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In this work, a local Fourier analysis is presented to study the convergence of multigrid methods based on
additive Schwarz smoothers. This analysis is presented as a general framework which allows us to study these
smoothers for any type of discretization and problem. The presented framework is crucial in practice since it
allows one to know a priori the answer to questions such as what is the size of the patch to use within these
relaxations, the size of the overlap, or even the optimal values for the weights involved in the smoother. Results

are shown for a class of additive and restricted additive Schwarz relaxations used within a multigrid framework
applied to high-order finite-element discretizations and saddle point problems, which are two of the contexts in
which these types of relaxations are widely used.

1. Introduction

Multigrid methods are among the best-known iterative solution
techniques due to their demonstrated high efficiency for a wide range of
problems. They accelerate the convergence of classical iterative meth-
ods by combining them with a coarse-grid correction technique. The
design of efficient multigrid methods, however, depends crucially on
the choice of their components. One of the most important ingredients
of a multigrid algorithm is the so-called smoother or relaxation proce-
dure, which often consists of a classical iterative method such as Jacobi
or Gauss-Seidel.

Within a multigrid framework, a natural extension of point-wise
smoothers is patch-wise smoothers. In order to apply such a relaxation,
the computational domain is divided into small (overlapping or non-
overlapping) patches, and then, one smoothing step consists of solving
local problems on each patch one-by-one either in a Jacobi-type or
Gauss-Seidel-type manner. This results in an additive or multiplica-
tive Schwarz smoother, respectively. One of the best-known multigrid
methods based on this type of relaxation was proposed by Vanka in
[1] for solving the steady-state incompressible Navier-Stokes equa-
tions in primitive variables, discretized by a finite-volume scheme on
a staggered grid. The computational domain is divided into cells with
pressure nodes at the cell centers and velocity nodes at the cell faces.
The smoothing procedure is a so-called symmetric coupled Gauss-Seidel
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technique (SCGS), which consists of solving local problems for each cell
involving all the unknowns located at the cell. This is done cell by cell
in a Gauss-Seidel-type manner and, therefore, can be viewed as a mul-
tiplicative Schwarz iteration.

Additive Schwarz-type iteration methods have been studied in [2]
as smoothers in a multigrid method for saddle point problems. It is
shown that, under suitable conditions, the iteration can be interpreted
as a symmetric inexact Uzawa method. Restrictive additive Schwarz
methods (RAS) were introduced in [3] as an efficient alternative to
the classical additive Schwarz preconditioners. They introduced a sim-
ple change to the additive scheme by removing the overlap in the
interpolation operator, becoming more attractive as they reduce the
communication time between processors and usually the overall com-
putation time. Convergence of RAS methods was proven in [4], where it
was shown that this method reduces communication time while main-
taining the most desirable properties of the classical Schwarz methods.
RAS preconditioners are widely used in practice and are implemented
in several software packages. In [5], a restrictive Schwarz method was
proposed as a smoother for solving the Stokes equations. It was ob-
served that this smoother achieves comparable convergence rates to
the multiplicative version, while being computationally less expensive
per iteration. In general, the class of additive and restricted additive
Schwarz smoothers is characterized by their ability to deal with high-
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order discretizations, saddle point problems, and equations where the
terms grad-div or curl-curl dominate. Thus, in this work, we aim to
study such relaxations within a multigrid framework.

Local Fourier analysis (LFA), or local mode analysis, is a commonly
used approach for analyzing the convergence properties of geometric
multigrid methods. In this analysis an infinite regular grid is considered
and boundary conditions are not taken into account. LFA was intro-
duced by Brandt in [6], and afterwards extended in [7]. A good intro-
duction can be found in the paper by Stiiben and Trottenberg [8] and in
the books by Wesseling [9], Trottenberg et al. [10], and Wienands and
Joppich [11]. It is the main quantitative analysis for the convergence of
multilevel algorithms, and results in a very useful tool for the design of
multigrid methods. Moreover, in [12] it has been recently proved that
under standard assumptions LFA is a rigorous analysis, providing the
exact asymptotic convergence factors of the multigrid method.

LFA for multiplicative Schwarz smoothers was first performed in
[13] for the staggered finite-difference discretization of the Stokes
equations, and in [14] for a mixed finite-element discretization of the
Laplace equation. In [15], an LFA for multiplicative Schwarz smoothers
on triangular grids is presented, and in [16], the analysis for such over-
lap block smoothers is performed on rectangular grids for finite-element
discretizations of the grad-div, curl-curl and Stokes equations.

