20

21

22

23

20

21

22

23

24

Link prediction using low-dimensional node
embeddings: the measurement problem

Nicolas Menand®' and C. Seshadhri®

*Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104. Most of this work was done when the author was at University of
California, Santa Cruz.; bDepartment of Computer Science, University of California, Santa Cruz, CA 95064

This manuscript was compiled on January 5, 2024

Graph representation learning is a fundamental technique for ma-
chine learning on complex networks. Given an input network, these
methods represent the vertices by low-dimensional real-valued vec-
tors. These vectors can be used for a multitude of downstream ma-
chine learning tasks. We study one of the most important such task,
link prediction. Much of the recent literature on graph representation
learning has shown remarkable success in link prediction. On closer
investigation, we observe that the performance is measured by the
AUC (Area Under Curve), which suffers biases. Since the ground
truth in link prediction is sparse, we design a new vertex-centric
measure of performance, called the VCMPR@k plots. Under this
measure, we show that link predictors using graph representations
show poor scores. Despite having extremely high AUC scores, the
predictors miss much of the ground truth. We discover a mathemati-
cal connection between this performance, the sparsity of the ground
truth, and the low-dimensional geometry of the node embeddings.
Under a formal theoretical framework, we prove that low-dimensional
vectors cannot capture sparse ground truth using dot product simi-
larities (the standard practice in the literature). Our results call into
question existing results on link prediction and pose a significant
scientific challenge for graph representation learning. The VCMPR
plots identify specific scientific challenges for link prediction using
low dimensional node embeddings.

Low Dimensional Embeddings | Link Prediction | Node Embeddings | Graph Represen-

tational Learning | Machine learning metrics | AUC

M easurement is central to any scientific endeavor. Informative
measurements are crucial to guide experiments and interpret
results. For machine learning (ML), measurements are central to
evaluating performance and discovering better techniques. These
measurements have a large impact in the deployment of real ML
systems. As such systems become a large part of modern society,
it becomes even more important to have sound measurements of
machine learning methods.

Our focus is on the important field of graph machine learning,
where ML is deployed on large complex networks. One of the recent
advances in machine learning uses graph representation learning or
low-dimensional node embeddings to tackle a large variety of tasks.
The input is a graph G on n vertices. These methods map each vertex
to a vector in R%, where d is typically much smaller than n. (So n may
be in millions or more, while d is typically 128.) These embeddings
are generated in an unsupervised or self-supervised manner. The
aim is to generate embeddings where geometric proximity (often
measured as dot product) maps to graph proximity. The design of
low-dimensional node embeddings is a popular and timely research
area. We point the reader to surveys (1, 2) and Chapter 23 in (3).

These embedding methods are evaluated by performing a down-
stream machine learning task, such as the classic link prediction
problem (4, 5). Recall the formulation (4, 5). We are given a graph
G = (V, E) as part of the training data. One should think of a dy-

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

namic process generating edges, and G is the current snapshot of
edges. Our aim is to predict the future edges amongst previously seen
nodes. The link predictor trains on the current snapshot G, and does
the following. Given a pair (4, j) of vertices, it predicts whether (¢, j)
will be an edge.

We discover a fundamental measurement problem. Most contem-
porary literature for link prediction using node embeddings measure
performance by the AUC (Area Under the Curve) metric (6—19). But
the AUC is a measure that is meaningful for dense signal and suffers
from imbalance biases (20, 21). We discover that when link prediction
performance is measured according to localized metrics, there is a
significant drop in quality. This is a major scientific problem. AUC in
link prediction is used to benchmark algorithms (11); used to evalu-
ate new techniques (12); conclude properties of ML algorithms (13).
At least eight of the cited papers were published in the past three
years (12-19), and two appear in extremely high profile scientific
venues (12, 19). It is of central importance to have measurements that
lead us to correct scientific conclusions.

Our paper investigates the connections between alternate vertex-
centric link prediction measures, the sparsity of ground truth, and
low-dimensional node embeddings.

Our results. We empirically demonstrate that the AUC metric for
link prediction by node embedding methods leads to incorrect conclu-
sions on the quality. We define new vertex-centric measures, which
clearly show poor performance on real-world datasets. These mea-
sures are used to construct VCMPR plots that quantitatively demon-
strate the low quality on link prediction. To explain these results,

Significance Statement

Link prediction is a fundamental machine learning task on
complex networks, used to evaluate the central technique of
low-dimensional embeddings. Our results question the com-
mon wisdom that low-dimensional embeddings perform well in
link prediction tasks. We show that this wisdom is based on
faulty measurements (based on AUC) used to evaluate link pre-
diction. We propose new vertex-centric local measures, under
which existing low-dimensional embedding methods are shown
to fail in link prediction. We discover a mathematical connec-
tion between this poor performance and the low-dimensional
geometry of the node embeddings. Under a formal theoretical
framework, we prove that low-dimensional vectors cannot cap-
ture sparse ground truth using dot product similarities (which is
the standard practice in the literature).

N. M. and C.S. performed research, designed the experiments, analyzed the results, and wrote the
paper.

The authors declare no competing interest.

1 To whom correspondence should be addressed. E-mail: nmenand@seas.upenn.edu

PNAS | January5,2024 | vol. XXX | no.XX | 1-19

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

52

53

54

55

56

57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78

79

80

81

82

83

84

85

Roc Curve

Distribution of VCMPR@10 scores

Distribution of VCMPR@50 scores

-
o
K
o

— o
P 0.8
S
—— node2vec
—— deepwalk
—— netmf
RandNE
—— Walklets
BooStNE

o b
o)

o
=

True Positive Rate
Percent of nodes

—— Role2Vec

— graphsage-lstm
graphsage-mean 0.2

—— graphsage-pool

— hpe

— 1.0
aa
—n
— node2vec 0.8
— deepwalk
—— netmf
RandNE
— Walklets
BoOStNE
—— Role2Vec
— graphsage-Istm

—
aa

—n

—— node2vec

— deepwalk

—— netmf
RandNE

— Walklets
BoOStNE

—— Role2vec

— graphsage-Istm

0.6

0.4

Percent of nodes

graphsage-mean
~—— graphsage-pool
e 0.2
— hoprec

graphsage-mean
—— graphsage-pool
— hpe

—— hoprec

— hoprec 00

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4
False Positive Rate

(a) ROC curve

MaxPR@10
(b) VCMPR@10

0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
MaxPR@50

(c) VCMPR@50

Fig. 1. We train a number of important node embedding methods for transductive link prediction on the blog-Catalog dataset (22). In the left figure, we plot the standard
ROC curves for each predictor. In the middle and right figures, we plot the distribution of VCMPR®@k values, for £ = 10, 50. Observe that ROC curves are typically high
leading to large AUC values. On the other hand, the VCMPR curves are quite low. This is indicative of both low precision and recall among the top predictions. The average

values are summarized in Tab. 1.

we design a theoretical framework formally showing that commonly
used link prediction algorithms from low-dimensional embeddings
are unlikely to get high local precision/recall values. Inspired by these
results, we pose a concrete challenge problem for low-dimensional
embeddings. We hope that our new measurements and challenge will
inspire further research on this important topic.

The VCMPR scores and empirical setup. We train a large number
of important node embedding methods on standard graph datasets (6—
10, 18, 23, 24). We set up a transductive link prediction experiment,
following the same setup as the above results. We are given a training
graph G = (V, Ey-). Based on this training data G, we design a
predictor for future edges, denoted y : V2 — [0, 1]. One can think
of the predictor as giving a score for each pair (¢, j), which measures
the likelihood that this pair will form an edge. The performance
of x is tested against another set Fi.s: of edges. In practice, the
edges Ey, and E}c,; are generated by randomly partitioning the edges
of an existing dataset. Note that Fy.s: is the ground truth for our
experiment.

We compute the standard ROC curve (Receiver-Operator Charac-
teristic) (25), as shown in Fig. 1a for Blog-Catalog dataset. Most
methods perform quite well according to this plot. Similar results
for PR curve (Precision-Recall). These plots are often summarized
using the “Area Under the Curve” (AUC) metric, whose maximum
value is one. We show the ROC-AUC and PR-AUC values in Tab. 1;
consistent with the literature, we see AUC scores more than 0.7, and
a largest score of 0.94. This would suggest good performance on
transductive link prediction.

For the same setup, we define the VCMPR@k plots, a vertex-
centric metric. This measure requires a closer look into link prediction
using node embeddings. For each pair of vertices (3, j), the classi-
fier/predictor computes a score based on which it predicts an edge.
For a given vertex ¢ of non-zero degree d;, we rank all other vertices j
in decreasing order of their scores. Remove pairs from E,. Take the
top k scores from this list, and let ¢; (k) denote the number of ground
truth edges in this list. Meaning, there are ¢;(k) ground truth edges
(%, 7) in the top k-entries of the (downward) sorted list.

ti(k)

VCMPR @k for vertex i = m

Note that ¢;(k)/k is the precision@k, and t;(k)/d; is the recall @k.
We take the larger of these values, so that low degree vertices are not
penalized for poor precision (since ¢;(k) < d;). Roughly speaking,
if the VCMPR @k for vertex i is §, then a ¢ fraction of the top-k
predictions (for ¢) are actually ground truth edges. Note that VCMPR
is a local metric and computed at a per-vertex basis. Contrast with the
AUC, which is a global measure. We also stress the difference from

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

vanilla precision/recall @k, which is computed by ranking (a sample
of) all edges in the graph. (We discuss more differences and variants
of VCMPR subsequently.) The VCMPR plots give the complementary
cumulative histogram for the VCMPR values. So for = € [0, 1], we
plot the fraction of vertices with VCMPR at least x. These are shown
in Fig. 1b and Fig. lc.

ROC PR Avg VCMPR Avg VCMPR

AUC AUC | @10 @50
Resource Allocation | 0.95 0.95 0.26 0.30
Adamic Adar 0.95 0.94 | 0.27 0.30
Common Neighbors | 0.94 0.94 0.26 0.29
HOP-Rec 0.96 0.95 0.27 0.33
Walklets 0.94 0.93 0.12 0.21
HPE 0.93 0.93 | 0.20 0.27
NetMF 0.85 0.82 | 0.09 0.12
Role2Vec 0.79 0.76 | 0.02 0.03
GraphSage-MP 0.73 0.73 | 0.01 0.03
BoostNE 0.70 0.63 | 0.00 0.00
Deepwalk 0.69 0.69 | 0.03 0.05
Node2Vec 0.69 0.69 | 0.03 0.05
RandNE 0.58 0.49 | 0.00 0.00
GraphSage-L 0.56 0.55 0.01 0.01
GraphSage-M 0.54 053 | 0.01 0.01

Table 1. This table complements Fig. 1, which has results from link
prediction on the blog-Catalog dataset. We give the ROC-AUC,
PR-AUC, and average VCMPR@k for k = 10,50. We observe fairly
large AUC values, with the largest being 0.96. But the average
VCMPR@k values are quite low. For almost all methods, it is less
than 0.2, which implies poor precision and recall at the individual
vertex centric predictions.

We observe that the VCMPR scores are surprisingly low. For
example, even for the best method on this dataset, on average only
18% of the top scores are edges. And most methods have an average
VCMPR of less than 0.05. In some datasets, the VCMPR values
become a little higher (0.2 - 0.3), but nowhere near the large AUC
values. We observe this consistently across methods and datasets (§2).
Rather surprisingly, an AUC score of more than 0.7 may still lead to
a VCMPR of less than 0.01. This means, for an average vertex, for
the top (say) 50 predictions, at most one of them is a true edge. The
difference between the high AUC and poor VCMPR is quite dramatic.
The global “dense metric" of AUC is not attuned to the sparse ground
truth. The VCMPR @k, for small k, is an averaged “local" score, and
is more appropriate for sparse ground truth.

This measurement problem is apparent in the VCMPR plots of
Fig. 1b and Fig. 1c. The plots are quite low, as opposed to the high
ROC curves in Fig. 1a. As an example, consider the Role2Vec algo-

Menand et al.

86

87

88

89

90

91

92

93

o4

95

96

97

98

99

100

101

102

103

104

105

106

107

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

108
109
110
111

112

13

114

115

116

117

118

19

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

Roc Curve

Distribution of VCMPR@10 scores

Distribution of VCMPR@20 scores

f
o
I
o

.°
)
4
@

—— node2vec
— deepwalk
—— netmf
RandNE
— Walklets
BoOStNE
—— Role2Vec
—— graphsage-Istm
—— graphsage-mean
—— graphsage-pool =
— hpe
— hoprec 0.0

e
Y
o
o

=
=
o
kS

True Positive Rate
Percent of nodes

o
N}

— hoprec
L‘ - 0.0

st Y 10
aa
—n
— node2vec 0.8
—— deepwalk
— netmf
RandNE
— Walklets
BOOStNE
—— Role2vec
—— graphsage-istm
graphsage-mean
—— graphsage-pool
— hpe

—— node2vec

— deepwalk

—— netmf
RandNE

— Walklets
BoostNE

—— Role2vec

— graphsage-Istm
graphsage-mean

~—— graphsage-pool

— hpe

—— hoprec

R

o
Y

o
=

Percent of nodes

a
~

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4
False Positive Rate

(a) ogbl-collab ROC-AUC

MaxPR@10
(b) ogbl-collab VCMPR@10

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
MaxPR@20

(c) ogbl-collab VCMPR@20

Fig. 2. We train a number of important node embedding methods for transductive link prediction on the ogbl-collab dataset, a current link prediction benchmark on the
Open Graph Benchmark Leaderboard (26). In the left figure, we plot the standard ROC curves for each predictor. In the middle and right figures, we plot the distribution of
VCMPR@k values, for k = 10, 20. The low VCMPR curves clearly shows the weaknesses of existing methods. For all methods, at least 40% of the vertices have VCMPR@20

value of less than 0.3, which is quite low.

rithm (curve in pink). The VCMPR plots are almost at the bottom,
despite the ROC curve being third from the top in Fig. 1a. We see the
ROC curves lead to misleading interpretations on prediction quality
and should not be the basis for algorithm evaluation. We see identical
issues with the PR-AUC.

