
DRAFT

Link prediction using low-dimensional node
embeddings: the measurement problem
Nicolas Menanda,1 and C. Seshadhrib

aDepartment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104. Most of this work was done when the author was at University of
California, Santa Cruz.; bDepartment of Computer Science, University of California, Santa Cruz, CA 95064

This manuscript was compiled on January 5, 2024

Graph representation learning is a fundamental technique for ma-
chine learning on complex networks. Given an input network, these
methods represent the vertices by low-dimensional real-valued vec-
tors. These vectors can be used for a multitude of downstream ma-
chine learning tasks. We study one of the most important such task,
link prediction. Much of the recent literature on graph representation
learning has shown remarkable success in link prediction. On closer
investigation, we observe that the performance is measured by the
AUC (Area Under Curve), which suffers biases. Since the ground
truth in link prediction is sparse, we design a new vertex-centric
measure of performance, called the VCMPR@k plots. Under this
measure, we show that link predictors using graph representations
show poor scores. Despite having extremely high AUC scores, the
predictors miss much of the ground truth. We discover a mathemati-
cal connection between this performance, the sparsity of the ground
truth, and the low-dimensional geometry of the node embeddings.
Under a formal theoretical framework, we prove that low-dimensional
vectors cannot capture sparse ground truth using dot product simi-
larities (the standard practice in the literature). Our results call into
question existing results on link prediction and pose a significant
scientific challenge for graph representation learning. The VCMPR
plots identify specific scientific challenges for link prediction using
low dimensional node embeddings.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Low Dimensional Embeddings | Link Prediction | Node Embeddings | Graph Represen-
tational Learning | Machine learning metrics | AUC

