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Abstract—In this paper, we study the problem of global reward
maximization with only partial distributed feedback. This problem
is motivated by several real-world applications (e.g., cellular net-
work configuration, dynamic pricing, and policy selection) where
an action taken by a central entity influences a large population
that contributes to the global reward. However, collecting such
reward feedback from the entire population not only incurs a
prohibitively high cost, but often leads to privacy concerns. To
tackle this problem, we consider distributed linear bandits with
differential privacy, where a subset of users from the population
are selected (called clients) to participate in the learning process
and the central server learns the global model from such partial
feedback by iteratively aggregating these clients’ local feedback in
a differentially private fashion. We then propose a unified algorith-
mic learning framework, called differentially private distributed
phased elimination (DP-DPE), which can be naturally integrated
with popular differential privacy (DP) models (including central
DP, local DP, and shuffle DP). Furthermore, we show that DP-DPE
achieves both sublinear regret and sublinear communication cost.
Interestingly, DP-DPE also achieves privacy protection “for free”
in the sense that the additional cost due to privacy guarantees is
a lower-order additive term. In addition, as a by-product of our
techniques, the same results of “free” privacy can also be achieved
for the standard differentially private linear bandits. Finally, we
conduct simulations to corroborate our theoretical results and
demonstrate the effectiveness of DP-DPE.

Index Terms—Linear bandits, global reward maximization,
partial distributed feedback, differential privacy, regret,
communication cost.

I. INTRODUCTION

T
HE bandit learning models have been widely adopted for
many sequential decision-making problems, such as clin-

ical trials, recommender systems, and configuration selection.
Each action (called arm), if selected in a round, generates a
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Fig. 1. Cellular network configuration: A motivating application of global
reward maximization with partial feedback in a linear bandit setting.

(noisy) reward. By observing such reward feedback, the learning
agent gradually learns the unknown parameters of the model
(e.g., mean rewards) and decides the action in the next round. The
objective here is to maximize the cumulative reward over a finite
time horizon, balancing the tradeoff between exploitation and
exploration. While the stochastic multi-armed bandits (MAB)
model is useful for this application [2], one key limitation is
that actions are assumed to be independent, which, however,
is usually not the case in practice. Therefore, the linear bandit
model that captures the correlation among actions has been
extensively studied [3], [4], [5].

In this paper, we introduce a new linear bandit setting where
the reward of an action could be from a large population. Take the
cellular network configuration as an example (see Fig. 1). The
configuration (antenna tilt, maximum output power, inactivity
timer, etc.) of a base station (BS), with feature representation1

x ∈ R
d, influences all the users under the coverage of this BS [6].

After a configuration is applied, the BS receives a reward in
terms of the network-level performance, which accounts for
the performance of all users within the coverage (e.g., average
user throughput). Specifically, let the mean global reward of
configurationx be f(x) = 〈θ∗, x〉, where θ∗ ∈ R

d represents the
unknown global parameter. While some configuration may work
best for a specific user, only one configuration can be applied
at the BS at a time, which, however, simultaneously influences
all the users within the coverage. Therefore, the goal here is to
find the best configuration that maximizes the global reward (i.e.,
the network-level performance).

1Similar to many linearly parameterized bandits (e.g., [5]), we may represent
each configuration by a d-dimensional feature vector through some feature
mapping.
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At first glance, it seems that one can address the above
problem by applying existing linear bandit algorithms (e.g., Lin-
UCB [5]) to learn the global parameter θ∗. However, this would
require collecting reward feedback from the entire population,
which could incur a prohibitively high cost or could even be
impossible to implement in practice when the population is large.
To learn the global parameter, one natural way is to sample a
subset of users from the population and aggregate this distributed
partial feedback. This leads to a new problem we consider in
this paper: global reward maximization with partial feedback in

a distributed linear bandit setting, which can be also applied to
several other practical applications, including dynamic pricing
and public policy selection [7], [8]. As in many distributed
supervised learning problems [9], [10], [11], privacy protection
is also of significant importance in our setting as clients’ local
feedback may contain their sensitive information. In summary,
we are interested in the following fundamental question: How to

privately achieve global reward maximization with only partial

distributed feedback?

To that end, we introduce a new model called differentially

private distributed linear bandit (DP-DLB). In DP-DLB, there
is a global linear bandit model f(x) = 〈θ∗, x〉 with an unknown
parameter θ∗ ∈ R

d at the central server (e.g., the BS); each
user u of a large population has a local linear bandit model
fu(x) = 〈θu, x〉, which represents the mean local reward for
user u. Here, we assume that each user u has a local parameter
θu ∈ R

d, motivated by the fact that the mean local reward
(e.g., the expected throughput of a user under a certain network
configuration) varies across the users. In addition, each local
parameter θu is unknown and is assumed to be a realization of a
random vector with the mean being the global model parameter
θ∗. The server makes decisions based on the estimated global
model, which can be learned through sampling a subset of
users (referred to as clients) and iteratively aggregating these
distributed partial feedback. While sampling more clients could
improve the learning accuracy, it also incurs a higher communi-
cation cost. Therefore, it is important to address this tradeoff in
the design of communication protocols. Furthermore, to protect
users’ privacy, we resort to differential privacy (DP) to guarantee
that clients’ sensitive information will not be inferred by an ad-
versary. Therefore, the goal is to maximize the cumulative global
reward (or equivalently minimize the regret due to not choosing
the optimal action in hindsight) in a communication-efficient
manner while providing privacy guarantees for the participating
clients. Our main contributions are summarized as follows.
� We present a new distributed linear bandit setting where

only partial feedback is available, leading to a novel prob-
lem of global reward maximization with distributed partial
feedback. In addition to the traditional exploitation and
exploration tradeoff, learning with distributed feedback
introduces two practical challenges: communication effi-
ciency and privacy concerns. This adds an extra layer of
difficulty in the design of learning algorithms.

� To address these challenges, we introduce a DP-DLB
model and develop a carefully crafted algorithmic learning
framework called differentially private distributed phased
elimination (DP-DPE), which allows the server and the

clients to work in concert and can be naturally inte-
grated with several state-of-the-art DP trust models (in-
cluding central model, local model, and shuffle model).
This unified framework enables us to study the key regret-
communication-privacy tradeoff systemically.

� We then establish the regret-communication-privacy trade-
off of DP-DPE in various settings, including the non-
private case and the central, local, and shuffle DP models.
Our main results are summarized in Table I. From Table I,
we observe that the additional regret incurred by privacy
is only a lower-order additive term, which is dominated by
the regret from learning (i.e., Õ(T 1−α/ε)vs.2 Õ(T 1−α/2)).
In this sense, we say that DP-DPE might achieve privacy
“for free” following [12]. Moreover, this is the first work
considering the shuffle model in distributed linear bandits
to attain a better regret-privacy tradeoff, i.e., guaranteeing
similar privacy protection as the strong local model while
achieving the same regret as the central model. We further
perform simulations on synthetic data to corroborate our
theoretical results.

� Finally, we provide an interesting discussion about achiev-
ing privacy “for free”. We first highlight an interesting
connection between our introduced DP-DLB formulation
and the differentially private stochastic convex optimiza-
tion (DP-SCO) problem in terms of achieving privacy “for
free”. This bridge between our online bandit learning and
standard supervised learning might be of independent inter-
est. Furthermore, differential privacy may also be ensured
“for free” for standard linear bandits as well with minor
modifications of our developed techniques.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We begin with some notations: [N ] � {1, . . . , N} for any
positive integer N ; |S| denotes the cardinality of set S; ‖x‖2
denotes the �2-norm of vector x; the inner product is denoted
by 〈·, ·〉. For a positive definite matrix A ∈ R

d×d, the weighted
�2-norm of vector x ∈ R

d is defined as ‖x‖A �
√
x�Ax.

A. Global Reward Maximization With Partial Feedback

We consider the global reward maximization problem over a
large population containing an infinite number of users, which
is a sequential decision making problem. In each round t, the
learning agent (e.g., the BS or the policy maker) selects an
action xt from a finite decision set D ⊆ {x ∈ R

d : ‖x‖22 ≤ 1}
with |D| = k. This action leads to a global reward with mean
〈θ∗, xt〉, where θ∗ ∈ R

d with ‖θ∗‖2 ≤ 1 is unknown to the agent.
This global reward captures the overall effectiveness of actionxt

over a large population U . The local reward of action xt at user
u has a mean 〈θu, xt〉, where θu ∈ R

d is the local parameter,
which is assumed to be a realization of a random vector with
mean θ∗ and is also unknown. Letx∗ � argmaxx∈D〈θ∗, x〉 be the
unique global optimal action. Then, the objective of the agent
is to maximize the cumulative global reward, or equivalently, to

2Here the Õ(·) notation hides the dependence on polylog(T ), the dimension
d, and privacy parameter δ.
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TABLE I
SUMMARY OF MAIN RESULTS

minimize the regret defined as follows:

R(T ) � T 〈θ∗, x∗〉 −
T∑

t=1

〈θ∗, xt〉. (1)

At first glance, standard linear bandit algorithms (e.g., Lin-
UCB in [5]) can be applied to address the above problem.
However, the exact reward here is a global quantity, which is the
average over the entire population. The learning agent may not
be able to observe this exact reward, since collecting such global
information from the entire population incurs a prohibitively
high cost, is often impossible to implement in practice, and could
lead to privacy concerns.

