BT is a potentially Barsotti—Tate deformation ring. Therefore, the corresponding
Galois module becomes finite flat over K’, e.g. by [19, Proposition 2.3.8].

The general case follows exactly as in the final paragraph of the proof of [21, Proposi-
tion 7.2.11]: one establishes that, for objects x1, x5 of X BT (4) with images y1, y2 in R2(4),
the functors Isom(x1, x») and Isom(yy, y) are representable by finite type A-schemes, and
then one applies [21, Lemma 7.2.5] to reduce to the settled case of local Artinian (9-algebras
with finite residue field. m)

Remark 4.4. We elaborate one point in the second part of the above argument. The
reference to [13, Proposition 5.4.8] in the proof of [21, Proposition 7.2.11] handles the repre-
sentability of Isom(y1, y2); it also establishes the representability of Isom(x7, x3), where x?
denotes the étale p-module underlying x; (here we really do mean forgetting I"). It remains to
check that commutation with I" cuts out a closed condition on Isom(x7, x3). If it were the case
that each projective étale (¢, I')-module were a direct summand of a free étale (¢, I')-module,
as is the case for étale ¢-modules by [13, Lemma 5.2.14], it would be straightforward to check
this exactly as in the proof of [13, Proposition 5.4.8], but this does not seem immediately evi-
dent. On the other hand, writing each x; as the direct summand of a free étale p-module, the
action of I' (regarded as a semigroup) on x; can be extended by zero to the free étale p-module,
and one can argue equally well using this extension.

Theorem 4.5. There is an isomorphism h%: X©BT — ZT which, for complete local
Noetherian O-algebras A, is given by the identity on the corresponding Galois representations.

Proof. Let g: Z% — R, be the closed immersion Z¥ — R4 followed by the isomor-
phism R4 — R,. Let ¥ sit at the corner of the pullback square

Z/i—Z>Zt

"

Xt L, R,

Since both f and g are monomorphisms, so are iz and iyx. In fact, g is a closed immer-
sion, and therefore so is ix; in particular, iy is representable, hence representable by algebraic
stacks in the sense of [12, Definition 3.1(2)] (see also [12, Remark 3.2]). It follows from
[12, Lemma 7.9] that ¥ is a p-adic formal algebraic stack over Spf(@). Each of X*BT, Z7,
and Y are topologically of finite type over O, e.g. because their special fibers are of finite
type over F.
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Over any finite flat 9-algebra A, the stacks X *BT and Z7 have the same A-points, in the
sense that X'BT(A4) and Z*(A) each correspond to potentially Barsotti—Tate representations of
type 7 on projective A-modules. We deduce that functors iy (A) and iz (A) are both essentially
surjective.

Finally, X%BT and Z7 are each flat over Spf((9), and they are each analytically unramified
in the sense of [12, Definition 8.22]: as noted in the paragraph before [21, Warning 7.2.1],
this is equivalent to having reduced versal rings at all finite type points, which follows from
[7, Corollary 5.2.19] for Z® and from [14, Proposition 4.8.10] for X =BT, (Recall that the
deformation rings R%’BT are reduced by definition.)

Taking all these observations together, we see that the two maps iy and iz each satisfy the
hypotheses of [21, Lemma 7.2.6 (1)]; hence each is an isomorphism. We obtain an isomorphism
by taking

h* :=izoiy LoogwBT _, 77,

The statement about Galois representations then follows from the corresponding statements for
f and g (together with full faithfulness of restriction from Gk to Gg__). O

As an application of Theorem 4.5, we establish the existence and basic properties of loci
in Z44:1 of representations satisfying certain p-adic Hodge theoretic conditions.

Corollary 4.6. Suppose r and t are Hodge and inertial types with the property that no
twist of a treés ramifiée representation has a potentially crystalline lift of type r and t. Then
there is a unique reduced closed substack Zred C ZY91 yith the property that a representation
p:Gg — GLy(F') lies in Zred (F') if and only if p has a potentially crystalline lift of type r
and t. (Here ¥'/F is any finite extension.)

Furthermore, Zred is eqmdzmenszonal of dimension equal to that of X373 UL and the

crys,T,r.

irreducible components of Z d are in bijection with those of X2 Yo °h, such that correspondmg
components have the same finite type points.

Proof. Uniqueness is immediate from the fact that reduced closed substacks of reduced
stacks are characterized by their finite type points. In particular, the stack Zrsj must be inde-
pendent of the various choices in the construction that follows.

The reduced algebraic stack X573;"" has finitely many irreducible components ¥;. By
the hypothesis that no point of X572 is a twist of a trés ramifiée representation, it follows
that each ¥; is contained in the union |, X3 1> the union taken over all non-Steinberg Serre
weights; thus Y; C X2 red fOr some non-Steinberg Serre weight o;. Let 7; be any tame type
such that o; is a Jordan—Holder factor of the reduction mod p of o(z;), so that X2 eq (and
therefore ¥;) is contained in Xfe’ci . Define Z; C Z%! to be the image of ¥; under the iso-
morphism 2% of Theorem 4.5. Then the (reduced) union of the Z;’s inside Z34:1 has the desired
property.