Measurement is central to any scientific endeavor. Informative1

measurements are crucial to guide experiments and interpret2

results. For machine learning (ML), measurements are central to3

evaluating performance and discovering better techniques. These4

measurements have a large impact in the deployment of real ML5

systems. As such systems become a large part of modern society,6

it becomes even more important to have sound measurements of7

machine learning methods.8

Our focus is on the important field of graph machine learning,9

where ML is deployed on large complex networks. One of the recent10

advances in machine learning uses graph representation learning or11

low-dimensional node embeddings to tackle a large variety of tasks.12

The input is a graph G on n vertices. These methods map each vertex13

to a vector in Rd, where d is typically much smaller than n. (So n may14

be in millions or more, while d is typically 128.) These embeddings15

are generated in an unsupervised or self-supervised manner. The16

aim is to generate embeddings where geometric proximity (often17

measured as dot product) maps to graph proximity. The design of18

low-dimensional node embeddings is a popular and timely research19

area. We point the reader to surveys (1, 2) and Chapter 23 in (3).20

These embedding methods are evaluated by performing a down-21

stream machine learning task, such as the classic link prediction22

problem (4, 5). Recall the formulation (4, 5). We are given a graph23

G = (V, E) as part of the training data. One should think of a dy-24

namic process generating edges, and G is the current snapshot of 25

edges. Our aim is to predict the future edges amongst previously seen 26

nodes. The link predictor trains on the current snapshot G, and does 27

the following. Given a pair (i, j) of vertices, it predicts whether (i, j) 28

will be an edge. 29

We discover a fundamental measurement problem. Most contem- 30

porary literature for link prediction using node embeddings measure 31

performance by the AUC (Area Under the Curve) metric (6–19). But 32

the AUC is a measure that is meaningful for dense signal and suffers 33

from imbalance biases (20, 21). We discover that when link prediction 34

performance is measured according to localized metrics, there is a 35

significant drop in quality. This is a major scientific problem. AUC in 36

link prediction is used to benchmark algorithms (11); used to evalu- 37

ate new techniques (12); conclude properties of ML algorithms (13). 38

At least eight of the cited papers were published in the past three 39

years (12–19), and two appear in extremely high profile scientific 40

venues (12, 19). It is of central importance to have measurements that 41

lead us to correct scientific conclusions. 42

Our paper investigates the connections between alternate vertex- 43

centric link prediction measures, the sparsity of ground truth, and 44

low-dimensional node embeddings. 45

Our results. We empirically demonstrate that the AUC metric for 46

link prediction by node embedding methods leads to incorrect conclu- 47

sions on the quality. We define new vertex-centric measures, which 48

clearly show poor performance on real-world datasets. These mea- 49

sures are used to construct VCMPR plots that quantitatively demon- 50

strate the low quality on link prediction. To explain these results, 51

Significance Statement

Link prediction is a fundamental machine learning task on
complex networks, used to evaluate the central technique of
low-dimensional embeddings. Our results question the com-
mon wisdom that low-dimensional embeddings perform well in
link prediction tasks. We show that this wisdom is based on
faulty measurements (based on AUC) used to evaluate link pre-
diction. We propose new vertex-centric local measures, under
which existing low-dimensional embedding methods are shown
to fail in link prediction. We discover a mathematical connec-
tion between this poor performance and the low-dimensional
geometry of the node embeddings. Under a formal theoretical
framework, we prove that low-dimensional vectors cannot cap-
ture sparse ground truth using dot product similarities (which is
the standard practice in the literature).

N. M. and C.S. performed research, designed the experiments, analyzed the results, and wrote the
paper.

The authors declare no competing interest.

1 To whom correspondence should be addressed. E-mail: nmenand@seas.upenn.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | January 5, 2024 | vol. XXX | no. XX | 1–19

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

(a) ROC curve (b) VCMPR@10 (c) VCMPR@50
Fig. 1. We train a number of important node embedding methods for transductive link prediction on the blog-Catalog dataset (22). In the left figure, we plot the standard
ROC curves for each predictor. In the middle and right figures, we plot the distribution of VCMPR@k values, for k = 10, 50. Observe that ROC curves are typically high
leading to large AUC values. On the other hand, the VCMPR curves are quite low. This is indicative of both low precision and recall among the top predictions. The average
values are summarized in Tab. 1.

we design a theoretical framework formally showing that commonly52

used link prediction algorithms from low-dimensional embeddings53

are unlikely to get high local precision/recall values. Inspired by these54

results, we pose a concrete challenge problem for low-dimensional55

embeddings. We hope that our new measurements and challenge will56

inspire further research on this important topic.57

The VCMPR scores and empirical setup. We train a large number58

of important node embedding methods on standard graph datasets (6–59

10, 18, 23, 24). We set up a transductive link prediction experiment,60

following the same setup as the above results. We are given a training61

graph G = (V, Etr). Based on this training data G, we design a62

predictor for future edges, denoted ‰ : V
2 æ [0, 1]. One can think63

of the predictor as giving a score for each pair (i, j), which measures64

the likelihood that this pair will form an edge. The performance65

of ‰ is tested against another set Etest of edges. In practice, the66

edges Etr and Etest are generated by randomly partitioning the edges67

of an existing dataset. Note that Etest is the ground truth for our68

experiment.69

We compute the standard ROC curve (Receiver-Operator Charac-70

teristic) (25), as shown in Fig. 1a for Blog-Catalog dataset. Most71

methods perform quite well according to this plot. Similar results72

for PR curve (Precision-Recall). These plots are often summarized73

using the “Area Under the Curve” (AUC) metric, whose maximum74

value is one. We show the ROC-AUC and PR-AUC values in Tab. 1;75

consistent with the literature, we see AUC scores more than 0.7, and76

a largest score of 0.94. This would suggest good performance on77

transductive link prediction.78

For the same setup, we define the VCMPR@k plots, a vertex-
centric metric. This measure requires a closer look into link prediction
using node embeddings. For each pair of vertices (i, j), the classi-
fier/predictor computes a score based on which it predicts an edge.
For a given vertex i of non-zero degree di, we rank all other vertices j

in decreasing order of their scores. Remove pairs from Etr . Take the
top k scores from this list, and let ti(k) denote the number of ground
truth edges in this list. Meaning, there are ti(k) ground truth edges
(i, j) in the top k-entries of the (downward) sorted list.