B. Differentially Private Distributed Linear Bandits

To address the above problem, we consider a differentially

private distributed linear bandit (DP-DLB) formulation, where
there are two important entities: a central server (which wants
to learn the global model) and participating clients (i.e., a subset
of users from the population who are willing to share their
feedback). In the following, we discuss important aspects of
the DP-DLB formulation.

Server: The server aims to learn the global linear bandit
model, i.e., unknown parameter θ∗. In each round t, it selects
an action xt with the objective of maximizing the cumulative
global reward

∑T
t=1〈θ∗, xt〉. Without observing the exact reward

of action xt, the server collects and aggregates partial feedback
from a subset of users sampled from the population, called
clients, and then update the estimate of the global parameter
θ∗. Based on the updated model, the server chooses an action in
the next round.

Clients: We assume that each participating client is randomly
sampled from the population and is independent from each other
and also from other randomness. Specifically, we assume that
local parameter θu at client u satisfies θu = θ∗ + ξu, where
ξu ∈ R

d is a zero-mean σ-sub-Gaussian random vector3 and
is independently and identically distributed (i.i.d.) across all
clients. Let Ut be the set of clients in round t. After the server
takes action xt at t, each client u ∈ Ut observes a noisy local

3A random vector ξ ∈ R
d is said to be σ-sub-Gaussian if E[ξ] = 0 and v�ξ

is σ-sub-Gaussian for any unit vector v ∈ R
d and ‖v‖2 = 1 [13].

reward: yu,t = 〈θu, xt〉+ ηu,t, where ηu,t is a conditionally
1-sub-Gaussian4 noise and i.i.d. across the clients and over time.
Assume that the local rewards are bounded, i.e., |yu,t| ≤ B, for
all u ∈ U and t ∈ [T ].

Communication: Communication happens when the clients
report their feedback to the server. At the beginning of each
communication step, each participating client reports feedback
to the server based on the local observations during a certain
number of rounds. In particular, the time duration between re-
porting feedback is called a phase. By aggregating such feedback
from the clients, the server estimates the global parameter θ∗

and adjusts its decisions in the following rounds accordingly.
We assume that the clients do not quit before a phase ends. By
slightly abusing the notation, we use Ul to denote the set of
clients in the l-th phase.

The communication cost is a critical factor in DP-DLB. As
in [14], we define the communication cost as the total number
of real numbers (or bits, depending on the adopted DP model)
communicated between the server and the clients. Let L be the
number of phases in T rounds and Nl be the number of real
numbers (or bits) communicated in the l-th phase. Then, the
communication cost, denoted by C(T ), is

C(T ) �

L∑

l=1

|Ul|Nl. (2)

Data privacy: In practice, even if users are willing to share their
feedback, they typically require privacy protection as a premise.
Differential privacy (DP) [15] is a mathematical framework for
ensuring the privacy of individuals in datasets. Specifically, by
observing the calculation/statistics/model update from a set of
individual data, an adversary cannot infer too much information
about any specific individual. In this sense, DP can protect any
existing or future attacks in that any adversary tries to infer
any individual’s information would fail no matter how much
computation power they have or how much side information
they have (i.e., even though the adversary has access to all the
others’ information except the targeted one). To that end, we

4Consider noise sequence {ηt}∞t=1
. As in the general linear bandit model [3],

ηt is assumed to be conditionally 1-sub-Gaussian, meaningE[eληt |x1:t, η1:t] ≤
exp(λ2/2) for all λ ∈ R, where ai:j denotes the subsequence ai, . . . , aj .
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resort to DP to formally address the privacy concerns in the
learning process. More importantly, instead of only considering
the standard central model where the central server is responsible
for protecting privacy, we will also incorporate other popular DP
models, including the stronger local model (where each client
directly protects her data) [16] and the recently proposed shuffle
model (where a trusted shuffler between clients and server
is adopted to amplify privacy) [17], in a unified algorithmic
learning framework.

III. ALGORITHM DESIGN

In this section, we first present the key challenges associated
with the introduced DP-DLB model and then explain how the
developed DP-DPE framework addresses these challenges.

A. Key Challenges

To solve the problem of global reward maximization with
partial distributed feedback using the DP-DLB formulation, we
face four key challenges, discussed in detail below.

As in the standard stochastic bandit problem [18], there is
uncertainty due to the noisy rewards of each chosen action,
which is called action-related uncertainty. In addition, we face
another type of uncertainty related to the sampled clients in
DP-DLB, called client-related uncertainty. The client-related
uncertainty lies in estimating the global model at the server
based on randomly sampled clients with biased local models.
Note that the global model may not be accurately estimated even
if the exact rewards of the sampled clients are known when the
number of clients is insufficient. Therefore, the first challenge
lies in simultaneously addressing both types of uncertainty in a

sample-efficient way (Challenge a©).
To handle the newly introduced client-related uncertainty, we

must sample a sufficiently large number of clients so that the
global parameter can be accurately estimated using the partial
distributed feedback. However, too many clients result in a large
communication cost (see (2)). Therefore, the second challenge
is to decide the number of sampled clients to balance the regret

(due to the client-related uncertainty) and the communication

cost (Challenge b©).
Finally, to ensure privacy guarantees for the clients, one needs

to add additional perturbations (or noises) to the local feedback.
Such randomness introduces another type of uncertainty to

the learning process (Challenge c©), and it is unclear how to

integrate different trust DP models into a unified algorithmic

learning framework (Challenge d©). These add an extra layer of
difficulty to the design of learning algorithms.

Main ideas: We design a phased elimination algorithm as
in [19] that gradually eliminates suboptimal actions by period-
ically aggregating the local feedback from the sampled clients
in a privacy-preserving manner. To address the multiple types
of uncertainty when estimating the global reward ( a© and c©),
we carefully construct a confidence width to incorporate all
three types of uncertainty. To achieve a sublinear regret while
saving communication cost ( b©), we increase both the phase
length and the number of clients exponentially. To ensure privacy
guarantees ( d©), we introduce a PRIVATIZER that can be easily

tailored under different DP models. The PRIVATIZER is a process
consisting of tasks to be collaboratively completed by the clients,
the server, and/or even a trusted third party. To keep it general,
we use P = (R,S,A) to denote a PRIVATIZER, where R is the
procedure at each client (e.g., a local randomizer), S is a trusted
third party that helps privatize data (e.g., a shuffler that permutes
received messages), andA is an analyzer run at the central server.
Next, we show how to integrate these main ideas into a unified
algorithmic learning framework.

B. Differentially Private Distributed Phased Elimination

With the main ideas presented above, we now propose a uni-
fied algorithmic learning framework, called differentially private

distributed phased elimination (DP-DPE), which is presented in
Algorithm 1. The DP-DPE runs in phases and operates with the
coordination of the central server and the participating clients in
a synchronized manner. At a high level, each phase consists of
the following three steps:
� Action selection (Lines 4–6): computing a near-G-optimal

design (i.e., a distribution) over a set of possibly optimal
actions and playing these actions;

� Clients sampling and private feedback aggregation

(Lines 7–16): sampling participating clients and aggregat-
ing their local feedback in a privacy-preserving fashion;

� Parameter estimation and action elimination (Lines 17–

19): using (privately) aggregated data to estimate θ∗ and
eliminating actions that are likely to be suboptimal.

In the following, we describe the detailed operations of DP-
DPE. We begin by giving some necessary notations. Consider
the l-th phase. Let tl and Tl be the index of the starting round
and the length of the l-th phase, respectively. Then, let Tl � {t ∈
[T ] : tl ≤ t < tl + Tl} be the round indices in the l-th phase, let
Tl(x) � {t ∈ Tl : xt = x} be the time indices in the l-th phase
when action x is selected, and let Dl ⊆ D be the set of active
actions in the l-th phase.

Action selection (Lines 4–6): In the l-th phase, the action set
Dl consists of active actions that are possibly optimal. We com-
pute a distribution πl(·) over Dl and choose actions according
to πl(·). We briefly explain the intuition below. Let V (π) �∑

x∈D π(x)xx� and g(π) � maxx∈D ‖x‖2V (π)−1 . According to
the analysis in [3, Chapter 21], if actionx ∈ D is played 
hπ(x)�
times (where h is a positive constant), the estimation error
associated with the action-related uncertainty for action x is
at most

√
2g(π) log(1/β)/h with probability 1− β for any

β ∈ (0, 1). That is, for a fixed number of rounds, a distribution
π(·) with a smaller value of g(π) helps achieve a better esti-
mation. Note that minimizing g(·) is a well-known G-optimal

design problem [20]. By the Kiefer-Wolfowitz Theorem [21],
one can find a distribution π∗ minimizing g(·) with g(π∗) = d,
and the support set5 of π∗, denoted by supp(π∗), has a size no
greater than d(d+ 1)/2. In our problem, however, it suffices to
solve it near-optimally, i.e., finding a distribution πl such that

5The support set of a distribution π over set D, denoted by suppD(π), is the
subset of elements with a nonzero π(·), i.e., suppD(π) � {x ∈ D : π(x) �= 0}.
We drop the subscript D in suppD(π) for notational simplicity.
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Algorithm 1: Differentially Private Distributed Phased
Elimination (DP-DPE).