By construction, ¥; and Z; are isomorphic and have the same finite type points. Since
each Y; is irreducible and there are no inclusions between the ¥;’s, consideration of finite
type points shows that the same must be true of the Z;’s inside Z%!. This gives the final
statement. |
4.2. Irregular lociin Z99:1,  'We now resume the running assumption that the extension
K/Qp is unramified, and introduce the following terminology.
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Definition 4.7. We say that the Hodge type r is
e p-bounded if riy —rip < pforalli,
e Steinberg if ri1 —ri» = p forall i, and

e regularifr;1 —r;» > Oforalli.

Lemma 4.8. Assume that the Hodge type r is p-bounded and non-Steinberg. Then r
together with the trivial type satisfies the hypothesis of Corollary 4.6, giving a reduced closed
substack Zieq = Z"™L of 21 whose finite type points are precisely those having a crys-
talline lift of type r.

Proof. Suppose that p: Gg — GL,(F’) has a crystalline lift of Hodge type r. We must
show that p is not trés ramifiée. If r is regular, then there is a non-Steinberg Serre weight o
such that p has a crystalline lift of Hodge type r if and only if 0 € W(p), and we conclude by
[9, Lemma A.5 (2)]. So we may assume for the remainder of the proof that r is irregular.

If p is reducible, then by [2, Theorem 1.0.1] or [23, Chapter 5, Corollary 2.7], the ratio of
the diagonal characters of p has restriction to inertia equal to ]_[lf =_01 a)lt ', where for some subset
J CZ/fZ, we have t; =r;1 —rip fori € J and t; =r;p—r;q fori ¢ J. In particular,
ti € [—p, p] for all i. We will show that the ratio of characters cannot be cyclotomic, and
indeed that we cannot have

p—1
(4.9) Y op/ =
i=0

p—1

Since r is irregular, we have ; = 0 for some j, and without loss of generality (e.g. multiplying
both sides by pf —1=7), we may assume tr—1 = 0. Then the left-hand side of (4.9), considered
as an integer, is divisible by p, while the right-hand side, again considered as an integer, is 1
modulo p. We must therefore have an equality

p—1 . pf_l
> pT T = k(p - ).
i=0 P

where k = 1 (mod p). We have |le=_01 p/ 1< p- L ;__11, with strict inequality because
ty_1 = 0. This already rules out k > 1. Similarly,

p’/ —1 pf -1 pf -1
1-pp’ -+ =@2p-p?) <-p-
p—1 p—1 p—1
since p > 3,s0k < 1— p isruled out as well. Therefore, (4.9) has no solutions. O

To each non-scalar tame type t and profile J C Z/f'Z, we will now associate a Hodge
type r(z, J), or more precisely a Hodge type up to equivalence under an equivalence relation
that we will define in the next two paragraphs.

Let us writt A C Z/ for the set of tuples A = (4;) such that the inertial character

]_[lf =_01 a)l)L " is trivial. Concretely, this is the set of tuples A such that

f—1
Z p/ 72 =0 (mod p/ —1).
i=0
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Interpreting A as a Hodge type of rank 1, we see that A can equivalently be described as the set
of Hodge types of crystalline characters of G that are trivial modulo p.

Definition 4.10. If r is a Hodge type and A € Z/, we define r + A to be the Hodge
type {r;,; + A;}i,j. We define an equivalence relation ~ on the set of Hodge types by taking
L/

r~r'ifandonlyif r’ =r + A with A € A.If r ~ 1/, then evidently Xjeq = Xreq, thanks to
the description of A in terms of crystalline characters with trivial reduction mod p.

To the pair 7 and J, we have already associated a tuple of integers s ; and a character
®y, as in equations (1.12) and (1.14). Write

f-1
0 = 1o
i=0

for some integers 6y ;. The tuple 85 = (6;,;); is not uniquely defined, but it is unique up to
translation by an element of A. We then define r(z, J) by the formula

r(v.J) :={-sy,i—0si.1=0y}iez/rz

and obtain a Hodge type up to equivalence under ~. Recall from Sections 1.4.1 and 1.4.3
that, in our conventions, and for profiles J € $;, we have o (t); € W(p) if and only if p has
a crystalline lift of Hodge type r(z, J).

Definition 4.11. We define NT(J) to be the stack Zgq for any representative r of
r(t, J). This is well-defined by Lemma 4.8 and the final sentence of Definition 4.10.

If J € P, then N7(J) = Z(c(1)s) is an irreducible component of Z%1. However,
if instead J ¢ &, then the finite type points of N7 (J) are the representations with crys-
talline lifts of (irregular) Hodge type r(z, J), and N *(J) has codimension #{i : s;; = —1}.
The following combinatorial result shows that Zg4 arises as one of the loci N T(J) for every
p-bounded and non-Steinberg Hodge type r.

Proposition 4.12. For each p-bounded and non-Steinberg Hodge type r, we can find
a non-scalar tame type t and a profile J C 2./ f'Z such that r ~ r(z, J), or equivalently such
that Zea = NT(J).

Recall from [9] that, for i € Z/f'Z and each profile J, we say that (i — 1,i) is a transi-
tion (ati) if #{i — 1,i} N J = 1, and a non-transition otherwise.

Proof. Sets; =ri1—ri2—1 € [—1, p—1]. Recall that, for each non-scalar tame type
T = 1 @ 1’ and each profile J, there is an associated tuple of integers s ; given by the formula

p—1—yi—685c(1) ifi—1€J,
SJﬁ i :: . . .
S P 320 ifi—1¢J,
with the integers y; € [0, p — 1] coming from writing the ratio /7’ in terms of multiplicative
lifts of fundamental characters as in (1.10). It suffices to produce a non-scalar tame type t and

a profile J such that s; = s ; for all i, for then we will have r = r(r ® y, J) for a suitable
character y of Gg.