VCMPR@k for vertex i = ti(k)
min(k, di)

Note that ti(k)/k is the precision@k, and ti(k)/di is the recall@k.79

We take the larger of these values, so that low degree vertices are not80

penalized for poor precision (since ti(k) Æ di). Roughly speaking,81

if the VCMPR@k for vertex i is ”, then a ” fraction of the top-k82

predictions (for i) are actually ground truth edges. Note that VCMPR83

is a local metric and computed at a per-vertex basis. Contrast with the84

AUC, which is a global measure. We also stress the difference from85

vanilla precision/recall@k, which is computed by ranking (a sample 86

of) all edges in the graph. (We discuss more differences and variants 87

of VCMPR subsequently.) The VCMPR plots give the complementary 88

cumulative histogram for the VCMPR values. So for x œ [0, 1], we 89

plot the fraction of vertices with VCMPR at least x. These are shown 90

in Fig. 1b and Fig. 1c. 91

ROC PR Avg VCMPR Avg VCMPR
AUC AUC @10 @50

Resource Allocation 0.95 0.95 0.26 0.30
Adamic Adar 0.95 0.94 0.27 0.30
Common Neighbors 0.94 0.94 0.26 0.29
HOP-Rec 0.96 0.95 0.27 0.33
Walklets 0.94 0.93 0.12 0.21
HPE 0.93 0.93 0.20 0.27
NetMF 0.85 0.82 0.09 0.12
Role2Vec 0.79 0.76 0.02 0.03
GraphSage-MP 0.73 0.73 0.01 0.03
BoostNE 0.70 0.63 0.00 0.00
Deepwalk 0.69 0.69 0.03 0.05
Node2Vec 0.69 0.69 0.03 0.05
RandNE 0.58 0.49 0.00 0.00
GraphSage-L 0.56 0.55 0.01 0.01
GraphSage-M 0.54 0.53 0.01 0.01

Table 1. This table complements Fig. 1, which has results from link
prediction on the blog-Catalog dataset. We give the ROC-AUC,
PR-AUC, and average VCMPR@k for k = 10, 50. We observe fairly
large AUC values, with the largest being 0.96. But the average
VCMPR@k values are quite low. For almost all methods, it is less
than 0.2, which implies poor precision and recall at the individual
vertex centric predictions.

We observe that the VCMPR scores are surprisingly low. For 92

example, even for the best method on this dataset, on average only 93

18% of the top scores are edges. And most methods have an average 94

VCMPR of less than 0.05. In some datasets, the VCMPR values 95

become a little higher (0.2 - 0.3), but nowhere near the large AUC 96

values. We observe this consistently across methods and datasets (§2). 97

Rather surprisingly, an AUC score of more than 0.7 may still lead to 98

a VCMPR of less than 0.01. This means, for an average vertex, for 99

the top (say) 50 predictions, at most one of them is a true edge. The 100

difference between the high AUC and poor VCMPR is quite dramatic. 101

The global “dense metric" of AUC is not attuned to the sparse ground 102

truth. The VCMPR@k, for small k, is an averaged “local" score, and 103

is more appropriate for sparse ground truth. 104

This measurement problem is apparent in the VCMPR plots of 105

Fig. 1b and Fig. 1c. The plots are quite low, as opposed to the high 106

ROC curves in Fig. 1a. As an example, consider the Role2Vec algo- 107

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

(a) ogbl-collab ROC-AUC (b) ogbl-collab VCMPR@10 (c) ogbl-collab VCMPR@20
Fig. 2. We train a number of important node embedding methods for transductive link prediction on the ogbl-collab dataset, a current link prediction benchmark on the
Open Graph Benchmark Leaderboard (26). In the left figure, we plot the standard ROC curves for each predictor. In the middle and right figures, we plot the distribution of
VCMPR@k values, for k = 10, 20. The low VCMPR curves clearly shows the weaknesses of existing methods. For all methods, at least 40% of the vertices have VCMPR@20
value of less than 0.3, which is quite low.