Whereas LFA has been widely applied to multiplicative Schwarz re-
laxations, few works on additive Schwarz smoothers can be found in
the literature. Whereas the Fourier modes are eigenfunctions of the
multiplicative Schwarz smoothers (see [16] for a rigorous proof), this
statement is not true for additive Schwarz smoothers. In [17], an LFA
to analyze a multicolored version of an additive Schwarz smoother for
a curl-curl model problem was proposed. A non-standard LFA to an-
alyze this type of smoothers for the Stokes equations with P2-P1 and
Q2-Q1 discretizations is considered in [18]. This analysis was also used
in [19] in order to study an additive Vanka-type smoother within a
multigrid framework for the Poisson equation discretized by a standard
finite-difference scheme. The analysis developed in both references can
be seen as a particular case of the general framework analysis presented
in this work, which allows us to study this class of smoothers for any
type of discretization and problem.

Finally, we note that a non-standard LFA technique to predict the
convergence rate of multigrid solvers for problems involving random
and jumping coefficients was proposed in [20]. Similar analysis has
been recently introduced independently in [21-23]. The novelty of this
new approach lies in the use of a specific basis of the Fourier space,
rather than the standard basis which is based on the Fourier modes. This
is the approach that we consider in this work and, as it will be shown,
it allows us to propose an LFA to study the convergence of multigrid
methods based on additive Schwarz smoothers for any discretization
and problem. This general framework is crucial in practice, since it can
answer questions such as what the appropriate size of the patch to use
is, how to determine the size of the overlap, what the optimal values
for the weights involved in the smoother are, and whether or not the
restricted additive version is the best choice.

The rest of the paper is organized as follows. In Section 2, the addi-
tive and restricted additive Schwarz smoothers are introduced together
with their corresponding algorithms. Section 3 is devoted to presenting
the basis for the LFA performed in this work. Sections 4 and 5 deal with
the application of the proposed local Fourier analaysis to high-order
finite-element discretizations for scalar problems and saddle point type
problems, respectively. Finally, a summary and concluding remarks are
given in Section 6.

2. Additive Schwarz methods

In this section we introduce the additive Schwarz methods used to
solve a linear system of n algebraic equations, Au = b. Consider a de-
composition of the unknowns into subsets 3;, i = 1, ..., s, such that each
unknown in vector u is included in at least one block ;. For each sub-
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set of unknowns, B;, let V; : R" — R"i be the mapping from the global
vector of unknowns to the ones given in /3;, where #; is the size of B;.
Here, V; is represented by a rectangular »; X n matrix and, with a slight
abuse of notation, we also refer to this matrix as V;. Its transpose, V,.T, is
a prolongation operator from R" to R" by padding it with zeros. Then,
A= V,-AV'.T is the local matrix corresponding to the unknowns in 5,,
that is, the restriction of A to 13;. For each block 1;, the following small
local system has to be solved at the jth iteration,

Agdul =Vi(b— Au),

where 5u{ denotes the vector of corrections for the unknowns involved
in block B;.

These corrections can be computed via a multiplicative or an ad-
ditive Schwarz method. Although multiplicative Schwarz methods pro-
vide better asymptotic convergence factors, in general their additive
counterparts have lower cost per iteration since they are more paral-
lelizable. This is due to the fact that the corrections provided by solving
the other local systems are not required to compute the corrections
associated with a given block. The algorithm of the additive Schwarz
method is given as follows:

Algorithm 1: Additive Schwarz method.

Input: «/. Output: w/*!.
1 r=b-—Aw
2 fori=1:sdo
3 |_ Solve: A,6u! =V,r.

e+ VDS
4w =w + Y VI Dsul,

In Algorithm 1, D; is, in the general case, a diagonal weighting matrix.
The diagonal entries of this matrix are usually taken as the inverse of
the number of blocks sharing the corresponding unknown, but can be
tuned to improve the convergence factor of the method.

The restricted additive Schwarz method is based on the use of pro-
longation operators, I7l.T, in such a way that each entry of the vector
unknown u occurs in I7iu for exactly one i. Therefore, I7l.T is a matrix of
zeros and ones of the same size as VI.T, such that the correction to each
unknown is obtained from a single block. This means that prolongation
operators I7I.T are introduced in such a way that

A
i=1

is satisfied. Then, the algorithm of the restricted additive Schwarz
method is:

Algorithm 2: Restricted additive Schwarz method.

Input: «/. Output: w/*!.
1 r=b-Aw
2 fori=1:sdo
3 |_ Solve: A;6u! =Vr.

1 _ i s pT J
4 Wt =uw + 3 VIDsul,

When using these types of smoothers for solving a particular prob-
lem, some key questions arise. First, what should the size of the blocks
be? Second, how large should the overlap be? Finally, the weights
involved in the method are input parameters, and are extremely im-
portant to obtain an efficient and robust solver. Thus, determining the
optimal values is a big concern. In the next section, we present a gen-
eral framework based on LFA that answers these questions, allowing us
to know a priori the type of additive Schwarz method to use.

