Bee Identification Problem for DNA Strands

Johan Chrisnata* Han Mao Kiah* Alexander Vardyf and Eitan Yaakobif

* School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
t Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
Department of Computer Science, Technion — Israel Institute of Technology, Haifa, 32000 Israel
{johanchr001,hmkiah} @ntu.edu.sg.edu, avardy @ucsd.edu, yaakobi@cs.technion.ac.il

Abstract—Motivated by DNA-based applications, we generalize
the bee identification problem proposed by Tandon et al. (2019).
In this setup, we transmit all M codewords from a codebook
over some channel and each codeword results in N noisy outputs.
Then our task is to identify each codeword from this unordered
set of M N noisy outputs.

First, via a reduction to a minimum-cost flow problem on
a related bipartite flow network called the input-output flow
network, we show that the problem can be solved in O(M?) time
in the worst case. Next, we consider the deletion and the insertion
channels individually, and in both cases, we study the expected
number of edges in their respective input-output networks.
Specifically, we obtain closed expressions for this quantity for
certain codebooks and when the codebook comprises all binary
words, we show that this quantity is sub-quadratic when the
deletion or insertion probability is less than 1/2. This then implies
that the expected running time to perform joint decoding for this
codebook is o(M?). For other codebooks, we develop methods
to compute the expected number of edges efficiently. Finally, we
adapt classical peeling-decoding techniques to reduce the number
of nodes and edges in the input-output flow network.

I. INTRODUCTION

In 1953, when Watson and Crick proposed the double helix
model of the DNA molecule [2], they wrote: “It has not
escaped our notice that the specific pairing that we have
postulated immediately suggests a possible copying mecha-
nism for the genetic material.” In the same year, the authors
described the details of this replication mechanism [3] and
more than seven decades later, the polymerase chain reaction
(PCR) and other amplification techniques that exploit this
copying mechanism have become an essential component in
many bioengineering applications. Of interest to this paper are
the following applications.

(a) DNA based data storage. Here, digital information is
written onto synthetic DNA strands, that are in turn stored
in a container in an unordered manner. Since the first
experiments conducted by Church et al. in 2012 [4] and
Goldman et al. in 2013 [5], there have been a flurry of
experimental demonstrations (see [6]-[8] for a survey).

The research of Han Mao Kiah is supported by the Ministry of Education,
Singapore, under its MOE AcRF Tier 2 Award MOE-T2EP20121-0007. The
research of Alexander Vardy and Eitan Yaakobi was supported in part by the
National Science Foundation (NSF) under Grant CCF-2212437. The research
of Eitan Yaakobi was funded by the European Union (ERC, DNAStorage,
865630). Views and opinions expressed are however those of the authors only
and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them.

Parts of this work were presented in the IEEE International Symposium on
Information Theory (ISIT2022) [1].

To date, the “largest” experiment is due to Organick et al.
where the amount of data stored is 200MB [9].

(b) Pooled Testing of Viral RNA. Recently, to increase the
testing throughput for COVID-19 infections, Schmid-
Burgk et al. developed a procedure where multiple DNA
samples are pooled, sequenced and analyzed en masse
[10]. Unlike classical group testing, Schmid-Burgk et al.
inserted barcodes / codewords in each sample to facilitate
identification. As before, during this testing procedure,
multiple copies of each DNA strand are created and the
authors were able to reliably identify the viral samples.
Later, similar experiments were replicated with different
codebook / barcode spaces demonstrating the feasibility
of the pooled testing approach [11]-[14].

In both applications, to read the information on either a
synthetic DNA data block or a viral RNA sample, the user
typically employs a sequencing platform that creates multiple
copies of the same strand. The sequencer then reads all these
copies and provides multiple (possibly) errononeous reads to
the user. Even though multiple reads allow the user to store
more information or augment the testing capacity [15], [16],
the unsorted nature of DNA strands poses certain computation
problems. More concretely, in DNA based storage system',
a file is typically broken into many information blocks and
stored onto different DNA strands, where their relative order is
not preserved. Hence, when the user retrieves the information,
in addition to decoding the data, the user has to determine
the identity of the data that each strand stored. Now, a typical
solution is to simply have a set of addresses and have each
DNA strand to store this address information in its prefix. As
the addresses are also known to the user, the user is able to
identify the information after the decoding process.

However, as these addresses may also be corrupted, this
solution requires further refinements and we discuss one ex-
perimental approach adopted by Organick et al. [9]. Here, the
reads are first clustered with respect to the edit distance. Then
the authors determine a consensus output amongst the reads
in each cluster and finally, decode these consensus outputs
using a classic concatenation scheme. For this approach, the
clustering step is computationally expensive and in [17], a
subset of the authors developed a distributed approximate
clustering algorithm and clustered 5 billion reads in 46 minutes
on 24 processors.

IThere are numerous works that address the unsorted nature of DNA-
based data storage system and we provide a short survey at the end of this
introduction.

In this work, we study a method that avoids clustering. Here,
we use the fact that the addresses codebook € is available to
the user. Instead of clustering the entire reads, we look at the
collection® of prefixes Y of the reads and assign each prefix
y € Y to a certain address 7(y) £ x € C. If we assume certain
channel characteristics, that is, the probability of prefix y given
an address x is P(y|x), then the likelihood of an assignment
can be computed to be [], oy P(y|m(y)). Therefore, our op-
timization objective is to find an assignment that maximizes
this probability. We formally define this problem in Section II.

We remark that our approach generalizes the bee identi-
fication problem originally proposed by Tandon et al. [18].
Informally, the bee identification problem requires the receiver
to identify M “bees” using a set of M unordered noisy mea-
surements. Tandon et al. studied the binary symmetric channel
and showed that decoding the noisy measurements jointly
results in a significantly smaller probability of erroneous
identification [18]. Later, Kiah er al. investigated efficient ways
of performing this joint decoding [19]. Specifically, for the
binary erasure and binary symmetric channels, they reduced
the bee-identification problem to certain combinatorial opti-
mization problems. Then, applying well-known algorithms,
they demonstrated that joint decoding can be performed in
polynomial time (in M).

Here, we extend this model by assuming that each of the
M bees results in N noisy measurements with N > 1, and
we call this the bee identification problem for multi-draw
channels. Our first contribution is to reduce this identification
problem to the problem of finding a minimum-cost flow on a
related bipartite flow network, which we call the input-output
flow network. Then, applying the Edmonds-Karp or Tomizawa
algorithm [21], [22], we show that the bee identification
problem for multi-draw channels can be solved in O(M?)
time, where [V is fixed. To reduce the running time complexity,
we explore the use of peeling decoders to further reduce the
number of nodes and edges in the input-output flow network
in Subsection II-D.

Since the complexity of the network flow algorithm scales
with the number of edges, we provide estimates on the
expected number of edges. In Section III, we first study this
number for any general channel 8. Next, similar to [19], our
second contribution is a detailed study of the input-output flow
network in the context of deletion channels in Section IV and
insertion channels in Section V. Since the analysis for the
deletion channels and for the insertion channels are similar,
we focus our in-depth analysis on the deletion channels. For
certain codebooks, we obtain closed formulae for the expected
number of edges and in the case when C = {0,1}", we show
that the expected edge density of the network tends to zero
when the deletion probability is less than 1/2. This implies that
the expected running time of the algorithm for the deletion
channel is sub-cubic. For other codebooks, determining the

2As pointed out a reviewer, here we are assuming that we are able to
accurately determine the corrupted prefix. A naive, and slightly costly, solution
is to separate the index and the file in each strand via some marker sequence,
like a run of £ zeroes, and then forbid the file from containing such a run.
A comprehensive study is given by [20]. A potential research direction is to
determine the optimality of this solution.

expected number of edges is challenging. Nevertheless, we
develop techniques to compute this quantity in polynomial
time (in n) for any code that can be defined with linear
syndrome in Subsection IV-B. In the next section, we formally
define our problem and describe our contributions.

A. DNA-based Data Storage

For completeness, we survey some works that address the
unsorted nature of DNA-based data storage system.

(a) Clustering-Correcting Codes. As described earlier, to
protect against the corruption, a solution is to cluster
the reads with respect to certain metric [9], [17]. As
this approach is computationally expensive, the authors
in [23] proposed a new family of codes called clustering-
correcting codes. These codes ensure that if the distance
between the addresses of two strands is small, then the
distance between their data blocks is large. In [23], the
authors then exploited this property to cluster the strands
correctly, even in the presence of errors.

(b) Coding over Sets. To study this storage systems, another
line of work proposed a new channel model where data
is sent as an unordered set of strings. The channel is
sometimes referred to as the shuffling channel (see [8] and
the references therein), while the code design problem is
referred to as coding over sets [24]. Families of such codes
are constructed in [24]-[26], while fundamental limits of
such channels are studied in [8], [27]-[30].

(c) Coding for Random Access. In the previous approach, all
files have to be read to retrieve any information. In order
to read a specific block of the information, Yazdi et al.
proposed a strategy that exploits the DNA hybridization
process to randomly access encoded DNA strands. Coding
design considerations were provided in [31], while explicit
codes were constructed in [32], [33].

II. PROBLEM FORMULATION
A

Let N and M be positive integers. Let [M] =
{1,2,..., M}. An N-permutation 7 over [M] is an N M -tuple
(m(@))ierar Ny Where every symbol in [M] appears exactly N
times, and we denote the set of all N-permutations over [M]
by Sy (M). Let X be an alphabet of size two and X" denote
the set of all binary words of length n. Let ¥* = U2 X",
We consider a length-n code ¢ C X" with M codewords
X1,X2,...,xy. Consider, in addition, a channel 8§ where the
output y given an input x is received with probability P(y/|x).

In our setup, we send all M codewords over the chan-
nel § and suppose that each codeword results in exactly
N outputs. Therefore, we obtain an unordered multiset
of MN outputs {y1,y2,...,ymn}. Note that the outputs
YiN—N+1,YiN—-N+2,- .-, YiN are not necessarily the channel
output of x; and in fact, our task is to find an /N-permutation
7 over [M] such that y; is most likely to be the channel output
of the input x(; for all i € [M N]. Formally, assuming the
channels are independent, our task is as follows.