1: Input: D ⊆ R
d, α, β ∈ (0, 1), and σn

2: Initialization: l = 1, t1 = 1, D1 = D, and h1 = 2
3: while tl ≤ T do

4: Find a distribution πl(·) over Dl such that
g(πl) � maxx∈Dl

‖x‖2V (πl)−1 ≤ 2 d and
|supp(πl)| ≤ 4d log log d+ 16, where
V (πl) �

∑
x∈Dl

πl(x)xx
�

5: Let Tl(x) = 
hlπl(x)� for each x ∈ supp(πl) and
Tl =

∑
x∈supp(πl)

Tl(x)

6: Play each action x ∈ supp(πl) exactly Tl(x) times if
not reaching T

7: Randomly select 
2αl� participating clients Ul

#Operations at each client
8: for each client u ∈ Ul do

9: for each action x ∈ supp(πl) do

10: Compute average local reward over Tl(x) rounds:
yul (x) =

1
Tl(x)

∑
t∈Tl(x)(〈θu, x〉+ ηu,t)

11: end for

12: Let �yul = (yul (x))x∈supp(πl)

# Apply thePRIVATIZER P = (R,S,A)
# The local randomizer R at each client:

13: Run the local randomizer R and send the output
R(�yul ) to S

14: end for

# Computation S at a trusted third party:
15: Run the computation function S and send the output

S({R(�yul )}u∈Ul
) to the analyzer A

# The analyzer A at the server:
16: Generate the privately aggregated statistics:

ỹl = A(S({R(�yul )}u∈Ul
))

17: Compute the following quantities:
⎧
⎨
⎩

Vl =
∑

x∈supp(πl)
Tl(x)xx

�

Gl =
∑

x∈supp(πl)
Tl(x)xỹl(x)

θ̃l = V −1
l Gl

18: Find low-rewarding actions with confidence width Wl:

El =

{
x ∈ Dl : max

b∈Dl

〈θ̃l, b− x〉 > 2Wl

}

19: Update: Dl+1 = Dl\El, hl+1 = 2hl, tl+1 = tl + Tl,
and l = l + 1

20: end while

g(πl) ≤ 2 dwith |supp(πl)| ≤ 4d log log d+ 16 (Line 4), which
follows from [19, Proposition 3.7]. The near-G-optimal design
reduces the complexity to O(kd2) while keeping the same order
of regret.

Clients sampling and private feedback aggregation (Lines 7–

16): The central server randomly samples a subset Ul of 
2αl�
users (called clients) from the population U to participate in the
global bandit learning (Line 7). Each sampled client u ∈ Ul col-
lects their local reward observations of each chosen action x ∈

supp(πl) by the server and computes the average yul (x) as feed-
back (Line 10). Then, these feedback �yul � (yul (x))x∈supp(πl) ∈
R

|supp(πl)| are processed by a PRIVATIZER P to ensure differential
privacy. Recall that a PRIVATIZER P = (R,S,A) is a process
completed by the clients, the server, and/or a trusted third party.
In particular, according to the privacy requirement under differ-
ent DP models, the PRIVATIZER P enjoys flexible instantiations
(see detailed discussions in Section IV). Generally, a PRIVATIZER

works in the following manner: each clientu runs the randomizer
R on its local average reward �yul (over Tl pulls) and then
sends the resulting (potentially private) messages R(�yul ) to S
(Line 13). The computation function inS operates on these mes-
sages and then sends results S({R(�yul )}u∈Ul

) to the analyzer A
at the central server (Line 15). Finally, the analyzerA aggregates
received messages (potentially in a privacy-preserving manner)
and outputs a private averaged local reward ỹl(x) (over clients
Ul) for each action x ∈ supp(πl) (Line 16). We provide the
rigorous formulation of different DP models for PRIVATIZERP in
Section IV, with corresponding detailed instantiations of R,S ,
and A.

Parameter estimation and action elimination (Lines 17–19):

Using privately aggregated feedback ỹl, the central server com-
putes the least-square estimator θ̃l (Line 17). Action elimination
is based on the following confidence width:

Wl �

⎛
⎜⎜⎜⎝

√
2 d

|Ul|hl
︸ ︷︷ ︸
action-related

+
σ√
|Ul|︸ ︷︷ ︸

client-related

+ σn︸︷︷︸
privacy noise

⎞
⎟⎟⎟⎠

√
2 log

(
1

β

)
,

(3)

where σ is the standard variance associated with client sam-
pling, σn is related to the privacy noise determined by the DP
model, and β is the confidence level. We choose this confidence
width based on the concentration inequality for sub-Gaussian
variables. Specifically, the three terms in (3) capture the action-
related uncertainty, client-related uncertainty, and the added
noise for privacy guarantees, respectively. Using this confidence
width Wl and the estimated global model parameter θ̃l, we can
identify a subset of suboptimal actions El with high probability
(Line 18). At the end of the l-th phase, we update the set of
active actions Dl+1 by eliminating El from Dl and double hl

(Line 19).
Finally, we make two remarks about DP-DPE.
Remark 3.1: While a finite number of actions is assumed in

this paper, one could extend it to the case with an infinite number
of actions by using the covering argument [3, Lemma 20.1].
Specifically, when the action set D ⊆ R

d is infinite, we can
replace D with a finite set Dε0 ⊆ R

d with |Dε0 | ≤ (3/ε0)
d such

that for allx ∈ D, there exists anx′ ∈ Dε0 with ‖x− x′‖2 ≤ ε0.
Remark 3.2: In Algorithm 1, we assume that Dl spans R

d

such that matrices V (πl) and Vl are invertible. Then, one could
find the near optimal design πl(·) (Line 4) and compute the
least-square estimator θ̃l (Line 17). When Dl does not span R

d,
one can simply work in the smaller space span(Dl) [19].
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IV. DP-DPE UNDER DIFFERENT DP MODELS

In this section, we formalize DP models integrated with our
DP-DLB formulation and provide concrete instantiations for the
PRIVATIZER in DP-DPE according to three representative DP
trust models: the central, local, and shuffle models.

A. DP-DPE Under the Central DP Model

In the central DP model, we assume that each client trusts
the server, and hence, the server can collect clients’ raw data
(i.e., the local reward �yul in our case). The privacy guarantee is
that any adversary with arbitrary auxiliary information cannot
infer a particular client’s data by observing the output of the
server. To achieve this, the central DP model requires that the
outputs of the server on two neighboring datasets differing in
only one client are indistinguishable [15]. Before presenting the
formal definition in our case, recall that DP-DPE (Algorithm 1)
runs in phases, and that in each phase l, a set of new clients
Ul participate in the global bandit learning by providing their
feedback. Let6 UT � (Ul)

L
l=1 ∈ U∗ be the sequence of all the

participating clients in the total L phases (T rounds). We use
M(UT ) = (x1, . . . , xT ) ∈ DT to denote the sequence of ac-
tions chosen in T rounds by the central server. Intuitively, we
are interested in a randomized algorithm such that the output
M(UT )does not reveal “much” information about any particular
client u ∈ UT . Formally, we have the following definition.

Definition 4.1. (Differential Privacy (DP)): For any ε ≥ 0 and
δ ∈ [0, 1], a DP-DPE instantiation is (ε, δ)-differentially private
(or (ε, δ)-DP) if for every UT ,U ′

T ⊆ U differing on a single
client and for any subset of actions Z ⊆ DT ,

P[M(UT ) ∈ Z] ≤ eεP[M(U ′
T ) ∈ Z] + δ. (4)

According to the post-processing property of DP (cf. Proposi-
tion 2.1 in [22]) and parallel-composition (thanks to the unique-
ness of client sampling), it suffices to guarantee that the final
analyzer A in P is (ε, δ)-DP. That is, for any phase l, the
PRIVATIZER P is (ε, δ)-DP if the following is satisfied for any
pair of Ul, U

′
l ⊆ U that differ by at most one client and for any

output ỹ of A:

P[A({�yul }u∈Ul
) = ỹ] ≤ eε · P[A({�yul }u∈U ′

l
) = ỹ] + δ.