3. Local Fourier analysis

In this section, we describe LFA in a setting which allows us to es-
timate the multigrid convergence factors by using additive Schwarz
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methods as smoothers. Standard LFA assumes that Fourier modes are
eigenfunctions of some of the operators involved in the multigrid al-
gorithm, such as the discrete operator and the relaxation procedure.
However, we mention three examples where this conventional analysis
is not directly applicable. The first exception consists of problems with
non-constant coefficients, as models involving random and jumping co-
efficients. Secondly, discretizations with different stencils at distinct
grid-points, appearing for example in high-order finite-element meth-
ods also pose challenges to the classical approach. Finally, standard
LFA is not applicable when Fourier modes are not eigenfunctions of
the smoother considered in the multigrid algorithm. Additive Schwarz
methods fall in this latter category.

In [20], a non-standard LFA technique to predict the convergence
rate of multigrid solvers for problems involving random and jumping
coefficients was proposed. While the analysis in that work was applied
only to problems with non-constant coefficients, it can be also applied
to high-order finite-element discretizations. In fact, the special LFA per-
formed in [24] to study multigrid methods for quadratic finite-element
methods can be seen as a particular case of the analysis presented in
[20]. In addition, as will be shown here, it can also be applied for an-
alyzing multigrid methods based on additive Schwarz smoothers. Next,
we briefly describe this analysis, and refer to [20] for more details.

Given an infinite and regular grid, G, with grid size h, Fourier modes
are defined by ¢, (x,0) = e with x € G, and 0 €®;, :=(w/h,x/h].
The Fourier modes span the so-called Fourier space:

Fr(Gy) =span{g@,(x,0)|0 € ©,}. €D)

The main idea in the analysis presented in [20] is to consider a spe-
cific basis of the Fourier space, rather than the standard basis which is
based on the Fourier modes. For this purpose, we consider a splitting of
G, into m“ infinite subgrids, where d is the dimension of the problem.
We then take a fixed window of size m X ... X m and its periodic exten-

——

sion. The size of the window has to be ch(;jsen appropriately, which we
do in the context of additive Schwarz smoothers. For the sake of sim-
plicity, we consider the same size m in each direction. We note that the
analysis still holds even if they are different. Once m is fixed, for ev-
ery k=(ky,....kg), ky,...., kg =0,...,m—1, subgrid, G*, is defined as
follows:

GK = {kh+ (... lpmh | 1},....1, € Z}. )

For each frequency 6° € ©,,, := (—z/mh,z/mh]?, we introduce the
following grid functions:

vy (0°,%) = 04(0", %) g ©)
As in [20], the Fourier space spanned by these functions,
d

Fi (0% =span{yf(0°,-), k=(ky,....kg), ky»....ky=0,....m =1},
@

is the same Fourier space generated by the standard Fourier modes,

2
span{, (6%, "), 6% = 0" + km—’;, k=(ky,.... k).
kis...okg=0,....m—1}. 5)

Due to the relation between the grid-functions of the given new Fourier
basis and the standard Fourier modes, it can be shown that, taking a big
enough window size, the two-grid operator,

My =y, -

Pl AZ R A,)SY,

2h"72h""h ©)

satisfies the following invariance property for any frequency 6° € O,s

M, 0% — @),
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In (6), PZhh and Rih are the prolongation and restriction operators, A,
and A, are the fine- and coarse-grid operators, I, is the identity, .S}, is
the smoothing operator, and v is the number of smoothing steps.
When the usual analysis can be applied, and a standard coarsening
H =2h is considered, the Fourier space has dimension 2¢, yielding the
so called 2h—harmonics spaces. In this case, m =2 in (4), the size of
the window is 2¢, and both analyses coincide. The advantage of using
the grid-functions in (3) is that it allows one to study problems for
which the analysis based on the Fourier modes is not applicable. For
example, using m = 2 one could study the multigrid convergence for
quadratic finite-element methods. As we will see in the next section,
one can study finite-element methods of arbitrary order just taking a
bigger value of m. Additionally, we will show that Additive Schwarz
methods can be analyzed by considering the grid-functions in (3), and
choosing an adequate window size, i.e., an adequate value of m.