(Bee Identification for Multi-draw Channels). To
find an N-permutation 7 over [M] so as to maximize
the probability Hﬁjlv P (yilxa(s)-

We emphasize that codebook C is known to both the sender
and receiver. In particular, the channel inputs x1,xs,...,X5s
are known to the receiver and the receiver’s task is to assign
each channel output y to some channel input x.

A. A Bipartite Flow Network

To perform our identification task, we define the input-
output flow network G = (V, €,4,6) using the M codewords
C={x;:i€[M]} and MN outputs Y = {y, : j € [MN]}.

(1) Nodes. The set of left and right nodes corresponds to the
set of M codewords and the multiset of M N outputs,
respectively. In other words, V = CU Y.

(ii) Demands. For each left node / codeword x € C, we
assign the demand §(x) = —N, while for each right
node / output y € Y, we assign the demand 4 (y) £,

(iii) Edges. For a codeword x and an output y, we draw the
edge from x to y if and only if it is possible to obtain
the channel output y from the input codeword x, that is,
P(y|x) > 0. Hence, & £ {(x,y) € € x Y : P(y|x) > 0}.

(iv) Costs. For an edge (x,y) € C x Y, we assign the cost
Y(x,y) = —log, P(ylx). Note that the cost is well-
defined as the value P(y|x) is necessarily positive.

Given the input-output flow network Gy, the minimum-cost
network flow problem is defined as follows.

min Y f(xy)y(xy)

(x,y)ee

s.t. Zf(x, y)=—-0(x)=N foreveryxeC, (1)
yeY
Zf(x7 y)=6(y) =1 forevery y €Y, (2)
xeC
f(x,y) € {0,1} for all (x,y) € €.

A

Consider a flow f in Sy with cost (f) =
Pyee S y)y(x,y). That is, f fulfills both (1) an
(2). We construct an N-permutation 7 as follows: set
7(j) = ¢ if and only if f(x;,y;) = 1. It follows from (2)
that 7(j) is assigned a value for all j € [MN]. From (1),
we have that every ¢ € [M] appears exactly N times in
mw, and so, 7 is an N-permutation. Finally, we observe that
Hﬁ]lv P (yi|x;)) is given by 2-7() Therefore, minimizing
the cost of a flow in Gy is equivalent to maximizing the
probability for the bee-identification problem for multi-draw
channels®.

For the binary erasure channel (BEC) and binary symmet-
ric channel (BSC), when N = 1, the preceding algorithm
reduces to the bee-identification problem to the problem of
finding a perfect matching and minimum-cost matching in
91, respectively [19]. In this work, we focus on the deletion
channel and the insertion channel, denoted by Del(p) and
Ins(p) respectively.

3This problem can be generalized to the case when each codeword results in
at most N outputs. In this case, we can modify the network in Section II-A
to address this. Specifically, when there are N’ < MN right nodes, we
include another M N — N’ right auxiliary nodes. For each of the M left
nodes, we draw an edge to each right auxiliary node. The cost of each edge
is then set to co. Then applying the minimum cost flow algorithm, we find
the maximum-likehood N-permutation.

We provide a similar definition of the probabilistic deletion
and insertion channels as in [34] with little modification,
described in a general setting as follows.

Definition 1. The general insertion/deletion channel sequen-
tially takes an input symbol from a sent codeword x =
T1Z9---x, of length n, and constructs a variable length
output ¥y = y1y2--- € X* sequentially. The general channel
is defined by three parameters, namely pins, Pdel, and Peor,
where pins + Pdel + Pcor = 1. Let the input pointer be i
and the output pointer be j. The initial pointer positions are
at ©+ = 1 and 5 = 1. For the purpose of this paper, we
assume that z,+; = € is an empty bit. This is to allow the
possibility of more insertions happening after the last bit z,,.
Iteratively, we sample one of the following three events with
their corresponding probabilities until ¢ = n + 2.

« Insertion with probability p;,;. Choose y; uniformly at
random from .. Increase j by one.

o Deletion with probability py.;. Increase ¢ by one.

e Correct with probability p.... Set y; = x;. Increase
both ¢ and j by one.

In [34], the authors included an additional parameter pg1,
to denote the substitution probability. For this paper, we focus
on the pure deletion channel (without insertion) and pure
insertion channel (without deletion). One future direction is
to consider combinations of deletions and insertions occurring
in the same channel. In the deletion channel, we set pge to
be a positive number 0 < p < 1 and p;,s to be zero. In other
words, each bit in a sent codeword is independently deleted
with probability p > 0. More generally, the deletion multi-
draw channel, denoted by Del(p; N), results in N independent
outputs for each codeword sent through the deletion channel.
Similarly, for the insertion channel, we set pqe to be zero and
Dins to be a positive number 0 < p < 1. More generally, the
insertion multi-draw channel, denoted by Ins(p; N), results
in N independent outputs for each codeword sent through
the insertion channel. In the next few subsections, we discuss
in detail how we define the edge costs corresponding to the
deletion and insertion channels.

B. The Deletion Channel

First, we describe the solution and our result for the deletion
channel, where the probability pqe; iS a positive number
0 < p < 1. For a codeword x and an output y, the
probability P(y|x) is given by Emb(x,y)p?(1 —p)"~<. Here,
d = |x| — |y| is the number of deletions, while Emb(x,)
denotes embedding number of y in x, that is, the number of
times y occurs as a subsequence of x. When P(y|x) > 0,
we draw an edge between x and y and we assign the cost
—logy Emb(x,y) — dlogy p — (n — d) logy (1 — p), where the
logarithm base is two.

Example 2. Consider the multi-draw deletion channel with
p =02and N = 2. Let € = {0000,1001,0110,1111} be
the code with M = 4 codewords of length four. This is a
Varshamov-Tenengolts (VT) code [35].

Suppose that we pass all four words through the channel
and obtain the following eight outputs are:

Yy, = 000,
ys = 1111.

}/3 = 117
Yyr = 0110,

Y2 = 117
Yo = 0110,

Next, we describe the input-output flow network Gy . For
the demand values, we simply have §(x) = —2 for x € € and
d0(y) = 1 for y € Y. To display the cost values, we use a
4 x 8-table to reduce clutter. Here, the (4, j) entry is given by
the cost of the edge (x;,y;), i.e. —logy P(x;,y,), and when
there is no edge between x; and y;, we write the entry as oco.

|y Y2 ys ya Y5 ye Y1 Ys
x1 = 0000|5.288 oo oo 1.288 1.288 00 00
x2 = 1001 [6.288 5.288 5.288 oo 00 00 00 o0

x3 = 0110|6.288 5.288 5.288 oo oo 1.288 1.288 oo
x4 =1111| oo 2.703 2.703 o0 00 00 oo 1.288

Highlighted in blue are the edges whose flow values are
one in a minimum-cost flow of Gy. Notice that in each
row and column, the number of blue edges are two and
one, respectively. This meets the respective flow constraints
(1) and (2). Then the corresponding maximum likelihood
N-permutation is given by (2,2,4,1,1,3,3,4). Note that a
minimum-cost flow, or equivalently, a maximum-likelihood
N-permutation, is not unique. We refer to the reader to the
concluding remarks for a discussion. [|

In what follows, we discuss how to obtain this minimum-
cost flow efficiently. To this end, we apply the algorithm of
Edmonds and Karp [21], and Tomizawa [22], to compute
a minimum-cost flow, and hence, a maximum likehood IN-
permutation, in O(|V|(|€] + |V|log, |V|)) time. However, in
the worst case, the network G may form a complete bipartite
graph. That is, |€] = NM? where M is the size of the code.
Thus, in the worst case, the running time of this method is
cubic in the number of codewords M.

However, observe that the input-output network Gy in
Example 2 is sparse, that is, |€| = 14 is small as compared to
NM? = 32. In this paper, under certain mild assumptions,
we show that on average this is indeed the case, that is,
the expected number of edges is o(M?). Specifically, for a
codebook € and channel 8, we use By(C;8) to denote the
expected number of edges in the input-output flow network
Gn. When the codebook comprises all binary words of length
n and the deletion probability p is less than 1/2, we have the
following result which is immediate from Proposition 12 in
Section IV.

Theorem 1. Let 8 = Del(p; N) for fixed values of p and N.
For p < 1/2, we have then By ({0,1}";8) < NM!*¢, where
M = 2" and 0 < € < 1 is a constant dependent only on p.
Therefore, the expected running time of the minimum-cost flow
algorithm is o(M?). Here, asymptotics are with respect to n.

Furthermore, in Proposition 12, we show that the threshold
p = 1/2 is tight. Specifically, we demonstrate that the quantity
Bn({0,1}";8)/NM? tends to 1/2 and 1, when p = 1/2 and
p > 1/2, respectively. To obtain this result, we provide closed
formula for B;({0,1}",8) using combinatorial techniques.
Similar formulae are obtained for constant-weight and even-

weight codebooks. For other codebooks, this enumeration
problem is nontrivial and it is not clear that By (C;8) can
be computed in polynomial time. Nevertheless, in Subsce-
tion IV-B, we use standard dynamic programming techniques
to compute By (C;8) in polynomial time for a class of
codebooks. We remark that this class is rather general and
includes many classical codes such as linear codes and VT
codes.

C. The Insertion Channel

Similar to the deletion channel, we now describe the so-
lution and our result for the insertion channel, where the
probability pi,s is a positive number 0 < p < 1. For a
codeword x and an output y, the probability P(y|x) is given
by Emb(y,x)p?(1 — p)", where d = |y| — || is the number
of insertions. When P(y|x) > 0, we draw an edge between x
and y and we assign the cost —log, Emb(y,x) — dlog, p —
nlogy(1—p), where the logarithm base is two. Similarly to the
deletion channel, we then apply the algorithm of Edmonds and
Karp [21], and Tomizawa [22], to compute a minimum-cost
flow in O(|V|(|€] + |V|logs |V|)) time.