rithm (curve in pink). The VCMPR plots are almost at the bottom,108

despite the ROC curve being third from the top in Fig. 1a. We see the109

ROC curves lead to misleading interpretations on prediction quality110

and should not be the basis for algorithm evaluation. We see identical111

issues with the PR-AUC.112

The importance of being vertex-centric. We stress the difference113

such as (vanilla) precision/recall@k, as well as the hits@k metric.114

The latter is used in knowledge completion tasks (26, 27). The hits@k115

metric is global. It takes a decreasing sorted list of random nega-116

tive instances according to model score, and checks the number of117

test true positive edges that score in the top k. On the other hand,118

VCMPR@k scores are computed for every vertex. We stress that the119

k parameters for both metrics are incomparable. For example, con-120

sider the ogbl-collab dataset from the Open Graph Benchmark121

Leaderboard that comes with a specific link prediction task (26) The122

recommended metric is hits@50. For VCMPR, a natural choice of k123

is around the average vertex degree (which is 9). The average degree124

is the average length of a ground truth list, for a vertex.125

In Tab. 2, we give the average AUC, VCMPR@10, and the rec-126

ommended hits@50 metric scores for ogbl-collab dataset. The127

hits scores are significantly higher than the average VCMPR scores.128

HOP-REC, one of the embedding-based leaders on OGB, has a129

VCMPR@10 of just 0.28, while its hits score is 0.66. The hits score130

suggest reasonable performance, while the VCMPR scores are quite131

low. AUC scores are extremely high, as in Tab. 1. We get similar re-132

sults on other examples, described in the SI. Overall, the experiments133

show that the VCMPR and hits metrics are fundamentally different.134

More significant are the VCMPR plots in Fig. 2, which pinpoint135

weaknesses in a way that single scores cannot capture. For example,136

the VCMPR@20 plot shows that, for all methods, at least 40% of137

the vertices have a VCMPR@20 score less than 0.3. Metrics like138

average scores or hit@k do not reveal such problems. (A choice of 20139

is quite generous, since the average degree is 9.) One can perform a140

deeper investigation into this set to understand for which vertices the141

algorithm is failing. Many sparse applications of link prediction are142

often for personalization in recommendation systems, where a vertex-143

centric view is closer to the application. (28, 29). Global metrics do144

not provide insights at a vertex level.145

Theoretical explanation. We discover a theoretical connection be-146

tween the poor VCMPR and the low dimensional aspect of embed-147

dings. The standard scoring method for link prediction is the dot148

product (or Hadamard product) of the embedding vectors. We stress149

that almost all previous work follows this method (6–10, 18). We150

construct a framework that formalizes the notion of sparse ground151

ROC-AUC PR-AUC Avg VCMPR Hits
@10 @50

Common Neighbors 0.83 0.91 0.26 0.53
Adamic Adar 0.83 0.91 0.28 0.65
Resource Allocation 0.83 0.91 0.28 0.65
Deepwalk 0.83 0.86 0.18 0.22
Node2Vec 0.83 0.86 0.18 0.22
NetMF 0.86 0.92 0.02 0.35
RandNE 0.72 0.73 0.11 0.09
Walklets 0.88 0.92 0.22 0.59
BoostNE 0.92 0.93 0.00 0.08
Role2Vec 0.90 0.93 0.17 0.44
GraphSage-M 0.51 0.51 0.00 0.00
GraphSage-MP 0.51 0.51 0.00 0.00
GraphSage-L 0.51 0.51 0.00 0.00
HPE 0.90 0.92 0.02 0.21
HOP-rec 0.97 0.98 0.28 0.66

Table 2. This table complements Fig. 2, which has results from link
prediction on the ogbl-collab dataset. We give the ROC-AUC, PR-
AUC, average VCMPR@k for k = 10, 20, and Hits@50.

truth that should be “detectable" by scores involving dot products of 152

embedding vectors. Under this framework, we prove that the rank 153

of the embedding vectors must be nearly-linear. This is a strong 154

lower bound that counters the general notion that low-dimensional 155

embeddings with dot product based scores is a good method for link 156

prediction. 157

For link prediction, the ground truth is fundamentally sparse, since 158

the number of edges is proportional is to the number of vertices. If 159

n is the number of vertices, the total number of edges we expect 160

to see is O(n). This is much smaller than
!

n
2
"
, the total number of 161

potential edges. Alternately, the “yes class" is a tiny fraction of the 162

size of the “no class" of non-edges (as observed by Lichtenwalter and 163

Chawla (21)). 164

We explain the theoretical setup. Through some training process, 165

a node embedding method outputs a vector v̨i œ Rd for each vertex 166

i in the original graph. We represent these vectors by the d ◊ n 167

matrix V , where each column is an embedding vector. In the link 168

prediction task, the final classifier/predictor uses the vectors v̨i and v̨j 169

to determine whether (i, j) will become an edge. The most common 170

score used for prediction is the dot product v̨i · v̨j or the cosine 171

similarity v̨i · v̨j/(Îv̨iÎ2Îv̨jÎ2)* 172

Given a vertex i, we wish to predict some of the edges incident to 173

* In the latter case, we can just assume that the column vectors in V are normalized. So we will
stick with the score being the dot product.