The importance of being vertex-centric. We stress the difference
such as (vanilla) precision/recall@k, as well as the hits@k metric.
The latter is used in knowledge completion tasks (26, 27). The hits@k
metric is global. It takes a decreasing sorted list of random nega-
tive instances according to model score, and checks the number of
test true positive edges that score in the top k. On the other hand,
VCMPR @k scores are computed for every vertex. We stress that the
k parameters for both metrics are incomparable. For example, con-
sider the ogbl-collab dataset from the Open Graph Benchmark
Leaderboard that comes with a specific link prediction task (26) The
recommended metric is hits@50. For VCMPR, a natural choice of &
is around the average vertex degree (which is 9). The average degree
is the average length of a ground truth list, for a vertex.

In Tab. 2, we give the average AUC, VCMPR@10, and the rec-
ommended hits @50 metric scores for ogb1l-collab dataset. The
hits scores are significantly higher than the average VCMPR scores.
HOP-REC, one of the embedding-based leaders on OGB, has a
VCMPR @10 of just 0.28, while its hits score is 0.66. The hits score
suggest reasonable performance, while the VCMPR scores are quite
low. AUC scores are extremely high, as in Tab. 1. We get similar re-
sults on other examples, described in the SI. Overall, the experiments
show that the VCMPR and hits metrics are fundamentally different.

More significant are the VCMPR plots in Fig. 2, which pinpoint
weaknesses in a way that single scores cannot capture. For example,
the VCMPR @20 plot shows that, for all methods, at least 40% of
the vertices have a VCMPR @20 score less than 0.3. Metrics like
average scores or hit@k do not reveal such problems. (A choice of 20
is quite generous, since the average degree is 9.) One can perform a
deeper investigation into this set to understand for which vertices the
algorithm is failing. Many sparse applications of link prediction are
often for personalization in recommendation systems, where a vertex-
centric view is closer to the application. (28, 29). Global metrics do
not provide insights at a vertex level.

Theoretical explanation. We discover a theoretical connection be-
tween the poor VCMPR and the low dimensional aspect of embed-
dings. The standard scoring method for link prediction is the dot
product (or Hadamard product) of the embedding vectors. We stress
that almost all previous work follows this method (6-10, 18). We
construct a framework that formalizes the notion of sparse ground

Menand et al.

ROC-AUC PR-AUC | Avg VCMPR Hits

@10 @50
Common Neighbors | 0.83 0.91 0.26 0.53
Adamic Adar 0.83 0.91 0.28 0.65
Resource Allocation | 0.83 0.91 0.28 0.65
Deepwalk 0.83 0.86 0.18 0.22
Node2Vec 0.83 0.86 0.18 0.22
NetMF 0.86 0.92 0.02 0.35
RandNE 0.72 0.73 0.11 0.09
Walklets 0.88 0.92 0.22 0.59
BoostNE 0.92 0.93 0.00 0.08
Role2Vec 0.90 0.93 0.17 0.44
GraphSage-M 0.51 0.51 0.00 0.00
GraphSage-MP 0.51 0.51 0.00 0.00
GraphSage-L 0.51 0.51 0.00 0.00
HPE 0.90 0.92 0.02 0.21
HOP-rec 0.97 0.98 0.28 0.66

Table 2. This table complements Fig. 2, which has results from link
prediction on the ogbl-collab dataset. We give the ROC-AUC, PR-
AUC, average VCMPR@X for k£ = 10, 20, and Hits@50.

truth that should be “detectable” by scores involving dot products of
embedding vectors. Under this framework, we prove that the rank
of the embedding vectors must be nearly-linear. This is a strong
lower bound that counters the general notion that low-dimensional
embeddings with dot product based scores is a good method for link
prediction.

For link prediction, the ground truth is fundamentally sparse, since
the number of edges is proportional is to the number of vertices. If
n is the number of vertices, the total number of edges we expect
to see is O(n). This is much smaller than (g), the total number of
potential edges. Alternately, the “yes class" is a tiny fraction of the
size of the “no class" of non-edges (as observed by Lichtenwalter and
Chawla (21)).

We explain the theoretical setup. Through some training process,
a node embedding method outputs a vector #; € R? for each vertex
7 in the original graph. We represent these vectors by the d X n
matrix V, where each column is an embedding vector. In the link
prediction task, the final classifier/predictor uses the vectors ¥; and ¥;
to determine whether (7, j) will become an edge. The most common
score used for prediction is the dot product ¥; - ¥; or the cosine
similarity ¥ - ¥ / (/|7 |2 |27 [|2)"

Given a vertex ¢, we wish to predict some of the edges incident to

*In the latter case, we can just assume that the column vectors in V' are normalized. So we will
stick with the score being the dot product.

PNAS | January5,2024 | vol. XXX | no. XX | 3

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204
205
206
207

208

209

210

212

213

214

215

216

217

218

219

220

222

223

224

225

226

227

228

229

230

1. Our first step is to formalize what it means for the ground truth to
be “sparse", and for the signal to be “strong".

Sparse, undirected ground truth: The total number of edges in
the undirected graph is linear in n, the number of vertices. So, we
expect an average vertex ¢ to be linked with a constant number of
other vertices. Moreover, if j is a good prediction for ¢, then 7 should
be a good prediction for j.

Strong signal in the scores: The set of scores with respect to ¢
is the set {7; - U;|j # i}. We want the true positives (the edges)
to “stand out" among these scores. By the sparsity discussed above,
we do not want more than a constant number of candidates to stand
out. For the vertex i, let D; be the distribution over all other vertices,
where the probability of j is |T; - ¥/ Zj#. |¥; - U;]. We can interpret
the dot product as a relative likelihood that j is a potential neighbor
of 4.

For the signal to be strong, we expect the true positives to have
significant probability mass in this distribution. Note that we may
have false positives because of negative entries. (We take absolute
values to ensure a distribution. Nonetheless, true positives should
have high likelihood/probability in D;.) This discussion motivates
a key definition. Let € > 0 be a parameter; think of it as a small
constant.

Definition 0.1. A pair of vertices (i, j) is called significant if: both
the probability of j in D; and the probability of i in D; are at least €.

This captures the notion that j is a good prediction for ¢ and vice
versa. Roughly speaking 1/e samples from D; are enough to detect
j. Moreover, for a given 1, there are at most 1/¢ vertices j that form
significant pairs.

We formally prove that any set of vectors that contain a linear
number of significant pairs must have near-linear rank.

Theorem 0.2. Consider a set of vectors Uy, ¥a,...,0n € R?
that are polynomially bounded in length. (So for some constant
¢, max; ||U;]]2/ min; |Ui]|]2 < n°.) Suppose there are at least
on significant pairs among these vectors. Then, rank(V) >
poly(e, 8,log™ n) x n.

The condition on polynomial boundedness is a technicality; for
most applications, n is extremely large (millions or more), so a poly-
nomial bound in vector length is quite reasonable. The theorem is
proven in §1.

Let us discuss the relevance of this theorem. The lower bound is
quite strong with respect to the number of significant pairs. Even if
(say) half the vertices participate in just one significant pair, the rank
bound is still near-linear. By the contrapositive of Theorem 0.2, when
the rank is small, then there exist o(n) significant pairs. This means
that that ground truth “signal" is drowned in the noise. Sampling
according to the distributions D; will not generate enough edges,
resulting in many non-edges predicted.

This behavior will lead to poor precision/recall at the individual
vertex level, exactly as we see in practice. In §A, we empirically
see that the dot product scores between edges and non-edges are
indistinguishable. In all our experiments, the sparse signal is hard to
distinguish from the noise. On the other hand, an average edge has a
high-score than an average non-edge, resulting in high AUC scores.
But this is not relevant in an actual prediction task, where we need to
report the pairs that are most likely to be edges.

The VCMPR challenge. Can we design low-dimensional node em-
beddings that get high VCMPR plots for link prediction?

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

Our theoretical results suggest some fundamental limitations,
when using dot product based scores for prediction. Our empiri-
cal work shows that even generalizations like the Hadamard product
do not give better results. Indeed, the overwhelming evidence is that
a new idea is required. We believe that solution may need alternate
geometries or kernels over low-dimensional vectors for the link pre-
diction process. Recent work by Chanpuriya et al have suggested
asymmetric factorizations and other methods to avoid weaknesses
of low-dimensional embeddings (30). These techniques may help
address this challenge.

We see our results as providing guidance for future work on graph
representation learning. Theoretical frameworks that shed light on
existing limitations direct us away for methods that might not hold
promise. Our work underscores the importance for different kinds of
measurements of performance for link prediction. We hope that the
VCMPR challenge provides a concrete problem to tackle. Regard-
less, we strongly advocate the use of VCMPR @k measures for link
prediction performance in sparse graph settings.

We note that there are link prediction settings where our analysis
might not be applicable (more discussion in §C).

A. More on AUC and Local VCMPR-type measures. We give
more insight into why AUC is a poor measure for link prediction.
Recall that x : V2 — [0, 1] denotes the predictor function for future
edges, and Eis: is the ground truth. For convenience, (i,j) ~
E4cst means that (i, 7) is a uniform random sample from Ecs¢. The
following lemma gives an alternative definition of the ROC-AUC.

Lemma 0.3. (Sec. 7 of (25)) The ROC-AUC of the predictor x is

Pr [x(i,5) > x(@',5")]
(6:3)~Brest, (i 5)~ (%5)\ Brest

In plain English, the AUC is the probability that an average ground
truth edge has a higher score than an average non-edge. (Henceforth,
non-edge refers to a pair not in Fies:.) But the ground truth set
Eicst has size O(|V]), because real-world graphs are sparse. The
complement (true negatives) has size size Q(|V|?), which is many
orders of magnitude larger than the ground truth. Therein lies the
fundamental problem. If ground truth edges have above average score,
the AUC will be high. It is possible that there are (say) 10| Ees¢|
non-edges with score higher than the ground truth edges, but the AUC
is still 1 — o(1). The sparsity of ground truth makes it possible to
have large AUC with a weak predictor. Indeed, this is what seems
to happen in all our experiments. We stress that the weaknesses of
AUC were known before (20). Lichtenwalter and Chawla specifically
point out issues for link prediction (21). Despite that, it is the default
method for evaluations of link predictors based on low-dimensional
embeddings.

VCMPR variants: The main utility of VCMPR is that is a local
measure, as opposed to a global measure such as Lemma0.3. For
link prediction, it is crucial to understand how a predictor behaves
at a vertex level (how many of the top predictions for ¢ are correct).
The VCMPR was chosen for easy interpretability, and is a fairly
permissive metric. If the ground truth degree of ¢ is small, then the
denominator for VCMPR is also small.

In general, one can go beyond VCMPR and compute other local
metrics. For example, we can measure local NDCG (Normalized
Discounted Cumulative Gain) at each vertex. Moreover, one can
compute VCMPR using just the test edges or with both test and
train edges, and define other variations of VCMPR @k. We discuss
these variants in the SI and perform extensive experimentation on
our datasets. Across all these measures, we consistently see poor

Menand et al.

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250

251
252
253
254
255

256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

287

288

289

290

291

292

293

294

295

296

297

298

299

300

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

338

339

340

341

342

343

344

345

346

performance for link prediction. This is a strong indication that the
embeddings are not capturing the structure of the graph.

B. Broader Context and Related Work. There is a rich literature
showing that low-dimensional embeddings methods successfully per-
form the link prediction task (6-10, 18). Despite much empirical
work on node embeddings methods, there are fewer principled the-
oretical results on their behavior (some recent papers address this
topic (30-34)). There is growing evidence that hand-tuned algorithms
can outperform embeddings methods for link prediction (11, 34). Re-
cent work argues that certain low-dimensional embeddings cannot
capture the cluster structure of real-world graphs (31).

The AUC is a fundamental metric using in machine learning
and statistical applications. Fawcett has an excellent overview of
AUC (25). Hand argues that AUC is deeply flawed because it creates
a data-dependent reweighting of false positives vs false negatives (20).
Deeply relevant to our own work, Lichtenwalter and Chawla perform
an excellent study AUC in the context on link prediction (21). They
show that the sparsity of the ground truth is a hindrance for using
AUC. They also suggest precision and recall measures, but not in the
localized manner of the VCMPR plots. Unlike previous work on AUC
and link prediction, our work specifically connects the low values of
VCMPR measures to low-dimensional embeddings. Existing work
shows weaknesses of sampled metrics (like AUC) in ranking a single
list (27). The crucial difference is that VCMPR focuses on the ranking
of many lists, one for each vertex.

The hits@k (and precision/recall@k) metrics are fundamental
measures in many knowledge completion tasks (35). We note the
significant difference from personalized link prediction in the appli-
cation. For knowledge completion, the goal is to find the potential
edges, regardless of the endpoints. In personalized settings, we are
given a specific vertex and want to know the potential edges incident
to that vertex. Hence, the VCMPR metric more directly captures the
goal.

Graph representation learning is an immensely large topic. We
mention the surveys (1, 2) and Chapter 23 in (3). Our experiments
use a large variety of contemporary and classic methods (4, 6-10,
18, 23, 24, 28, 36-39). We use the implementations of (40). The
embedding methods span many categories, based on random walks,
random projections, matrix factorizations, shallow embeddings, as
well as Graph Neural Nets. (More details in §2.)

An increasing body of literature has attempted to build theoretical
frameworks to study this wide array of embedding algorithms. Qi
et al provide an overarching template of matrix factorization that
subsumes many methods (10). Several results study the theoretical
power of GNNs (32, 33, 41). Closer to our work, some results have
tried to understand the limitations (and power) of low-dimensional
embeddings. We borrow many theoretical tools from a result showing
the inability of low-dimensional SVD to preserve the triangle structure
of real-world networks (31). Chanpuriya et al give alternate geometric
methods to circumvent these limitations (30). It is not clear how to use
these asymmetric embeddings to perform (symmetric) link prediction
for undirected graphs.

C. Limitations. Our mathematical analysis focuses on settings that
are globally sparse, yet locally dense. (The local density appears in
terms of having a strong signal at a vertex centric level.) This setting
is widespread in most social network settings, often measured as low
global density and high clustering coefficients. But for settings like
link prediction in protein-protein interaction (PPI) networks, cluster-
ing coefficients are low, and our vertex-centric analysis might not be
meaningful. We run link prediction experiments on PPI networks and

Menand et al.

observe that AUC scores are themselves quite low. In many of these
experiments, VCMPR scores might not add more value.