D. Pruning with the Peeling Decoder

Next, we reduce the running time of the network flow
algorithm by pruning away certain nodes and edges. To do so,
we modify the classic peeling decoders used in graph-based
codes [36]. Intuitively, we search for degree-one nodes in the
input-output network Gy . For any such node u with the edge
uv, we must assign u to v. In such cases, we either remove
u or v and the edge uv from the network. Specifically, we do
the following.

o If the output y is a degree-one node and x is the only
node adjacent to y, we remove the output node y and the
edge xy. We also increase the demand of x by one and
if the resulting demand is zero, we also remove the node
X t00.

o If the codeword x is a degree-one node and y is the only
node adjacent to x, we then remove both nodes x and y
and all edges incident to the node y.

We repeat this procedure until neither of these rules can be
applied. That is, there is no degree-one node in the resulting
flow network. We then denote this flow network by G73.

Example 3. Continuing Example 2, we remove nodes and
edges from Gy according to the rules. Then the resulting
network G% has only codewords x, and x4 with outputs y»
and ys.

| v ys
x; — 1001 | 5.288 5.88
xg = 1111 | 2,703 2.703

Here, the resulting demand is §(x2) = §(x4) = —1. Applying
the network flow algorithm to G}, recovers the same solution
as in Example 2. []

As before, since the running time of the network flow
algorithm depends on the number of nodes and edges, we

are interested in determining the size of G%;. Specifically, we
estimate A% (C;8) and B} (C;8) which denote the expected
number of nodes and edges, respectively, in G}, .

III. EXPECTED NUMBER OF EDGES FOR GENERAL
MULTIDRAW CHANNELS

Throughout this section, we fix some codebook € with M
codewords. We send all M codewords through a general multi-
draw channel 8§ and obtain N M noisy outputs. Following the
preceeding section, we then construct the input-output flow
network Gp. First, we study the expected number of edges
in Gy for any general channel § and denote this quantity by

Now, let the codewords in € be x1, 2, ..., x. Fori € [M],
let the N random noisy outputs of x; be y;1,¥i2,...,YiN-
For i,j € [M] and k € [N], we consider the event that we
insert an edge between codeword x; and output y; ;. Recall
that we insert an edge if and only if the channel probability
P(y;r|x;) is strictly positive. As the expected number of
edges in Gy is given by the sum of these probabilities, we
have the following proposition.

Proposition 2. If Q(x < x') denote the probability that an
output of x is also an output of x' i.e. the probability that
there exists an edge from x' to the output of x in the bipartite
flow network, then we have

Bi(G8) =) > Qx=x), 3)
xeCx'el
N
NE@8) =D D> Qx<x)=NBi(CS). (4
k=1xeCx'eC

Proof. Suppose that the code € has M codewords
X1,X2,...,x)s and there are M N random variable outputs,
H = {yi,j 1 §) < M,]. S j < N}, where Yij
is the random variable of the j-th output of x;. Note that
the expected number of edges in the network Gy is simply
>_xee 2yey P(there exists an edge from x to). And since
all the outputs of the channel § are independent, we have
P(there exists an edge from x; to y; 1) = Q(x; < x;), for
any k. Therefore we have BN (C;8) = N) oD vee Qx <
x') = NB;(C;8). O

Therefore, it suffices to compute B;(C;8) for general
codebooks and channels. For the binary symmetric and binary
erasure channels, we have the following results on the expected
number of edges from [19].

Proposition 3 ([19, Lemma 3]). If 8§ is the BSC, then
B1(C;8) = |C|% If 8 is the BEC with erasure probabil-
ity p, then B1(C;8) = D(p) where D(z) is the distance
enumerator of the code C. Here, D(z) is the polynomial
D(z) =>"" , D;2", where D; is the number of pairs of (not
necessarily distinct) codewords with distance 1.

Since determining the distance enumerator D(z) for a
general linear code is NP-hard [37], we have that evaluating

the quantity B1(C;8) is also NP-hard* when § is the binary
erasure channel. Therefore, we conjecture that the problem of
determining B1(C;8) is also difficult when § is the deletion
channel. Nevertheless, in the next section, we study this prob-
lem and obtain closed formulas for certain special codebooks.

Here, we continue our discussion for general multidraw
channels. Using the peeling decoder described in Subsec-
tion II-D, we can reduce the number of edges and vertices
and obtain the flow network G%. Recall that A% (C;8) and
B3 (€; 8) denote expected number of nodes and edges, respec-
tively, in G . It turns out we can bound these values using the
quantity B;(C;8) defined in (3).

To this end, we estimate the number of degree-one nodes
in 9 N-

Proposition 4. The expected number of degree-one right
(output) nodes in Gy is at least N(M — B1(C;8)/2).

Proof. We adopt the notation in the proof of Proposition 2.
For any output y; ;, the expected degree of y; ; (in Gn) is
> xce @(x; < x)). Then by Markov inequality, the probability
that y; ; has degree at least two is at most £ >° o Q(x; < x).
That is, the probability that y; ; has degree one is at least
1 — 13 ceQx; < x). Therefore, the expected number of
degree-one right nodes is at least

Sy (1—32@@ <x)>

i€[M] jE[N] xeC
1 /
:N(M—QZZQ(J: <x)>
x'eCxeC
:N(M—Bl(e;s)>. O
2
Corollary 5.
M+ NBLES) N > 9
An(esy< g n L e B
Bl((:‘;S), N =1.

BL(C:S) < N (‘;Bl(e;S) - M) .

Proof. Recall that all degree-one nodes and their correspond-
ing edges must be removed at the first step. Thus, using
Proposition 4, the remaining number of edges is at most
NB;(C;8) — N(M — B1(C; 8)/2) and the remaining number
of nodes is at most M (N +1)— N(M — B1(C;8)/2). Note in
the case for N = 1, the expected number of degree-one left
nodes is also given by M — B;(C, 8)/2 and these nodes can
be removed. O

For the next two sections, we analyse the enumeration of
the expected number of edges for two particular channels,
namely the deletion channel and the insertion channel. Firstly,
in Section IV, we focus on the deletion channel, and give a
closed expression of the expected number of edges when the

4Suppose otherwise that there is a polynomial-time method to evaluate
D(p) for 0 < p < 1. Then we can evaluate D(z) at n + 1 distinct points
and recover the coefficients of D(z) in polynomial time using Lagrange
interpolation.

codes are all binary words, even-weight codes and constant-
weight codes. Furthermore, in Subsection IV-A, we observe
that the edge density of the flow network in the deletion
channel is polarized. Since our closed expression only works
for certain codes, we give an alternative enumeration method
via a dynamic programming approach in Subsection IV-B that
works for any code that can be defined by a linear sydnrome.
Finally, in Section V, we do a similar analysis for the insertion
channel.

IV. DELETION CHANNEL

Throughout this section, we have that § = Del(p), for
0 < p < 1. Observe from (4) and Corollary 5 that the
quantity B;(C;Del(p)) is useful for providing estimates on
the sizes of the networks Gy and and G%;. Hence, we study
B;(C; Del(p)), and for brevity, we write this quantity as
B(€;Del(p)). Our first proposition states that the problem of
determining B(C, Del(p)) is equivalent to certain enumeration
problems concerning subsequences.

Proposition 6. Fix any code C C X™. We have that

-3 Y rmerEey

t=0 zexmn—t

B(€, Del(p ‘A—-p)" Tt 5)
Here, 1(z; Q) denotes the number of words in C that contain
z as a subsequence, while 1*(z;C) = > .o Emb(x,z). In
other words, I*(z; C) counts the total number of occurrences
of z amongst all codewords in C.

Proof. Observe that for the Del(p)-channel, the quantity
Q(x < x') denotes the probability that an output of x is a
subsequence of x’. So, for 0 < t < n, if we use Dy(x)
to denote the set of all (n — ¢)-subsequences of x, then

we have Q(x < x') = Y} OZZED (v Emb(x, 2)I(z €

x')p*(1—p)"~*. Here, we use I(z € x') to denote the indicator
function for the event that z is a subsequence of x’. Using
this expression and switching the order of summation, we can
rewrite (3) as

B(C,Del(p))
=> p'(1-p)""
=> p'1-p""

Since) ..o Emb(x,z) and } ., oI(z € «') yields the
quantities I*(z; €) and I(z; C), respectively, we obtain (5). [

Z Z Z Emb(x, 2)I(z €)

zexn—t xeCx'el

> (Z Emb(x, z)) (Z I(z € x/)>.

zexn—t \x€C x'ee

Next, we look at the quantities I(z
following codebooks:

An = {0,137,
2 {x € {0,1}" : wt(x) is even},
Cpw = {x€{0,1}" : wt(x) = w}.

The quantity I(z; C) has been studied in other contexts [38],
[39]. Of significance, I(z; {0, 1}") depends on |z| and n only,
while I(z; €(n,w)) depends on |z|, wt(z), n, and w only. In
both cases, this quantity does not depend on the actual string
z. Specifically, we have the following proposition.

;C) and I*(z; C) for the

Proposition 7 ([38], [39]). Let |z| = n — t. Then,

zt: <T;) 2 [a(n,t). (6)

=0

I(z; A,) =

Furthermore, if wt(z) = u,

I(Z; en,w)
2 Io(n,w,t,u)

_ (Z)’ ifu=0and w <t)
TGN, Fuzt
Moreover,
= I(z;Cnak)- (8)

Next, using standard combinatorial identities in enumera-
tive combinatorics [40], we have the following results. For
completeness, we also provide the proof below.

Proposition 8. If |z| = n —t and wt(z) = u, then
I*(zAn) = 2" (?) ©)

= (),

2. iz,
I"(z;€,) =<1, ift =0, u is even,
0, ift=0, uis odd.

(10)

(1)

Proof. First, we give a proof of (9). Since |z| = n — ¢, after
t insertions, we have a supersequence of length n. Counting
multiplicity, the multiset of supersequences of z of length n
can be obtained by choosing (n—t) positions out of n to place
the bits of z in order and then determining the rest of the ¢
empty slots to be either 0 or 1. Thus the size of the multiset
of supersequences is 2¢(, ") = 2(").