(4.13)
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There are evidently pf possibilities for the tuple yy, ..., yr_;. (Recall that, in the cuspi-
dal case, we then have y;, r = p — 1 — y;.) Each of these pf possibilities can arise from some
cuspidal type n @ n?” . To see this, note for example that there are p2f —pf possibilities for
the character 7, and each possibility for the ratio n/n? ’" arises from p/ —1 different n’s. In
the principal series case, every possibility can arise except the case y; = 0 for all 7, or the case
y; = p — 1 for all i, since these would give a scalar type.

We now define a tuple yo,...,yr_1 and a profile J by the following procedure. First,
choose arbitrarily whether or not —1 lies in J. Then, for each 0 <i < f — 1 in turn, we
proceed as follows.

o If 5; € [0, p — 2], we choose arbitrarily whether or not i € J, and then define y; by the
formula

—l—s —8ye) ifi—1e€l,
(4.14) yi ::{p S = dye(i) i

si +385(1) ifi —1¢J,

o Ifinstead s; € {—1, p — 1}, then exactly one of the two possibilities fori € J ori ¢ J
in (4.14) yields a y; in the range [0, p — 1], and we make that choice. Observe for what
follows that if s; = —1, this requires making (i — 1,i) a transition, and if 5; = p — 1,
this requires making (i — 1,7) a non-transition.

Finally, if at the end of this procedure we have both —1, f —1 € J or both —1, f —1 ¢ J,
then we can form a principal series type with profile J and yielding the chosen integers
Y0, ..., Vf—1,whileif —1 € J and f — 1 ¢ J or vice versa, then J can be extended to a profile
for a cuspidal type yielding the chosen integers yo, ..., Vr—_1.

This completes the construction, except for the possibility that, by following the above
procedure, we may have constructed a scalar principal series type. We check that this can
always be avoided. If at least one s; lies in the range [0, p — 2], then there is at least one
0 <i < f where we could freely choose to create either a transition or a non-transition at i;
therefore, we may arrange to create an odd total number of transitions among i with0 <i < f,
and thereby construct a cuspidal type.

Thus we are reduced to the case where s; € {—1, p — 1} for all i, with an even number
of transitions and therefore an even number of —1’s. Since r is non-Steinberg, we do not have
s; = p — 1 forall i, and therefore, there at least two transitions. Let i < i’ be two consecutive
transitions, that is, j is a non-transition for eachi < j < i’. Theni € J and i’ ¢ J, in which
case y; = 0 and y;» = p — 1, or else vice versa. In either case, there is at least one 0 and at
least one p — 1 among the y;’s, and the type we have constructed is non-scalar. O

Remark 4.15. Suppose j satisfies r;1 —rj2 € [1, p — 1]. Then, in Proposition 4.12,
we are always able to choose the tame type 7 and profile J so that, for this fixed j, there is
either a transition at j or not, as desired, with the following exceptions.

() If f =1landrj —rj2 = 1,then (j — 1, ) is forced to be a transition.
(2) If f >2and

p—1 ifi =j,
ri1—"riz =10 ifi =j +1,
)4 otherwise,

then (j — 1, j) is forced to be a non-transition.
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Indeed, according to the proof of Proposition 4.12, the only possible obstruction is if there
is a single j satisfying r; 1 —rj2 € [1, p — 1], and for one choice for whether or not there is
a transition at j, our construction leads to a scalar principal series type. Then we are obligated
to make the opposite choice. By an analysis similar to the argument in the last paragraph of the
proof of Proposition 4.12, the construction leading to the scalar principal series type must have
either O or 2 transitions, and in the latter case, j must be one of the two transitions.

It therefore suffices to evaluate (4.13) with y; = 0 for all i or y; = p — 1 for all i, and
for J C Z/fZ of the form & or {i’,...,j — 1} or their complements, and confirm which
ones lead to a single s7; = r;;1 — ;> — 1 being in the range [0, p — 2]. This leads to the two
exceptions listed above. For example, the exception (2) comes from choosing y; = 0 for all 7
and J = {j}, as well as from choosing y; = p — 1 foralli and J = {j}.

4.3. Comparison of irregular loci and scheme-theoretic images of vertical compo-
nents. Our goal in this subsection is to show that each Z%(J) C Z%! can be described as
the closed substack whose finite type points admit certain crystalline lifts.

Theorem 4.16. If t is a non-scalar tame type and J C Z]f'Z is any profile, then
NT(J) = ZT(J), in other words, the finite type points of Z*(J) are precisely the representa-
tions with crystalline lifts of Hodge type r(t, J ).

Corollary 4.17. The stack Z*(J) depends only on the Hodge type r(t, J).

Theorem 4.16 was proved in [9] in the regular case (i.e., when J € $;), but is new in
the irregular case. We also note the following application of Theorem 4.16 to the Emerton—Gee
stacks; again, this result is new in the irregular case.

Corollary 4.18. Suppose the Hodge type r is p-bounded and non-Steinberg. Then Xjeq
is irreducible.

Proof. 'This follows by combining Proposition 4.12, Theorem 4.16, the irreducibility of
the stacks Z*(J), and the last part of Corollary 4.6. |

Note that Corollary 4.18 is false for Hodge types that are Steinberg, because if r is
Steinberg, then Xr%d is the union of two irreducible components (cf. Theorem 1.1(2)).