4. High-order finite-element methods for scalar problems

As a model problem, we consider the Poisson equation in a d—di-
mensional domain, Q = (0, 1)¢, with homogeneous Dirichlet boundary
conditions,

—Au
u

/. in Q

0, on 0Q. @

The variational formulation of this problem reads as follows: Find u €
Hé () such that

a(u,v)=(f,v), Vv€ Hy(Q),

where

a(u,v) = / Vu-Vovdx, and (f,v)= /fvdx.
Q Q
Let 7}, be a partition of the domain Q C R?, and associate to 7}, the
high-order finite-element space, V},, C H(; (Q) defined as Vj,, = {u), €
Hé Q) |uply €Q,, VT €7}, where Q,, is the space of polynomials up
to total degree p on each variable. Thus, the Galerkin approximation of
the variational problem is given by: Find u), € V},,, such that

®

The solution of the Galerkin approximation problem is a linear com-
bination, u;, = 221 u;¢;, where {¢,,....,p,, } is a basis for V}, and

a(up,vp) = (f.vy), Vo, €V,

dimV},, = ny,. In order to compute w= (uy, ..., u,, )T, the following lin-
ear system must be solved: Au=Db, where A = (a; ;) = (a(@;, ga,)):;;] is
the so-called stiffness matrix and b = (b;) = (f ,(p,.):'i . is the right-hand
side vector.

The goal now is to demonstrate the utility of the analysis presented
in the previous section for the design of efficient geometric multigrid
methods based on additive Schwarz relaxation schemes. For this pur-
pose, we consider an A-multigrid, i.e., we keep the polynomial order
unchanged in the geometric mesh hierarchy, combined with the canon-
ical high-order restriction and prolongation operators. There are, how-
ever, other possibilities to build a multilevel hierarchy for high-order
discretized problems. Another option is to use a p-multigrid technique,
which consists of constructing the coarse problems within the multi-
grid algorithm by reducing the polynomial degree of the finite-element
space. This approach can be combined with a standard A-multigrid on
the coarsest level p = 1. Recently in [25], a two-level method based on
multiplicative Schwarz methods was proposed such that a discretization
of arbitrary order p is considered in the first level whereas the second
level consists of a linear discretization (p = 1) of the problem. Although
we only present results here for the A-multigrid case, the analysis pro-
posed in this work can be applied to any other alternative for high-order
discretizations, such as those approaches mentioned above.
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Table 1

Linear finite-element discretization, p = 1, for the 1D Poisson
problem. Two-grid asymptotic convergence factors applying
v =1 smoothing steps of an additive Schwarz method. Block-
size, (k), ranges from 2 to 7 and the size of the overlap, ov,
from 1 to k — 1. Natural weights are taken in the smoother.

Overlap (ov) Block-size (k)

2 3 4 5 6 7
1 0.33 099 040 050 043 050
2 - 0.33 020 050 029 025
3 - - 0.20 050 021 0.99
4 - - - 020 014 025
5 - - - - 0.14 0.33
6 - - - - - 0.14

4.1. One-dimensional case

First, we consider the simplest case when d = 1, the computational
domain is the interval, Q = (0,1), and the corresponding two-point
boundary value problem is —u"'(x) = f(x), x € Q, u(0) = u(1) = 0. We
consider linear finite-element methods, i.e., p = 1, and perform LFA
based on infinite subgrids to estimate the convergence factor of the
multigrid method using additive Schwarz methods as the relaxation. In
additive Schwarz, we vary the size of the block, k, from 2 to 7 and the
size of the overlap, ov, from ov =1 to the maximum overlap ov =k — 1.
The diagonal elements of the weighting matrix, D;, in Algorithm 1 are
taken to be the natural weights, i.e., the reciprocal of the number of
blocks in which each unknown appears. For example, if the size of the
block is k =3 and the size of the overlap is ov = 1, the weights for
the three unknowns of a block are 1/2, 1, 1/2. In Table 1, we show
the two-grid asymptotic convergence factors provided by LFA with only
one smoothing iteration, v = 1, for different block-sizes and overlap
sizes, considering a linear finite-element discretization of the 1D Pois-
son equation. We do not show the experimentally computed asymptotic
convergence factors because they are exactly the same as those pro-
vided by LFA.

From the results presented in Table 1, we observe that a bigger
block-size or overlap among blocks does not always provide a better
asymptotic convergence factor.

Next, we consider the restrictive additive Schwarz method as the
smoother within the multigrid framework. Now, the natural weights
will be one or zero. For example, if the size of the block is k =3 and
the size of the overlap is ov = 1, the weights for the three unknowns of
the block are 1, 1, 0. In Table 2, we show the asymptotic convergence
factors provided by our two-grid analysis by using one smoothing step
of the restrictive additive Schwarz method with natural weights. Block-
sizes ranging from 2 to 7 and all the possible overlap among the blocks
are considered. Again, the experimentally computed asymptotic conver-
gence factors are the same as those provided by the LFA, and thus not
included in the table.

The obtained results are not good in general, observing even no con-
vergence of the multigrid mehod for some combinations of block-size
and size of the overlap. The advantage of having the LFA tool provided
in this work, however, is that this analysis can find the optimal weights
to improve the performance of the multigrid method. Hence, in Table 3,
we show the asymptotic convergence factors together with the optimal
weights provided by the analysis. Again, the two-grid analysis is based
on only one smoothing step of the restrictive additive Schwarz methods
with optimal weights, and different block-sizes and sizes of the overlap
among the blocks are considered.