Next, we give a proof of (10). Counting multiplicity, the
multiset of supersequences of length n of z can be obtained
by choosing (n — t) positions to place the bits of z in order,
and then choosing w — u positions out of the remaining ¢
empty slots to place 1’s. Finally the remaining ¢t — (w — u)
positions will be filled with 0’s, and thus the supersequence
is of length n and weight w. Thus the size of the multiset of
supersequence is (7)(,,",)-

Finally, we give a proof of (11). The case of ¢ = 0 is
obvious. Thus we give a proof of when ¢ > 1. From the
previous part, we have 1*(2;E,) = D i even 4 (21 Cny w) Ifu

is odd, then I*(z;&,) = (}){ () O+ } = (M2 I
is even, then I*(z;&,) = (N{({)+)+ -t =(})2!"'. O

Using (5-10), we then obtain the following closed formulae
for the expected number of edges.

Theorem 9. For all n,

B(A,,Del(p)) = 2"

For w <n,

B(Cp,w, Del(p))

= Xn: Z (”; t) (7:) (w ‘ u) Ic(n,w,t,u)p' (1 —p)" " . (13)

t=0 u=0
Proof. From (5), (6) and (9), we have
B(Ay, Del(p))

I(z; Ap) I (z; An)p (1 — p)°

t=0 zexn—?
SO 5 50
. 2 (7)ot p>2z (%)
=S () (o

For w < n, we have from (5), (7) and (10),
B(Cn,w, Del(p))

:Z Z I(Z§en,w)1*(236n7w)pt(1_p)n_t

t=0zcxn—t

I(Z; Gn,w)l* (Z; en,w)pt(l - p)n—t

Y (" Hremwew()(" Yra-prt o

Now, for the codebook with even-weight words, one can
apply (8) and (11) directly. However, the formula becomes
unwieldy. Nevertheless, in what follows, we show that the
expected number of edges when C = &, is approximately
a quarter of the expected number of edges when C = A,,.
Specifically, we have the following theorem.

Lemma 10. If n is odd,
1
B(En, Del(p)) = 7 B(An, Del(p)) + 2" *(1—p)". (14)

To prove this lemma, we use the following combinatorial
proposition.

Proposition 11. Let 0 <t < n. If n is odd, then

D D

ze{0,1}n—* ze{0,1}n—*

1(z;€,) = % I(z;An). (15)

Proof. For z € {0,1}"7%, we let Z be the complement
of z. We consider the codebook O, = {x € {0,1}" :
wt(x) is odd}, and the sets J(z;&,) = {x € &, : z € x}
and J(z; 0,,) = {x € O,, : Z € x}. Recall that z € x if and
only if z is a subsequence of x. Since x € J(z; €,,) if and only
if x € J(z; 0,,). The two sets have the same cardinality.

Therefore,
I(Z§ 871) + I(E§ gn) = I(z; En) + I(Z; On) = I(zv‘An) :

Summing this equation over all z € {0,1}"~*, we obtain (15).
O

Proof of Lemma 10. It is immediate from (9), (11) and (15)
that for ¢t > 1,

>

ze{0,1}n—t

Iz €)1 (2 60) = (23 A0) [(23 A0) -

>

ze{0,1}n—t

So, we have that

B1(€,,Del(p))
= 1 (B, Del(p) ~2"(1 — p)") + 2" (1~ p)"
1

= iBl(Am Del(p)) + 2" 2(1 — p)™. O
Unfortunately, we are unable to obtain similar expression
to the case where n is even. Nevertheless, as we observe in
Figure 1(b), the edge density polarizes in a fashion similar to
the case where n is odd.

A. Polarization of Edge Density

In this subsection, we consider a family of codebooks
{C, n > 1} with increasing block lengths n, and
study the quantity lim,, o, B(C,, Del(p))/|C,|?. Observe that
B(Cp,Del(p))/|Cn|? represents the expected edge density of
the graph G;. When C,, = A,,, the next proposition states that
this density approaches zero whenever the deletion probability
is strictly less than half.

Proposition 12. Let C = A,, and M = 2™. For 0 <p < 1/2,

set 3 = /p/(\/p+ 1 —p) and choose ¢ > H([3). Then for
sufficiently large n, we have that B(A,,, Del(p)) < M'*t¢ =

o(M?).

Proof. Changing the order of summation in (12), we have that

st =2 (1) 3 (1) -,

=0 t=1

Set ¢ = |(n + 1)p| and we upper bound the above sum in
two parts. Specifically, for 0 < i < ¢/, we show that the sum
is at most 2+H@)" while for ¢ + 1 < i < n, we show
that the sum is at most n22(H(B)+17 with 3 as defined in the
proposition.

First, for 0 < ¢ < ¢/, we have

()5 (o= ()5 (o= ()

Hence,

t’ n t’
n n ™\t \n—t n n (1+H(p))n
2 ;(Z);(t)p(l Pt <2 ;(l)sz , (16)
as required. Next, it follows from standard facts of the bino-
mial distribution that for all ¢,

<7Z>pt(1 —p)t < (Z)pt/(l -p)" <,

Furthermore, we have that

<?)pt(1 —p)" Tt > (Z)ps(l —p)*Sforalls >t >t

a7

(18)

So, for t/ +1 <4 <mn,

(%) z_j (3)pra—pr<a(0) (2)pa-nr

we have that

2 3 () (-t < (M) -
1=0

i=t/+1 t=i

3

n—i

Now, since log, ((?)Qpi(l—p)"_i is at most

(2H (i/n) + (i/n)logy p + (1 —i/n)logy(1 —p))n, — we
maximize the function 2H (z)+xlog2p+ (1—x)logy(1—p)
in the interval 0 < =z 1. By considering 1ts first
derivative, we have that the function is maximized when

x = \f/(er VI —p) £ B. Then for this value of 3, we

have that (L) pB”(l —p)nhn < (B"n) < 2H(B)n Therefore,

3 ()

Finally, since p < 1/2, via standard manipulations, we have
that p < 8 < 1/2 and so, H(p) < H(B) < 1. Then,
combining both (16) and (19), we have that the expected
number of edges is at most 2(t9" = A+ for any
€ > H () and sufficiently large n. O

n i <n 29n 2H(ﬁ)n _ n22(H(ﬁ)+1)n (19)

Applying (4), we obtain Theorem 1 and hence, on average,
the running time of the network flow algorithm is sub-cubic.
Next, to complete our analysis, we show that the threshold
p = 1/2 is tight and that the edge density polarizes. That
is, when p = 1/2, we no longer have the property that
Bi(An,Del(p)) = o(M?) and when p > 1/2, we have
Bi(Ay, Del(p)) approaches M?. Before we formally state the
result, we also observe that By (&,,Del(p)) share the same
polarization behavior as By (A, Del(p)). This follows directly
from (14).

Proposition 13.

lim B(€2m+1,Del(p))

m=—00 [€2m+1]? n=o0 |An |2
0, ifp<1/2,
=43 ifp=1/2
L ifp>1/2
Proof.

e When p < 1/2, the limit value is immediate from
Proposition 12.
e When p = 1/2, the expression (12) reduces to

-52()()

Note that by changing the order of summation, we have
that

B(An, Del(p (20)

B(An, Del(p @1

=2 (=200

The second equality results from the renaming of vari-

ables. Then adding (20) and (21), we have

=55 ()05 0)

Now, >0 37, (D () = (Zis (3)? = 227, while
o (D) = (). Sinee (1)~ 22/ /mm, we
have that lim,,_ (2:)/22” lim, ,o 1/y/7n = 0.
Therefore, lim,, ;oo 2B(A,, Del(p))/2?" = 1 and so,
lim,, o0 B(Ayn, Del(p))/22" = 1/2.
o When p > 1/2, we rewrite the expression (12) as

B(An, Del(p))

S OE o

2B(A,, Del(p

1=0 t=0
n 1—1

—2 Y (Z‘) Zg (Z)pt(l —p"T (@)
1=0 t=

For the first summand, we have
"Z("> 3 > ()prra=-n ‘-2"2()= @

For the second summand, we change variables by setting
t'=n—tand i =n —1i and we have

w3 ()5 (-

=0 t=0

<0200
3 t'=n—i+1

=0

zz (;) z 1 (3)pra-p
eSS (e o

Since p > 1/2, we have that (1 — p) < 1/2 and then
Proposition 12 implies that the second summand (24) is
o(M?). The proposition is then immediate from (22) and
(23). O

1-p)"

Here, we conjecture that the same polarization phenomenon
is present for constant-weight codebooks.

Conjecture 1. Let 0 < w < 1/2. There exists 0 < p, < 1, a
constant dependent on w only, such that

Bl(en,LwnjaDel(p)) _ 0, ifp<py,
|Gn,LwnJ|2 1, ifp>p,.

lim

n—oo

In Figure 1, we exhibit this polarization phenomenon nu-

merically. Specifically, Figure 1(a) and (c) corroborate with
Proposition 13 and Conjecture 1, respectively.

B. Enumeration via Dynamic Programming

Here, we consider the problem of enumerating
B1(C,Del(p)) for a certain class of codebooks. Consider a
finite ring R that contains the g-ary alphabet 3. We fix H to

(a) Codebooks with all binary words A, over deletion
channels

S

£ 1.0

2 — Ao
2 — Aso
"g 0.8 4 — Aioo
3 — A0
Q

5

2 0.6

g

Yy

5]

2 0.4

1%

5]

1)

(=)

S

E] 0.2 1

2

(]

g 0.0 T T T T
L?j 0.0 0.2 0.4 0.6 0.8 1.0

Probability of Deletion p

(c) Constant weight codebooks C,, .., with w = 0.4 over
deletion channels

S

1.0

2 — Ci0,4
2 — Cso0,20
‘é 0.8 7 —— C100,40
=] — (200,80
Q

3, 0.6 1

=

o

5]

>

=044

]

jo}

a

S

2 0.2

o

°

Q

k3]

£ 0.0 T T T r
& 0.0 0.2 0.4 0.6 0.8 1.0

Probability of Deletion p

(b) Even-weight codebooks &,, over deletion channels

-
=}

€100

o
[
)

£200

o o
IS >
| !