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 3



DRAFT

i. Our first step is to formalize what it means for the ground truth to174

be “sparse", and for the signal to be “strong".175

Sparse, undirected ground truth: The total number of edges in176

the undirected graph is linear in n, the number of vertices. So, we177

expect an average vertex i to be linked with a constant number of178

other vertices. Moreover, if j is a good prediction for i, then i should179

be a good prediction for j.180

Strong signal in the scores: The set of scores with respect to i181

is the set {v̨i · v̨j |j ”= i}. We want the true positives (the edges)182

to “stand out" among these scores. By the sparsity discussed above,183

we do not want more than a constant number of candidates to stand184

out. For the vertex i, let Di be the distribution over all other vertices,185

where the probability of j is |v̨i · v̨j |/
q

j ”=i
|v̨i · v̨j |. We can interpret186

the dot product as a relative likelihood that j is a potential neighbor187

of i.188

For the signal to be strong, we expect the true positives to have189

significant probability mass in this distribution. Note that we may190

have false positives because of negative entries. (We take absolute191

values to ensure a distribution. Nonetheless, true positives should192

have high likelihood/probability in Di.) This discussion motivates193

a key definition. Let Á > 0 be a parameter; think of it as a small194

constant.195

Definition 0.1. A pair of vertices (i, j) is called significant if: both196

the probability of j in Di and the probability of i in Dj are at least Á.197

This captures the notion that j is a good prediction for i and vice198

versa. Roughly speaking 1/Á samples from Di are enough to detect199

j. Moreover, for a given i, there are at most 1/Á vertices j that form200

significant pairs.201

We formally prove that any set of vectors that contain a linear202

number of significant pairs must have near-linear rank.203

Theorem 0.2. Consider a set of vectors v̨1, v̨2, . . . , v̨n œ Rd
204

that are polynomially bounded in length. (So for some constant205

c, maxi Îv̨iÎ2/ mini Îv̨iÎ2 Æ n
c.) Suppose there are at least206

”n significant pairs among these vectors. Then, rank(V ) Ø207

poly(Á, ”, log≠1
n) ◊ n.208

The condition on polynomial boundedness is a technicality; for209

most applications, n is extremely large (millions or more), so a poly-210

nomial bound in vector length is quite reasonable. The theorem is211

proven in §1.212

Let us discuss the relevance of this theorem. The lower bound is213

quite strong with respect to the number of significant pairs. Even if214

(say) half the vertices participate in just one significant pair, the rank215

bound is still near-linear. By the contrapositive of Theorem 0.2, when216

the rank is small, then there exist o(n) significant pairs. This means217

that that ground truth “signal" is drowned in the noise. Sampling218

according to the distributions Di will not generate enough edges,219

resulting in many non-edges predicted.220

This behavior will lead to poor precision/recall at the individual221

vertex level, exactly as we see in practice. In §A, we empirically222

see that the dot product scores between edges and non-edges are223

indistinguishable. In all our experiments, the sparse signal is hard to224

distinguish from the noise. On the other hand, an average edge has a225

high-score than an average non-edge, resulting in high AUC scores.226

But this is not relevant in an actual prediction task, where we need to227

report the pairs that are most likely to be edges.228

The VCMPR challenge. Can we design low-dimensional node em-229

beddings that get high VCMPR plots for link prediction?230

Our theoretical results suggest some fundamental limitations, 231

when using dot product based scores for prediction. Our empiri- 232

cal work shows that even generalizations like the Hadamard product 233

do not give better results. Indeed, the overwhelming evidence is that 234

a new idea is required. We believe that solution may need alternate 235

geometries or kernels over low-dimensional vectors for the link pre- 236

diction process. Recent work by Chanpuriya et al have suggested 237

asymmetric factorizations and other methods to avoid weaknesses 238

of low-dimensional embeddings (30). These techniques may help 239

address this challenge. 240

We see our results as providing guidance for future work on graph 241

representation learning. Theoretical frameworks that shed light on 242

existing limitations direct us away for methods that might not hold 243

promise. Our work underscores the importance for different kinds of 244

measurements of performance for link prediction. We hope that the 245

VCMPR challenge provides a concrete problem to tackle. Regard- 246

less, we strongly advocate the use of VCMPR@k measures for link 247

prediction performance in sparse graph settings. 248

We note that there are link prediction settings where our analysis 249

might not be applicable (more discussion in §C). 250

A. More on AUC and Local VCMPR-type measures. We give 251

more insight into why AUC is a poor measure for link prediction. 252

Recall that ‰ : V
2 æ [0, 1] denotes the predictor function for future 253

edges, and Etest is the ground truth. For convenience, (i, j) ≥ 254

Etest means that (i, j) is a uniform random sample from Etest. The 255

following lemma gives an alternative definition of the ROC-AUC. 256

Lemma 0.3. (Sec. 7 of (25)) The ROC-AUC of the predictor ‰ is

Pr
(i,j)≥Etest,(iÕ,jÕ)≥(V

2 )\Etest

[‰(i, j) > ‰(iÕ
, j

Õ)]