Another important setting for link prediction is knowledge discov-
ery. In such settings, the overall density may itself be high (seen in
drug interaction datasets), or the vertex-centric measure might not be
relevant. In knowledge discovery, we may be trying to predict any
new edge, not just edges that are incident to a specific (set of) vertices.
For such problems, our theoretical analysis is not informative and
VCMPR metrics might not be meaningful. We perform experiments
on a dense drug interaction dataset, and observe that hits @k metrics
are probably more informative.

We also note that the term “density" may have different meanings.
We treat it in terms of the total number of edges divided by the total
number of possible edges. The vertex-centric measure we define
focuses on typical vertices which usually have low degree.

Regardless, we believe that AUC has fundamental flaws and should
not be used to measure link prediction performance.

1. Theoretical details

In this section, we prove Theorem 0.2. For the proof of our main theo-
rem, we will use the following lemma stated first by Swanapoel (42).

Lemma 1.1. [Rank lemma] Consider any square matrix M € R™*".
Then

[, M
(Zi > \MMP)

We prove our main theorem.

2

rank(M) >

Proof. (of Theorem 0.2) Let us first bin the vectors based on their
length (the Euclidean norm ||¥;||2). For integer 4, let B; denote the
set of vectors whose length is in [2%, 2°T!). By the polynomial length
in bound, there are most clog, n bins of vectors, for some constant c.

Imagine labeling each vertex by the bin that its corresponding
vector belongs to. We can label a pair (4, j) with the labels of ¢ and
j. Formally, the label of pair (4, 7) is the label/bin pair (Bq, Bpy)
where U; € B, and U; € By. Observe that each vertex can have at
most clog, n labels, hence the total number of pair labels is at most
c?1g% n. (We use lg to denote log,.) There are at least dn significant
pairs. By averaging, there exists some pair label (B, By) (where a
may be equal to b), such that there are at least 6n/c? 1g* n significant
pairs with that label. In other words, for some values a, b, there are at
least 6n/c? 1g? n significant pairs between B, and By. Call these the
marked significant pairs. Let B,, C B, and B; C B, be the set of
vectors in these bins that participate in the significant pairs between
B, and Byg.

By definition (Definition 0.1), each 7 can participate in at most
1/e significant pairs. Hence, the number of marked significant pairs
(which are all incident to B}) is at most | B, |/¢. As argued above,
the number of marked significant pairs is at least dn/c* 1g* n. Hence,
|BL| > (e6/c*1g? n) x n. (Similarly, for | B;|.) For convenience, let
C'be B, U By,

Let V' be the column matrix of the vectors in C. Let M be the
Gram matrix (V")T(V'). (For convenience, let us index M with
respect to the original vertex labels. So M;; = v - ¥;.). Observe that
the rank of M is the rank of V’, which is at most the original rank of
V.ByLemmal.l,

| Ziec Ui - 1‘;’1-|2

(Ziec ZkGC [0 - ﬁk‘Q[)l]

rank(V) > rank(V') = rank(M) =

PNAS | January5,2024 | vol. XXX | no.XX | 5

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368
369

370

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

392

393

394

395

396

397

398

399
400

402

403

404

405

406

407

408

409

410
411
412
413
414

415

416

417

418

419

420

422

423

424

425

426

427

428

429

430

Let us begin by lower bounding the numerator. Wlog, assume a < b.
Bj| > (e6/c*1g% n) x n.

By definition, C contains Bj,. Moreover,
For each vector in B C By, the length is at least 2°. Note that
diagonal entry ; - ¥j; is precisely the squared length. Hence, for any
i€ By, Ui - T > (2b)2. Combining all our bounds,

Z |5 - Ti| > (e6/cP1g® n) x nx (2°)% = (e6/c*1g” n) x 2% x n
ieC

(2]

We now upper bound the denominator of (1). Every vertex in C'

participates in a significant pair in C. Hence, for every ¢ € C, there

exists a j € C such that j has probability at least ¢ in the distribution

D, (Definition 0.1). So,

U N D MY

2 g | - Tl keC

By squaring and applying the /1, l2-inequality,

— — 12 2 — — 2 2 — = 12
7 BI* > (Y17 5l)® > € Y |7 i
keC keC
By Cauchy-Schwartz, |T; - U] < ||T;|2]|¥;]]2. All the vectors are in
C, where the length is at most the maximum length in Bj;. This bound
is at most 2°*1. Hence, we deduce that

@) > 2> Tl = Y |7 Gl < 4e72%
keC keC

We can now upper bound the denominator of (1). We have
Ziec ZkEC |; - Tx|? < 4e722%n. We combine this bound with
the numerator bound of (2), and plug into (1)

[(e6/c*1g? n) x 22° x n)?
4e—222bp
(e*6%/c 1g* n) x 2%° x n?
4x2% xn

rank(V)

v

(3]

(4]

We can cancel out 2°’n to conclude that rank(V) >
(e*6%/4c*1g* n) x n. O

A. On AUC and the rank bound. As a final point, we note that the
rank lower bound (and poor reliability performance) is consistent with
high AUC scores. We give a simple construction demonstrating a low
dimensional embedding that gives nearly perfect AUC scores for an
example sparse graph. This construction also highlights the primary
weakness of AUC as a measure for link prediction.

Theorem 1.2. There exists a connected bounded degree graph G
with n vertices and a corresponding constant dimension embedding
with the following properties. The AUC of edge prediction using the
dot product score is 1 — o(1).

Proof. Consider a graph G first formed by a disjoint collection of
triangles. To make it connected, we add an arbitrary spanning tree that
connects all the triangles. We will construct a randomized embedding
with a high probability of having AUC 1 — o(1). By the probabilistic
method, there must exist some embedding with such a large AUC.
For each triangle, let us assign an independent, Gaussian uniform
random unit vector in R%. All vertices in the triangle are assigned to
this vector. Hence for every edge (i, 7), ¥; - U5 = 1. Now, consider ¢
and k that are not part of a triangle. Observe that ¥; - ¥y, is distributed
as the dot product of independent Gaussian random vectors. This is
distribution as (0, 1/+/d), a standard Gaussian with 1/+/d standard

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

deviation. For sufficiently large constant ¢, the dot product is at 431
most 1/4 with high probability. Since a 3/4-fraction of edges are in 432
triangles, the average dot product of an edge is at least 3/4. Fora 4
uniform random pair, with high probability, the score is at most 1/4. 434
Hence, the expected AUC is 1 — o(1). O s

Note that in this construction there are ©(n?) dot products with s
value ©(1/+/d). The distributions D; will have a lot of noise, and the 47
true signal (the dot product of 1) will have negligible mass. 438

2. Experimental results 439

We follow the standard setup for transductive link prediction exper- 40
iments, as done in previous work. The experimental sections of the 441
node2vec (7) or role2vec (18) papers provide good examples. The 44
datasets are described in Tab. 3, taken from (22, 43). We also include 43
two link prediction datasets from the Open Graph Benchmark (26), 44
and two protein interaction datasets from (44, 45) We choose a dense 445
dataset, ogb1-ddi, as a counterpoint to the other sparse datasets. In 446
addition, we construct a small Stochastic Block Model. We create 47
an SBM with a block size of 50 and 200 such blocks. Within each 448
block, an edge is inserted with probability 0.3. Pairs across blocks are 44
connected with probability 0.3 /n (where n is the number of vertices). s
So blocks are extremely dense, and there are very few edges across 451
blocks. 452

The edges of each dataset (graph) is split into a train and test ss3
set. We put 80% of the edges in the training set and 20% in the test 454
set (called FEics: earlier). We then apply an embedding method to 455
embed each vertex into a 128-dimensional vector. We describe the 456
embeddings methods in the next subsection. 457

We also follow the usual setting for transductive link prediction 4ss
when computing the ROC-AUC and PR-AUC. First we randomly 4so
generate an equal number of negative edges to add to the test and train 460
datasets. Now we train a logistic classifier over the training dataset 41
that computes a Hadamard product to predict edges. (In most cases, 462
the optimal Hadamard product is just the dot product.) 463

To compute the VCMPR plots, we sample 1000 uniform random 464
vertices. For each sampled vertex ¢, we sort all other vertices in 465
decreasing order of the Hadamard product used by the classifier. We 466
remove all pairs from the training data. We then compute the precision 467
and recall of the top k entries of this sorted list, where the ground ses
truth is the neighborhood of % in Fycs¢. 469

Nodes Edges mean clust. Trans- Triangles

degree coeff. -itivity
amazon 334K 925K 5 0.39 0.21 667K
dblp 317K 1.04M 6 0.63 0.31 2.24M
blogcatalog 10K 333K 64 0.46 0.09 5.61M
sbm 10K 75K 15 0.29 0.29 105K
ogbl-collab 235K 1.28M 9 0.71 0.34 3.66M
ogbl-ddi 4.27K 1.33M 625 0.63 0.57 27.3M
bioplex 11K 56.6K 10 0.10 0.06 29.3K
HI-II-14 4.3K 14K 6 0.05 0.03 6.62K

Table 3. Dataset Summary

Plots for blogcatalog are given in Fig. 1 and Tab. 1. Results 470
for ogbl-collab are in Fig.2 and Tab. 2, and for the SBM are in 471
Tab. 4. All other plots and results are given in the SI. a2

Embedding Methods. We experiment on a large set of embeddings 473

methods, that subsume random walk methods, factorization meth- 74
ods, and deep models. When available, we use the implementations 475

Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

504

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

520

522
523
524
525
526
527
528
529
530
531
532
533
534
535

536

of these algorithms provided by the KarateClub library (40). We
included HOP-Rec (37), a leading method for ogbl-collab on
the OGB leaderboard (26). For completeness, we run some classic
non-embedding methods, such as Common Neighbors (28), Adamic
Adar (4) and Resource Allocation (36). These methods typically have
good performance (within top 10) on the leaderboard datasets (26).

DeepWalk: DeepWalk (6) is a classic shallow embedding model
that uses uniform random walks.

Node2Vec: Node2Vec (7) is another important shallow embedding
model.

NetMF: NetMF (10) is a matrix factorization based model that
approximates the DeepWalk matrix.

GraRep: GraRep (39) is a direct matrix factorization based model.
We ran GraRep only on small graphs.

BoostNE: BoostNE (24) is an ensemble matrix factorization based
embedding model.

RandNE: RandNE (23) is a random projection based embedding
model.

Walklets: Walklets (8) is a random walk based embedding model
that samples short random walks.

Role2Vec: Role2Vec (18) is a random walk based embedding
model that embeds vertices based on attributed random walks.

GraphSage: GraphSage (9) is an deep learning based embedding
algorithm. We use the unsupervised version of GraphSage, with the
mean, LSTM and max-pooling aggregators.

HPE: HPE (38) is a random walk based embedding model that
embeds vertices based on preference edges.

HOP-Rec: HOP-Rec (37) is an embedding model that combines
random walks and matrix factorization.

A. Key observations. High AUC values: Across all datasets and
a majority of methods, the ROC-AUC and PR-AUC values are quite
high (more than 0.8). For brevity, we only plot the ROC curves. We
can see the characteristic “away from diagonal” trend that leads to high
AUC. The AUC values are given in Tab. 1 and Tab. 4. Most methods
give an AUC of at least 0.8 for all datasets; the maximum is at least
0.95. Consistently, the Walklets algorithm has strong performance
in the AUC metric. The dblp dataset appears to be easier to learn,
since all methods give high AUC scores.

Low VCMPR values: Across all methods and all datasets, the
VCMPR values are quite low. We compute these values for k =
10, 20, 50 (that is, the top 10, 20, and 50 scores for each vertex). The
low performance for £ = 10 is quite surprising, suggesting that the
top scores are almost always non-edges. Note that VCMPR should
go up for larger k, since recall will always increase. The average
degrees in all the graphs are well below 50. So the VCMPR @50 is
basically measuring recall, with a list that is much larger than the
degree. Despite that, the values are low. For the amazon, dblp
datasets, the average degree is at most 6, which is quite small. For
that reason, we only measure VCMPR @ 10 and VCMPR @20. (For
k = 50, it would be measuring recall over a list of almost 10 times
the size of ground truth list, which is not meaningful.)

For example, in the blog-Catalog dataset (Fig. 1, Tab. 1), the
highest average VCMPR values is 0.21. Most methods have an
average VCMPR value of less than 0.1. This means that, on the
average, among the top 10 scores for a vertex ¢, at most one of them is
a ground truth edge. We see the noise “drowning" out the signal, just
as the theory in §1 suggests. For the db1p and amazon datasets, we
see the same phenomenon, though the numbers are somewhat higher.
The AUC scores for amazon are remarkably high, above 0.8. But
the average VCMPR values are mostly at 0.3. Note that the average
degree is 6, since VCMPR@20 is measuring how many of those

Menand et al.

neighbors are within the top 20 scores. This is rather permissive from
a prediction standpoint, and yet the values are quite low. Walklets
performs somewhat better, but nowhere near what the AUC would
suggest. (An average VCMPR@ 10 of 0.38 means that, for an average
vertex, at most 38% of the top 10 scores are actually edges.) We see a
similar story with the db1p dataset.

These results are evidence that the low-dimensional node embed-
ding methods are missing much of the graph structure. The high AUC
scores are misleading indicators of link prediction performance. In
numerous cases, a predictor with an AUC of more than 0.8 has an
average VCMPR of less than 0.05. We also compute the local NDCG
and consider metrics with both test and train data. The poor perfor-
mance is consistent across all these measures (detailed discussion in
the SI).

Quite surprisingly, we see this pattern even when evaluating non-
embedding based link prediction methods, such as the high performing
Resource Allocation method.

SBM experiments: The AUC values are nearly perfect, and one
might think that prediction is extremely accurate. But the average
VCMPR @10 values are quite low, typically around 0.25. Again, the
high AUC scores hide the fact that the link prediction is not accurate.
We see again the sharp contrast between AUC and the actual predictive
power.