The proof of Theorem 4.16 will occupy the remainder of this subsection. The strategy is
to prove that &' 7(J) and Z*(J) are equidimensional of the same dimension, and that there is an
inclusion N¥(J) C Z¥(J). Since Z*(J) is irreducible by its definition as the scheme-theoretic
image of the irreducible €7 (J), the inclusion must be an equality.

Recall that ST(J) is defined to be the set {i € Z/fZ : s;; = —1}, or equivalently, if
r ~r(t,J),then ST(J) is the set

{i €Z/fZL:ri1 =ri2}.

By the last part of Corollary 4.6, we already know that N T (J) is equidimensional of dimension
[K : Q] —|ST(J)|. We begin by checking that the same is true of Z7(J).

Proposition 4.19. We have dim Z*(J) = [K : Qp] — |S*(J)|.
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Proof.  The proof is an elaboration of the proof of [9, Theorem 5.1.12]. The construction
of the stack Z%(J) in [9, Definition 4.2.12] furnishes a map

£: Spec BN — Z7(J),

where £ is scheme-theoretically dominant and the source has dimension [K : Qp] 4 2.

We freely use the notation of [9, §3.3]. Assume first that |[ST(J)| < f, and let X be the
dense open subscheme of Spec BX'™¢ defined in the paragraph preceding [9, Remark 3.3.8]
(and also denoted X there). By [25, Tag 0DS4], it suffices to show that the restriction of & to
X has fibers of dimension |S*(J)| + 2 in the sense of [25, Tag ODRL].

Given an AXT¢_algebra A4, an A-point of X is an extension class

[€] € Extye( M) ax N()ay)

which does not become the trivial class on inverting u after any base change, where (/)
and (/) are as in [9, Definition 4.2.8], IMN(J)4,%, N(J)4,7 are “unramified twists” as in
[9, Definition 3.3.2], and X, y denote the images of x, y € AT in 4.
Setting
UAk-free = ker-EXt}}C(Ak,ﬁee) (EIR(J)Ak-free’x, m(])Ak»free’y)

as in the discussion before [9, Remark 3.3.8], Y := Spec Ak'free[UXk_ﬁee] is a closed subscheme
of Spec B¢ whose A-points are extensions [K] € Extbc( A)(im(J )4 % N(J)4,5) that do be-
come trivial upon inverting u. There is a map

(420) (X XspeCAk-free Y) XF Gm XF Gm — X XspecAk-freeXFzr(J) X —-X er(]) X

given by mapping an A-point ([€], [K], r, s) in the domain to
* the extension [€] in the first coordinate,
e the extension [€'] := r - [€] + [K] in the second coordinate, along with

* the data of an isomorphism €[1/u] = &’[1/u] which on the quotients I (J )4 x[1/u] is
induced from multiplication by s on M (J).

Note that the automorphisms of €[1/u] are a torsor for G, : this follows from [9, Lemma 3.3]
and the fact that ©[1/u] is non-split after any base change.

It is immediately verified that the map (4.20) is a monomorphism and a bijection on finite
type points, observing that

X Xgpec Akteexpzt (J) X — X Xzr(g) X

is bijective on finite type points by [9, Lemma 3.3.5] and the fact that points of X remain
non-split after inverting u.

Therefore, if F’ is a finite extension of F, the fiber of & over an F/-point of X admits
a surjective monomorphism from

Spec F’[ker-Ext},{(F,)(sm(J)m N()w 5)Y] X8 G XF G

which has dimension |S*(J)| + 2 by a comparison between [9, Proposition 5.1.8] and (1.12).
(The restriction to B¥' avoids the exceptional case of [9, Proposition 5.1.8].) Thus the
dimension of the fiber is also |S¥(J)| + 2 by an application of [25, Tag 0DS4].


https://stacks.math.columbia.edu/tag/0DS4
https://stacks.math.columbia.edu/tag/0DRL
https://stacks.math.columbia.edu/tag/0DS4
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Now, suppose |ST(J)| = f, or equivalently,
ker-Extye (4 (M()az N )ay) = Extye M)z R(ay)
for all AXfrec_algebras A. In this case, the map £ factors as
£: Spec B¥ee 5 Spec AXree £ Z(J),
where the first arrow is the structure map and g maps the universal point of Spec AX"¢ to
m(])Ak»free’x[l/u] D En(.])Ak-free’y [l/u]
Let po € Spec AX(F’) be fixed. The fiber of g over g(po) is given by
Spec F/ Xz () Spec A¥ree.,
For a finite type F’-algebra A, an A-point of this fiber is an AX™-algebra structure
P Ak-free —~ A
together with an isomorphism
M)Ay [1/1] & R4, p() [1/1] = M)t oo [1/4] © R )4, po 3 [1/1)

It follows that the fiber of g over g(po) admits a monomorphism, bijective on finite type points,
either from G, X Gy, or else from the disjoint union of two copies of G, Xf G;,. One copy
comes from A-points with A" algebra structure

p:Ak-free ﬁ)F/ S A,

so that p(x) = po(x) and p(y) = po(y); the other copy, if it exists, comes from the unique
AKfree_algebra structure p such that

M) 4, poy[1/u] = N(T) 4, po(y)[1/u],
N()a, pony[1/u] = M) 4, po ) [1/ 1],

again if it exists. Note that, because we are on A% there is no isomorphism

M) 4, poo)[1/u] = (T ) 4,po () [1/u].

so there is no GL; in the fiber.