To achieve this, we utilize the standard Gaussian mechanism
at the server side to guarantee (ε, δ)-DP. Specifically, in each
phase l, the participating clients send their average local rewards
{�yul }u∈Ul

directly to the central server, and the central server
adds Gaussian noise to the average local feedback (over clients)
before estimating the global parameter. That is, in the central DP
model, both R and S of the PRIVATIZER P are identity mapping
while A adds Gaussian noise when computing the average. In
this case, P = A, and the private aggregated feedback for the
chosen actions in the l-th phase can be represented as

ỹl = P ({�yul }u∈Ul
) = A ({�yul }u∈Ul

)

=
1

|Ul|
∑

u∈Ul

�yul + (γ1, . . . , γsl), (5)

6We use the superscript ∗ to indicate that the length could be varying.

where sl � |supp(πl)|, γj i.i.d.∼ N (0, σ2
nc), and the variance σ2

nc

is based on the �2 sensitivity of the average 1
|Ul|

∑
u∈Ul

�yul .
In the rest of the paper, we will continue to use sl instead of
|supp(πl)| to denote the number of actions chosen in the l-th
phase for notational simplicity. With the above definition, we
present the privacy guarantee of DP-DPE in the central DP model
in Theorem 4.1.

Theorem 4.2: The DP-DPE instantiation using the PRIVA-

TIZER in (5) with σnc =
2B

√
2sl ln(1.25/δ)

ε|Ul| guarantees (ε, δ)-DP.
The relatively high trust model in the central DP is not always

feasible in practice since some clients do not trust the server and
are not willing to share any of their sensitive data. This motivates
the introduction of a strictly stronger notion of privacy protection
called the local DP [16], which is the main focus of the next
subsection.

B. DP-DPE Under the Local DP Model

In the local DP model, any data sent by any client must already
be private. In other words, even though an adversary can observe
the data sent from a client to the server, the adversary cannot infer
any sensitive information about the client. Mathematically, this
requires a local randomizer R at each user’s side to generate
approximately indistinguishable outputs on any two different
data inputs. In particular, let Yu be the set of all possible values
of the average local reward �yul for client u. Then, we have the
following formal definition.

Definition 4.3. (Local Differential Privacy (LDP)): For any
ε ≥ 0 and δ ∈ [0, 1], a DP-DPE instantiation is (ε, δ)-local dif-
ferentially private (or (ε, δ)-LDP) if for any client u, every two
datasets �y, �y′ ∈ Yu satisfies

P[R(�y) = o] ≤ eεP[R(�y′) = o] + δ, (6)

for every possible output o ∈ {R(�y)|�y ∈ Yu}.
That is, an instantiation of DP-DPE is (ε, δ)-LDP if the local

randomizer R in P is (ε, δ)-DP. To this end, the randomizer R
at each client employs a Gaussian mechanism, the shuffler S
is a simple identity mapping, and the analyzer A at the server
side conducts a simple averaging. Then, the overall output of the
PRIVATIZER is the following:

ỹl =
1

|Ul|
∑

u∈Ul

R(�yul ) =
1

|Ul|
∑

u∈Ul

(�yul + (γu,1, . . . , γu,sl)) ,

(7)

where γu,j
i.i.d.∼ N (0, σ2

nl), and the variance σ2
nl is based on

the sensitivity of �yul . With the above definition, we present
the privacy guarantee of DP-DPE in the local DP model in
Theorem 4.2.

Theorem 4.4: The DP-DPE instantiation using the PRIVA-

TIZER in (7) withσnl =
2B

√
2sl ln(1.25/δ)

ε guarantees (ε, δ)-LDP.
Although the local DP model offers a stronger privacy guaran-

tee compared to the central DP model, it often comes at a price of
the regret performance. As we will see, the regret performance
of DP-DPE under the local DP model is much worse than that
under the central DP model. Therefore, a fundamental question
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is whether there is a PRIVATIZER for DP-DPE that can achieve
the same regret as in the central DP PRIVATIZER while assuming
similar trust model as in the local DP PRIVATIZER. This motivates
us to consider a recently proposed shuffle DP model [17], [23].

C. DP-DPE Under the Shuffle DP Model

In the shuffle DP model, between the clients and the server,
there exists a shuffler that permutes a batch of clients’ random-
ized data before they are observed by the server so that the
server cannot distinguish between two clients’ data. Thus, an
additional layer of randomness is introduced via shuffling, which
can often be easily implemented using cryptographic primitives
(e.g., mixnets) due to its simple operation [24]. Due to this, the
clients now tend to trust the shuffler but still do not trust the
central server as in the local DP model. This new trust model
offers a possibility to achieve a better regret-privacy tradeoff.
This is because the additional randomness of the shuffler creates
a privacy blanket so that by adding much less random noise, each
client can now hide her information in the crowd, i.e., privacy
amplification by shuffling [25].

Formally, a standard one-round shuffle protocol consists of
all the three parts: a (local) randomizer R, a shuffler S , and
an analyzer A. In this protocol, the clients trust the shuffler
but not the analyzer. Hence, the privacy objective is to ensure
that the outputs of the shuffler on two neighboring datasets are
indistinguishable from the analyzer’s point of view. Note that
each client still does not send her raw data to the shuffler even
though she trusts it. Due to this, a shuffle protocol often also
offers a certain level of LDP guarantee.

In our case, the online learning procedure will proceed
in multiple phases rather than a simple one-round computa-
tion. Thus, we need to guarantee that all the shuffled outputs
are indistinguishable. To this end, we define the (composite)
mechanism Ms(UT ) � ((S ◦ R)(U1), (S ◦ R)(U2), . . . , (S ◦
R)(UL)), where (S ◦ R)(Ul) � S({R(�yul )}u∈Ul

). We say a
DP-DPE instantiation satisfies the shuffle differential privacy
(SDP) if the composite mechanism Ms is DP, which leads to
the following formal definition.

Definition 4.5. (Shuffle Differential Privacy (SDP)): For any
ε ≥ 0 and δ ∈ [0, 1], a DP-DPE instantiation is (ε, δ)-shuffle
differential privacy (or (ε, δ)-SDP) if for any pair UT and U ′

T

that differ by one client, the following is satisfied for all Z ⊆
Range(Ms):

P[Ms(UT ) ∈ Z] ≤ eεP[Ms(U ′
T ) ∈ Z] + δ. (8)

Then, for any phase l, the PRIVATIZER P is (ε, δ)-SDP if the
following is satisfied for any pair of Ul, U ′

l ⊆ U that differ by
one client and for any possible output z of S ◦ R:

P[(S ◦ R)(Ul) = z] ≤ eε · P[(S ◦ R)(U ′
l) = z] + δ.

We present the concrete pseudocode of R, S , and A for
the shuffle DP model PRIVATIZER P in Algorithm 2 (see Ap-
pendix A), which builds on the vector summation protocol
recently proposed in [26]. Here, we provide a brief description
of the process. Essentially, the noise added in the shuffle model
PRIVATIZER relies on the upper bound of �2 norm of the input

vectors. However, each component operates on each coordinate
of the input vectors independently. Recall that the input of the
shuffle model PRIVATIZER is {�yul }u∈Ul

and that each chosen
action x corresponds to a coordinate in the sl-dimentional
vector. Consider the coordinate jx corresponding to action x,
and the entry yul (x) at client u. First, the local randomizer R
encodes the input yul (x) via a fixed-point encoding scheme [17]
and ensures privacy by injecting binomial noise. Specifically,
given any scalar w ∈ [0, 1], it is first encoded as ŵ = w̄ + γ1
using an accuracy parameter g ∈ N, where w̄ = �wg� and γ1 ∼
Ber(wg − w̄) is a Bernoulli random variable. Then, a binomial
noise γ2 ∼ Bin(b, p) is generated, where b ∈ N and p ∈ (0, 1)
controls the level of the privacy noise. The output of the local
randomizer for each coordinate is simply a collection of g + b
bits, where ŵ + γ2 bits are 1’s and the rest are 0’s. Combining
these g + b bits for each coordinate jx for x ∈ supp(πl) yields
the final outputs of the local randomizerR for the vector�yul . Note
that the output bits for each coordinate are marked with the co-
ordinate index so that they will not be mixed up in the following
procedures. After receiving the bits from all participating clients,
the shuffler S simply permutes these bits uniformly at random
and sends the output to the analyzer A at the central server.
The analyzer A adds the received bits, removes the bias intro-
duced by encoding and binomial noise (through simple shifting
operations), and divides the result by |Ul| for each coordinate.
Finally, the analyzer A outputs a random sl-dimensional vector
ỹl, whose expectation is the average of the input vectors. That is,
E[ỹl] =

1
|Ul|

∑
u∈Ul

�yul (which is proven in our Appendix A.3).
In the shuffle model PRIVATIZER, the three parameters g, b, and p
need to be properly chosen according to the privacy requirement.
Then, the final privately aggregated data is the following:

ỹl = P ({�yul }u∈Ul
) = A(S({R(�yul )}u∈Ul

)). (9)

With the above definition, we present the privacy guarantee of
DP-DPE in the shuffle DP model in Theorem 4.3.

Theorem 4.6: For any ε ∈ (0, 15) and δ ∈ (0, 1/2), the DP-
DPE instantiation using the PRIVATIZER specified in Algorithm 2
guarantees (ε, δ)-SDP.

V. MAIN RESULTS

In this section, we study the performance of DP-DPE under
different DP models in terms of regret and communication cost.
We start with the non-private DP-DPE algorithm (called DPE,
with ỹl =

1
|Ul|

∑
u∈Ul

�yul and σn = 0 for all l) and present the
main result in Theorem 5.1.