ROC-AUC PR-AUC | Avg VCMPR@10
Resource Allocation | 0.96 0.98 0.26
Adamic Adar 0.96 0.98 0.26
Common Neighbors | 0.96 0.98 0.26
HOP-Rec 0.99 0.99 0.26
HPE 0.99 0.99 0.25
NetMF 0.99 0.99 0.26
GraRep 0.99 0.99 0.24
Walklets 0.99 0.99 0.25
Node2Vec 0.98 0.98 0.23
Deepwalk 0.98 0.98 0.24
BoostNE 0.98 0.98 0.16
RandNE 0.98 0.98 0.24
Role2Vec 0.97 0.97 0.21
GraphSage-MP 0.76 0.82 0.11
GraphSage-M 0.72 0.77 0.06
GraphSage-L 0.69 0.71 0.02

Table 4. We run our experiments on a small SBM. Again we see the
stark contrast between AUC and VCMPR scores. AUC scores are
near perfect. But the VCMPR scores are quite low, under 0.25. See
Fig.7

On other metrics. We get analogous results for VCNDCG
(vertex-centric Normalized Discounted Cumulative Gain). The VC-
NDCG plots are quite low, and average scores are lower than 0.2. This
emphasizes that the vertex-centric view highlights the weaknesses of
embedding-based link prediction. (Plots and more discussion in the
SL)

We also experimented with the classic hits@k metric, which is
popular for knowledge completion tasks (26, 35, 46), . As discussed
in the introduction, the hits@k is a global metric where a predicted
score is compared against a sorted list of scores for ground truth edges
and non-edges. We note that the parameter k is incomparable for
hits@k and VCMPR @k, since the former considers a total list of
edges/pair, while the latter considers a list of edges/pairs for each
vertex. Tab.2 and Fig. 2 highlight that hits@k can be quite large,
while corresponding VCMPR scores can be low. We give more details
for other datasets in the SI.

PNAS | January5,2024 | vol. XXX | no. XX | 7

537

538

539
540

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594

595

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

614

10

Clustering Coefficient

0.0 T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Density

@ Social Networks m PPl Networks A SBM Other Networks

Fig. 3. We plot the network density vs clustering coefficient for all networks listed in
Tab. 3 The social networks includes the blogcatalog, ogbl-collab, and dblp
datasets. The PPl networks refers to bioplex and HI-II-14, while other networks
refers to amazon, a product co-purchasing dataset and ogb1-ddi, a drug interaction
dataset.

The connection to density. The theory and experiments related
the weakness of AUC for sparse link prediction problems, where the
VCMPR is able to identify weak performance. As a counterpoint, we
do experiments on the ogb1-ddi link prediction benchmark, which
is a dense graph. The average degree is more than one-tenth of the
number of vertices. For this data, the VCMPR numbers are higher
and comparable to the AUC scores. More details in the SI.

Results on PPI networks, and the clustering coefficient con-
nection. In Fig. 3, we plot the network density vs clustering coef-
ficient for all the datasets we experiment with. Observe that most
of the social networks lie far above the PPI networks (which have
low clustering). For the latter setting, our mathematical analysis is
not as applicable. We perform the same collection of link prediction
experiments on the PPI datasets. We observe that AUC scores tend
to be lower (closer to 0.5). It is likely the AUC does not suffer from
the same problem for other datasets. There are a few algorithms, like
Walklets, HPE, and HOP-rec that have high AUC. Nonetheless, in all
cases, the VCMPR scores are quite low, consistent with other datasets.
More details in the SI.

Exploration of dot products

In this section, we do a deeper investigation of the actual dot product
values, to corroborate the theory in §1. Theorem 0.2 implies that
when the rank of the vectors is low, the sparse ground truth cannot
have significantly higher dot products than the non-edges. As a case
study, we focus on the blogCatalog dataset, though our results
are consistent over other graphs.

Consider the set of vectors {¥;} output by some embedding
method for blogCatalog. For each vertex i, we first compute
the average dot product ¥; - U;, for all edges (i, 7) in the test set. Call
this quantity ¢;. Then, we compute the average dot product ¥; - ¥U;
for the top 50 non-edges (i, 7). Call this quantity f;. If we want to
predictor to have detected the ground truth, we would want ¢; > f;.

So let us define the significance of i to be t; / f;. This is the ratio of
the score of an average ground truth edge and the score of an average
top-50 non-edge. The distributions (for a uniform random sample
of 1000 vertices) are given in Fig. 4 for the Deepwalk, Walklets, and
Role2Vec embedding methods. We mark the significance of 1 as a
red line. (For Deepwalk, there are some negative significance values,
since the average dot product of test edges for some ¢ is negative.)

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

For a predictor that captures the ground truth, we would expect
the distribution to have mass much to the right of the red line. As our
theory predicts for the low-dimensional vectors, this is not the case.
The distributions is to the left of the red line, so most vertices have
a significance less than 1. This means that among the top 50 scores,
non-edges dominate edges.

ACKNOWLEDGMENTS. C. Seshadhri was supported by NSF DMS-
2023495, CCF-1740850, 1839317, 1908384, 2245904, and ARO Award
WOI11NF1910294.

1. W Hamilton, Z Ying, J Leskovec, Inductive representation learning on large graphs in Neural
Information Processing Systems (NeurlPS). pp. 1024-1034 (2017).

2. | Chami, S Abu-El-Haija, B Perozzi, C Ré, K Murphy, Machine learning on graphs: A model
and comprehensive taxonomy. arXiv:2005.03675 (2020).

3. KP Murphy, Probabilistic Machine Learning: An introduction. (MIT Press), (2021).

4. L Adamic, E Adar, Friends and neighbors on the web. Soc. Networks 25 (2003).

5. D Liben-Nowell, J Kleinberg, The link prediction problem for social networks. J. Am. Soc. for
Inf. Sci. Technol. 58, 1019—-1031 (2007).

6. B Perozzi, R Al-Rfou, S Skiena, DeepWalk: Online learning of social representations in Con-
ference on Knowledge Discovery and Data Mining (KDD). (ACM Press), pp. 701-710 (2014).

7. A Grover, J Leskovec, node2vec: Scalable feature learning for networks in Conference on
Knowledge Discovery and Data Mining (KDD). pp. 855-864 (2016).

8. B Perozzi, V Kulkarni, H Chen, S Skiena, Don’t walk, skip! online learning of multi-scale net-
work embeddings in Advances in Social Networks Analysis and Mining. p. 258-265 (2017).

9. W Hamilton, Z Ying, J Leskovec, Inductive representation learning on large graphs in Neural
Information Processing Systems (NeurlPS). p. 11 (2017).

10. J Qiu, et al., Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and
node2vec in Conference on Web Science and Data Mining (WSDM). pp. 459-467 (2018).

11. S Gurukar, et al., Network representation learning: Consolidation and renewed bearing. arXiv
abs/1905.00987 (2019).

12. A Ghasemian, H Hosseinmardi, A Galstyan, A Clauset, Stacking models for nearly optimal
link prediction in complex networks. Proc. Natl. Acad. Sci. (PNAS) 117, 23393-23400 (2020).

13. A Mara, J Lijffiit, TD Bie, Benchmarking network embedding models for link prediction: Are
we making progress? in International Conference on Data Science and Advanced Analytics
(DSAA). (2020).

14. L Torres, KS Chan, A Galstyan, T Eliassi-Rad, Glee: Geometric laplacian eigenmap embed-
ding. J. Complex Networks 8 (2020).

15. W Huang, Y Li, Y Fang, J Fan, H Yang, Biane: Bipartite attributed network embedding in
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval. (Association for Computing Machinery), Vol. 3, p. 149-158 (2020).

16. L Wang, C Huang, W Ma, X Cao, S Vosoughi, Graph embedding via diffusion-wavelets-
based node feature distribution characterization in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, CIKM '21. p. 3478-3482 (2021).

17. J Qiu, L Dhulipala, J Tang, R Peng, C Wang, Lightne: A lightweight graph processing system
for network embedding in Proceedings of the 2021 International Conference on Management
of Data. (Association for Computing Machinery), p. 2281-2289 (2021).

18. NK Ahmed, et al., Role-based graph embeddings. /EEE Transactions on Knowl. Data Eng.
34, 2401-2415 (2022).

19. L Cappelletti, et al., Grape for fast and scalable graph processing and random-walk-based
embedding. Nat. Comput. Sci. 3, 552-568 (2023).

20. DJ Hand, Measuring classifier performance: a coherent alternative to the area under the
ROC curve. Mach. Learn. 77, 103—123 (2009).

21. R Lichtenwalter, NV Chawla, Link prediction: Fair and effective evaluation in Advances in
Social Networks Analysis and Mining. pp. 376—383 (2012).

22. R Zafarani, H Liu, Social computing data repository at ASU (2009).

23. Z Zhang, P Cui, H Li, X Wang, W Zhu, Billion-scale network embedding with iterative random
projection. pp. 787-796 (2018).

24. JLi, L Wu, H Liu, Multi-level network embedding with boosted low-rank matrix approximation
in Advances in Social Networks Analysis and Mining. pp. 49-56 (2019).

25. T Fawcett, An introduction to roc analysis. Pattern Recognit. Lett. 117, 861—-874 (2006).

26. W Hu, et al., Open graph benchmark: Datasets for machine learning on graphs in Pro-
ceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS’20. (Curran Associates Inc., Red Hook, NY, USA), (2020).

27. W Krichene, S Rendle, On sampled metrics for item recommendation in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’20. (Association for Computing Machinery, New York, NY, USA), p. 1748—1757 (2020).

28. D Liben-Nowell, J Kleinberg, The link prediction problem for social networks in Proceedings
of the Twelfth International Conference on Information and Knowledge Management, CIKM
’03. (Association for Computing Machinery, New York, NY, USA), p. 556-559 (2003).

29. MA Hasan, MJ Zaki, A Survey of Link Prediction in Social Networks, ed. CC Aggarwal.
(Springer US, Boston, MA), pp. 243-275 (2011).

30. S Chanpuriya, C Musco, K Sotiropoulos, CE Tsourakakis, Node embeddings and exact
low-rank representations of complex networks in Neural Information Processing Systems
(NeurlPS). (2020).

31. C Seshadhri, A Sharma, A Stolman, A Goel, The impossibility of low-rank representations for
triangle-rich complex networks. Proc. Natl. Acad. Sci. 117, 5631-5637 (2020).

32. A Loukas, What graph neural networks cannot learn: depth vs width in International Confer-
ence on Learning Representations. (2020).

33. VK Garg, S Jegelka, T Jaakkola, Generalization and representational limits of graph neural
networks. arXiv:2002.06157 (2020).

Menand et al.

615
616
617
618
619

620

621
622
623

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

distribution (over vertices) of significance values. For ground truth to be captured, we would need the significance to be much higher than 1. Our theory predicts that this will not

Significance for deepwalk

Significance for Walklets

Counts

=15 -10 =5 0 5 10 0.4 0.6 0.8 1.0

Significance Significance

(b) Significance plot for Walklets

(a) Significance plot for deepwalk

14

16

18

Counts

Significance for Role2Vec

120

100

80

60

40

06 08 10

Significance

12 14 16

18 20 22

(c) Significance plot for role2vec
Fig. 4. We plot the distributions of significance values for the embedding vectors generated by different methods, for the blog-Catalog dataset. Roughly speaking, the
significance value for a vertex i is the average dot product with its neighbor vectors divided the average of the top 50 ¥; - ¥; values (varying over j). The plot gives the

happen, and most significance values will be much smaller. This is exactly what we see in practice. The distribution of significance values is much lower than the red line, which
isat 1.

34. A Stolman, C Levy, C Seshadhri, A Sharma, Classic graph structural features outperform

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

factorization-based graph embedding methods on community labeling in SIAM Conference
on Data Mining (SDM). pp. 388-396 (2022).

A Bordes, N Usunier, A Garcia-Duran, J Weston, O Yakhnenko, Translating embeddings for
modeling multi-relational data in Advances in Neural Information Processing Systems, eds. C
Burges, L Bottou, M Welling, Z Ghahramani, K Weinberger. (Curran Associates, Inc.), Vol. 26,
(2013).

LLYCZ Tao Zhou, Predicting missing links via local information. The Eur. Phys. J. B 25,
623-630 (2009).

JH Yang, CM Chen, CJ Wang, MF Tsai, Hop-rec: High-order proximity for implicit recommen-
dation in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys '18.
(Association for Computing Machinery, New York, NY, USA), p. 140-144 (2018).

CM Chen, MF Tsai, YC Lin, YH Yang, Query-based music recommendations via preference
embedding in Proceedings of the 10th ACM Conference on Recommender Systems, RecSys
’16. (Association for Computing Machinery, New York, NY, USA), p. 79-82 (2016).

S Cao, W Lu, Q Xu, GraRep: Learning graph representations with global structural informa-
tion in Conference on Information and Knowledge Management (CIKM). pp. 891-900 (2015).
B Rozemberczki, O Kiss, R Sarkar, Karate Club: An API Oriented Open-source Python
Framework for Unsupervised Learning on Graphs in Conference on Information and Knowl-
edge Management (CIKM). (ACM), (2020).

K Xu, W Hu, J Leskovec, S Jegelka, How powerful are graph neural networks? in International
Conference on Learning Representations. (2019).

K Swanapoel, The rank lemma (https:/konradswanepoel.wordpress.com/2014/03/04/
the-rank-lemma/) (2014).

J Yang, J Leskovec, Defining and evaluating network communities based on ground-truth in
Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS '12. (Associa-
tion for Computing Machinery, New York, NY, USA), (2012).

T Rolland, et al., A proteome-scale map of the human interactome network. Cell 159, 1212—
1226 (2014).

EL Huttlin, et al., Architecture of the human interactome defines protein communities and
disease networks. Nature 545, 505-509 (2017).

M Zhang, P Li, Y Xia, K Wang, L Jin, Revisiting graph neural networks for link prediction in
Internation Conference on Learning Representations. (2021).

K Jéarvelin, J Kekélainen, Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf.
Syst. 20, 422446 (2002).

Menand et al.