By density of finite type points, the topological spaces associated to the scheme-theoretic
images of the one or two copies of Gy, Xg Gy, are precisely the irreducible components of
|Z%(J)|, and by [25, Tag 0DS4], each scheme-theoretic image has dimension 2. Thus, using
[25, Tag ODRZ], the dimension of the fiber is 2. Another application of [25, Tag 0DS4] then
shows that the dimension of Z*(J) is 0. |

We recall the following, which (more or less) is one of the main results of [17].


https://stacks.math.columbia.edu/tag/0DS4
https://stacks.math.columbia.edu/tag/0DRZ
https://stacks.math.columbia.edu/tag/0DS4
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Theorem 4.21. Let F'/F be a finite extension. Suppose p: Gx — GL,(F') is a Galois
representation and M°® € R, (F') is an étale -module for K (without descent data) such that
Plek., = Tk (M?O). If p has a crystalline lift with p-bounded Hodge type r, then (M°); has
a basis x;, y; for each i € Z]fZ such that the partial Frobenius maps ®pg0 ;, written with
respect to the basis (X;, yi)iez/ fz, have matrices

i1 0
w('y )
0 vri,Z

Remark 4.22. As in Remark 3.17, the theorem remains true for any reordering of the
vl 0 )
0o vi2/

for some B; € GLy(F'[[v]).

diagonal elements in the matrices (

Proof. Twisting by a character, we reduce to the case where each r; ; € [—p, 0]. This
case will follow from [17, Theorem 4.22] after translating between the conventions of [17] and
[9] for Galois representations and Hodge—Tate weights. More precisely, from Lemma 2.16,
recall that Tg(M?) =~ Tg((M 9)V). On the other hand, having crystalline lifts with Hodge
type r in the conventions of [9] (i.e., in our conventions) is equivalent to having crystalline lifts
with Hodge type —r := {—r 1,—ri2}icz/rz in the conventions of [17]. Thus Tx (M?) has
a crystalline lift with Hodge type r in our sense if and only if, in the sense of [17], T)¢ (M 0)Vv)
has a crystalline lift with Hodge type —r. Then [17, Theorem 4.22] tells us that (M %)Y admits
a basis for which the partial Frobenius maps have matrices

v il 0
(70
0 vz

for some B; € GL,(R[v]). Finally, by Remark 2.17, the partial Frobenius matrices for M are
the inverse transpose of those for M©. O

Theorem 4.16 now follows easily from all the work we have already done.

Proof of Theorem 4.16. Theorem 3.16 and Theorem 4.21 show that N*(J) C Z*(J).
By [14, Theorem 4.8.14] and Proposition 4.19, N 7(J) and Z*(J) have the same dimension.
Since Z7(J) is irreducible, being the scheme-theoretic image of the irreducible component
€7 (J) of €9BT:1 the theorem follows. m]

Remark 4.23. If the Hodge type r is p-bounded and regular, then under the additional
hypothesis that p is not a twist of a trés ramifiée representation, the results in [17, §§7-9] can
be reinterpreted as providing a converse to Theorem 4.21, that is, if p is not a twist of a trés
ramifiée representation, then the “if then” of Theorem 4.21 is in fact an “if and only if”. (The
extra hypothesis on p is necessary because if p is trés ramifiée, then p|g, ., can be split, and
in that case, plgx., = Tk (M?) for M? as in Theorem 4.21 with r = BT, although p has no
Barsotti—Tate lift.)

For regular r, Theorem 3.16 and Theorem 4.21 therefore prove directly that the F'-points
of Z*(J) are precisely those admitting a crystalline lift of Hodge type r(z, J), furnishing a new,
purely local proof of a result from [8].
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In the irregular case, we can instead use Theorem 4.16 to deduce the converse to Theo-
rem 4.21.

Corollary 4.24. Suppose p is not a twist of a trés ramifiée representation. The “if then”
of Theorem 4.21 is an “if and only if” when the Hodge type r is p-bounded.

Proof. As explained in Remark 4.23, it remains to prove the Corollary when r is irreg-
ular. Suppose more generally that r is non-Steinberg. By Proposition 4.12, we can find non-
scalar 7 and a profile J such that N ¥(J) is the locus of mod p representations with crystalline
lifts of Hodge type r. The converse statement follows from the equality N*(J) = Z%(J)
together with Theorem 3.16. |

5. Inclusions between p-bounded crystalline loci

Suppose that the p-bounded Hodge type r is irregular. Since the locus Xeq C X2, red has
positive codimension, it is reasonable to imagine that there exist inclusions Xred C Xred for
certaln other p-bounded Hodge types r’. For example, when f = 1 so that K = Q,, the locus
Xred of unramified representations is contained in the irreducible component of X5 req associ-
ated to the Serre weight Sym? 2 FIZ,. Up to twist, this is the only proper inclusion of p-bounded
crystalline loci when K = Q).

For the remainder of this section, we assume that f > 2, and we will prove in some
additional situations that representations havmg a crystalline lift with Hodge type r necessarlly
also have a crystalline lift with Hodge type 7/, and deducing as a corollary that Xfsq C Xred

In fact, we give two arguments. The first argument is short and direct, using Corol-
lary 4.24 and an explicit change of basis for étale ¢-modules. The second argument, which we
call “shape-shifting”, is more geometric and (in our opinion) carries some explanatory power,
but is also more complicated. The shape-shifting argument relies on the observation that, for
the Hodge types r and r’ under consideration, there exists a tame type 7 and profiles J, J’ with
r=r(r,J)and r' =r(z,J).