Comparing the results in Tables 2 and 3, we observe a significant
improvement of the asymptotic convergence factors when appropriate
non-trivial weights are used. Once again, better asymptotic convergence
factors are not directly related to bigger block-sizes or larger overlap
among blocks.
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Table 2

Linear finite-element discretization, p = 1, for the 1D
Poisson problem. Two-grid asymptotic convergence fac-
tors applying v = 1 smoothing steps of a restrictive ad-
ditive Schwarz method with natural weights. Block-size,
(k), ranges from 2 to 7 and the size of the overlap, (ov),
from 1 to k — 1.

Overlap Block-size
2 3 4 5 6 7

1 0.75 1.00 0.40 0.50 0.43 0.50
2 1.00 0.60 0.50 0.57 0.44
3 - 0.87 0.87 0.28 1.00
4 - 1.00 0.71 0.44
5 0.92 1.00
6 1.00

LFA codes corresponding to previous tables are available open-source
[26].

The proposed LFA also lets us study the sensitivity of the conver-
gence factors of the multigrid method with respect to small changes in
the weights. In Fig. 1, we display the two-grid convergence factor ver-
sus the weight chosen for two combinations of block and overlap size:
k=4, 0ov=2 and k =5, ov=3. In both cases, when weights are close
to optimal, the difference in their convergence factors is insignificant.
Therefore, selecting any weight close to optimal will be equally effec-
tive.

Our analysis, though, allows us to extend LFA to high-order dis-
cretizations. Here, we fix the size of the block and the overlap and we
vary the polynomial order in the finite-element space. An element-based
additive Schwarz method is considered, where each block contains all
the basis functions with support in the corresponding element. There-
fore, the size of the blocks is chosen as p + 1, where p denotes the
polynomial degree. The size of the overlap is fixed to be the minimum,
i.e., ov = 1. In Table 4, we show the asymptotic convergence factors es-
timated by the two-grid analysis by using one smoothing step of the
additive Schwarz method (AS) and one step of the restricted additive
Schwarz method (RAS). The polynomial degrees range from p =2 to
p=2_8.

For each polynomial degree, p, we find that the restricted additive
Schwarz smoother achieves comparable convergence rates to the addi-
tive Schwarz smoother, having better properties in terms of scalability
and applicability to high-performance computing. We conclude that the
restricted additive Schwarz method is a favorable smoother for high-
order discretizations of elliptic equations. The authors are not aware of
any work comparing these approaches.

Remark 1. The size of the window, m, in the Fourier analysis is the
least common multiple of 2p and the minimum number (k — ov); such
that (k — ov)j > k, with j being any natural number. In the particular
case that the size of the block k = p+ 1 and ov = 1, the size of the block
is the least common multiple of 2p and the minimum number pj such
that pj > p+ 1. For example, if p = 2 the size of the windows is m = 4.

4.2. Two-dimensional case

We now consider the two-dimensional case of model problem (7).
We follow the same element-based smoothing strategy using additive
Schwarz methods. Thus, the size of local linear systems will be k =
(» + 1)* and the overlap among the blocks in both directions is still
one, ov = 1. In Table 5, we show the asymptotic convergence factors
predicted by the two-grid analysis by using v = 2 smoothing steps of
the corresponding AS and the RAS methods with natural weights. The
polynomial degree ranges from p=1to p=38.

Comparing the results of both smoothers in Table 5, we conclude
that the restrictive case is better from a computational cost point of
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Table 3
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Linear finite-element discretization, p = 1, for the 1D Poisson problem. Two-grid asymp-
totic convergence factors (and optimal weights in parenthesis) applying one iteration
of the restrictive additive Schwarz method with optimal weights. Block-size, (k), ranges
from 2 to 7 and the size of the overlap, (ov), from 1 to k — 1.

Ov Block-size
2 3 4 5 6 7
1 0.45(0.6) 0.34(0.67) 0.17(0.83) 0.20(0.8)  0.18(0.82)  0.20 (0.8)
2 - 0.37 (0.68) 0.15(0.71)  0.20(0.8)  0.22(0.78)  0.18 (0.82)
3 - - 0.43(0.71)  0.34(0.66)  0.16 (0.84)  0.34 (0.67)
4 - - - 0.36 (0.66)  0.20 (0.7)  0.18 (0.82)
5 - - - - 0.40 (0.7)  0.34 (0.66)
6 - - - - - 0.34 (0.66)
5 5 O9f ]
g o08f 13
8 8 L i
§ 2 0.8
L c
g 06 S o7t 1
[0 [
> >
c c L 4
S 04} ] g 06
) he)
S 5 05f 1
g 02} 1 g
[ F 04r 1
0 A U NN NN SRS S S S 03 S S NN SR NN S S N
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Weight Weight
(a) (b)

Fig. 1. Two grid convergence factors predicted by LFA applying one smoothing step of the restrictive additive scheme for different weights (a) Block size k =4 and

size of the overlap ov =2 (b) Block size k =5 and size of the overlap ov = 3.