Theorem 5.1 (DPE): Let β = 1/(kT ) and σn = 0 in
Algorithm 1. Then, the non-private DP-DPE algorithm achieves
the following expected regret:

E[R(T )] = O(
√

dT log(kT )) +O
(
σT 1−α/2

√
log(kT )

)
,

(10)

with a communication cost of O(dTα).
We present a proof sketch below and provide detailed proof

in Appendix B.1.
Proof: We begin by showing a concentration inequality

P{〈θ̃l − θ∗, x〉 ≥ Wl} ≤ 2β, which indicates that in the l-th
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phase, the estimation error for the global reward of each action
is bounded by Wl w.h.p. Then, the optimal action stays in the
active set the whole time w.h.p., and the regret incurred by one
pull is bounded by 4Wl−1 in the l-th phase. Finally, summing
up the regret over rounds in all phases yields the regret upper
bound. The analysis of the communication cost is quite straight-
forward. In the l-th phase, only the local average reward of each
chosen action in this phase is communicated, whose amount is
bounded by (4d log log d+ 16) according to the near-G-optimal
design [19, Proposition 3.7]. Hence, the communication cost is
proportional to the total number of clients involved in the entire
learning process. �

Remark 5.2: Theorem 5.1 gives a problem-independent re-
gret upper bound for DPE. We can observe an obvious tradeoff
between regret and communication cost, captured by α. While
a larger α leads to a smaller regret, it incurs a larger communi-
cation cost. Setting α = 2/3 gives O(T 2/3) for both regret and
communication cost.

Remark 5.3 ((Sub-)optimality): Note that one natural lower
bound for our setting is Ω(

√
dT ), the one for the standard linear

bandits with finite arms [3], where there is no client-related
uncertainty (i.e., σ = 0). In this setting, the upper bound derived
in (10) matches the existing lower bound up to a logarithmic
term. As to the general case with σ > 0, we can still see the
(near)-optimality of our upper bound for the case with user-
sampling parameter α > 1. When sampling fewer users with
α ∈ (0, 1), the second term of the regret upper bound in (10) that
relies on α becomes dominant and cannot be ignored. However,
the aforementioned lower bound Ω(

√
dT ) is derived under the

standard linear bandit setting, which is irrelevant to the user
sampling parameter α. Therefore, we leave it as our future work
to close this gap between this natural lower bound and the derived
(α-dependent) upper bound in (10).

In Theorem 5.2, we present the performance of DP-DPE under
different DP models in terms of regret, communication cost, and
privacy guarantee. Let S � 4d log log d+ 16.

Theorem 5.2: Let β = 1/(kT ). DP-DPE under different DP
models with the following parameters achieves the correspond-
ing results in Table I:

(i) CDP-DPE: Set σnc = O(
B
√

d ln(1/δ)

ε|Ul| ) in (5) for each

phase l and σn = 2σnc

√
Sd in (3);

(ii) LDP-DPE: Set σnl = O(
B
√

d ln(1/δ)

ε ) in (7) for each
phase l and σn = 2σnl

√
Sd/|Ul| in (3);

(iii) SDP-DPE: Set σns = O(B
√
d ln(d/δ)
ε|Ul| ) in (9) for each

phase l and σn = 2σns

√
Sd in (3).

We provide the detailed proofs in Appendix B.2 and make the
following remarks.

Remark 5.5 (Privacy “for-free”): Comparing the above re-
sults with Theorem 5.1 for the non-private case, we observe
that the DP-DPE algorithm enables us to achieve privacy guar-
antees “for free” in the central and shuffle DP models, in the
sense that the additional regret due to privacy protection is
only a lower-order additive term. Essentially, this is because
the uncertainty introduced by privacy noise is dominated by
the client-related uncertainty, which can be captured by our

carefully designed confidence width Wl in (3) and our choice of
σn for different PRIVATIZERs. See more discussions on achieving
privacy “for-free” in Section VII-A.

Remark 5.6 (Regret-privacy tradeoff): Consider the regret
due to privacy protection by comparing the regret performance
column in Table I of all the DP-DPE algorithms. We can see
an additional term in regret performance associated with each
DP-DPE algorithm. Specifically, while the local DP model
ensures a stronger privacy guarantee compared to the central
DP model, it introduces an additional regret of Õ(T 1−α/2)
compared to Õ(T 1−α) in the central DP model. The shuffle DP
model, however, leads to a much better tradeoff between regret
and privacy, achieving nearly the same regret guarantee as the
central DP model, yet assuming a similar trust model to the local
DP model (i.e., without a trustworthy central server).

Remark 5.7 (Communication cost): Both CDP-DPE and
LDP-DPE consume the same amount of communication re-
sources as DPE, measured by the number of real numbers [14].
In contrast, SDP-DPE relies only on binary feedback from
the clients, and thus, the communication cost is measured by
the number of bits. It is worth noting that sending messages
consisting of real numbers could be difficult in practice on finite
computers [27], [28], and hence in this case, it is desirable to use
SDP-DPE, which incurs a communication cost of O(dT 3α/2)
bits.

Remark 5.8 (Pure DP extension): While we use the Gaussian
mechanism to ensure approximate DP (i.e., (ε, δ)-DP), we claim
that our proposed scheme in this paper can be effectively inte-
grated with the Laplace mechanism, which ensures a pure DP
and achieves nearly the same regret performance. We provide
how to modify the algorithm and derive the theoretical results
for the Laplace mechanism in Appendix C.

VI. NUMERICAL RESULTS

In this section, we conduct simulations to evaluate DP-DPE.
The detailed setting of our simulations is as follows:d = 20, k =
103, σ = 0.1, |U| = 105, α = 0.8, and T = 106. We perform 20
independent runs for each set of simulations.

First, we study the regret performance of DP-DPE under
different DP models. Recall that we use CDP-DPE, LDP-DPE,
and SDP-DPE to denote DP-DPE in the central, local, and shuffle
DP models, respectively. In Fig. 2(a), we present the cumulative
regret at the end of T rounds for the three algorithms under
different values of privacy budget ε. We can observe an obvious
tradeoff between the privacy budget and the regret performance
for all the DP models: the cumulative regret decreases as the
privacy requirement becomes less stringent (i.e., a larger ε).
In addition, it also reflects the regret-privacy tradeoff across
different DP models. That is, with the same privacy budget
ε, while LDP-DPE has the largest regret yet without requiring
the clients to trust anyone else (neither the server nor a third
party), CDP-DPE achieves the smallest regret but relies on
the assumption that the clients trust the server. Interestingly,
SDP-DPE achieves a regret fairly close to that of CDP-DPE, yet
without the need to trust the server. This is well aligned with our
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Fig. 2. Performance evaluation of DP-DPE. The shaded area indicates the standard deviation. (a) Final cumulative regret vs. the privacy budget ε. (b) Per-round
regret vs. time with privacy parameters ε = 10 and δ = 0.1. (c) Comparison between two non-private algorithms. Here, we choose the number of clients in
DPE-FixedU to be U = 97 based on the calculation.

TABLE II
COMPARISON OF COMMUNICATION COST UNDER LINUCB AND PE WITH DIFFERENT VALUES OF α

theoretical results that SDP-DPE achieves a better regret-privacy
tradeoff.

In addition, we are also interested in the regret loss due to
privacy protection and how efficiently DP-DPE performs the
global bandit learning. Fix the privacy parameters ε = 10 and
δ = 0.1. In Fig. 2(b), we plot how the per-round regret of the
three algorithms (i.e., CDP-DPE, LDP-DPE, and SDP-DPE)
varies over time compared to the non-private DP-DPE algorithm
(i.e., DPE). We observe that LDP-DPE incurs the largest regret
while ensuring the strongest privacy guarantee (i.e., (ε, δ)-LDP).
On the other hand, the regret performance of CDP-DPE and
SDP-DPE is very close to that of DPE (that does not ensure any
privacy guarantee), under the assumption of a trusted central
server and a trusted third party shuffler, respectively. This ob-
servation, along with our theoretical results, shows that DP-DPE
can indeed achieve privacy “for-free” under the central and
shuffle models.

Regarding the communication efficiency of our proposed
algorithm, we also show that the exponentially-increasing client-
sampling plays a key role in balancing the regret and the com-
munication cost. To this end, we compare DPE with another
non-private algorithm, called DPE-FixedU in Fig. 2(c). DPE-
FixedU is similar to DPE but samples only a fixed number
U of participating clients in each phase (i.e., the participating
clients are different, but the number of clients in each phase
is fixed, in contrast to our increasing sampling schedule). For
a fair comparison, we choose the value of U such that the
communication cost is the same under DPE and DPE-FixedU,

i.e., U = 

∑L

l=1
|Ul|·Nl

∑L
l=1

Nl
�. The results show that DPE learns much

faster than DPE-FixedU while incurring the same communica-
tion cost.

Finally, as discussed in Section VII-B, we also compare DPE
with the the-state-of-the-art for standard linear bandit problem,

Fig. 3. LinUCB vs PE vs DPE with different values of α.

i.e. LinUCB and PE, and present the regret comparison in
Fig. 3 and communication and sample efficiency in Table II.
The results show that DPE can achieve a regret close to that of
(adapted) LinUCB and PE by adjusting sampling parameter α
while always consuming less communication cost and involving
fewer users.