In plain English, the AUC is the probability that an average ground 257

truth edge has a higher score than an average non-edge. (Henceforth, 258

non-edge refers to a pair not in Etest.) But the ground truth set 259

Etest has size O(|V |), because real-world graphs are sparse. The 260

complement (true negatives) has size size �(|V |2), which is many 261

orders of magnitude larger than the ground truth. Therein lies the 262

fundamental problem. If ground truth edges have above average score, 263

the AUC will be high. It is possible that there are (say) 10|Etest| 264

non-edges with score higher than the ground truth edges, but the AUC 265

is still 1 ≠ o(1). The sparsity of ground truth makes it possible to 266

have large AUC with a weak predictor. Indeed, this is what seems 267

to happen in all our experiments. We stress that the weaknesses of 268

AUC were known before (20). Lichtenwalter and Chawla specifically 269

point out issues for link prediction (21). Despite that, it is the default 270

method for evaluations of link predictors based on low-dimensional 271

embeddings. 272

VCMPR variants: The main utility of VCMPR is that is a local 273

measure, as opposed to a global measure such as Lemma 0.3. For 274

link prediction, it is crucial to understand how a predictor behaves 275

at a vertex level (how many of the top predictions for i are correct). 276

The VCMPR was chosen for easy interpretability, and is a fairly 277

permissive metric. If the ground truth degree of i is small, then the 278

denominator for VCMPR is also small. 279

In general, one can go beyond VCMPR and compute other local 280

metrics. For example, we can measure local NDCG (Normalized 281

Discounted Cumulative Gain) at each vertex. Moreover, one can 282

compute VCMPR using just the test edges or with both test and 283

train edges, and define other variations of VCMPR@k. We discuss 284

these variants in the SI and perform extensive experimentation on 285

our datasets. Across all these measures, we consistently see poor 286

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

performance for link prediction. This is a strong indication that the287

embeddings are not capturing the structure of the graph.288

B. Broader Context and Related Work. There is a rich literature289

showing that low-dimensional embeddings methods successfully per-290

form the link prediction task (6–10, 18). Despite much empirical291

work on node embeddings methods, there are fewer principled the-292

oretical results on their behavior (some recent papers address this293

topic (30–34)). There is growing evidence that hand-tuned algorithms294

can outperform embeddings methods for link prediction (11, 34). Re-295

cent work argues that certain low-dimensional embeddings cannot296

capture the cluster structure of real-world graphs (31).297

The AUC is a fundamental metric using in machine learning298

and statistical applications. Fawcett has an excellent overview of299

AUC (25). Hand argues that AUC is deeply flawed because it creates300

a data-dependent reweighting of false positives vs false negatives (20).301

Deeply relevant to our own work, Lichtenwalter and Chawla perform302

an excellent study AUC in the context on link prediction (21). They303

show that the sparsity of the ground truth is a hindrance for using304

AUC. They also suggest precision and recall measures, but not in the305

localized manner of the VCMPR plots. Unlike previous work on AUC306

and link prediction, our work specifically connects the low values of307

VCMPR measures to low-dimensional embeddings. Existing work308

shows weaknesses of sampled metrics (like AUC) in ranking a single309

list (27). The crucial difference is that VCMPR focuses on the ranking310