Table 4

High-order finite-element discretizations for the 1D Poisson problem.
Asymptotic convergence factors predicted by the two-grid analysis by
using one smoothing step of the additive Schwarz method (AS) and the
restricted additive Schwarz method (RAS) with natural weights. The
size of the block is k = p + 1. Minimum overlap, ov = 1, is considered
and the polynomial degree ranges from p=2to p=38.

Smoother Polynomial degree
p=2 p=3 p=4 p=5 p=6 p=7 p=8
AS 0.50 0.09 0.17 0.11 0.17 0.12 0.16
RAS 0.50 0.12 0.15 0.11 0.17 0.12 0.16
Table 5

High-order finite-element discretizations for the 2D Poisson problem. Asymp-
totic convergence factors predicted by the two-grid analysis using two smooth-
ing steps of the additive Schwarz method (AS) and the restricted additive
Schwarz method (RAS) with natural weights. The size of the blocks is k =
(p+1)?. Minimum overlap ov = 1 is assumed and the polynomial degree ranges
from p=1top=38.

Smoother  Polynomial degree

p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8
AS 0.14 0.15 0.21 0.25 0.31 0.36 0.40 0.43
RAS 0.19 0.15 0.21 0.25 0.31 0.36 0.40 0.43

view, as it avoids communication between processors. Next, we con-
sider the performance of the multigrid method in terms of the number
of smoothing steps at each level. In Table 6, we show the two-grid
asymptotic convergence factors provided by LFA, p,,, together with the
asymptotic convergence factors computationally obtained by our own
implementation, p,,, using V'(1,0), V(1,1), V(2,1) and V'(2,2) cycles.
The coarsest grid used here within the V' -cycle consists of only one inte-
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Table 6

High-order finite-element discretizations for the 2D Poisson prob-
lem. Two-grid asymptotic convergence factors provided by LFA,
P2y together with the computed asymptotic convergence factors,
P, using V'(1,0), V(1,1), V(2,1), V(2,2) cycles with the element-
based restrictive additive Schwarz methods and natural weights.
The polynomial degree ranges from p=1to p=8.

P V(1,0) V(1,1 V2,1 V(2,2)
Pag Pn Pag Pn Pag Pn Pag Ph

1 0.41 0.41 0.19 0.18 0.10 0.09 0.03 0.03
2 039 040 0.15 0.15 0.06 0.06 0.02 0.02
3 0.46  0.45 0.21 0.21 0.09 0.09 0.04 0.04
4 050 050 0.25 0.25 0.13 0.13 0.06 0.06
5 0.56 0.56 0.31 0.31 0.18 0.18 0.10 0.10
6 060 060 0.36 0.36 0.21 0.21 0.13 0.13
7 0.63 0.63 0.40 0.40 0.26 0.25 0.16 0.16
8 0.66 0.66 0.43 0.43 0.28 0.28 0.19 0.19

rior grid point. Again, we employ the element-based restrictive additive
Schwarz smoother with natural weights for polynomial degree ranging
from p=1 to p=8. We see that the asymptotic convergence factors
predicted by the LFA match with high accuracy those computationally
obtained by applying V -cycles.

5. Saddle point problems

In practice, Schwarz methods are among the most commonly used
smoothers for solving saddle point problems. Whereas LFA has been
widely applied to multiplicative Schwarz relaxations, few works on ad-
ditive Schwarz smoothers are found in the literature. In [18], LFA was
used to analyze this type of smoothers for the Stokes equations dis-
cretized by Taylor-Hood P2-P1 and Q2-Q1 schemes. This analysis can
be seen as a particular case of the one introduced here, when using a
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window of size 2 X 2. In this section, we show that the presented Fourier
analysis can be also applied to study the convergence of multigrid meth-
ods based on additive Schwarz methods applied to such saddle-point
problems.