VII. DISCUSSIONS

A. On Achieving Privacy “for Free”

Following the remark on privacy “for-free” (Remark 5.3), in
this section, we first study differentially private linear bandits
and then draw an interesting connection between bandit online
learning and supervised learning.

1) Differentially Private Linear Bandits: Motivated by the
cellular configuration problem, we consider the distributed lin-
ear bandits with partial feedback in the main content and propose
the DP-DPE algorithmic framework to address the newly in-
troduced challenges. However, we highlight that our developed
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techniques with minor modifications can also achieve similar re-
sults in terms of regret and privacy for the standard linear bandits,
where there is no client-related uncertainty (σ = 0), i.e., θu = θ∗

in our notations. That is, we can design differentially private
linear bandits where one can also achieve privacy “for free” in
the central and shuffle DP models (similar to Remarks 5.3).
This might be of independent interest to the bandit learning
community. We provide the detailed description of differentially
private linear bandits in Appendix D.

Remark 7.1: We can achieve the above “for-free” results
because the sensitive information in linear bandits are only
rewards, which is in sharp contrast to linear contextual bandits
where both contexts and rewards need to be protected. In this
case, the best known private regrets in the central, local and
shuffle model are Õ(

√
T√
ε
) [29], Õ(T

3/4√
ε
) [30], and Õ(T

3/5

ε2/5
) [31],

respectively.
2) Connection With Supervised Learning: In addition, we

draw an interesting connection of our novel bandit online learn-
ing problem to private (distributed) supervised learning prob-
lems, through which we provide more intuition on why DP-DPE
can achieve privacy “for free”. In particular, we compare our
problem with differentially private stochastic convex optimiza-
tion (DP-SCO) [9], where the goal is to approximately minimize
the population loss7 over convex and Lipschitz loss functions
given n i.i.d. d-dimensional samples from a population distri-
bution while protecting privacy under different trust models.
More specifically, via noisy stochastic gradient descent (SGD),
the excess losses8 in DP-SCO under various trust models are
roughly as follows:

Central & Shuffle Model [8], [25] : Õ

(
1√
n
+

√
d

nε

)
, (11)

Local Model [32] : Õ

(
1√
n
+

√
d√
nε

)
. (12)

Recall our main results in Table I and ignore all the logarithmic
terms for clarity. Now, one can easily see that in both problems,
privacy protection is achieved “for free” in the central and shuffle
models, in the sense that the second term (i.e., the additional
privacy-dependent term) is a lower-order term (with respect
to n or T ) compared to the first term (see (11) and Table I).
On the other hand, under the much stronger local model, in
both problems, the additional privacy-dependent term is of the
same order as the first term. We tend to believe that the above
interesting connection is not a coincidence. Rather, it provides us
with a sharp insight into our introduced DP-DLB formulation. In
particular, we know that the first term 1/

√
n in DP-SCO comes

from standard concentration results, i.e., how independent sam-
ples approximate the true population parameter. Similarly, in our
problem, the first term

√
dT 1−α/2 comes from the concentration

due to client sampling, which is used to approximate the true

7The population loss for a solution w is given by L(w) � Ez∈D[l(w, z)],
where w is the chosen solution (e.g., weights of a classifier), z is a testing
sample from the population distribution D, and l is a convex loss function of w.

8The excess loss measures the gap between the chosen solution and the optimal
solution in terms of the population loss. See [32].

unknown population parameter θ∗. On the other hand, the second
term in DP-SCO is privacy-dependent and comes from the
average of noisy gradients. Similarly, in our problem, the second
term is due to the average of the local reward vectors with added
noise for preserving privacy.

In addition to these useful insights, we believe that this inter-
esting connection also opens the door to a series of important
future research directions, in which one can leverage recent
advances in DP-SCO to improve our main results (dependence
on d, communication efficiency, etc.).

B. Comparison With The-State-of-The-Art

Some perceptive readers might think reducing the model to
a problem where each user u can observe i.i.d. rewards with
mean 〈θ∗, x〉 by treating 〈θu − θ∗, x〉 as an additional noise to
ηt. In this case, we may solve our problem with the existing
solutions to the traditional linear bandits. However, they exhibit
the following significant limitations.

Note that the uncertainty introduced by the additional noise
has to be addressed by sampling enough clients, e.g., one client
per round. Considering DP, this problem essentially reduces
to the differential private linear bandit (also discussed in our
Section VII-A1) with a larger noise variance, where the same
results in terms of regret (order-wise) and privacy can be
achieved. However, one new user is sampled in each round
to collect reward observation, which requires exactly T users
in total to obtain the desired regret while ensuring the privacy
guarantee. Instead, the DP-DPE framework in this work provides
an approach where it collects feedback from multiple clients
for the selected action in each round while each client serves
for multiple rounds to maintain (or improve) sample efficiency.
Specifically, it samples 
2αl� clients for 2l plays (rounds in the
l-th phase), which is O(Tα) users in total. In addition, by only
collecting feedback after preprocessing reward observations at
the end of each phase, this carefully designed DP-DPE algorith-
mic framework reduces the communication cost from exactly T
to O(dTα). We have to mention that choosing α < 1, however,
will incur a larger privacy cost (see Table I). Therefore, there
is a tradeoff between the regret penalty due to privacy and the
communication and sampling efficiency, which can be balanced
by tuning α properly. Meanwhile, we run simulations of the
non-private algorithms: DPE, LinUCB in [5], and PE in [3],
and present the results in Fig. 3 and Table II. The results show
that DPE can achieve similar regret performance (by adjusting
parameterα) to LinUCB and PE while improving user-sampling
efficiency and communication efficiency significantly for each
α ∈ (0, 1).

C. Extensions to Non-Linear Bandits

In this work, we study the problem of global reward max-
imization with distribution feedback in the stochastic linear
bandit model where direct reward observations are not available.
Note that the same challenge (i.e., no direct /partial reward
feedback) could also exist in other general bandit models, e.g.,
generalized linear bandits and kernelized bandits. We believe our
algorithmic framework incorporating different DP models can
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be extended through careful accommodation for the parametric
generalized linear bandits. Specifically, one may refer to [34] to
update the estimator of θ̃l and the confidence width Wl for the
upper/lower confidence bound (UCB/LCB) of each active arm
used in the elimination rule in any particular phase l. However,
our algorithmic framework may not be extended directly to the
non-parametric kernelized bandits. We study the new challenges
and present the solutions in our recent paper [8].

VIII. RELATED WORK

Bandit models and their variants have proven to be useful
for many real-world applications and have been extensively
studied (see, e.g., [3], [18], [35] and references therein). This
paper, different from most existing studies with exact reward
feedback available, considers a new linear bandit setting where
the agent has to learn with partial distributed feedback. While
this setting shares some similarities with distributed bandits,
federated bandits, and multi-agent cooperative bandits, our mo-
tivation and model are very different from theirs, which leads
to different regret definitions (global regret vs. group regret;
see Section II) and algorithmic solutions. In the following, we
discuss the most relevant work in the literature and highlight the
key differences.

Linear bandits: Different from the standard stochastic multi-
armed bandits (MAB) model with independent arms, the linear
bandit model captures the correlation among actions via an
unknown parameter [4], [36], [37]. The best-known regret upper
bound for stochastic linear bandits is O(d

√
T log(T )) in [4],

which holds for an almost arbitrary, even infinite, bounded
subset of a finite-dimensional vector space. For a special setting
where the set of actions is finite and does not change over time,
it is shown in [3] that a phased elimination with G-optimal

exploration algorithm guarantees a regret upper bounded by
O(

√
dT log(kT )). This new bound is better by a factor of

√
d,

which deserves the effort when d ≥ log(k). However, none of
these studies consider the scenario where an action influences a
large population and the exact reward feedback is unavailable,
which is a key challenge in our problem. Note that the linear
bandits model we consider is different from the contextual linear
bandits in [5], [38] where the parameter is not shared by actions
(although assuming linear reward function), and thus, the actions
are not correlated through the parameter.

Differentially private online learning and bandits: Since pro-
posed in [15], differential privacy (DP) has become the de facto

privacy preserving model in many applications, including online
learning [39] and bandits problems [40]. Specifically, in [41],
[42], [43], MAB has been studied in the central, local, and shuffle
DP models, respectively. We refer interested readers to [44] for
state-of-the-art results on private MABs under all three models.
In [29], the authors explore DP in contextual linear bandits and
introduce joint DP as ensuring the standard DP incurs a linear
regret. As stronger privacy protection, local DP is also studied for
contextual linear bandits [30] and Bayesian optimization [45].
Very recently, shuffle model for linear contextual bandits have
been studied in [31]. As already highlighted in Remark 7.1, the
additional protection of context information leads to a higher

cost of privacy compared to linear bandits considered in our pa-
per, where only rewards are private information. One concurrent
work [46] with our conference paper study the standard linear
bandits in all the three DP models as ours while ensuring pure
DP. However, different from the unified algorithmic framework
in this paper, their algorithms in different DP models are inde-
pendently designed, and their shuffle model requires the shuffler
to do more than shuffling.