PNAS

January 5, 2024

vol. XXX

no. XX

9

https://konradswanepoel.wordpress.com/2014/03/04/the-rank-lemma/
https://konradswanepoel.wordpress.com/2014/03/04/the-rank-lemma/
https://konradswanepoel.wordpress.com/2014/03/04/the-rank-lemma/

729
730

731

732

733
734
735
736
737
738
739
740

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

762
763
764
765

Roc Curve

Distribution of VCMPR@10 scores

Distribution of VCMPR@20 scores

10

e 0.8
—n

—— node2vec
—— deepwalk
—— netmf
RandNE
—— Walklets

o b
o)

o
=

True Positive Rate
Percent of nodes

— 1.0

— aa

—
— a
—n
—— node2vec

__— deepwalk
—— netmf

RandNE
—__— Walklets
BoostNE

—— Role2vec

—n
—— node2vec 0.8
— deepwalk
—— netmf
RandNE
— Walklets
BoostNE
—— Role2vec

Percent of nodes

BoostNE —— graphsage-istm —— —— graphsage-lstm
—— Role2vec —— graphsage-mean | —— graphsage-mean
—— graphsage-Istm —— graphsage-pool v —— graphsage-pool
0.2 —— graphsage-mean 0.2 Eetlipe. 0.2 e Toe
—— graphsage-pool —— hoprec —— hoprec
— hpe
0.0 —— hoprec 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate MaxPR@10 MaxPR@20
(a) ROC curve (b) VCMPR@10 (c) VCMPR@20

Fig. 5. We show results for db1p dataset (43). The left figure has the standard ROC curves for each predictor. In the middle and right figures, we plot the distribution of
VCMPR@Xk values, for k = 10, 20. The dblp dataset has a small degree of 6, which is smaller than the choice of k. The ROC curves are quite high, consistent with the
literature. But the VCMPR values show that the predictor performance is not strong. The data is summarized in Tab. 5.

Roc Curve

Distribution of MaxPR@10 scores

Distribution of MaxPR@20 scores

10

——
aa

—n

—— node2vec

— deepwalk

—— netmf
RandNE

— Walklets
BoostNE

o
EY
o
£y

El

—— node2vec
— deepwalk
—— netmf
RandNE
—— Walklets
BOOStNE
—— Role2vec

o
EY
o
EY

o
IS
2
IS

True Positive Rate
Percent of nodes

104 1

— a
—n
—— node2vec
— deepwalk
— netmf
RandNE
— Walklets
BoostNE
—— Role2vec

o
EY

o
EY

o
IS

Percent of nodes

— Role2vec —— graphsagelstn] —— graphsagelstm ——rf]
—— graphsage-Istm graphsage-mean graphsage-mean ‘_hx_.—t
0.2 —— graphsage-mean 0.2 { — graphsage-pool 0.2 1 — graphsage-ps
—— graphsage-pool — hpe —— hpe
— hpe — hoprec — hoprec
0.0 — hoprec 0.0 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate MaxPR@10 MaxPR@20
(a) ROC curve (b) VCMPR@10 (c) VCMPR@20

Fig. 6. We show results for amazon dataset (43). The amazon dataset also has a small average degree of 5, so £ = 20 is significantly large for this dataset. The AUC scores
are high, more than 0.8 for almost all cases. The VCMPR values are quite low. Even for k& = 20, the plots are quite low. There are very few vertices with VCMPR values above

0.7. The data is summarized in Tab. 6.

Supporting Information for “Link prediction us-
ing low-dimensional node embeddings: the measure-
ment problem"

A. Details on experiments

We give details on all the embedding methods used in our experiments. We
have included HOP-REC, an embedding method that performs highly on the
Open Graph Benchmark link prediction leaderboards (26). We explore general
node embedding models, such as Node2Vec (7), NetMF (10), Role2Vec (18),
as well as node embedding models specific designed for recommendations,
such as Heterogenous Preference Embedding (HPE) (38) and HOP-Rec (37).
Also, for the sake of completeness, we show results on some classic non-
embedding methods, such as Common Neighbors (28), Adamic Adar (4), and
Resource Allocation (36).

DeepWalk: DeepWalk (6) is a classic shallow embedding model that uses
uniform random walks paired with a skip-gram language model to learn a
low dimensional embedding. DeepWalk aims to embed nodes with similar
neighborhoods (nodes with high second order proximity) close together. We
ran DeepWalk with the following parameters, dimension d = 128, window
size w = 5, walks per vertex v = 10, walk length ¢ = 80.

Node2Vec: Node2Vec (7) is another important shallow embedding model
that expands on the random walks used in DeepWalk by introducing a transition
probability associated with the 2nd order random walks. These two parameters
correspond to the random walk behaving more like BFS or DFS, and is meant
to help balance between the walk staying near the start vertex and exploring the
graph. We ran Node2Vec with the following parameters, dimension d = 128,
window size w = 5, walks per vertex v = 10, walk length t = 80, p = 1,
qg=1.

NetMF: NetMF (10) is a matrix factorization based model that approxi-
mates the DeepWalk matrix for a graph. The NetMF paper also showed that
the previous random walk based models can be expressed in terms of matrix
factorization with closed forms. We ran NetMF with the following parameters,
dimension d = 128, 10 SVD iterations, and 2 PMI matrix powers.

BoostNE: BoostNE (24) is an ensemble matrix factorization based em-
bedding model. It iteratively factorizes the residual of the connectivity matrix
found by NetMF to produce multiple weak embedding representations. These
are combined with a gradient boosting technique to produce a final embed-
ding. We ran BoostNE with the following parameters d = 128, 16 boosting
iterations, and for the NetMF calls, we use 2 PMI matrix powers. 806

10 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

RandNE: RandNE (23) is a random projection based embedding model
that embeds the graph by using a Gaussian random projection. We ran RandNE
with dimension d = 128, iterations ¢ = 2 and an unweighted average
ag = a1 = 0.5.

Walklets: Walklets (8) is a random walk based embedding model that
generates multi-scale relationships of vertices by sub sampling short random
walks on the vertices of the graph. The parameters we choose for Walklets
are dimension d = 128, window size w = 4, walks per vertex v = 10, walk
length t = 80.

Role2Vec: Role2Vec (18) is a random walk based embedding model that
embeds vertices based on attributed random walks. An attributed random
walk is a random walk on adjacent vertex types, where a type is defined by
Weisfeiler-Lehman structural features. We set the parameters of Role2Vec
to be d = 128, window size w = 2, walks per vertex v = 10, walk length
t = 80.

GraphSage: GraphSage (9) is an deep learning based embedding algo-
rithm. We use the unsupervised version of GraphSage, with the mean, LSTM
and max-pooling aggregators. We set the parameters of GraphSage to have
output dimension d = 128, number of iterations 10,000, and the identity
dimension to be 128.

HPE: HPE (38) is an embedding method specifically designed for rec-
ommender systems. It first constructs a preference matrix, then creates an
embedding of this preference matrix using random walks. We set the param-
eters of HPE to be dimension to be 128, number of negative samples per
positive to be 5, window size 5, and learning rate 0.025.

HOP-REC: HOP-REC (37) is a embedding method designed specifically
for recommendations. It combines factorizations of the adjacency matrix and
higher order matrices approximated by random walks. We set the parameters
of HOP-REC to be dimension to be 128, number of updates to be 500, number
of negative samples per positive to be 5, window size 5, and learning rate
0.025.

A. Results on different datasets. We analyze the above models on the
following datasets. The amazon product co-purchasing network represents
products that are frequently purchased together as edges between vertices
in the graph (43). The dblp collaboration network is an unweighted graph
where edges represents two authors publishing 1 or more papers together (43).
The blog—-Catalog social network represents bloggers and friendships
between them (22). The ogb1-ddi network represents interactions between
different drugs (26). The ogbl-collab network represents authors and
mollaborations between them (26). These graphs vary in size, average degree,

Menand et al.

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

798
799
800
801
802
803
804
805

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

807
808
809
810
811
812
813
814
815
816
817

818
819
820
821
822
823
824
825

826
827
828
829
830
831

Roc Curve

Distribution of VCMPR@10 scores

Distribution of VCMPR@20 scores

-
o
-
o

7 s Y,
a
—n

) — node2vec

—— deepwalk
—— netmf
GraRep
—— RandNE
Walklets
~—— BOOStNE
—— Role2vec

4
@
4
@

o
o
o
o

o
kS
o
kS

True Positive Rate
Percent of nodes

~—— graphsage-istm
— graphsage-mean
— graphsage-pool
— hpe

0.0 — hoprec 0.0

o
N}
o
N}

— 1.0

a
—n
— node2vec 0.8

—
a
—n
— node2vec
— deepwalk
—— netmf
RandNE
— Walklets
BoOStNE
—— Role2vec
— graphsage-istm
graphsage-mean
. ‘E* graphsage-pool
— hpe
— hoprec

—— deepwalk
— netmf
RandNE
— Walklets
BOOStNE
—— Role2vec
—— graphsage-istm
graphsage-mean
—— graphsage-pool
— hpe
—— hoprec

o
o

o
=

Percent of nodes

o
N}

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4
False Positive Rate

(a) ROC Curve

MaxPR@10
(b) VCMPR@10

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
MaxPR@20

(c) VCMPR@deg20

Fig. 7. We show results for a small SBM. The SBM has a block size of 50 and 200 blocks. The AUC scores are exceptional, over 0.97 for almost all cases. However the
VCMPR values are quite low. The VCMPR@10 scores are quite low, under 0.3. Even for k = 20, there are no methods that score above 0.5, despite the fact that at this
threshold is more than half of the size of the block with the training edges removed. The data is summarized in Tab. 4.

ROC PR Avg VCMPR Avg VCMPR ROC PR Avg VCMPR Avg VCMPR

AUC AUC | @10 @20 AUC AUC | @10 @20
Common Neighbors | 0.92 0.96 0.65 0.71 Adamic Adar 0.83 0.91 0.51 0.60
Adamic Adar 0.92 0.96 | 0.70 0.75 Resource Allocation | 0.83 0.91 0.52 0.60
Resource Allocation | 0.92 0.96 0.70 0.74 Common Neighbors | 0.82 0.91 0.49 0.58
Role2Vec 0.98 0.99 0.52 0.60 HOP-Rec 0.96 0.97 0.56 0.67
Walklets 0.95 0.97 | 054 0.63 Walklets 095 0.96 | 0.47 0.59
HOP-Rec 0.95 0.97 0.64 0.71 Role2Vec 0.90 0.93 0.24 0.31
Deepwalk 0.90 0.93 | 0.37 0.41 Deepwalk 0.88 0.91 0.26 0.29
Node2Vec 0.90 0.93 0.40 0.43 Node2Vec 0.88 0.91 0.25 0.29
NetMF 0.89 0.91 0.02 0.03 GraphSage-M 0.88 0.92 | 0.31 0.37
GraphSage-M 0.86 0.89 0.27 0.30 GraphSage-MP 0.88 0.92 0.29 0.37
GraphSage-MP 0.84 0.88 | 0.23 0.26 GraphSage-L 0.87 090 | 0.21 0.26
GraphSage-L 0.84 0.87 0.17 0.20 RandNE 0.83 0.87 0.22 0.26
BoostNE 0.83 0.87 | 0.00 0.00 NetMF 0.81 0.82 | 0.00 0.01
RandNE 0.83 0.85 0.26 0.28 BoostNE 0.80 0.85 0.00 0.00
HPE 0.75 0.79 0.00 0.01 HPE 0.69 0.71 0.01 0.01

Table 5. This table complements Fig.5, which has results from link
prediction on the dblp dataset. We give the ROC-AUC, PR-AUC,
and average VCMPR@k for £ = 10,20. The AUC numbers are ex-
tremely large for real data, close to 0.9, with all methods showing
good scores. Comparatively, the average VCMPR@10 numbers are
low. Walklets gets a score of 0.56, but other methods are below
0.4.

and clustering coefficient as shown in Tab. 3. We train each model on 90%
of the edges of the graph and withhold 10% for testing. The results for
amazon can be found in Fig. 6 and Tab. 6, for dolp in Fig.5 and Tab.5,
for blog-Catalog in Fig. 1 and Tab. 1, for ogbl-collab in Fig.2 and
Tab. 2, and for ogb1-ddi in Fig. 8 and Tab. 7.

‘We do some small scale experiments with simple Stochastic Block Models
(SBMs) to make our point more compelling. We create an SBM with a block
size of 50 and 200 such blocks. Within each block, an edge is inserted with
probability 0.3. Pairs across blocks are connected with probability 0.3/n
(where n is the number of vertices). So blocks are extremely dense, and there
are few edges across blocks. We show the results in Tab. 4 and Fig. 7.

B. The connection to graph density. We show results on the dense
ogbl-ddi dataset. In Tab.7, we can see that VCMPR scores are quite
high, and in many cases, almost the same as AUC scores. For the leading
HOP-rec and Walklets algorithms, the scores are quite close to each other.
This is an empirical converse of our main result theory that connects poor
link prediction performance for low-dimensional embeddings to sparsity of
the ground truth data. When the ground truth is dense, then both AUC and
VCMPR suggest that the algorithms are performing well in link prediction.

C. Results on PPI datasets. Unlike other datasets, PPI networks tend to
have low clustering coefficients. Hence, they are not covered by our theoretical
analysis. We perform the same link prediction experiments on the PPI datasets,
Bioplex (45) and HI-II-14 (44), described by Fig.9 and Fig. 10. We
observe that AUC scores are already quite low, typically between 0.6 and 0.8.
There are few notable examples like Walklets and HOP-rec on the Biople%'
where AUC scores are above 0.85, despite having VCMPR @10 scores below

Menand et al.

Table 6. This table complements Fig. 6, which has results from link
prediction on the amazon dataset. We give the ROC-AUC, PR-AUC,
and average VCMPR@k for £ = 10,20. The AUC numbers are quite
high, with a highest of 0.97. But the average VCMPR number is quite
low. Even the highest for Walklets is at 0.58, while other methods
are lower than 0.4. The average degree is amazon is 5, so a choice
of k£ = 20 is quite large.

0.2 and VCMPR @50 scores below 0.35. Observe that NetMF has higher
VCMPR scores than Walklets, despite having lower ROC-AUC and PR-AUC
scores. But in all cases, the VCMPR scores are extremely low. Overall,
AUC is typically sufficient to demonstrate poor performance of link prediction
algorithms for such datasets. Hence, VCMPR may have limited utility for
such settings.

D. Exploration of Normalized Discounted Cumulative Gain. We also
compute a vertex-centric Normalized Discounted Continuous Gain (NDCG).
NDCG is a metric that analyzes how well a ranking method ranks relevant
documents (47). Similarly to VCMPR, we compute VCNDCG @k for some
threshold k. Formally, VCNDCG @k is computed as follows. For a given
vertex 4 of non-zero degree, we rank all other vertices j in decreasing order
of their scores. Let L be a list of the binary ground truth values ordered by
their ranking. Let I, the ideal ranking, be a list of binary ground truth values
in sorted order. We consider all ground-truth lists only contain values of 0 or
1, i.e. relevant or not. Then VCNDCG @k for the vertex 7 is defined as

k k
Ls Is
VCDCG@k = _ VCIDCG@k = _
Z logs(s+ 1) Z logs(s+ 1)
s=1 s=1

VCDCGQk

VCNDCG@Kk = ————

VCIDCGQk

We compute VCNDCG for all data-sets and plot their scores in Fig. 12. Just
as with VCMPR, the scores are quite low, which indicates that the low-
dimensional embeddings have poor overall performance.