5.1. The direct argument. We begin by defining several operators on Hodge types.
The first two can be viewed as analogues of partial theta operators and partial Hasse invariants
in the work of Diamond and Sasaki on geometric Serre weight conjectures [11].

Definition 5.1. Let f > 2. For each j € Z/fZ, we define operators 6;, 1, and v; on
Hodge types r by setting

(rig,rip—1) ifi =j—1,
0;(r)i == (riq + p.rip) ifi = j,
(ri,1,7i2) otherwise,
(rin—Lrip) ifi=j—1,
wi(r)i i= 9 (rig + p,riz) ifi = j,
(ri,1,7i,2) otherwise,
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(rix,rip—1) ifi =},
vi(r)i == (rig+ p,rin) ifi =j +1,
(ri1,1i,2) otherwise.

We now establish the following.

Theorem 5.2. Suppose that r is p-bounded and irregular, with rj1 = rj>. If p has
a crystalline lift of Hodge type r, then p also has crystalline lifts of Hodge type ;(r), and
v;(r), as well as of Hodge type 0; (r) provided that rj 1,1 —rj—12 # p.

Note that p;(r) and v; (r) in the statement of the theorem are still p-bounded, and the
hypothesis ;1,1 —rj—1,2 # p guarantees the same for 0; (r).

Proof. The proof of Lemma 4.8 shows that p is not a twist of a trés ramifiée representa-
tion. By Corollary 4.24, it suffices to prove that if M® € R, (F’) has a basis
B=Biiez/rz. = (Xi,Yi)iez)fz

such that the partial Frobenius maps ® 0 ;, written with respect to 8, have matrices

vl 0
'y )
0 vri,Z

for some B; € GLy(F'[v]); then the same holds with r; 1, 7; 2 replaced by r/,,r/, for all i,

foreachr’ € {i;(r), vj(r), 0;(r)}. (The hypothesis rj_1,1 — rj—1,2 # p is necessary to apply
Corollary 4.24 when r’ = 6;(r), but not for any other part of the argument.) The key is simply

. . ry . . .
that, since r;; = r; 2, the matrix (” /o1 r(,)-,z ) is scalar and therefore lies in the center of the

matrix ring M, (F'((v))). Consider the basis B’ in which

,3}_1 :,Bj—lBC» ,B]/ =IBJD

and B; = B; ifi # j — 1, j.Here B,C, D € GL(F'((v))) are matrices to be chosen momen-
tarily such that

* B € GL,(F'[v]),
e C, D are diagonal, and
¢ C commutes with B_lBj_l.

Then the matrices of ®ps0 ; with respect to ’ fori = j — 1, j, j + 1 are checked to be

vi-Lt 0
B—lBj_l( )C—l,
0 pli—1.2

o150 (" ° \p-lpc)
A% 0 iz pL),

B Ur./'-‘rl.l 0 D

J+1 0 T+l ¢(D)

respectively. The theorem follows by Remark 4.22, choosing B, C, D as follows:
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o for 6, take B = B;_1,C = (}9)and D = I;
e for uj,take B=B;_1,C =(39)and D = I;
s forv;, choose B = Bj_1 sothat Bj¢(B) = I (modv),andtake C = I, D = ((1) 8) |

Corollary 5.3. Suppose that r is p-bounded and irregular, with rj 1 = rj». Then

XEq C Xag foreachr’ € {uj(r).v; (). 0;(r)}.

provided if r’ = 0; (r) that we additionally assume rj_1,1 —rj—12 # p so that r' is p-bounded.

Remark 5.4. 1t is natural to ask whether Xeq is equal to the reduced intersection of the
irreducible components of X5 req that contain it. For example, suppose that f = 2, that r is
irregular at i = 1, and that 0 < ro,1 —ro,2 < p. Then [11, Lemma 11.2.6] has the following
geometric reinterpretation: if 79,1 — ro,2 7 1, then

0
Xiea = X1 ® 0 X6
if instead 9,1 —ro,2 = 1, then
0
xrled — xfég(ﬂl(i)) N xreld(L)-

Note that, in the latter case, 1(r) is irregular at i = 0, and moreover, vo(u1(r)) ~ r, so that
Xieq = Xfé&@. (The intersections here are all reduced intersections, i.e., we make no claims
about intersection multiplicities.)

For general f, an explicit conjecture in the same spirit can be found in [23, Conjec-
ture 4.4], and will be addressed in forthcoming work of Wiersema.

5.2. Shape-shifting. We now give another proof of Theorem 5.2. The strategy is as
follows. By Proposition 4.12, we can find a tame type t and a profile J such that r = r(z, J).
Recall that the set ST (J) is precisely the set of embeddings at which r is irregular.

The substack Z7(J) is the scheme-theoretic image in Z%! of €7(J), which by the
results of Section 3.1 is the stack of Breuil-Kisin modules of type 7 that have shape I, or II
when i € J, and shape I,y or Il wheni ¢ J.