Expected Edge Density of Input-Output Network ¢;
o
»N

o
=3

0.4 0.6 0.8 1.0

Probability of Deletion p

0.2

e
o

(d) Codebooks with all binary words A, over insertion
channels

S
v

£ 1.0

2 — Ao
2 — Aso
‘g: 0.8 — Aioo
] — A200
Q

3, 0.6 1

k=i

G

S

>

f‘% 0.4 1

o

[

a

S

E 0.2 4

°

®

g 0.0 : : ; |

& 0.0 0.2 0.4 0.6 0.8 1.0

Probability of Insertion p

Fig. 1. Polarization behavior of expected edge density for certain codebooks over deletion and insertion channels. Exact formulas for edge densities are given
in Theorems 9 and 20. Figure 1(d) is obtained from Theorem 20 in Section V.

be a r X n-matrix over R and o to be some syndrome in R".
Then we consider the codebook € is defined to where

C2{xex":xH =0}.

If a codebook satisfies this definition, we say that the codebook
is defined by a linear syndrome and we remark this general
definition includes many classical codes.

e fR=7Z,41,2={0,1},H=(1,2,...,n) and o = (a)
where a € Zy1, then the resulting codebook C is the
Varshamov-Tenengolts code [35] that corrects a single
deletion.

e f R=%X=F;, H=(1,1,...,1) and ¢ = (0). Then
C = &,. More generally, if we allow H to be any parity-
check matrix, then C is a binary linear code.

Before we describe the detailed recursive formulae and
the dynamic programming implementation, we first state the
running time of our proposed enumeration method.

Proposition 14. Let C be the g-ary code defined by a linear
syndrome with ring R, r X n-matrix H and syndrome 0.

Then B(C,Del(p)) can be determined in O(n??|R|?") time.
In particular, if Cis a VT code of length n, we can determine
B(€,Del(p)) in O(n) time.

The proof of Proposition 14 will be discussed later in the
paper, but for now, we describe our enumeration method. Let
the columns of H be hy,hs,..., h,. In other words, H =
(hy,hs, ..., h,). For z € ¢ with ¢ < n, we define its /-th
partial syndrome S¢(z) = zH}, where H; = (hy, ha, ... hy).
Note that Sy(z) € R".

To simplify our exposition, we describe our method for the
binary alphabet ¥ = {0,1} only. The method can be easily
extended for nonbinary alphabet. First, we partition the set of
binary strings according to the positions of their last one and/or
zero. Let m < n. Define B(m, ¢y, {1,) to be the set of binary
strings x of length m whose last index is zero and one are ¢
and ¢, respectively, such that S,,(x) = a. Observe that we
have either /o = m and 0 < ¢; < m — 1 or vice versa. Here,
we adopt the convention that /o = 0 or ¢; = 0 if the string
contains all ones or all zeroes, respectively. For simplicity, we
define G(m, a) to be the number of binary strings x of length

m such that S,,(x) = a. Therefore, we have the following
recursion G(m,a) = G(m—1,a)+G(m—1,a—h,,), where
G(0,a) =1, if @ = 0; and G(0,) = 0, otherwise.

Next, we consider the quantity

T(i,a,a; 4, 0o, 41,B) = Z Z

|x|=i, y€B(4,L0,¢1,B)
z;=a,

Si(z)=a

Qx<y). (25

To keep our notations succinct, we adopt the following
abbreviations.

J=1 s P e

T(i,a,aij,% 61, B) = § k=0 T (b @0 k. B), il =7 >0,
T(i,a,;j,3,¢1,8), if £1 < g,

I T(i,a,a54, 4, k,B), iflo =35>0

T‘,,;',Z,, — k=0 y Uy &5 Js Js vy P) 0)
(e o, %) {T(i,a,a;j,éo,j,ﬁ), if lo < j,

T(i,a,a;j, *, %, B) = T(i,a,0; 4, *%,5,B) + T(i,a,a; j, j, %, B),if j > 0,
T(i, %, e; 4,40, £1,B) = T(i,0,0; 5, €0, 1, B8) + T(i,1; 4, €0, 1, B),if i > 0,
T(i, %, a;5,0o,*,B) = T(3,0,a; 4, 0o, *,B) + T(3,1,a;], Lo, *, B),if : > 0,
T(i, %, 055, %,£1,8) =T(4,0,a;j,*,01,B) + T4, 1,a; 4, *,£1,B),if ¢ > 0,

T(i, *,; 4, %, %, B) = T(i,0,a; j, *, %, B) + T(i,1,e; j, %, %, B),if i > 0,

. Uz BG4, k. B), if Lo =3 >0,
B(j, 4o, *,B) = {’B(j,[o,j,ﬂ), if £o < j,

_ UiZo B, k.5, B), iftr=3>0,
B, *,01,B) = { k=0

G b1 B) {3@,;‘,41,3), it <,

B, *,B) = B3, 5, B) UB(, *,5,B).

Recall that C comprises all words x of length n with
Sn(x) = o. Hence, the quantity of interest B(C, Del(p)) is
given by T'(n,*,0;n,*,x,0). The following base cases are
trivial and hence we state them without proof.

Lemma 15 (Base Cases). In what follows, we use the symbol
? to represent any symbol, i.e. (1,7) can be either (x,x) or
(Lo, %) or (x,£1), or (Lo, 7).

(a) When i = 0, we have the following.

(i) If j <0, then T(0,a,a;7, %o, ¢1,8) =0.

(ii) If j > 0, then T(0,%,0:5,7,7,8) = |[B(j,7,7,B)|
and T(0,x,a;7,7,7,8) =0, if a # 0.

(b) When i > 0, we have the following.

(”) T(i7*>a;07?7?7ﬂ) - O, UC,B 7é 0.
(iiii) T(i,*,@;0,7,7,0) = p'l{x € {0,1}" : Si(x) =
a}l = pz“B(Z? *, *aa)| - pZG(Z,a)

Now, to compute the size of B, we use the following lemma.

Lemma 16 (Size of B). As before, we use the symbol ? to
represent any symbol, i.e. (7,7) can be either (x,%) or ({y, %)
or (x,41), or (Lo, £l1).

(a) If j = 0, then |B(0,2,7,0)| = 1 and |B(0,2,?,B8)| = 0,
if B#0.

(b) If j > 0, then
|B(4, *, *, B)|=G(34,B),

. G(lo—1,B—hj—hj_1—---—hgy41), if 0<€o<j,
B(j, %o, *,B)|= 0 .
|B (4, Lo, *, B)| {G(O“B*hj*hj—lf"'*hl)’ if 0=£p<]J.
) G(l1—1,B—he,), if0<l1<y,
B(j, *,£1,B)|= 1 " .
| (J *, L1 /3)| {G(O,ﬁ), if 0=£01<j.
. B, #, 01, B)| =G0 =1, B—he,) if Lo>£1>0,
B(j, Lo, b1, B)|= !
IB (3, €0, €1, B)| {G(O,ﬂ) if £o>£1=0.
IB(, €0, %, B)|=G(lo—1, B—hj—hj_1—-—hegi1),
. if 0<lp<fty,
B(j,%0,%1,B)|= .
IB(j, €0, 1, B)| |B(3, €0, *, B)|=G(0, B—h1—ha—- - -—h;)
if 0=£g</l1.

Next, we demonstrate the following recursion rules.

Lemma 17 (Recursion Rules). Let ¢ > 0 and j > 0. We have

the following recursion rules.

(i) If a = 0, by = j, then T(i,0,a;j,7,41,8) = pT(i —
L*,0;7,7,01,8)+ (1 —p)T(i — 1,%,a;5 — 1,%,1,B).

(i) If a = 0, ¢1 = j, then T(i,0,a;7,0o,5,8) = pT(i —
L*,057,00,5,8)+(1—p)T(i—1,%,a;0g —1,%,%,8 —
(Zi:éo-&-l hk))-

(iii) If a = 1, by = j, then T(i,1,a;7,5,¢1,8) = pT(i —
1, %0 — hi;j,j,él,ﬂ) + (1 —p)T(i —1,%,a— hi;él —
17*a*aﬂ7h51)'

(v) If a = 1, 41 = j, then T(i,1,a;5,%0,5,8) = pT(i —
17*aa - hi;jvé()ajvﬂ) + (1 —p)T(Z - 17*,0 - hzv.] -
1,60,*,ﬂ 7hj).

Proof. For (i), observe that T'(4,0,¢; j, j,¢1,8) is the sum of
Q(x < y) forall x € B(4,1, *,a) and y € B(4, 4,41, B). Recall
that each bit in x is independently deleted with probability p.
So, we analyze according to the last bit of x, and perform
recursion on the remaining ¢ — 1 bits. Given that the last
bit of x is deleted, then > . ;i\ 0) 2 yen(jije g QA <
y) = er’B(i—l,*,*,a) yEB(j,5,61,8) Qlx < y) = T —
1a*aa;ja€0;€l7ﬁ)'

On the other hand, if the last bit of x = x125...x; is
not deleted, then the output of x is a subsequence of y if
and only if the output of ziz5...2z;_1 is a subsequence of
Y1y2 .- -Yj—1, since y ends with 0 = x;. Thus given that z;
is not deleted, we have Q(x < y) = Q(z122...2-1 <
Y1y2...yj—1). Thus, given that the last bit of x is not
deleted, we have that > .., . a) D yen(jjn.p @F <
y) = er’B(i—l,*,*,a) ZyE‘B(j—l,*,él,ﬁ) Qlx <y) =T —
1,%,a;5 — 1,%,£1, B). Finally, combining the two cases, we
obtain recursion rule (i).