832

PNAS | January5,2024 | vol. XXX | no. XX | 11

833
834
835
836
837
838

839
840

842
843
844
845
846
847
848

849
850
851
852
853
854

855
856
857

Roc Curve Distribution of VCMPR@10 scores Distribution of VCMPR@50 scores
10 10 — 1.0
— a
— 75 —
0.8 2 0.8 .~ —— node2vec 0847 *®
—r — deepwalk —r
o —— node2vec P m EEY == P — node2vec
& —— deepwalk B RandNE B —— deepwalk
g 06 —— netmf e 06 —— Walklets e 0.6 — netmf
= RandNE o BOOStNE o RandNE
2 o - i
3 — Walklets g —— Role2vec g — Walklets
s 04 BoostNE g 04 —— graphsage-Istm g 04 o0StNE
é —— Role2vec & —— graphsage-mean & —— Role2vec
—— graphsage-Istm —— graphsage-pool — graphsage-istm
0.2 —— graphsage-mean 0.2 —— hpe 0.2{ — graphsage-mean
—— graphsage-pool — e — graphsage-pool
e i w— Fpe
0.0 — hoprec 0.0 0.0 { — hoprec
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(a) ogb1-ddi ROC-AUC

MaxPR@10
(b) ogb1-ddi VCMPR@10

MaxPR@50
(c) ogbl-ddi VCMPR@50

Fig. 8. We compute VCMPR curves for the ogb1-ddi dataset.

Roc Curve

Distribution of VCMPR@10 scores

Distribution of VCMPR@50 scores

0.8

o
Y

—— node2vec
” — deepwalk
—— netmf

RandNE
—— Walklets

BOOStNE
—— Role2Vec
—— graphsage-Istm
—— graphsage-mean
—— graphsage-pool
— hpe

0.6

o
o

0.4

o
IS

True Positive Rate
Percent of nodes

0.2

o
N

— o 1.0

—

— aa — a

—r

—— node2vec

— deepwalk

—— netmf

~—— RandNE

— Walklets
BoOStNE

—— Role2vec

— graphsage-Istm
graphsage-mean

—— graphsage-pool

— hpe

— hoprec

—n

—— node2vec

— deepwalk

—— netmf

~—— RandNE

— Walklets
BooStNE

—— Role2vec

— graphsage-Istm

\\L graphsage-mean
—— graphsage-pool
— hpe
—— hoprec

o o o
IS o EY

Percent of nodes

o
N

0.0 —— hoprec R e ——— 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate MaxPR@10 MaxPR@50

(a) bioplex ROC-AUC

(b) bioplex VCMPR@10

(c) bioplex VCMPR@50

Fig. 9. We compute VCMPR curves for the bioplex dataset.

ROC-AUC PR-AUC | Avg VCMPR Avg VCMPR ROC-AUC PR-AUC | Avg VCMPR Avg VCMPR

@10 @50 @10 @50
Common Neighbors | 0.88 0.80 0.77 0.82 Common Neighbors | 0.65 0.81 0.10 0.19
Adamic Adar 0.88 0.80 0.78 0.82 Adamic Adar 0.65 0.81 0.10 0.19
Resource Allocation | 0.88 0.81 0.80 0.84 Resource Allocation | 0.65 0.81 0.10 0.18
Deepwalk 0.80 0.75 0.71 0.66 Deepwalk 0.73 0.76 0.06 0.12
Node2Vec 0.82 0.78 0.72 0.68 Node2Vec 0.73 0.76 0.06 0.11
NetMF 0.74 0.74 0.74 0.70 NetMF 0.80 0.85 0.16 0.31
RandNE 0.75 0.63 0.00 0.06 RandNE 0.63 0.61 0.04 0.07
Walklets 0.89 0.83 0.84 0.83 Walklets 0.86 0.90 0.13 0.27
BoostNE 0.85 0.79 0.41 0.57 BoostNE 0.50 0.75 0.00 0.00
Role2Vec 0.78 0.74 0.59 0.52 Role2Vec 0.82 0.84 0.05 0.08
GraphSage-M 0.50 0.50 0.08 0.08 GraphSage-M 0.54 0.55 0.01 0.02
GraphSage-MP 0.50 0.50 0.07 0.07 GraphSage-MP 0.59 0.59 0.01 0.02
GraphSage-L 0.50 0.50 0.07 0.07 GraphSage-L 0.53 0.53 0.00 0.01
HPE 0.82 0.76 0.38 0.46 HPE 0.82 0.86 0.11 0.26
HOP-rec 0.89 0.81 0.82 0.90 HOP-rec 0.89 0.92 0.18 0.34

Table 7. This table complements Fig. 8, which has results from link
prediction on the ogb1-ddi dataset. We give the ROC-AUC, PR-AUC
average VCMPR@Xk for & = 10, 50.

E. Comparison with Hits@k. As mentioned in the main body, the hits@k
is a global metric appropriate for knowledge completion tasks. The natural
choice of k for VCMPR is the average degree (or maybe twice average degree).
For the hits metric, the k can vary depending on the instance. On the OGBL
leaderboard, common choices are & = 20, 50. We performed a comparison of
all methods on the ogb1-col1lab dataset, where we see that VCMPR scores
are much lower than then hits scores.

We also perform the same experiments on the sbm datasets we generated.
We simply set the k& parameter to 20, for both VCMPR and hits. We see that
again, hits scores are significantly higher than VCMPR scores. The results
are summarized in Tab. 11. For example, the HOP-rec method has a hits @20
value of 0.83, but the average VCMPR @20 is 0.49. There are numerous hits
values above 0.65, where the average VCMPR @20 is less than 0.5. -

For the dense ogb1-ddi dataset, the recommended metric on OGBL is
hits@20. Here, we see the opposite: VCMPR scores are large, but the hits
scores are low. This is another indication that the hits@k and VCMPR metrics
are fundamentally different.

12 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

Table 8. This table complements Fig.9, which has results from link
prediction on the Bioplex dataset. We give the ROC-AUC, PR-AUC,
average VCMPR@k for & = 10, 50.

F. Results on entire datasets. For the same setup as described in the paper,
we compute VCMPR @k plots for the entire dataset, not just the graph consist-
ing of Etest. This includes edges seen in training. This allows us to closely
examine the local structure of the embedding. Under this setting, VCMPR @k
is defined as follows.

ti(k)
min(k, D;)

where D; is the degree of vertex 7 in the entire graph G = (V, E'). We report
the scores in Fig. 13 and Fig. 14. As expected the scores are much higher.
However, we see that in general, across all data-sets, thresholds, and methods,
very few vertices have a VCMPR of 0.8, despite the embedding having seen
80% of the graph’s edges. As before VCMPR curves drop quite steeply. This
shows that the low-dimensional node embedding methods are not capturing
much of the graph structure.

VCMPR @k for vertex ¢ =

G. Results using a variable threshold for VCMPR. We also investigate
the use of a variable threshold in our evaluation. We compute VCMPR as fol-
dsaws. Let D; be the degree of vertex ¢ in the original graph G = (V, E)

Menand et al.

859
860
861
862
863
864

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

866
867
868
869
870
871

Roc Curve

10

o 4
o)

o
=

True Positive Rate

~

—

— a

=

—— node2vec

—— deepwalk

—— netmf
RandNE

—— Walklets
BooStNE

—— Role2Vec

—— graphsage-Istm

—— graphsage-mean

—— graphsage-pool
— hpe
— hoprec

0.0 0.2

0.4 0.6

0.8 1.0
False Positive Rate

(@) HI-11-14 ROC-AUC

Percent of nodes

4
@

o
Y

o
=

o
N}

0.0

Distribution of VCMPR@10 scores

—

— aa

—

— node2vec

— deepwalk

—— netmf

~—— RandNE

— Walklets
BoOStNE

—— Role2Vec

— graphsage-Istm
—— graphsage-mean

—— graphsage-pool
— hpe
— hoprec

0.0 0.2 0.4 0.6 0.8
MaxPR@10

(b) HI-II-14 VCMPR@10

Fig. 10. We compute VCMPR curves for the HI-II-14 dataset.

ROC-AUC PR-AUC | Avg VCMPR Avg VCMPR

@10 @50
Common Neighbors | 0.64 0.79 0.05 0.10
Adamic Adar 0.65 0.79 0.05 0.11
Resource Allocation | 0.65 0.79 0.05 0.11
Deepwalk 0.61 0.62 0.02 0.04
Node2Vec 0.60 0.62 0.02 0.04
NetMF 0.71 0.75 0.03 0.09
RandNE 0.58 0.50 0.01 0.01
Walklets 0.82 0.85 0.08 0.24
BoostNE 0.50 0.75 0.00 0.00
Role2Vec 0.75 0.77 0.03 0.05
GraphSage-M 0.53 0.54 0.00 0.01
GraphSage-MP 0.60 0.62 0.01 0.04
GraphSage-L 0.50 0.51 0.00 0.02
HPE 0.69 0.70 0.02 0.07
HOP-rec 0.53 0.58 0.01 0.02

Table 9. This table complements Fig. 10, which has results from link
prediction on the HI-11-14 dataset. We give the ROC-AUC, PR-AUC,
average VCMPR@k for & = 10, 50.

and d; be the degree of 4 in the test graph Giest = (V, Etest). Then
VCMPR@Deg(v) is defined as follows:
t; (Dl)

min(D;, d;)

We set D; and d; to not be the same to ensure each threshold is sufficiently
large. This experiment is motivated by the fact that in some graphs, the degree
of vertices tends to obey a power law distribution. Under such a distribution,
a small portion of vertices are incident to a large portion of the edges. Thus,
variable thresholds may be more appropriate. The results of these experiments

are in Fig. 11 and Tab. 12, where we see low scores as before. The performance
of all methods is extremely low in comparison to the AUC scores.

VCMPR@Deg(i) for vertex ¢ =

Menand et al.

872

PNAS

o o o
= o @

Percent of nodes

o
o

0.0

Distribution of VCMPR@50 scores

—
— aa
—r
—— node2vec
— deepwalk
—— netmf
~—— RandNE
— Walklets
BoOStNE
—— Role2vec

— graphsage-Istm

- —— graphsage-mean
—— graphsage-pool
— hpe
—— hoprec

0.0 0.2 0.4 0.6 0.8
MaxPR@50

() HI-TI-14 VCMPR@50

January 5,2024 | vol. XXX

| no. XX

13

blogcatalog amazon dblp sbm collab ddi bioplex HI-II-14

Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG

@50 @10 @10 @10 @10 @50 @10 @10
Common Neighbors 0.23 0.30 0.49 0.15 0.21 0.82 0.07 0.03
Adamic Adar 0.24 0.31 0.53 0.15 0.23 0.82 0.07 0.03
Resource Allocation | 0.24 0.31 0.2 0.15 0.23 0.84 0.06 0.03
Deepwalk 0.04 0.15 0.26 0.14 0.14 0.66 0.04 0.01
Node2Vec 0.03 0.15 0.27 0.14 0.14 0.68 0.04 0.00
NetMF 0.10 0.00 0.03 0.18 0.02 0.70 0.13 0.03
RandNE 0.00 0.13 0.18 0.14 0.09 0.07 0.03 0.00
Walklets 0.14 0.34 0.42 0.17 0.20 0.05 0.09 0.05
BoostNE 0.00 0.00 0.00 0.12 0.00 0.53 0.00 0.00
Role2Vec 0.02 0.17 0.43 0.15 0.15 0.52 0.04 0.02
GraphSage-M 0.01 0.18 0.17 0.04 0.00 0.08 0.00 0.00
GraphSage-MP 0.02 0.17 0.15 0.07 0.00 0.07 0.01 0.01
GraphSage-L 0.01 0.12 0.11 0.01 0.00 0.07 0.00 0.00
HPE 0.21 0.00 0.00 0.17 0.02 0.44 0.07 0.01
HOP-rec 0.26 0.39 0.50 0.15 0.25 0.85 0.12 0.01

Table 10. This table complements Fig. 12, which plots the Normalized Discounted Cumulative Gain of each method over multiple datasets. We
give the average NDCG. We see that across all datasets, the scores are very low, typically below 0.2. Since blog-Catalog and ogbl-ddi
have high datasets, we set the parameter to be 50.

Comparison of VCMPR to Hits

sbm collab ddi bioplex

VCMPR Hits VCMPR Hits VCMPR Hits VCMPR Hits

@20 @20 | @20 @50 | @50 @20 | @50 @50
Common Neighbors | 0.50 0.52 0.31 0.53 0.82 0.18 0.19 0.32
Adamic Adar 0.50 0.74 0.34 0.65 0.82 0.18 0.19 0.32
Resource Allocation | 0.50 0.74 0.33 0.65 0.84 0.05 0.18 0.32
Deepwalk 0.44 0.53 0.21 0.22 0.66 0.01 0.12 0.31
Node2Vec 0.44 0.59 0.21 0.22 0.68 0.02 0.11 0.28
NetMF 0.50 0.73 0.03 0.35 0.70 0.00 0.31 0.58
RandNE 0.50 0.67 0.15 0.09 0.06 0.05 0.07 0.09
Walklets 0.49 0.75 0.29 0.59 0.83 0.02 0.27 0.64
BoostNE 0.31 0.64 0.00 0.08 0.57 0.04 0.00 0.00
Role2Vec 0.42 0.52 0.21 0.44 0.52 0.00 0.08 0.47
GraphSage-M 0.10 0.11 0.00 0.00 0.08 0.00 0.02 0.09
GraphSage-MP 0.23 0.44 0.00 0.00 0.07 0.00 0.02 0.10
GraphSage-L 0.03 0.04 0.00 0.00 0.07 0.00 0.01 0.07
HPE 0.50 0.69 0.02 0.21 0.46 0.00 0.26 0.54
HOP-rec 0.49 0.83 0.35 0.66 0.90 0.00 0.34 0.71

Table 11. This table compares VCMPR to Hits of each method over multiple data-sets.