The key observation will be that if U C €7(J) is the closed substack of Breuil-Kisin
modules with shape II for each i € S(J), then the image of U in Z*(J) is still dense (cf. the
proof of Theorem 5.9). Since Breuil-Kisin modules of shape II may be regarded as having
either “shape I, or II” or “shape I,/ or II”, we see that if J is any other profile such that the
symmetric difference J AJ’ is a subset of S¥(J), then U C €7 (J’) as well. (This observation
is the source of the name shape-shifting.) It follows that Z*(J) is contained in Z%(J). Finally,
setting r’ = r(z, J'), Theorem 4.16 and the results of Section 4.1 imply that Xted C Xreq. Note
that, in this argument, the inclusion of stacks comes first, and the statement about crystalline
lifts is the corollary.

In fact, the collection of profiles J’ to which the shape-shifting argument can be made to
apply is somewhat larger than we have described above.

Remark 5.5. In the cuspidal case, each profile J C Z/ f’Z has the property that i € J
ifand only ifi + f ¢ J. It follows that the symmetric difference J AJ’ C Z/ f'Z of two pro-
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files has the property thati € JAJ’ if and only if i + f € JAJ’, and may thus be identified
with a well-defined subset of Z/fZ. We will freely make this identification in what follows.
This allows us sensibly to write JAJ" C S*(J) in the cuspidal case and not only in the prin-
cipal series case, even though, in the cuspidal case, J A J’ is literally a subset of Z/ f'Z, while
ST(J)isasubsetof Z/fZ.

To implement the above strategy, we begin with a brief review of some results from
[9, §§3-5]. As we have already alluded to in the proof of Proposition 4.19, the constructions
of [9] furnish us with a morphism

£:Spec B — €7 (J) — ZT(J)

such that the maps from Spec B4 to both €7(J) and Z%(J) are scheme-theoretically dom-
inant. The source Spec B has the following description: there are rank one Breuil-Kisin
modules M (J) and N (J) such that Spec BY! is a universal family of extensions of unramified
twists of 9Jt(J) by unramified twists of 9t(J); the superscript “dist” indicates that, for certain
(z, J) (namely, if IM(J)[1/u] = N(J)[1/u]), then we restrict from the whole universal fam-
ily to the (dense, open) subfamily whose F’-points are extensions of I (J)g o by N(J)p
witha # b.

The rank one Breuil-Kisin modules It(J )g o and N(J ), admit the following descrip-
tions. Set (c;,d;) = (k;. k) ifi € J,and (¢;.d;) = (kj,k;)if i ¢ J.Define

{[d,- —¢j] when (i —1,i) is a transition,
ri =

pf/ —1 when (i —1,1) is not a transition,

{[cl- —d;] when (i — 1,i) is a transition,
s =

0 when (i — 1,7) is not a transition.

Finally, set ap = a, bo = b, and a; = b; =1 if i # 0. Then IN(J)p 4 is the Breuil-Kisin
module M(r, a, ¢) of [9, Lemma 4.1.1] (with F'-coefficients), and 0(J ) 4 is the Breuil-Kisin
module N (s, b, ¢). In particular, the i-th component (M (J )y 4); has a basis element m; on
which I(K'/K) acts vianifi € J and ' if i ¢ J, while the reverse holds for basis elements
nj of (M(J)p p)i-
As explained in [9, Remark 4.1.9], an extension 8 of IN(J g 4 by N(J)p p has partial
Frobenius given by
Oy (1 ®n;—1) = bju’in;,
O (1 ®mi—1) = au" m; + hju®n;,
where h; € F/ and §; = 0if (i — 1,7) is a transition, while §; = [¢; — d;] otherwise. The descent
data on % is given by specifying that if we define ; = (m;,n;) fori € J and ; = (n;, m;)
fori ¢ J, then B = (B;) is an eigenbasis. Observe for later reference that 8 has shape II at i
if and only if (i — 1,7) is a transition and #; = 0 (in which case the matrix of ®g; with
respect to B is anti-diagonal). In this manner, we identify Ext! (I (J)p 4, N(J)pr p) With the
f -dimensional vector space spanned by the elements i; € F'.
To describe the subspace

ker-Ext' (M (S0, R(w p) C Ext! (M) 0, N(T g p)

of extensions that split after inverting u, we need to introduce some notation.
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Definition 5.6. An interval in Z/ fZ is the image in Z/ f Z of any interval in Z. If S
is any subset of Z/ f Z, write S(n) for the shift of S by n, and §¢ = S U S(—1). Any subset
S C Z/fZ then has a unique decomposition S = I; LI --- LI /; as a disjoint union of maximal
intervals. The maximality condition is equivalent to the condition that /7 N [ f = ¢ for all

i

The discussion in [9, §5.1] establishes that ker-Ext! (3(J )¥,a, N(J)p p) has dimension
|ST(J)|, and in fact that it has the following more precise description. Note that the assumption
that a # b if M(J)[1/u] = NR(J)[1/u] implies that we are not in the “exceptional case” of
[9, Proposition 5.1.8]. In what follows, we let /1 LI --- LI I, be the decomposition of S¥(J) as
a disjoint union of maximal intervals. (For simplicity of notation, we suppress t, J from the
notation for Iy, ..., Iy.)

Proposition 5.7. Suppose that S*(J) # Z/ f Z. Foreachk = 1, ..., Y, there is a hyper-
plane V, = {Ziel,‘g ajh; = 0} with each a; # 0 such that

L

ker-Ext' (M) .o NN p) = @D Vi
k=1

under the identification discussed above. If instead ST(J) = Z./ f Z, then
ker-Ext! ), oaN(J e p)
is equal to all of Ext! OR)¥ a, N()w p).