For (ii), observe that 7T'(3,0,e;j, %o, j,B) is the sum of
Q(x < y) for all x € B(i,i,*%,a) and y € B(34, 4o, 4, B).
Similarly, we can split away the analysis of the output
of the last bit of x, and do recursion on the remain-
ing ¢ — 1 bits. Given that the last bit of x is deleted,
then ZxEB(i,i,*,a) Zyeﬂ(j,j,el,ﬁ) RQx < y = TG -
1,%,a;7,00,01,B). If the last bit of x = x5 - x; is not
deleted, then the output of x is a subsequence of y if and only if
the output of x1x2 ... x;_1 is a subsequence of y1y2 ... Yr,—1,
since the last occurrence of 0 in y is at y,,. Therefore, given
that x; is not deleted, Q(x < y) = Q(z122...221 <
Y1Y2 - .- Yoo—1)- Thus, given that the last bit of x is not

deleted, we have 3 vep i iva) 2yen(iboip) QX < Y) =

erﬁ(ifl,*,*,a) ZyE‘B(fg—L*,*Zﬂ—Zi:Z[ﬁ_l hy) Q(x =< y) -
T(i—1,%,0a;l0—1,%% B~ _, 1 hx). Finally, combining
the two cases, we recursion rule (ii).

The proof of (iii) is similar to (ii), and the proof of (iv) is
similar to (i). L]

Finally, we provide a running time analysis for our enumer-
ation method and complete the proof of Proposition 14.

Proof of Proposition 14. For ¥, = {0,1, ..
interested in T'(n, x,0;m, *, *, ...

2 2

a€¥y 0<lp,l1,..., éq,lgn,
where £;,=n for some 0<k<g—1

.,q— 1}, we are
,*,0) that represents

T(n,a,0;n,£y, 1, ...

As with typical analysis for dynamic programming algorithms,
we first determine the total number of sub-problems, that is,
the total number of possible inputs for 7.

o There are g possibilities for the second argument of T'.
o The first and second powers of n come from the possi-
bilities for first and fourth arguments of 7.
o The power of ¢ — 1 of n comes from the possibilities for
£y until £,_1, except that one of them is fixed to be n.
« Finally, the third and last arguments of 7" each has |R|"
possibilities.
Hence, in total, we compute O(n?+1|R|?") possible inputs for
T.

Next, we need to determine the running time for each
input. In all cases in Lemma 17, a recursion rule in-
volves O(n?~!) summands. For example, suppose that a =
0 and ¢y is the smallest among all /¢, then the g¢-
ary generalization for the recursion rule in Lemma 17,
T(i,0,a; 4, 4o, 41, ..., 0q—1,B) has ¢ summands for the first
part pT'(i — 1,%,a;3,00, 01, ... ¢q—1,B) and O(n?"1) sum-
mands for the second part (1 — p)T'(i — 1,%,a;¢) —
1, %, % ,*,') for some B’. Thus in total, the time com-

R R

plexity of the algorithm is O(n2?|R|*"). O

V. INSERTION CHANNELS

Throughout this section, we have that 8 = Ins(p). Similar
to Section IV, the quantity B;(C;8) is useful for providing
estimates on sizes of the networks Gy and and G7;. Hence,
we study B (C; Ins(p)), and for brevity, we write this quantity
as B(C; Ins(p)). Our first proposition states that the problem of
determining B(C, Ins(p)) is equivalent to certain enumeration
problems concerning supersequences.

Proposition 18. Fix some code C C X". We have that

B(€,Ins(p)) =Y > D(z€)D*(z€)(p/2)"(1—p)"t!. (6)
t=0zexnn+t
Here, D(z;C) denotes the number of words in C that are
subsequences® of z, while D*(z;C) = Y o Emb(z,x). In
other words, D*(z; C) counts the total number of occurrences
of all codewords in C as a subsequence of z.

SWe point out a key difference from Proposition 13. Here, D(z; @) denote
the number codewords that are subsequences of z, while I(z; C) denote the
number codewords that are supersequences of z. Similar differences are true
for D* and I*.

,Zq_l,a).

Proof. Observe for the Ins(p)-channel, the quantity Q(x < x”)
denotes the probability that an output of x is a supersequence
of x'. So, for t > 0, if we use I;(x) to denote the set of
all (n + t)-supersequences of x, then we have Q(x < x') =
D0 ner (v Emb(z, 0)I(¥ € 2)(p/2)'(1 — p)™*'. This is
because for each z € I;(x), the probability of x being a specific
embedding of z is to have n 4+ 1 Correct events based on
Definition 1, and ¢ Insertion events, each with probability
%p (because each bit may be inserted with equal probability).
Here, we use I(x' € z) to denote the indicator function for
the event that x’ is a subsequence of z. Using this expression
and switching the order of summation, we can rewrite (3) as

B(C,Ins(p))
= (p/2)'(1—p)"*! Z Z Z Emb(z, x)I(x’ € 2)

t zexn+t xeCx'eC

®/2)'a-p)" > (Z Emb(z,x)) <Z I(x' € z)>.

zexntt \xeC x'€C

(e L

t

Il
<}

Since) ..o Emb(z,x) and), . I(x’ € z) yield the quan-
tities D*(z; €) and D(z; @), respectively, we obtain (26). [

Next, similar to Section IV, we look at the quantities
D(z;€) and D*(z;C) for A,,E, and C, ., as defined in
the previous section. Now, the quantity D(z;A,,) has been
studied in other contexts [15]. However, unlike the insertion
ball, the quantity D(z;{0,1}") closely depends on the actual
string z. Nevertheless, since we are only interested in the
quantity . snie D(2;C)D*(2;C), we are able to obtain
closed expressions for these sums. Using standard techniques
in enumerative combinatorics [40], we have the following
results.

Proposition 19. If |z| = n +t and wt(z) = u, then

D*(z; Ay) = (" : t), 27)

D*(2;Cp) = <n;:;u) (Z)) (28)
" e/ n+t—u U

D'zen)= > (" o) y) @

k=0

Proof. First, we give a proof of (27). Since |z| = n + ¢, after
t deletions, we have a subsequence of length n. Counting
multiplicity, the multiset of subsequences of z of length n
can be obtained by choosing ¢ positions out of n + ¢ positions
of z to delete. Thus the size of the multiset of subsequences
is (7).

Next, we give a proof of (28). Note that we want a
subsequence of length n and weight w, while z is of length
n + t and weight u. Therefore, counting multiplicity, the
multiset of subsequences of length n and weight w of z can
be obtained by choosing w 1’s from z and choosing n — w
0’s from z. Thus the size of the multiset of subsequences is

n+t—u u
(Tlgilavalz}g,w\)ve give a proof of (29). We make use of the for-
mula for D*(z; €, ,,) that we have already obtained, namely

D*(z;:€,) = 2 D*(2;€,0.08). O

Using (26-28), we obtain the following closed formulae for
the expected number of edges.

Theorem 20. For all n,

Bl tist) =2 35 (" T ("2 -

t=0i=0

)n+1 (30)

For w <n,

B(Cyp w,Ins(p))

= Z ST (et bt w2 0 - 9" 61

—ous0 = T W

Proof. From (26), (27) and finally (6), we have

B(An, Ins(p))

=3 Y Pl (” N t) (/2" (1~ p)"*!
t=0 zexn+t

= i(p/Q)t(l p)"tt (Tl ;i— t) ze%;t D(z; Ay)

= i(pﬂ)t(l p)" (n:rt) > I(z;Ans)
=0 zeX™®
S (T R(T)

which results in the expression in (30).
For w < n, applying (26), (28) and finally (7), we have that

B(@n,w,lns(p))

:Z Z D(z;Cnw)

=0 zepntt

=33 3T D(zCaw)D*(2:Cnw)(p/2)! (1 — p)"

t=0u>02€C 14,0

D*(2;Cnw)(p/2)" (1 — p)" !

=S (T (M e2ta -t Y Do)
t=0u>0 @ T W 2€€Cn 1t

=S (T (M) et Y I)
t=0u>0 @ T W W 2€CH,w
> n+t—u\/u\/n n

=23 2) C) et - e + bt w),

which results in the expression in (31). O]

For the remaining of this section, we demonstrate the
polarization behavior of the edge density for the insertion
channel. As with Section IV-A, we first show that the edge
density approaches zero whenever the insertion probability is
strictly less than half.

Proposition 21. Let C = A,, and M = 2" If0 <p < 1/2,
then B(€,Ins(p)) = o(M?) .
Proof. Lett' = [%pp_l—‘ for p < 1/2. Observe that p < 1 —

p, and thus, n&—l < n—1. Therefore t’ = L”Tp - 1—‘ < n.

Next, we choose a constant o < 1 that satisfies both

a>—— and (32)
1—p
I 2(1 —
085 2(p) (33)
log, 5
Note that « is only dependent on p, and from (32), we have
that
an > —2_ "= (34)
1—p 1—p

Moreover, 2(1 — p) < 5- and therefore, 0 < 10%2# < 1.
82 35
Thus, o« < 1 can be chosen to satisfy (33).
From (30), we have that

Bl) =209 3 () oy (")

i=0
We then split the outer summation of ¢ into two parts, namely

from ¢ = 0 to ¢t = |an], and then from ¢t = [an]| + 1 to
t =00

Observe that

2"(1—p)"+! % <n ;L t) (p/2)" Zt: (” j t)

t=0 =0
Lan] n +t t
< 2n(1 _p)n+1 Z < .)(p/Q)tQ(n-&-t)H(n_H)
t=0
lan] nat i
< 271 1— n+1 () t2nH n+t
<2"(1-p) ; .

<2"(1-

Lan]
)n+12nH(1+) Z <n + t>pt

a +t
< 9n(1 — n+12nH(71+u) n t
<2"(1-p) E .)P
t=0
< 27L21’LH(1¥%))

Therefore we have

i 21O () /2 S ()
lim G
n— o0 22n
< lim — =0 (35)
n—o0 on
Next, we observe that
o} t
" n n+t n—+t
ra-pt S ("Ter (M)
t=|an]+1 =0
oo 4+t
< 9n(1 — p)nt! n ton+t
sra-pt 3 (T e
t=|an]+1
o) +t
_ 221’L 1 _ n+1 n t .
1-p) > ()P (36)
t=|an]+1
Let f(t) = ("/")p'. Observe that f(t + 1)/f(t) =
ntH1\ t41
(+1+)z = L, < 1 if and only if ¢ > "EEE-L
Therefore, f(t) achieves its maximum value at ¢t = t'.