Distributed bandits: Another line of related work is on
multi-agent collaborative learning in the distributed bandits
setting [14], [47], [48], [49], [50], [51]. The most relevant work
to ours is the distributed linear bandit problem studied in [14].
Similarly, they design a distributed phased elimination algorithm
where a central server aggregates data provided by the local
clients and iteratively eliminates suboptimal actions. However,
there are two key differences: i) they consider the standard
group regret minimization problem with homogeneous clients
that have the same unknown parameter; ii) the clients send the
rewards to the central server without any data privacy protection.

Federated bandits: Federated learning (FL) has received
substantial attention since its introduction in [52]. The main
idea of FL is to enable collaborative learning among hetero-
geneous devices while preserving data privacy. Very recently,
bandit problems have also been studied in the federated set-
ting, where the underlying problem is a bandit one, including
federated multi-armed bandits [53], [54], [55], federated linear

bandits [56], [57], and federated Bayesian optimization [58],
[59]. Among all the above work, the two most relevant studies
are [57] and [56]. While they both consider the case where all
heterogeneous users share the same unknown parameter with
heterogeneous decision sets, in our problem setting, the users
have heterogeneous unknown local parameters.

In addition to the differences in model and problem for-
mulation, we also highlight our main technical contributions
compared to these works in the following. First, when aggre-
gating users’ data for learning the global parameter, we protect
users’ data privacy using rigorous differential privacy guaran-
tees, which, however, is not considered in [14] or [57]. Besides,
the work [57] did not consider the correlation among the actions,
which is captured by a common linear parameter in our setting.
However, they consider a linear reward for contextual bandits
while still studying multi-armed bandits with independent ac-
tions, each of which is associated with a distinct parameter
vector. While DP is also employed to protect users’ data privacy
in [56],9 they require that both the Gram matrix of actions (of
size O(d2)) and reward vectors (of size O(d)) be periodically
communicated using some DP mechanisms (e.g., the Gaussian
mechanism). Instead, in our algorithm, only private average
local reward for the chosen actions (of size O(d log log d))
would be communicated in each phase. Moreover, while they
only consider a variant of the central DP model, our DP-DPE
solution provides a unified algorithmic learning framework,
which can be instantiated with different DP models. Specifically,
DP-DPE with the shuffle model enables us to achieve a finer

9As shown in a recent work [60], both the privacy guarantee and regret bounds
in [56] have gaps.
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regret-communication-privacy tradeoff (see Table I). That is,
not only can it achieve nearly the same regret performance as
the central model (yet without trusting the central server), but it
requires the users to report feedback in bits only throughout the
learning process.

Recently, we also extended our setup to the non-linear case
by considering kernelized bandits [8].

Despite the above work regarding federated bandits, one may
wonder whether we can follow the idea of federated learning
to share clients’ locally learned model parameters only. This
way, one can avoid sharing raw data, which is another way
of protecting clients’ data privacy. However, we argue that the
additional benefit is marginal. On the one hand, by employing
different DP mechanisms, our proposed DP-DPE algorithms
already ensure provable privacy guarantees. On the other hand,
the communication cost of transmitting the (private) average
rewards is nearly the same as that of transmitting the local model
parameters. Specifically, in each phase, a client in our DP-DPE
algorithm needs to send a |supp(πl)|-dimensional vector in
DP-DPE, compared to a d-dimensional vector when sending the
local model parameters. Therefore, the difference is marginal
since we have |supp(πl)| ≤ 4d log log d+ 16.

Reinforcement learning: Note that reinforcement learning
(RL) [61] is a generalization of bandits with a distinct new
feature – the agent’s actions not only yield immediate rewards
but also influence the environment’s future state(s). In other
words, bandits is a special and simple case of RL where the
horizon length of each episode is one, and hence, the action will
not impact the state for the next step as the episode just restarts.
In this sense, our study in bandits (dealing with a stateless envi-
ronment) could shed light on distributed RL, including efficient
communication design and differentially private algorithmic
framework design, which might be of independent interest to
the RL community.

IX. CONCLUSION

In this article, we studied a new bandit learning problem
where it is often difficult, if not impossible, to collect exact
reward feedback. To address it, we proposed a differentially
private distributed linear bandits formulation, where the learning
agent samples clients and interacts with them by iteratively
aggregating distributed feedback in a privacy-preserving fash-
ion. We then developed a unified algorithmic learning frame-
work, called DP-DPE, which can be naturally integrated with
different DP models, and systematically established the regret-
communication-privacy tradeoff.

In this work, we assumed that actions are correlated through
a common linear function with parameter θ∗. One interesting
direction for future work is to extend linear functions to general
(possibly non-convex) functions via kernelized bandits. More-
over, our current privacy guarantee under the shuffle model is
only approximated DP. One promising future direction is to
explore pure DP in the shuffle model by building upon the
recent advance in MAB [44]. Finally, our work also raises several
interesting questions that are worth investigating. For example,
can we further improve communication efficiency by using

advanced shuffle protocols? Can we generalize our formulation
to studying reinforcement learning problems?

REFERENCES

[1] F. Li, X. Zhou, and B. Ji, “Differentially private linear bandits with partial
distributed feedback,” in Proc. IEEE 20th Int. Symp. Model. Optim. Mobile

Ad hoc Wireless Netw., 2022, pp. 41–48.
[2] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation

rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, 1985.
[3] T. Lattimore and C. Szepesvári, Bandit Algorithms.Cambridge, U.K.:

Cambridge Univ. Press, 2020.
[4] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for

linear stochastic bandits,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2011, pp. 2312–2320.

[5] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. 19th Int.

Conf. World Wide Web, 2010, pp. 661–670.
[6] A. Mahimkar, A. Sivakumar, Z. Ge, S. Pathak, and K. Biswas, “Auric:

Using data-driven recommendation to automatically generate cellular
configuration,” in Proc. Proc. ACM SIGCOMM Conf., 2021, pp. 807–820.

[7] D. Bouneffouf and I. Rish, “A survey on practical applications of multi-
armed and contextual bandits,” IEEE Congr. Evol. Comput., 2020, pp. 1–8.

[8] F. Li, X. Zhou, and B. Ji, “(Private) kernelized bandits with distributed
biased feedback,” Proc. ACM Meas. Anal. Comput. Syst., vol. 7, no. 1,
pp. 1–47, Mar. 2023, doi: 10.1145/3579318.

[9] R. Bassily, V. Feldman, K. Talwar, and A. Thakurta, “Private stochastic
convex optimization with optimal rates,” Adv. Neural Inf. Process. Syst.,
vol. 32, 2019, pp. 11282–11291.

[10] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” in Proc. NIPS 2017 Workshop: Mach.

Learn Phone Consum. Devices, 2017.
[11] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh, “Shuffled

model of differential privacy in federated learning,” in Proc. Int. Conf.

Artif. Intell. Statist., 2021, pp. 2521–2529.
[12] N. Agarwal and K. Singh, “The price of differential privacy for online

learning,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 32–40.
[13] P. Bühlmann and S. Van De Geer, Statistics for High-Dimensional Data:

Methods, Theory and Applications.Berlin, Germany: Springer, 2011.
[14] Y. Wang, J. Hu, X. Chen, and L. Wang, “Distributed bandit learning:

Near-optimal regret with efficient communication,” in Proc. 18th Int. Conf.

Learn. Representations, 2020, pp. 1–31.
[15] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to

sensitivity in private data analysis,” in Proc. Theory cryptogr. Conf., 2006,
pp. 265–284.

[16] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A.
Smith, “What can we learn privately?,” SIAM J. Comput., vol. 40, no. 3,
pp. 793–826, 2011.

[17] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Distributed
differential privacy via shuffling,” in Proc. Annu. Int. Conf. Theory Appl.

Cryptographic Techn., 2019, pp. 375–403.
[18] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-

stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, pp. 1–122, 2012.

[19] T. Lattimore, C. Szepesvari, and G. Weisz, “Learning with good feature
representations in bandits and in RL with a generative model,” in Proc.

Int. Conf. Mach. Learn., 2020, pp. 5662–5670.
[20] F. Pukelsheim, Optimal Design of Experiments.Philadelphia, PA, USA:

SIAM, 2006.
[21] J. Kiefer and J. Wolfowitz, “The equivalence of two extremum problems,”

Can. J. Math., vol. 12, pp. 363–366, 1960.
[22] C. Dwork et al., “The algorithmic foundations of differential privacy,”

Found. Trends Theor. Comput. Sci., vol. 9, no. 3/4, pp. 211–407, 2014.
[23] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A.

Thakurta, “Amplification by shuffling: From local to central differential
privacy via anonymity,” in Proc. 30th Annu. ACM-SIAM Symp. Discrete

Algorithms, 2019, pp. 2468–2479.
[24] A. Bittau et al., “Prochlo: Strong privacy for analytics in the crowd,” in

Proc. 26th Symp. Operating Syst. Princ., 2017, pp. 441–459.
[25] E. Garcelon, K. Chaudhuri, V. Perchet, and M. Pirotta, “Privacy ampli-

fication via shuffling for linear contextual bandits,” in Proc. Int. Conf.