of many lists, one for each vertex.311

The hits@k (and precision/recall@k) metrics are fundamental312

measures in many knowledge completion tasks (35). We note the313

significant difference from personalized link prediction in the appli-314

cation. For knowledge completion, the goal is to find the potential315

edges, regardless of the endpoints. In personalized settings, we are316

given a specific vertex and want to know the potential edges incident317

to that vertex. Hence, the VCMPR metric more directly captures the318

goal.319

Graph representation learning is an immensely large topic. We320

mention the surveys (1, 2) and Chapter 23 in (3). Our experiments321

use a large variety of contemporary and classic methods (4, 6–10,322

18, 23, 24, 28, 36–39). We use the implementations of (40). The323

embedding methods span many categories, based on random walks,324

random projections, matrix factorizations, shallow embeddings, as325

well as Graph Neural Nets. (More details in §2.)326

An increasing body of literature has attempted to build theoretical327

frameworks to study this wide array of embedding algorithms. Qi328

et al provide an overarching template of matrix factorization that329

subsumes many methods (10). Several results study the theoretical330

power of GNNs (32, 33, 41). Closer to our work, some results have331

tried to understand the limitations (and power) of low-dimensional332

embeddings. We borrow many theoretical tools from a result showing333

the inability of low-dimensional SVD to preserve the triangle structure334

of real-world networks (31). Chanpuriya et al give alternate geometric335

methods to circumvent these limitations (30). It is not clear how to use336

these asymmetric embeddings to perform (symmetric) link prediction337

for undirected graphs.338

C. Limitations. Our mathematical analysis focuses on settings that339

are globally sparse, yet locally dense. (The local density appears in340

terms of having a strong signal at a vertex centric level.) This setting341

is widespread in most social network settings, often measured as low342

global density and high clustering coefficients. But for settings like343

link prediction in protein-protein interaction (PPI) networks, cluster-344

ing coefficients are low, and our vertex-centric analysis might not be345

meaningful. We run link prediction experiments on PPI networks and346

observe that AUC scores are themselves quite low. In many of these 347

experiments, VCMPR scores might not add more value. 348

Another important setting for link prediction is knowledge discov- 349

ery. In such settings, the overall density may itself be high (seen in 350

drug interaction datasets), or the vertex-centric measure might not be 351

relevant. In knowledge discovery, we may be trying to predict any 352

new edge, not just edges that are incident to a specific (set of) vertices. 353

For such problems, our theoretical analysis is not informative and 354

VCMPR metrics might not be meaningful. We perform experiments 355

on a dense drug interaction dataset, and observe that hits@k metrics 356

are probably more informative. 357

We also note that the term “density" may have different meanings. 358

We treat it in terms of the total number of edges divided by the total 359

number of possible edges. The vertex-centric measure we define 360

focuses on typical vertices which usually have low degree. 361

Regardless, we believe that AUC has fundamental flaws and should 362

not be used to measure link prediction performance. 363

1. Theoretical details 364

In this section, we prove Theorem 0.2. For the proof of our main theo- 365

rem, we will use the following lemma stated first by Swanapoel (42). 366

Lemma 1.1. [Rank lemma] Consider any square matrix M œ Rn◊n.