Furthermore, f(t+ 1) < f(¢) if ¢ > t'. Lastly, from (34), we
have Lomj + 1> an > t'. All these imply that we can upper

bound Zt:_om I4+1 ("+t)p as a geometric series with initial
value ("tﬁﬁf)pa" and ratio "FHlp = (m + 1)

(i + 1) p which is less than 1 because of condition (32). Our
observation can be summarized as follows

& ity CLER 7 gnetoni o
("Hyer<

t=lan|+1 1-(3+1)p - 1-(z+1)p

Thus combining (36) and (37), we have

o2 P g1 (M) (/2 i (MFF)

n—o00 22n

IL—p
< i 2(1 — p))*(2p) Lo+t
n;ﬂ;ol_(lﬂ)p((1=p))"(2p)

e

1—p - (20-p)\" _
<%ﬁ—<;+upJE%<<lwz> -

2p

(37)

where the last equation comes from condition (33).

Finally, combining (35) and (38), we have that 2"(1 —
n o (n t n n
p) + tho (;H) (p/2)t Zi=o (j_t) = 0(22) O

To conclude this section, we have the following analogue
of Proposition 13.

Proposition 22.

LB Ts) [0, ip<if2,
im — 77—
VI E 1, ifp>1/2.
Proof.
e When p < 1/2, the limit value is immediate from
Proposition 21.

e When p > 1/2, we want to show that
2n
lim, 0o M = 0. Note that

(1 pyt fj ("o S ("1

=0

SR ol (Ol (R R

t=0

n1 g (M

=2°"(1-p) “Z(.)pt

t=0

n 1

=2""(1—p) +17(17p)n+1 =2%", (39)

Therefore from (30) and (39), we have
22" — B(An,Ins(p))

g B

1=t+1

S (S ()

t=0 1=0

First, we choose a constant v > 1 such that

1
10g2 ﬁ

log, 2p
a< -2 (41)
1-p

and 40)

This is feasible, because T=p) L ke 2p for 1/2 < p < 1,
and thus log, 2(2 > log, 2p. Observe also that ft) =

("+t)p is maximized when t = t/ = 1—p — 1—‘ > n.
Furthermore, f(t + 1) > f(t) if t < an < ¢’. Moreover,

from (40), it implies that (2p)® < ﬁ, and thus
2(1-p)(2p)* =B < 1. (42)

Now, similar to Proposition 21, we split the summation
of ¢ into two parts. Using all these information, we have

(1 n+1i(n+t> /2 i(njt)

=0

<o-prny ("7 w2y

t=0
n(q_ i S (P
—2a-prn (M)
t=0

<22"(1-p)"lan (" N O‘")pa”

an
S 22n(1 o p)n+1an2n+anpan
=2""a(1 —p)n (2(1 - p)(2p)*)"
= 2%"a(1 — p)ns™. (43)

Secondly, for the second part of the summation, we have

- 3 (MY (1)

t=an =0
n nil N (ntt to(ntt) H(22L)
<2'(1-p)"t Y . | w/2)72 nFe
t=an
<ra-pt 3 ()t
t=an
= t
<2(1 _p)n+12nH(ﬁ) Z (n:—)pt
t=an
nH(-1_ 1
S 2”(1 7p)n+12 H(1+Q)W
— gnonH(3), (44)

Here, the penultimate inequality follows from the
negative binomial series expansion: (1 — p)~"~1 =

>0 ("jt)pt. Combining (43) and (44), we have
22" — B(An,Ins(p))

lim
n—o00 22n
22n _ n n ”H(ﬁ)
< lim a(l — p)ns™ + 2m2 +
n— 00 22n
o (m37)
= lim a(1 —p)nf™ + lim
n—00 n—00 2n
=040,
where the last equation holds because S < 1 from (42)
and H(p%a) < 1, since a > 1. O

As before, we exhibit the polarization behavior numerically
for the insertion channel in Figure 1(c). Also, we make the
following conjecture on the asymptotic behavior with p = 1/2.

Conjecture 2. Let p = 1/2. Then

nooo [Anl? 2

VI. CONCLUDING REMARKS

We conclude by discussing extensions and future work.
o Expected edge density for other codebooks. In this pa-

[1]

per, we provided closed formulae and efficient methods
to compute the expected edge density for some code
families. In particular, when the codebook comprises all
binary words, we show that this quantity is sub-quadratic
when the deletion or insertion probability is less than 1/2.
In contrast, for the binary erasure channel, in [19], this
quantity was shown to be linear for certain families of
code. Therefore, it will be of interest to find such code
families for the insertion and deletion channels.
Polarization behavior of edge density. In Sections TV-A
and V, we demonstrated that the expected edge density
for A, polarizes for both the deletion and insertion
channels. Nevertheless, we also observe similar behav-
ior for constant weight codebooks and hence, we have
Conjecture 1. Again, it will be interesting to exhibit
this polarization behavior for other code families and
determine the corresponding probability threshold.
Data-driven decoder. In Section II-D, we described a
simple peeling decoder and in Corollary 5, we provided
a rudimentary analysis of the decoder by estimating the
number of degree-one nodes. In our future work, we
refine this analysis and provide sharper estimates on the
probability of successful decoding.

Recall that we are motivated by applications in DNA-
based data storage, where we are required to identify
files using their reads. In our approach, we ignored the
data blocks contents and only made use the noisy reads
of the addresses. In our preliminary studies [41], we
propose a method to efficiently use this data to increase
the identification.

REFERENCES

J. Chrisnata, H. M. Kiah, A. Vardy, and E. Yaakobi. “Bee identification
problem for DNA strands,” Proc. IEEE Int. Symp. Inf. Theory, pp. 969—
974, 2022.

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

J. D. Watson and F. H. Crick, “Molecular structure of nucleic acids: A
structure for deoxyribose nucleic acid,” Nature, 171(4356), pp. 737-738,
1953.

J. D. Watson and F. H. Crick, “The structure of DNA,” in Cold Spring
Harbor symposia on quantitative biology, Vol. 18, pp. 123-131, Jan.
1953. Cold Spring Harbor Laboratory Press.

G. M. Church, Y. Gao, and S. Kosuri. “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628-1628,
2012.

N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney. “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, pp. 77-80, 2013.

S. Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao, and O. Milenkovic,
“DNA-based storage: Trends and methods,” IEEE Trans. Molecular,
Biological, Multi-Scale Commun., vol. 1, no. 3, pp. 230-248, 2015.

0. Milenkovic, R. Gabrys, H. M. Kiah, and S. H. T. Yazdi, "Exabytes
in a test tube,” IEEE Spectrum, vol. 55, no. 5, pp. 40-45, 2018.

I. Shomorony, and R. Heckel, “Information-theoretic foundations of
DNA data storage,” Foundations and Trends®in Communications and
Information Theory, 19(1), 1-106, 2022

L. Organick, S. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin, K. Makarycheyv,
M. Racz, G. Kamath, P. Gopalan, B. Nguyen, C. Takahashi, S. New-
man, H.-Y. Parker, C. Rashtchian, K. Stewart, G. Gupta, R. Carlson,
J. Mulligan, D. Carmean, G. Seelig, L. Ceze, and K. Strauss, “Random
access in large-scale DNA data storage,” Nature Biotechnology, vol. 36,
no. 3, pp 242-248, 2018.

J. L. Schmid-Burgk, R. M. Schmithausen, D. Li, R. Hollstein, A. Ben-
Shmuel, O. Israeli, S. Weiss, N. Paran, G. Wilbring, J. Liebing,
D. Feldman, M. Stabicki, B. Lippke, E. Sib, J. Borrajo, J. Strecker,
J. Reinhardt, P. Hoffmann, B. Cleary, M. Holzel, M. M. Nothen,
M. Exner, K. U. Ludwig, A. Regev, F. Zhang, “LAMP-Seq: Population-
scale COVID-19 diagnostics using combinatorial barcoding,” biorxiv
preprint 2020.04.06.025635, 2020.

J. Li, W. Quan, S. Yan, S. Wu, J. Qin,T. Yang, F. Liang, D. Wang,
Y. Liang, “Rapid detection of SARS-CoV-2 and other respiratory viruses
by using LAMP method with Nanopore Flongle workflow,” bioRxiv
preprint 2020.06.03.131474, 2020.

P. James, D. Stoddart, E. D Harrington, J. Beaulaurier, L. Ly, S. W. Reid,
D. J Turner and S. Juul, “LamPORE: Rapid, accurate and highly scalable
molecular screening for SARS-CoV-2 infection, based on nanopore
sequencing,” medRxiv preprint 2020.08.07.20161737, 2020.

L. Peto, G. Rodger, D. P. Carter, K. L. Osman, M. Yavuz, K. Johnson,
M. Raza, M. D. Parker, M. D Wyles, M. Andersson, A. Justice,
A. Vaughan, S. Hoosdally, N. Stoesser, P. C Matthews, D. W Eyre,
T. EA Peto, M. W Carroll, T. I de Silva, D. W Crook, C. M Evans, S. T
Pullan, “Diagnosis of SARS-CoV-2 infection with LamPORE, a high-
throughput platform combining loop-mediated isothermal amplification
and nanopore sequencing,” medRxiv preprint 2020.09.18.20195370,
2020.

A. S. Booeshaghi, N. B. Lubock, A. R. Cooper, S. W. Simpkins, J. S.
Bloom, J. Gehring, L. Luebbert, S. Kosuri, L. Pachter, “Reliable and
accurate diagnostics from highly multiplexed sequencing assays,” Sci
Rep 10, 21759, 2020.

V.I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.
on Inform. Theory, vol.47, no. 1, pp.2-22, Jan. 2001.