For this purpose, we consider the quasi-static Biot’s model for
poroelasticity. This model assumes that we have a deformable porous
medium, which is linearly elastic, isotropic, homogeneous, and satu-
rated by an incompressible Newtonian fluid. Given these assumptions,
the well-known displacement-pressure formulation [27] must satisfy

the following equations in a domain, Q C R?,
—div ¢’ +a Vp=pg, o’/ =2ue(u) + Adiv(u),

2 (1 1
(= cu) -V —K(p- =
0t(Mp+aV u> (Mf e pfg)) &

(9)

where ¢’ and € are the effective stress and strain tensors, A and y are the
Lamé coefficients, p is the pore pressure, u is the displacement vector
field, g is the gravity tensor, a is the Biot-Willis constant (which we
assume is equal to one), K is the permeability of the porous medium,
uy is the fluid viscosity, M is the Biot modulus, and f is a source
term. To complete the formulation of the problem, we add appropriate
boundary and initial conditions. For instance,

c'n = t,
K(Vp-psg)-n = 0,

where n is the unit outward normal to the boundary and I', UT", =T :=
0Q, with I', and I', disjoint subsets of I" having non null measure. For
the initial time, 7 = 0, the following condition is fulfilled,

p=0,
u=0,

onl’,

onl,, (10)

(ﬁp+av~u> (x,0)=0, x €Q. an

To discretize the problem, we use Taylor-Hood finite elements in
space, Q, — Q;, and a backward-Euler scheme in time. Let 7}, be a tri-
angulation of Q composed of rectangles. Defining the discrete spaces
as

V) ={u, € (H'Q)! |VT €T, uyly € QY. uylr, =0},

), =Py € H'(Q) |¥T €T;p. pylr €Q, pylr, =0},

the fully discretized scheme at time ¢,
lows: find (uj, p}/) € V', X Q) such that

m=1,2,..., is written as fol-

a(uy,vy) — a(py,dive,) = (pg,vy), Vv, €V, 12)

a(divouy, qp) + by an) = (7' ap) + (Ku3' 8.V ay), ¥V 4 € Oy,
(13)

where Etu;l" = (u;l” - u;l”_l) /7, with 7 the time discretization parameter,
(-,-) is the standard inner product in the space L,(€2), and the bilinear
forms a(-,-) and b(-,-) are given as

a(u,v) =2y/£(u) ce(v)dQ + A/divudiv vdQ,
Q Q

K
b(p,q)=/—Vp-qu9.
Q ﬂf

This fully discrete scheme leads to a saddle-point system of equations
at each time step of the form Ax = b, where matrix A is a 2 X 2 block
symmetric indefinite matrix:

A BT
B -Cc )’

with matrices A and C both being symmetric and positive definite.

To solve this system of equations, we consider a geometric multi-
grid method with standard coarsening based on an additive Schwarz
method as the relaxation scheme. For transfer operators we consider the
canonical restriction and prolongation operators. The classical Schwarz
smoother for this type of saddle-point problems is typically defined as a

A= a4
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Fig. 2. Minimum size window for the two-dimensional Biot’s model. The block
centered on the upper-left pressure unknown of the grid is shown in blue.

Table 7

Taylor-Hood discretizations of the 2D quasi-static Biot’s model. Two-
grid asymptotic convergence factors provided by LFA, p,,, together
with the computed asymptotic convergence factors, p,,, using several
permeability values and different numbers of smoothing steps of the
51-point additive Schwarz relaxation with natural weights.

K w(1,0) w(l,1) w2,1) w(2,2)
Pag Pn Pag Ph Pag Ph Pag P

1 0.49 0.49 0.25 0.22 0.12 0.11 0.06 0.06
1073 049 049 025 021 012 011 006 0.06
1076 049 049 025 021 012 011 006 0.06
107 0.65 0.65 0.42 0.42 0.27 0.27 0.18 0.18
1072 072 072 052 052 052 056 028 028
10 072 072 052 052 052 056 028 028

set of blocks that consists of one pressure unknown and all the velocity
unknowns that are connected to it. That is, the degrees of freedom corre-
sponding to the nonzero entries in the ith row of B plus the i-th pressure
degree of freedom. This yields a local system of size 51 x 51 and 76 X 76
for two-dimensional and three-dimensional problems, respectively. Due
to the high computational cost associated with this type of smoother,
the parallelization of the relaxation method becomes crucial for real ap-
plications. Therefore, the additive and the restricted additive Schwarz
smoothers are a more natural choice than multiplicative versions, and
it is clear that a Fourier analysis tool for them is of great importance for
the design of geometric multigrid methods for saddle point problems.

For two-dimensional problems, since the number of different sten-
cils is two, and each basis function for the pressure shares common
support with five displacement unknowns on each direction, the mini-
mum window size required for the analysis is 8 X 8, so we choose that
size here. In Fig. 2, we show the periodic extension of this window with
a selected block of unknowns in blue corresponding to the upper-left
pressure unknown on the computational domain.

In the following numerical results, we fix the Lamé parameters in
such a way that the Young’s modulus is E =3 x 10*, and the Poisson’s
ratio is v =0.2. We consider different values for permeability, K, rang-
ing from K =1 to K = 103, First, we consider the multigrid algorithm
based on additive Schwarz smoothers using the natural weights, i.e.,
w =1 for the pressure and w =1/9, 1/6, or w = 1/4 for the displace-
ment depending on if the degree of freedom corresponds to a vertex, to
an edge, or a cell node, respectively. In Table 7, we show the asymptotic
convergence factors provided by our analysis together with the numer-
ical ones provided by our implementation using W-cycles. We consider
different numbers of smoothing steps and different values of permeabil-
ity.