Definition 5.8. Continue to let /; LI --- LI I, be the decomposition of ST(J) as a dis-
joint union of maximal intervals as above. If I # Z/ fZ is an interval, let m () be the unique
element of 7€\ I, and set

, _J1¢ it (m(I) —1,m(1)) is a transition for J,
I if (m(I)—1,m([I)) is not a transition for J.

If] =Z7Z/fZ setl’ = I.Define S*(J) =[] L--- 11 1.
We can now prove the following.

Theorem 5.9. Let J' be any profile with J AJ' C ST(J). If ST™(J) # Z]f Z, assume
further that J AJ' does not contain 1] for any k. Write r = r(z, J) and r' = r(z, J'). Then
Kied C Xreq-

Proof. Let V C Z%(J) be the collection of finite type points lying in the image of
Ext!(M(J)p.q, N(J)p p) for some a,b with a # b, so that V is dense in Z*(J). Propo-
sition 5.7 implies that each point in V' has a preimage P € Ext! (M (J)p' 4, N(J )¥.p) With
hi =0 for all i € JAJ' (here using the fact that o; # O for all i, and the hypothesis that
I ¢ JAJ " for any k). By the discussion at the beginning of the section, this preimage has
shape Il at all i € J AJ’, here using in an essential way that i = m([;) € I,é is allowed only
when (m(I) — 1,m([I)) is a transition. Therefore, T € €%(J')(F'). It follows that V C Z*(J'),
and so also Z*(J) C Z*(J). O
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Corollary 5.10. Theorem 5.2 holds for v;(r) and 6;(r).

Proof. Using Proposition 4.12, choose t and J so that r = r(z, J). By hypothesis,
rjii1 = rj2, and so we have j € ST(J). Taking the unique profile J’ with JAJ' = {;}, one
computes that v; (r) ~ r(t, J'). The result for v; now follows from Theorem 5.9.

The argument for 6;(r) is similar but slightly more involved. If j — 1 € S*(J), then
6 (r) =v;_1(r) and we are done by the previous paragraph. Otherwise, since we have assumed
that ;1,1 —rj—12 # p, we have rj_1,1 —rj—1,2 € [1, p — 1]. By Remark 4.15, we may
choose (t,J) with r = r(t, J) such that there is a transition at j — 1, unless we are in the
exceptional case described in Remark 4.15 (2). Observe that this exceptional case occurs pre-
cisely when 6; (r) is Steinberg.

Assume first that 6; (r) is non-Steinberg. As explained above, we may arrange that there is
atransition at j — 1 sothat j — 1 € ST(J)’. Taking the unique profile J/ with JAJ' = {j — 1},
one computes that 6; (r) ~ r(z, J’). The result in this case now follows from Theorem 5.9.

Finally, suppose that 6; (r) is Steinberg. Applying v;+1,V;42,...,Vj—1 successively to
r, one obtains a Hodge type of the form BT 4+ with A € Z/, and such that 0i(r) ~St+ A
Here St s the Steinberg Hodge type {p, 0};cz, rz. The result for v shows that p has a crystalline
lift of Hodge type BT +A. Since it is standard that a representation with a crystalline lift of
Hodge type BT also has a crystalline lift of Hodge type St, the result follows. O

The argument for p; proceeds somewhat differently. For brevity, since the argument
for Theorem 5.2 in the previous subsection was complete, we content ourselves with giving
a sketch.

Proposition 5.11. Theorem 5.2 holds for v (r).

Sketch of proof. 1f r is irregular at j — 1, then u; = v;_1, so we may assume that r is
regular at j — 1. Using Proposition 4.12, choose 7 and J so that r = r(z, J). By Remark 4.15,
we can always arrange that j — 1 is not a transition, and we do so. Let J’ be the unique profile
such that JAJ' = {j — 1}. Then r(z, J') ~ u(r). Note that |ST(J')| = |ST(J)| — &, where
§=1ifrj_1,1 —rj—1,2 > 1 and § = 0 otherwise. In the latter case, j — 1 € S(J’).

Unfortunately, we cannot apply Theorem 5.9 to the pair J, J' because j — 1 ¢ ST(J)'.
Instead, we argue as follows. The extensions of M (J ")y o by N(J)pr p, have a description that
is parallel to the one for M(J g4 by N(J)p . We let /) denote the extension parameters for
J' that were denoted h; for J. Since j — 1 is a transition in J’, the locus

{hj_y =0} CE(JN(F)

consists of Breuil-Kisin modules having shape IT at j — 1 and therefore also lies in €% (J ) (F’).
If§ =1,then j — 1, ¢ ST(J’), and according to Proposition 5.7, we have

ker-Ext(M(J "), N(J)p) C {h}_1 = 0}.
If § = 0, then ker-Ext(M(J") 4, N(J')p) meets {h}._1 = 0} in codimension 1 instead. In either

case, ker-Ext(IN(J")q. N(J)p) N {h}_1 = 0} has dimension [S*(J)|+§—1=|S*(J)|— 1.

The image of the locus {h}_1 = 0} in Z®! will therefore have dimension

(K:Q=D—=(S" (D=1 =[K:Q]—[ST(J)I.
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It follows that Z¥(J') contains a ([K : Q] — |S7(J)|)-dimensional subset of Z%(J). But Z%(J)
is irreducible of dimension [K : Q] — |ST(J)|; after checking that this implies Z*(J") N Z(J)
is dense in Z7(J), we conclude that Z*(J) C Z*(J'). m]
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