VCMPR@Deg(V)

blog-

catalog amazon dblp sbm collab ddi bioplex HI-II-14
Common Neighbors | 0.16 0.14 0.35 0.08 | 0.17 0.65 | 0.05 0.02
Adamic Adar 0.16 0.15 0.38 0.08 | 0.18 0.66 | 0.05 0.02
Resource Allocation 0.16 0.14 0.38 0.08 | 0.19 0.69 | 0.05 0.02
Deepwalk 0.03 0.07 0.18 0.08 | 0.12 0.45 | 0.03 0.01
Node2Vec 0.02 0.07 0.18 0.08 | 0.11 0.49 | 0.03 0.01
NetMF 0.06 0.00 0.01 0.10 | 0.02 0.46 | 0.10 0.02
RandNE 0.00 0.06 0.12 0.08 | 0.06 0.30 | 0.02 0.00
Walklets 0.09 0.19 0.29 0.10 | 0.15 0.63 | 0.06 0.04
BoostNE 0.00 0.00 0.00 0.07 | 0.00 0.49 | 0.00 0.00
Role2Vec 0.01 0.11 0.31 0.08 | 0.11 0.35 | 0.02 0.01
GraphSage-M 0.01 0.08 0.09 0.03 | 0.00 0.07 | 0.00 0.00
GraphSage-MP 0.01 0.07 0.09 0.03 | 0.00 0.07 | 0.00 0.01
GraphSage-L 0.01 0.05 0.06 0.01 0.00 0.07 | 0.00 0.00
HPE 0.12 0.00 0.00 0.09 | 0.01 0.40 | 0.05 0.01
HOP-rec 0.18 0.22 0.36 0.08 | 0.19 0.40 | 0.09 0.01

Table 12. This table complements Fig. 11, which plots the VCMPR scores using a variable threshold based on the deg(v). We give the average
scores here. For amazon and db1p, we see a slight drop in scores when compared to the fixed thresholds.

14 |

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

Distribution of VCMPR@deg(v) scores

10 —a
—a

— node2vec
— deepwalk

o o
5 &

°
=

Percent of nodes
3

— graphsage-istm
—— graphsage-mean
— graphsage-pool
— hpe

— noprec

o
S

\

0.0

00 02 08 10

4 06
MaxPR@deg(v)

(a) blog-Catalog VCMPR@deg(v)

Distribution of VCMPR@deg(v) scores
10 —a

@

rode2vec
deepualk
retmf

FandnE
Valklets
BoostNE
Polezvec
graphsage-istm
graphsage-mean
graphsage-pool
hpe

boprec.

0.8

o
&

°
=

Percent of nodes

°
o

0.0

0.0 02 04 06 08 10
MaxPR@deg(v)

(e) ogbl-collab VCMPR@deg(v)

Distribution of VCNDCG@50 scores

@
2

node2vec
deepuialkc

netmf

RandNE

Valklets
BoostNE
Folezvec
graphsage-istm
graphsage-mean
graphsage-pool
hpe

hoprec

08

° °
= &

Percent of nodes

o
o

NRRRRRRRRRRNNE

0.0

00 02 04 06 08 10
NDCG@50

(@) blog-Catalog VCNDCG@50

Distribution of VCNDCG@10 scores

0.8

o
>

— Role2vec
— graphsage-istm
—— graphsage-mean

°
=

Percent of nodes

graphsage-pool
hpe
hoprec.

°
o

0.0

00 02 04 0.6 08 10
NDCG@10

(e) ogbl-collab VCNDCG@10

Percent of nodes

Percent of nodes

Percent of nodes

Percent of nodes

Distribution of MaxPR@deg(v) scores

a

node2vec
decpualk
netmf

RandNE
Walklets
BoostNE
Rolezvec
graphsage-istm
graphsage-mean
graphsage-pool
— e

— hoprec

EERRRRRRNNAE!

0.0 02 04 06 08 10
MaxPR@deg(v)

(b) amazon VCMPR@deg(v)

Distribution of VCMPR@deg(v) scores

— deepwalk

— netmf

—— RandnE

— Walkiets
BoostNE

— Role2vec

\ — oraphsagelstm

" — graphsage-mean

— graphsage-pool

0.0 02 0.4 06 0.8 10
MaxPR@deg(v)

(f) ogb1-ddi VCMPR@deg(v)

°
S

°
=

02

Distribution of NDCG@10 scores

@
a
node2vec
deepualk

netmf

RandNE
Walkiets
BoostNE
Rolezvec
graphsage-istm
araphsage-mean
graphsage-pool
— hpe

ERRRRRRNNAE!

0.0 02 04 06 08 10
NDCG@10

(b) amazon VCNDCG@10

Distribution of VCNDCG@50 scores

— deepwalk
— netmf
—— RandNe
— valkiets
BoostNE
— Role2vec
— graphsage-istm

— graphsage-mean

— graphsage-pool

— hpe

— hoprec

0.0 02 04 06 0.8 10
NDCG@50

(f) ogbl-ddi VCNDCG@50

Percent of nodes

Percent of nodes.

Percent of nodes

Percent of nodes

Distribution of VCMPR@deg(v) scores

— nodezvec
— deepwalk

— graphsage-stm
—— graphsage-mean
— graphsage-pool

0.0 02 04 06 08 10
MaxPR@deg(v)

(¢) dblp VCMPR@deg(v)

Distribution of VCMPR@deg(v) scores

— Role2vec
graphsage-istm
graphsage-mean

— graphsage-pool

00 02 04 0.6 08 10
MaxPR@deg(v)

(g) bioplex VCMPR@deg(v)

Distribution of VCNDCG@10 scores

— node2vec

°

— Rolezvec
— graphsage-stm
—— graphsage-mean
— graphsage-pool

04 06 08 10
NDCG@10

(¢) dblp VCNDCG@10

0.0 02

Distribution of VCNDCG@10 scores

—

n
node2vec
— deepwalk

Role2vec
graphsage-istm

graphsage-mean
— graphsage-pool

0.0 02 04 0.6 08 10
NDCG@10

(g) Bioplex VCNDCG@10

08

Percent of nodes

°

°
S

°
S

°
=

Percent of nodes

Percent of nodes

Percent of nodes

°

°
IS

Distribution of VCMPR@deg(v) scores

— a
— node2vec
— deepwalk

— Rolezvec
— graphsage-lstm
—— graphsage-mean
— graphsage-pool

0.0 02

04 06 08 10
MaxPR@deg(v)

(d) SBM VCMPR@deg(v)

Distribution of VCMPR@deg(v) scores

—
@
rode2vec
deepualk

retmf

FandnE

Valklets
BoostNE
Polezvec
graphsage-istm
graphsage-mean
graphsage-pool
hpe
hoprec.

00 02 0.4 0.6 08 10

MaxPR@deg(v)

(h) HI-I1-14 VCMPR@deg(v)
Fig. 11. We compute VCMPR curves with a variable threshold set to the degree of each vertex v in the ground-truth graph. In the more sparse amazon and db1p data-sets,
the VCMPR values are lower than in the fixed threshold plots. In the blog-Catalog dataset, the VCMPR values are slightly higher.

08

°

°
=

o

°
S

Distribution of VCNDCG@10 scores

—

— a
— node2vec
— deepwalk
— netmf

— Rolezvec
— graphsage-lstm
—— graphsage-mean
— graphsage-pool

0.0 02 04 06 08 10

NDCG@10

(d) sbr VCNDCG@10

Distribution of VCNDCG@10 scores

o
>

°
=

—
—n

— node2vec
— deepwalk
— netmf
—— RandnE
— Valklets

— graphsage-istm
— graphsage-mean
— graphsage-pool
— oe

— hoprec

0.4 0.6 08 10
NDCG@10

(h) HI-II-14 VCNDCG@10

00 02

Fig. 12. We compute VCNDCG for all datasets. Similarly to VCMPR, the VCNDCG scores are quite low, indicating that the top predictions are of poor quality. Thus most edges
are not in the top k predictions or are not ranked highly within said predictions.

Menand et al.

PNAS |

January 5, 2024 |

vol. XXX | no. XX

15

Distribution of VCMPR@10 scores Distribution of VCMPR@50 scores Distribution of VCMPR@deg(v) scores Distribution of VCNDCG@50 scores

10 — o 1.0 — 1.0 —n 10 —_—-
(e e i —
08 2 vec 08 T roduavec 08 — divec 08 N rodidvea
— — deepuatc T decpuac
3 — o 3 I 3 I — 3 R
% 06 " Renane % 06 fanane £ 06 " enine £ 06 - enane
£ — Valkdets 2 — Vlkiets 2 — Valkets £ — Valdets
5 — BoostnE 5 — BoostnE 5 — BoostE 5 — BoostNE
2 Rolezvee 2 i 2 — Foleave £ I oleavee
.00 — graphsage-tstm g o4 — oraphsagelstm g o4 — raphsage-istm .04 — oraphsagedstm
& = gaphsagermean & " gaptsagemean & " aphsagemean & " aphsagemean
L Graphsagespool | gaphyagepcel — graphsage-pool — raphsage-pool
02 o 02 e 02 e 02 — roe
= o - e i e
0.0 0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
MaxPR@10 MaxPR@50 MaxPR@deg(v) NDCG@50
(a) blog-Catalog VCMPR@10 (b) blog-Catalog VCMPR@50 (¢) blog-Catalog VCMPR@Deg(v) (d) blog-Catalog VCNDCG@50
Distribution of VCMPR@10 scores Distribution of VCMPR@20 scores Distribution of VCMPR@deg(v) scores Distribution of VCNDCG@10 scores
10 — o 1.0 — 1.0 —_— 1.0 —_-
i o - e
08 — modcvec 08 [excitivec 08 — rodezuec 08 e ivec
I ——" b e A — A —
3 g 3 et 3 et 3 ——
£ 06 T Renane g 06 — Renane ™ " ‘™ — enane
£ — valkdets 2 — Valkiets 2 — Valkiets 2 — Valkiets
5 —— BoostiE 5 —— BoosthE 5 —— BoostNE s —— BoostNE
H —— Role2vec s — Role2vec s —— Role2vec. s —— Role2vec
g0 — oraphsageistm B as — graphsage-fstm Bos — graphsage-istm fos — oraphsage istm
& St 8 S ot K — Sebhiagemean 8 Bioaas i
i eissessol o S anpangpoet
02 pe 02 hpe 02 hpe 02 hpe
e —— noprec oprec
0.0 = 0.0 o — 0.0 — 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
MaxPR@10 MaxPR@20 MaxPR@deg(v) NDCG@10
(e) amazon VCMPR@10 (f) amazon VCMPR@20 (g) amazon VCMPR@Deg(v) (h) amazon VCNDCG@10
Distribution of MaxPR@10 scores Distribution of MaxPR@20 scores Distribution of MaxPR@deg(v) scores Distribution of NDCG@10 scores
10 10 — o 10 @ 10
“‘_‘h\ﬁ_g e
0z | mstvec 08 — rodsivec 08 rodeec 08 o rediivea
S — decpuak docpualk — decpuak
g i g i g po g N et
Bosd [L —— RandnE 2o —— RandnE 306 RandNE o6 —— RandnEe
£ —— Walkiets £ — Walkiets £ Valklets £ — Valklets
5 \lH BoostiE 5 BoosthE 5 BoostNE 5 — BoostNE
H — Polezvec H — Folezvec H Fole2Vec g — Fole2vec
g4 — oraphsage-stm fi.o4 — oraphsage-stm g4 graphsage-istm fod — graphsage-stm
& ~—— graphsage-mean & —— graphsage-mean o graphsage-mean o —— graphsage-mean
el o et ekl ot Wik o o
0.2 — hpe 0.2 — hpe 0.2 hpe 0.2 — hpe
et Suicl o — T
H S]
0.0 W — 0.0 0.0 0.0 _—
0.0 0.2 0.4 0.6 08 10 0.0 02 04 0.6 0.8 10 0.0 02 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
MaxPR@10 MaxPR@20 MaxPR@deg(v) NDCG@10
(i) dblp VCMPR@10 (j) db1lp VCMPR@20 (k) dblp VCMPR@Deg(V) (I) dblp VCNDCG@10
Distribution of VCMPR@10 scores Distribution of VCMPR@20 scores Distribution of VCMPR@deg(v) scores Distribution of VCNDCG@10 scores
1.0 — o 1.0 @ 1.0 @ 1.0 @
=i - . i
08 T rodevec 08 odeavec 08 rodevec 08 it idiven
= esrae o ot — ok
3 T pere 3 et 3 et 3 I
" Ranane Fand Fande = Fanane
Zos e Zos e Zos e Zos — e
5 —— BoostNE s BoostE s BoostNE s —— BoostNE
s —— Role2vec s Role2Vec s Role2Vec < —— Role2vec
g 04 — graphsage-fstm £ 04 araphsage fstm £.04 graphsage Istm gos — oraphsagedistm
& S v e g et H sttt & L e
 raphsage poot araphsage poo waphsage-pool E Sannssgepost
02 — hpe 02 hpe 02 hpe 02 — tpe
— hoprec Poprec hoprec — hoprec
0.0 0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
MaxPR@10 MaxPR@20 MaxPR@deg(v) NDCG@10
(m) sbm VCMPR@10 (n) sbm VCMPR@20 (o) sbm VCMPR@Deg(v) (p) sbm VCNDCG@10
Distribution of VCMPR@10 scores Distribution of VCMPR@20 scores Distribution of VCMPR@deg(v) scores Distribution of VCNDCG@10 scores
10 — o 10 — o 10 — o 10 — o
[—n —n —_—n —_—n
08 = 0.8 — node2vec 0.8 — 0.8 ~—
S — N
g i — petmt g — g —
Boe Boe — ranene Sos — Sos <
£ £ —— valets £ A £ AN
2 S —— BoostNE 5 Al 5
I3 I3 —— Role2vec s —_ H
goa Y goa — oraphsagetstm g o4 = g o4
& g raphsage mean g &
B . o 2 Carhisgeool X, Guprssgsiocel e e o
0.2 ek 0.2 —— hpe 0.2 — hpe 0.2 hpe
i mh — R oprec
0.0 = E 0.0 0.0 0.0
0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 0.8 10 0.0 02 04 0.6 0.8 10 0.0 0.2 04 0.6 0.8 1.0
MaxPR@10 MaxPR@20 MaxPR@deg(v) NDCG@10
(q) ogbl-collab VCMPR@10 (r) ogbl-collab VCMPR@20 (s) ogbl-collab VCMPR@Deg(v) (t) ogbl-collab NDCG@10
Distribution of VCMPR@10 scores Distribution of VCMPR@50 scores Distribution of VCMPR@deg(v) scores Distribution of VCNDCG@50 scores
1.0 1.0 1.0 1.0
= B — e
08T 087 os{|— ™ 081
e i - i g
g | = e s = g | = e g | = e
i | — el J -
Zos| e Bos| Bos] ram LT iy
s RandNE s B RandNE s RandNE
€ —— Walklets - — b} —— Walklets = —— Walklets
8044 soosine goa{ 8041 soosine LY S ———
8 —— Roleavec 3 = Kl —— Role2vec 8 —— Role2vec
— graptsagelstm — raptsagerstm — graptsagedstm — raptsagedstm
0] eeteepernasn 02{|— aphsspboean | 021 [— withgeis 02{ — raphsagemean
 raphsage poot — raphsage-pool — araphsage-poot — raphsage-pool
D — — —
|| e 00— roprec 00{ — roprec 00— roprec
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
MaxPR@10 MaxPR@50 MaxPR@deg(v) NDCG@50

(u) ogbl-ddi VCMPR@10 (v) ogbl-ddi VCMPR@50 (W) ogbl-ddi VCMPR@Deg(v) (x) ogbl-ddi VCNDCG@50
Fig. 13. VCMPR@k scores for multiple data-sets over both the test and train edges. Despite the fact that the majority of edges have been seen by the model in training, the
VCMPR curves show that the models often do not reflect those results. b1og—-Catalog still has quite poor scores, but even for the other datasets only a small percentage of
nodes have high VCMPR scores.