In Table 7, we observe that there is a good match between the fac-
tors provided by LFA and the ones experimentally obtained. We also
see that the performance of the multigrid method deteriorates when K
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Table 8

Taylor-Hood discretizations of the 2D quasi-static
Biot’s model. Two-grid asymptotic convergence
factors provided by LFA, using several permeabil-
ity values and different numbers of smoothing steps
of the 51-point additive Schwarz relaxation with
weights (0.09,0.22,1.02).

K w(1,00  wd,l) wEel) W22
1 0.58 0.34 0.19 0.11
1073 0.58 0.34 0.19 0.11
10-¢ 0.58 0.34 0.19 0.11
107° 0.58 0.34 0.19 0.11
1072 0.60 0.36 0.21 0.13
1075 0.60 0.36 0.21 0.13
Table 9

Taylor-Hood discretizations of the 2D quasi-static Biot’s
model. Number of multigrid iterations using the ad-
ditive Schwarz smoothers required to reduce the ini-
tial residual by a factor of tol = 107'°, using the
weights (0.09,0.22,1.02) with V- and W -cycles for sev-
eral smoothing steps and permeabilities.

K Smoothing steps (v,, v,)

(1,0) () 21 2.2)

14 w v w v w v w
1 39 40 20 20 13 14 10 10
1073 40 40 20 20 14 13 10 10
107 39 40 20 20 13 14 10 10
1070 40 40 23 20 14 13 10 10
1072 50 43 40 22 18 15 12 12
100 50 45 40 23 18 15 12 12

tends to zero, yielding a nonrobust algorithm. However, an additional
advantage of our analysis is that we are able to find the optimal weights
for a fixed permeability in order to obtain a robust algorithm. Since per-
meability is usually heterogeneous in real applications, we choose the
optimal weights corresponding to the worst case scenario (K = 0), that
is, w =0.09 for the displacements at vertices and edges, w = 0.22 for
the displacements at interior points, and w = 1.02 for the pressure vari-
ables. In Table 8, we show the asymptotic convergence factors applying
the additive Schwarz smoother with these optimal weights provided by
our analysis, considering different number of smoothing steps and sev-
eral permeability values.

Given that V-cycles are less expensive than W -cycles, we would
like to compare their performance in number of iterations. Hence, in
Table 9, we show the number of iterations, n;,,,, used in our implemen-
tation required to reduce the initial residual by a factor of tol = 10710,
using the optimal weights with V- and W -cycles for several smoothing
steps and permeabilities.

We conclude that V'-cycles are also robust with respect to K when
applying V' (2, 1)- or V' (2,2)-cycles since both cycles yield a similar num-
ber of iterations in order to reach the stopping criterion. Thus, the use
of V(2,2)-cycles with the 51-point additive Schwarz smoother applying
the weights (0.09,0.22, 1.02) is a good approach for solving the two-field
formulation of Biot’s equations.

6. Conclusions

A general framework for the analysis of multigrid methods based on
additive Schwarz relaxations is presented in this work. This approach is
based on a local Fourier analysis, which considers a basis of the Fourier
space different from the classical one given in terms of the Fourier
modes. The proposed analysis allows the study of a class of additive
Schwarz smoothers for any problem and discretization. As examples,
high-order finite-element discretizations of Poisson’s problem and sad-
dle point problems are considered since these are two formulations
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that benefit from applying these relaxation procedures. In addition,
both additive and restricted additive Schwarz smoothers are consid-
ered. In all cases, we show an excellent match between the convergence
rates provided by the analysis and those asymptotic convergence fac-
tors computationally obtained from a multigrid implementation. In the
case of high-order finite-element discretizations of the Poisson prob-
lem, for each polynomial degree p, we find that the restricted additive
Schwarz smoother achieves comparable convergence rates to the addi-
tive Schwarz smoother, having better favorable properties in terms of
scalability and applicability to high-performance computing. Thus, we
conclude that the restricted additive Schwarz method can be a good al-
ternative as a relaxation procedure in a multigrid method for solving
high-order discretizations of elliptic equations. Regarding the applica-
tion to saddle-point problems, we consider Biot’s model for poroelastic-
ity as a model problem and show that the proposed analysis allows one
to obtain optimal weights to define a multigrid solver based on additive
Schwarz smoothers, which is robust with respect to physical parameters
involved in the model. The proposed analysis, however, is a general ap-
proach that can be applied to any type of discretization and problem.
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