Algorithmic Learn. Theory2022, pp. 381–407.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 09,2024 at 01:52:43 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: DISTRIBUTED LINEAR BANDITS WITH DIFFERENTIAL PRIVACY 3173

[26] A. Cheu, M. Joseph, J. Mao, and B. Peng, “Shuffle private stochastic
convex optimization,” in Proc. 10th Int. Conf. Learn. Representations,
2022, pp. 1–28.

[27] C. L. Canonne, G. Kamath, and T. Steinke, “The discrete Gaussian
for differential privacy,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 15676–15688.

[28] P. Kairouz, Z. Liu, and T. Steinke, “The distributed discrete Gaussian
mechanism for federated learning with secure aggregation,” in Proc. Int.

Conf. Mach. Learn., 2021, pp. 5201–5212.
[29] R. Shariff and O. Sheffet, “Differentially private contextual linear bandits,”

Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 4296–4306.
[30] K. Zheng, T. Cai, W. Huang, Z. Li, and L. Wang, “Locally differentially

private (contextual) bandits learning,” in Proc. Adv. Neural Inf. Process.

Syst., 2020, pp. 12300–12310.
[31] S. R. Chowdhury and X. Zhou, “Shuffle private linear contextual bandits,”

in Proc. 39th Int. Conf. Mach. Learn., vol. 162, 2022, pp. 3984–4009.
[32] F. Li, X. Zhou, and B. Ji, “Differentially private linear bandits with partial

distributed feedback,” in Proc. IEEE 20th Int. Symp. Model. Optim. Mobile,

Ad hoc, Wireless Netw., 2022, pp. 41–48.
[33] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Minimax optimal

procedures for locally private estimation,” J. Amer. Stat. Assoc., vol. 113,
no. 521, pp. 182–201, 2018.

[34] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári, “Parametric bandits:
The generalized linear case,” in Proc. Adv. Neural Inf. Process. Syst., J.
Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds.,
vol. 23, 2010, pp. 586–594.

[35] A. Slivkins, “Introduction to multi-armed bandits,” Found. Trends Mach.

Learn., vol. 12, pp. 1–286, 2019.
[36] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochastic linear optimization

under bandit feedback,” in Proc. 21st Annu. Conf. Learn. Theory, 2008,
pp. 355–366.

[37] P. Rusmevichientong and J. N. Tsitsiklis, “Linearly parameterized ban-
dits,” Math. Operations Res., vol. 35, no. 2, pp. 395–411, 2010.

[38] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with
linear payoff functions,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011,
pp. 208–214.

[39] P. Jain, P. Kothari, and A. Thakurta, “Differentially private online learning,”
in Proc. Conf. Learn. Theory, vol. 23, 2012, pp. 24.1–24.34.

[40] N. Mishra and A. Thakurta, “(Nearly) optimal differentially private
stochastic multi-arm bandits,” in Proc. 31st Conf. Uncertainty Artif. Intell.,
2015, pp. 592–601.

[41] A. C. Tossou and C. Dimitrakakis, “Algorithms for differentially pri-
vate multi-armed bandits,” in Proc. 30th AAAI Conf. Artif. Intell., 2016,
pp. 2087–2093.

[42] W. Ren, X. Zhou, J. Liu, and N. B. Shroff, “Multi-armed bandits with local
differential privacy,” 2020, arXiv:2007.03121.

[43] J. Tenenbaum, H. Kaplan, Y. Mansour, and U. Stemmer, “Differentially
private multi-armed bandits in the shuffle model,” in Proc. Adv. Neural Inf.

Process. Syst., 2021, pp. 24956–24967.
[44] S. R. Chowdhury and X. Zhou, “Distributed differential privacy in multi-

armed bandits,” in Proc. 11th Int. Conf. Learn. Representations, 2023,
pp. 1–34.

[45] X. Zhou and J. Tan, “Local differential privacy for Bayesian optimization,”
in Proc. AAAI Conf. Artif. Intell., 2020, pp. 11152–11159.

[46] O. A. Hanna, A. M. Girgis, C. Fragouli, and S. Diggavi, “Differentially pri-
vate stochastic linear bandits: (almost) for free,” 2022, arXiv:2207.03445.

[47] M. Agarwal, V. Aggarwal, and K. Azizzadenesheli, “Multi-agent multi-
armed bandits with limited communication,” J. Mach. Learn. Res., vol. 23,
pp. 9529–9552, 2021.

[48] D. Martínez-Rubio, V. Kanade, and P. Rebeschini, “Decentralized cooper-
ative stochastic bandits,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 4529–4540.

[49] A. Dubey et al., “Cooperative multi-agent bandits with heavy tails,” in
Proc. Int. Conf. Mach. Learn., 2020, pp. 2730–2739.

[50] N. Cesa-Bianchi, C. Gentile, Y. Mansour, and A. Minora, “Delay and
cooperation in nonstochastic bandits,” in Proc. Conf. Learn. Theory, 2016,
pp. 605–622.

[51] A. Dubey et al., “Kernel methods for cooperative multi-agent contextual
bandits,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 2740–2750.

[52] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. conf. Artif. Intell. Statist., 2017, pp. 1273–1282.

[53] C. Shi and C. Shen, “Federated multi-armed bandits,” in Proc. 35th AAAI

Conf. Artif. Intell., 2021, pp. 9603–9610.

[54] C. Shi, C. Shen, and J. Yang, “Federated multi-armed bandits with person-
alization,” in Proc. Int. Conf. Artif. Intell. Statist., 2021, pp. 2917–2925.

[55] Z. Zhu, J. Zhu, J. Liu, and Y. Liu, “Federated bandit: A gossiping ap-
proach,” Proc. ACM Meas. Anal. Comput. Syst., vol. 5, no. 1, pp. 1–29,
2021.

[56] A. Dubey and A. Pentland, “Differentially-private federated linear ban-
dits,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 6003–6014.

[57] R. Huang, W. Wu, J. Yang, and C. Shen, “Federated linear contextual
bandits,” in Proc. 35th Conf. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 27057–27068.

[58] Z. Dai, K. H. Low, and P. Jaillet, “Federated Bayesian optimization
via thompson sampling,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 9687–9699.

[59] Z. Dai, B. K. H. Low, and P. Jaillet, “Differentially private federated
Bayesian optimization with distributed exploration,” in Proc. Adv. Neural

Inf. Process. Syst., 2021, pp. 9125–9139.
[60] X. Zhou and S. R. Chowdhury, “On differentially private federated linear

contextual bandits,” in Proc. 12th Int. Conf. Learn. Representations, 2024.
[61] A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun, “Reinforcement learning:

Theory and algorithms,” CS Dept., UW Seattle, Seattle, WA, USA, Tech.
Rep. 12, 2019.

Fengjiao Li (Member, IEEE) received the B.E. de-
gree in electronics and communications from the
Taiyuan University of Technology, Taiyuan, China,
in 2012, the M.E. degrees in electronics and com-
munications from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2015, and the
Ph.D. degree in computer science and applications
from Virginia Tech, Blacksburg, VA, USA, in 2022.
She is currently an Assistant Professor with Shanxi
University, Taiyuan. Her research interests include
online learning, networking, modeling, optimization,
and analysis.

Xingyu Zhou (Senior Member, IEEE) received the
B.E. degree (with Highest Hons.) in electrical en-
gineering from the Beijing University of Posts and
Communications, Beijing, China, in 2012, the M.E.
degree (with Highest Hons.) in electrical engineering
from Tsinghua University, Beijing, in 2015, and the
Ph.D. degree in Electronics and Communications En-
gineering from The Ohio State University, Columbus,
OH, USA, in 2020, with Presidential Fellowship.
He is currently an Assistant Professor of Electronics
and Communications Engineering with Wayne State

University, Detroit, MI, USA. His research interest include trustworthy data-
driven decision-making, with a focus on private, fair, and robust bandits and
reinforcement learning.

Bo Ji (Senior Member, IEEE) received the B.E. and
M.E. degrees in information science and electronic
engineering from Zhejiang University, Hangzhou,
China, in 2004 and 2006, respectively, and the Ph.D.
degree in electrical and computer engineering from
the Ohio State University, Columbus, OH, USA,
in 2012. He is currently an Associate Professor of
computer science and a College of Engineering Fac-
ulty Fellow with Virginia Tech, Blacksburg, VA,
USA. Before joining Virginia Tech, he was an As-
sociate/Assistant Professor with the Department of

Computer and Information Sciences, Temple University, Philadelphia, PA, USA,
from 2014 to 2020. From 2013 to 2014, he was also a Senior Member of the
Technical Staff with AT&T Labs, San Ramon, CA, USA. His research interests
include the intersections of networking, machine learning, security and privacy,
and spatial computing.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 09,2024 at 01:52:43 UTC from IEEE Xplore.  Restrictions apply. 