16 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

°

0.4

Percent of nodes

Distribution of VCMPR@10 scores

— graphsage-istm
—— graphsage-mean
— graphsage-pool

—— tpe

— hoprec

0.0 02 04 06 08 1.0
MaxPR@10

(a) bioplex VCMPR@10

Distribution of VCMPR@10 scores

0.6

Percent of nodes

02

0.0

— graphsage-istm
~—— graphsage-mean
— graphsage-pool
— hpe

— noprec

00 02 04 06 08 10
MaxPR@10

(e) HI-TI-14 VCMPR@10

Percent of nodes

Percent of nodes

Distribution of VCMPR@50 scores

— netmf

— graphsage-istm
—— graphsage-mean
— graphsage-pool
— hpe

0.0 02 04 0.6 0.8 1.0
MaxPR@50

(b) bioplex VCMPR@50

Distribution of VCMPR@50 scores

— nodezvec

— Rolezvec
— graphsage-istm
—— graphsage-mean
—— graphsage-pool
— e

— hoprec

0.0 02 04 06 08 10
MaxPR@50

(f)HI-11-14 VCMPR@50

Percent of nodes

10 —a 10 —
—a —a
—n —n
08 — modeavec 08 — nodeavec
— decpwalk — deepwalk
E — netmf B — netmf
32 06 —— RanaNe 2 06 —— RandNe
£ — Valkets 2 — Vlkiets
s —— BoostNE s —— BoostiE
H — Role2vec H — Role2vec
goa — gaphsagefstm goa — oraphsage fstm
& —— graphsage-mean & —— graphsage-mean
— graphsage-pool —— graphsage-pool
0.2 — hpe 0.2 — hpe
— noprec — hoprec
0.0 00
00 02 0.4 06 08 10 00 02 04 06 08
MaxPR@deg(v) NDCG@10
(c) bioplex VCMPR@Deg(v) (d) bioplex VCNDCG@10
Distribution of VCMPR@deg(v) scores Distribution of VCNDCG@10 scores
10 —a 10 —
—aa —
08 nodezvec 08 node2vec
— decpwalk — deepwalk
— netmr 8 — et
06 —— RandNE B s — RandNE
— Valkiets £ — Valkiets
—— BoosthE s —— BoosthE
Roleavec H Roleavec
04 graphsage-istm g o4 graphsage-tstm
graphsage-mean & graphsage-mean
— graphsage-pool h,_— graphsage-pool
02 — e 02 X hpe
— noprec — hoprec
00 00 —
00 02 4 06 08 10 00 02 0a 06 o8 10
MaxPR@deg(v) NDCG@10

Distribution of VCMPR@deg(v) scores

Distribution of VCNDCG@10 scores

(9) HI-TI-14 VCMPR@Deg(v)

(h) HI-II-14 VCNDCG@10

Fig. 14. VCMPR@k scores for PPI data-sets over both the test and train edges. Despite the fact that the majority of edges have been seen by the model in training, the
VCMPR curves show that the models often do not reflect those results.

Menand et al.

PNAS |

January 5, 2024 |

vol. XXX | no. XX

17

Avg VCMPR Avg VCMPR Avg VCMPR | VCNDCG Avg VCMPR Avg VCMPR Avg VCMPR | VCNDCG
@10 @50 @Deg(V) @50 @10 @20 @Deg(V) @10
Common Neighbors | 0.25 0.29 0.15 0.22 Common Neighbors | 0.25 0.50 0.08 0.15
Adamic Adar 0.25 0.29 0.15 0.23 Adamic Adar 0.24 0.50 0.08 0.14
Resource Allocation | 0.20 0.18 0.12 0.17 Resource Allocation | 0.24 0.50 0.08 0.15
Deepwalk 0.19 0.17 0.12 0.16 Deepwalk 0.29 0.39 0.30 0.25
Node2Vec 0.20 0.18 0.12 0.17 Node2Vec 0.29 0.39 0.30 0.26
NetMF 0.43 0.34 0.25 0.38 NetMF 0.38 0.46 0.38 0.38
RandNE 0.03 0.02 0.02 0.03 GraRep 0.40 0.49 0.39 0.39
Walklets 0.39 0.38 0.27 0.37 RandNE 0.67 0.70 0.60 0.60
BoostNE 0.01 0.01 0.01 0.01 Walklets 0.40 0.49 0.38 0.41
Role2Vec 0.17 0.15 0.11 0.15 BoostNE 0.22 0.27 0.21 0.22
GraphSage-M 0.03 0.04 0.03 0.04 Role2Vec 0.33 0.40 0.32 0.33
GraphSage-MP 0.06 0.06 0.05 0.06 GraphSage-M 0.09 0.10 0.08 0.08
GraphSage-L 0.03 0.03 0.03 0.03 GraphSage-MP 0.14 0.19 0.15 0.12
HPE 0.49 0.43 0.29 0.44 GraphSage-L 0.03 0.03 0.03 0.03
HOP-rec 0.82 0.77 0.64 0.73 HPE 0.41 0.48 0.39 0.40
Table 13. This table complements Fig. 13, which has results from link HOP-rec 0.76 0.76 0.69 068

prediction on the entire blogcatalog dataset. We give the average ~ Table 16. This table complements Fig. 13, which has results from link
VCMPR@Xk for k = 10, 50, VCMPR@Deg(v), and VCNDCG@50. prediction on the entire sbm dataset. We give the average VCMPR@k
for k = 10, 20, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VOMPR Avg VCMPR | VCNDCG AvgVCMPR _ Avg VCMPR _ Avg VCMPR | VCNDCG
@10 @20 @Deg(V) @10
i @10 @20 @Deg(V) @10
Common Neighbors | 0.48 0.57 0.15 0.29 -

. Common Neighbor 0.27 0.31 0.17 0.22
Adamic Adar 0.52 0.59 0.15 0.31 adlc A - 054 019 024
Ee”“rcli Allocation g'iz g'i: g';‘: gg; Resource Allocation | 0.30 0.34 0.19 0.24

cepwa : . : : Deepwalk 0.62 0.56 0.40 0.56
Node2Vec 0.42 0.47 0.31 0.34
Node2Vec 0.62 0.56 0.41 0.56
NetMF 0.00 0.01 0.00 0.00 NotVE 008 008 007 008
RandNE 0.53 0.56 0.43 0.46 RondNE 061 050 033 065
Walklets 0.55 0.69 0.40 0.51 S o o1 055 063
BoostNE 0.00 0.00 0.00 0.00 B 002 002 002 002
Role2Vec 0.37 0.45 0.28 0.36 R Noc 050 045 0.4 045
GraphSage-M 0.38 0.47 0.25 0.29 GraphSage-M 0'00 0'00 0'00 0'00
GraphSage-MP 0.33 0.42 0.22 0.25 Graph Sage_MP 000 0.00 0.00 0.00
GraphSage-L 0.28 0.34 0.18 0.21 phag : : : :
GraphSage-L 0.00 0.00 0.00 0.00
HPE 0.01 0.01 0.00 0.01 ok 004 003 003 004
HOP-rec 0.67 0.78 0185 €55 HOP-rec 0.79 0.79 0.67 0.74

Table 14. This table complements Fig.13, which has results from
link prediction on the entire amazon dataset. We give the average
VCMPR@k for & = 10, 20, VCMPR@Deg(v), and VCNDCG@10.

Table 17. This table complements Fig. 13, which has results from
link prediction on the entire col1lab dataset. We give the average
VCMPR@Xk for k = 10, 20, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VCMPR Avg VCMPR | VCNDCG AvgVCMPR Avg VCMPR Avg VCMPR | VCNDCG

@10 @20 @Deg(V) @10 @10 @50 @Deg(V) @50
Common Neighbors | 0.64 070 0.34 0.48 Common Neighbors | 0.76 0.81 0.64 0.76
Adamic Adar 0.68 0.73 0.36 0.51 Adamic Adar 0.77 0.82 0.65 0.77
Resource Allocation | 0.68 0.73 0.35 0.50 Resource Allocation | 0.79 0.83 0.68 0.79
Deepwalk 0.53 0.55 0.44 0.46 Deepwalk 0.86 0.90 0.68 0.88
Node2Vec 0.53 0.54 0.43 0.45 Node2Vec 0.84 0.89 0.70 0.86
NetMF 0.03 0.03 0.02 0.02 NetMF 0.95 0.92 0.69 0.93
RandNE 0.50 0.4 0.40 0.47 RandNE 0.01 0.12 0.62 0.60
Walklets 0.67 0.75 0.55 0.65 Walklets 0.94 0.95 0.80 0.95
BoostNE 0.00 0.00 0.00 0.00 BoostNE 0.47 0.70 0.66 0.65
Role2Vec 0.52 0.57 0.39 0.51 Role2Vec 0.76 0.83 0.60 0.79
GraphSage-M 0.32 0.35 0.24 0.27 GraphSage-M 0.27 0.27 0.27 0.27
GraphSage-MP 0.26 0.28 0.21 0.22 GraphSage-MP 0.28 0.28 0.27 0.28
GraphSage-L 0.23 0.25 0.17 0.19 GraphSage-L 0.27 0.27 0.27 0.27
HPE 0.01 0.01 0.01 0.01 HPE 0.55 0.72 0.68 0.67
HOP-rec 0.77 0.82 0.66 0.74 HOP-rec 0.86 0.94 0.94 0.90

Table 15. This table complements Fig. 13, which has results from Table 18. This table complements Fig. 13, which has results from link
link prediction on the entire dblp dataset. We give the average prediction on the entire ddi dataset. We give the average VCMPR@k
VCMPR@k for k = 10, 20, VCMPR@Deg(v), and VCNDCG@10. for k = 10, 50, VCMPR@Deg(v), and VCNDCG@50.

18 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

Avg VCMPR Avg VCMPR Avg VCMPR | VCNDCG

@10 @50 @Deg(V) @10
Common Neighbors | 0.10 0.18 0.05 0.07
Adamic Adar 0.10 0.19 0.05 0.07
Resource Allocation | 0.09 0.18 0.05 0.07
Deepwalk 0.23 0.31 0.19 0.20
Node2Vec 0.23 0.31 0.19 0.20
NetMF 0.49 0.57 0.40 0.49
RandNE 0.36 0.31 0.22 0.39
Walklets 0.49 0.64 0.48 0.45
BoostNE 0.00 0.00 0.00 0.00
Role2Vec 0.28 0.42 0.25 0.25
GraphSage-M 0.01 0.02 0.01 0.01
GraphSage-MP 0.02 0.03 0.02 0.02
GraphSage-L 0.01 0.01 0.01 0.01
HPE 0.53 0.60 0.42 0.47
HOP-rec 0.64 0.74 0.67 0.57

Table 19. This table complements Fig. 14, which has results from
link prediction on the entire Bioplex dataset. We give the average
VCMPR@Xk for & = 10, 50, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VCMPR Avg VCMPR | VCNDCG

@10 @50 @Deg(V) @10
Common Neighbors | 0.04 0.10 0.02 0.03
Adamic Adar 0.05 0.11 0.02 0.03
Resource Allocation | 0.04 0.11 0.02 0.03
Deepwalk 0.17 0.25 0.13 0.16
Node2Vec 0.17 0.25 0.14 0.16
NetMF 0.42 0.52 0.34 0.45
RandNE 0.23 0.23 0.14 0.25
Walklets 0.48 0.57 0.42 0.46
BoostNE 0.00 0.00 0.00 0.00
Role2Vec 0.35 0.45 0.28 0.32
GraphSage-M 0.03 0.04 0.02 0.03
GraphSage-MP 0.04 0.06 0.03 0.04
GraphSage-L 0.02 0.03 0.01 0.02
HPE 0.36 0.42 0.26 0.33
HOP-rec 0.03 0.04 0.02 0.03

Table 20. This table complements Fig. 14, which has results from
link prediction on the entire HI-11-14 dataset. We give the average
VCMPR@Xk for k = 10, 50, VCMPR@Deg(v), and VCNDCG@10.

Menand et al. PNAS | January5,2024 | vol. XXX | no. XX | 19

	More on AUC and Local VCMPR-type measures
	Broader Context and Related Work
	Limitations
	Theoretical details
	On AUC and the rank bound

	Experimental results
	Key observations

	Details on experiments
	Results on different datasets
	The connection to graph density
	Results on PPI datasets
	Exploration of Normalized Discounted Cumulative Gain
	Comparison with Hits@k
	Results on entire datasets
	Results using a variable threshold for VCMPR