K. Cai, H. M. Kiah, T. T. Nguyen and E. Yaakobi, "Coding for sequence
reconstruction for single edits,” IEEE Transactions on Information
Theory, vol. 68, no. 1, pp. 66-79, Jan. 2022.

C. Rashtchian, K. Makarychev, M. Racz, S. Ang, D. Jevdjic, S.
Yekhanin, L. Ceze, and K. Strauss, “Clustering billions of reads for DNA
data storage,” Advances in Neural Information Processing Systems, vol.
30, 2017.

A. Tandon , V. Y. F. Tan, and L. R. Varshney, “The bee-identification
problem: Bounds on the error exponent,” IEEE Trans. Commun., vol. 67,
no. 11, pp. 7405-7416, 2019.

H. M. Kiah, A. Vardy and H. Yao, “Efficient bee identification,” Proc.
IEEE Int. Symp. Inf. Theory, Melbourne, Australia, pp. 1943-1948,
2021 (extended version: “Efficient Algorithms for the Bee-Identification
Problem,” arXiv preprint:2212.09952)

E. A. Ratzner, "Marker codes for
and deletions,” Ann. Télécommun.
https://doi.org/10.1007/BF03219806

J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM (JACM),
vol. 19, no. 2, pp. 248-264, 1972.

insertions
(2005).

with
29-44

channels
60,

[22] N. Tomizawa, “On some techniques useful for solution of transportation
network problems,” Networks, vol. 1, no. 2, pp. 173-194, 1971.

T. Shinkar, E. Yaakobi, A. Lenz and A. Wachter-Zeh, “Clustering-
correcting codes,” IEEE Transactions on Information Theory, doi:
10.1109/TIT.2021.3127174.

A. Lenz, P. H. Siegel, A. Wachter-Zeh and E. Yaakobi, ”Coding over
sets for DNA storage,” IEEE Transactions on Information Theory, vol.
66, no. 4, pp. 2331-2351, April 2020.

[25] J. Sima, N. Raviv and J. Bruck, ”On coding over sliced information,”
IEEE Transactions on Information Theory, vol. 67, no. 5, pp. 2793—
2807, May 2021.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-based
correction of substitutions in indexed sets,” Proc. IEEE Int. Symp. Inf.
Theory, Paris, France, pp. 757-761, Jul. 2019.

R. Heckel, 1. Shomorony, K. Ramchandran and D. N. C. Tse, "Fun-
damental limits of DNA storage systems,” Proc. IEEE Int. Symp. on
Inform. Theory, pp. 3130-3134, Aachen, Germany, Jun. 2017.

M. Kovacevi¢ and V. Y. F. Tan, “Codes in the space of multisets coding
for permutation channels with impairments,” IEEE Trans. on Inform.
Theory, vol. 64, no. 7, pp. 5156-5169, Jul. 2018.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “An upper bound
on the capacity of the DNA storage channel,” Proc. IEEE Inf. Theory
Workshop, pp. 1-5, Frisby, Sweden, Aug. 2019.

I. Shomrony and R. Heckel, “Capacity results for the noisy shuffling
channel,” Proc. IEEE Int. Symp. Inf. Theory, Paris, France, pp. 762—
766, Jul. 2019.

S. Yazdi, H. M. Kiah, R. Gabrys, and O. Milenkovic. “Mutually
uncorrelated primers for DNA-based data storage,” IEEE Transactions
on Information Theory, vol. 64, no. 9, pp. 6283-6296, 2018.

M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA
storage,” IEEE Transactions on Information Theory, vol. 65, no. 6,
pp- 3671-3691, 2018.

Y. M. Chee, H. M. Kiah and H. Wei, “Efficient and explicit balanced
primer codes,” IEEE Transactions on Information Theory, vol. 66, no.
9, pp. 5344-5357, Sept. 2020.

S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister and S. Yekhanin, “Trellis
BMA: Coded trace reconstruction on IDS channels for DNA storage,”
IEEE International Symposium on Information Theory (ISIT), 2021, pp.
2453-2458, doi: 10.1109/ISIT45174.2021.9517821.

[35] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals” (in Russian), Doklady Akademii Nauk SSSR, vol.
163, no. 4, 1965. English translation in Soviet Physics Dokl., vol. 10,
no. 8, 1966.

V. V. Zyablov and M. S. Pinsker, “Estimation of the error-correction
complexity of Gallager low-density codes,” Problems of Information
Transmission, vol. 11, no. 1, pp. 18-28, 1976.

A. Vardy, “Algorithmic complexity in coding theory and the minimum
distance problem.” In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pp. 92-109, May 1997.

V. L. Levenshtein, “Elements of coding theory,” Diskretnaya matematika
i matematicheskie voprosy kibernetiki, pp. 207-305, 1974.

A. Atashpendar, M. Beunardeau, A. Connolly, R. Géraud, D. Mestel, A.
W. Roscoe, and P. Y. Ryan, “From clustering supersequences to entropy
minimizing subsequences for single and double deletions,” 2018. arXiv
preprint arXiv:1802.00703.

P. Flajolet and R. Sedgewick (2009). Analytic combinatorics. Cambridge
University press.

S. Singhvi, A. Boruchovsky, H. M. Kiah, and E. Yaakobi. “Data-Driven
Bee Identification for DNA Strands,” to appear in Proc. IEEE Int. Symp.
Inf. Theory, Accepted Apr 2023.

[23]

[24]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[41]

Johan Chrisnata received his Bachelor degree in mathematics from Nanyang
Technological University (NTU), Singapore in 2015. From August 2015
until August 2018, he was a research officer in NTU. He pursued a joint
Ph.D. degree in mathematics from School of Physical and Mathematical
Sciences at Nanyang Technological University, Singapore and Computer
Science from Department of Computer Science at Technion University, Israel.
He is currently a Research Fellow in NTU. His research interest includes
enumerative combinatorics and coding theory, in particular DNA-based data
storage and sequences.

Han Mao Kiah (SM’22) received the Ph.D. degree in mathematics from
Nanyang Technological University (NTU), Singapore, in 2014. From 2014
to 2015, he was a Post-Doctoral Research Associate with the Coordinated
Science Laboratory, University of Illinois at Urbana—Champaign. From 2015
to 2018, he was a Lecturer with the School of Physical and Mathematical
Sciences (SPMS), NTU, where he is currently an Assistant Professor with
SPMS. His research interests include DNA-based data storage, coding theory,
enumerative combinatorics, and combinatorial design theory.

Alexander Vardy (S’88-M’91-SM’94-F’98) was born in Moscow, U.S.S.R.,
in 1963. He earned his B.Sc. (summa cum laude) from the Technion, Israel,
in 1985, and Ph.D. from the Tel-Aviv University, Israel, in 1991.

From 1985 to 1990, he was with the Israeli Air Force, where he worked
on electronic counter measures systems and algorithms. From 1992 to 1993,
he was a Visiting Scientist with the IBM Almaden Research Center, San
Jose, CA, USA. From 1993 to 1998, he was with the University of Illinois at
Urbana-Champaign, first as an Assistant Professor and then as an Associate
Professor. Since 1998, he has been with the University of California at San
Diego (UCSD), where he is currently the Jack Keil Wolf Chair Professor with
the Department of Electrical and Computer Engineering and the Department
of Computer Science. While on sabbatical from UCSD, he has held long-
term visiting appointments with CNRS, France, the EPFL, Switzerland,
the Technion—Israel Institute of Technology, and Nanyang Technological
University, Singapore. His research interests include error-correcting codes,
algebraic and iterative decoding algorithms, lattices and sphere packings,
coding for storage systems, cryptography, computational complexity theory,
and fun math problems. He has been a member of the Board of Governors of
the IEEE Information Theory Society from 1998 to 2006 and from 2011
to 2017. In 1996, he became a fellow of the David and Lucile Packard
Foundation. He received the IBM Invention Achievement Award in 1993
and the NSF Research Initiation and CAREER Awards in 1994 and 1995,
respectively. In 1996, he was appointed as a fellow of the Center for Advanced
Study, University of Illinois, and received the Xerox Award for Faculty
Research. He received the IEEE Information Theory Society Paper Award
(jointly with Ralf Koetter) in 2004. In 2005, he received the Fulbright Senior
Scholar Fellowship and the Best Paper Award at the IEEE Symposium
on Foundations of Computer Science (FOCS). In 2017, his work on polar
codes was recognized by the IEEE Communications and Information Theory
Societies Joint Paper Award. From 1995 to 1998, he was an Associate Editor
for Coding Theory. From 1998 to 2001, he was the Editor-in-Chief of the
IEEE TRANSACTIONS ON INFORMATION THEORY.

Eitan Yaakobi (S’07-M’12-SM’17) is an Associate Professor at the Com-
puter Science Department at the Technion — Israel Institute of Technology. He
also holds a courtesy appointment in the Technion’s Electrical and Computer
Engineering (ECE) Department. He received the B.A. degrees in computer
science and mathematics, and the M.Sc. degree in computer science from
the Technion — Israel Institute of Technology, Haifa, Israel, in 2005 and
2007, respectively, and the Ph.D. degree in electrical engineering from the
University of California, San Diego, in 2011. Between 2011-2013, he was
a postdoctoral researcher in the department of Electrical Engineering at
the California Institute of Technology and at the Center for Memory and
Recording Research at the University of California, San Diego. His research
interests include information and coding theory with applications to non-
volatile memories, associative memories, DNA storage, data storage and
retrieval, and private information retrieval. He received the Marconi Society
Young Scholar in 2009 and the Intel Ph.D. Fellowship in 2010-2011. Since
2020, he serves as an Associate Editor for Coding snd Decoding for the IEEE
TRANSACTIONS ON INFORMATION THEORY. Since 2016, he is affiliated
with the Center for Memory and Recording Research at the University of
California, San Diego, and since 2018, he is affiliated with the Institute of
Advanced Studies, Technical University of Munich, where he holds a four-
year Hans Fischer Fellowship, funded by the German Excellence Initiative and
the EU 7th Framework Program. He is a recipient of several grants, including
the ERC Consolidator Grant.