Then

rank(M) Ø
|
q

i
Mi,i|21q

i

q
j

|Mi,j |2
2

We prove our main theorem. 367

Proof. (of Theorem 0.2) Let us first bin the vectors based on their 368

length (the Euclidean norm Îv̨iÎ2). For integer i, let Bi denote the 369

set of vectors whose length is in [2i
, 2i+1). By the polynomial length 370

in bound, there are most c log2 n bins of vectors, for some constant c. 371

Imagine labeling each vertex by the bin that its corresponding 372

vector belongs to. We can label a pair (i, j) with the labels of i and 373

j. Formally, the label of pair (i, j) is the label/bin pair (Ba, Bb) 374

where v̨i œ Ba and v̨j œ Bb. Observe that each vertex can have at 375

most c log2 n labels, hence the total number of pair labels is at most 376

c
2 lg2

n. (We use lg to denote log2.) There are at least ”n significant 377

pairs. By averaging, there exists some pair label (Ba, Bb) (where a 378

may be equal to b), such that there are at least ”n/c
2 lg2

n significant 379

pairs with that label. In other words, for some values a, b, there are at 380

least ”n/c
2 lg2

n significant pairs between Ba and Bb. Call these the 381

marked significant pairs. Let B
Õ
a ™ Ba and B

Õ
b ™ Bb be the set of 382

vectors in these bins that participate in the significant pairs between 383

Ba and Bb. 384

By definition (Definition 0.1), each i can participate in at most 385

1/Á significant pairs. Hence, the number of marked significant pairs 386

(which are all incident to B
Õ
a) is at most |BÕ

a|/Á. As argued above, 387

the number of marked significant pairs is at least ”n/c
2 lg2

n. Hence, 388

|BÕ
a| Ø (Á”/c

2 lg2
n) ◊ n. (Similarly, for |BÕ

b|.) For convenience, let 389

C be B
Õ
a fi B

Õ
b. 390

Let V
Õ be the column matrix of the vectors in C. Let M be the 391

Gram matrix (V Õ)T (V Õ). (For convenience, let us index M with 392

respect to the original vertex labels. So Mij = v̨i · v̨j .). Observe that 393

the rank of M is the rank of V
Õ, which is at most the original rank of 394

V . By Lemma 1.1, 395

rank(V ) Ø rank(V Õ) = rank(M) =
|
q

iœC
v̨i · v̨i|2!q

iœC

q
kœC

|v̨i · v̨k|2
"

[1] 396

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 5



DRAFT

Let us begin by lower bounding the numerator. Wlog, assume a Æ b.397

By definition, C contains B
Õ
b. Moreover, |BÕ

b| Ø (Á”/c
2 lg2

n) ◊ n.398

For each vector in B
Õ
b ™ Bb, the length is at least 2b. Note that399

diagonal entry v̨i · v̨i is precisely the squared length. Hence, for any400

i œ B
Õ
b, v̨i · v̨i Ø (2b)2. Combining all our bounds,401

ÿ

iœC

|v̨i · v̨i| Ø (Á”/c
2 lg2

n)◊n◊ (2b)2 = (Á”/c
2 lg2

n)◊22b ◊n

[2]402

We now upper bound the denominator of (1). Every vertex in C

participates in a significant pair in C. Hence, for every i œ C, there
exists a j œ C such that j has probability at least Á in the distribution
Di (Definition 0.1). So,

|v̨i · v̨j |q
k ”=i

|v̨i · v̨k|
Ø Á =∆ |v̨i · v̨j | Ø Á

ÿ

kœC

|v̨i · v̨k|

By squaring and applying the l1, l2-inequality,

|v̨i · v̨j |2 Ø Á
2(

ÿ

kœC

|v̨i · v̨k|)2 Ø Á
2

ÿ

kœC

|v̨i · v̨k|2

By Cauchy-Schwartz, |v̨i · v̨j | Æ Îv̨i|2Îv̨jÎ2. All the vectors are in
C, where the length is at most the maximum length in B

Õ
b. This bound

is at most 2b+1. Hence, we deduce that

(2b+1)2 Ø Á
2

ÿ

kœC

|v̨i · v̨k|2 =∆
ÿ

kœC

|v̨i · v̨k|2 Æ 4Á
≠222b

We can now upper bound the denominator of (1). We have403 q
iœC

q
kœC

|v̨i · v̨k|2 Æ 4Á
≠222b

n. We combine this bound with404

the numerator bound of (2), and plug into (1)405

rank(V ) Ø [(Á”/c
2 lg2

n) ◊ 22b ◊ n]2
4Á≠222bn

[3]406

= (Á4
”

2
/c

4 lg4
n) ◊ 22b ◊ n

2

4 ◊ 22b ◊ n
[4]407

We can cancel out 22b
n to conclude that rank(V ) Ø408

(Á4
”

2
/4c

4 lg4
n) ◊ n.409

A. On AUC and the rank bound. As a final point, we note that the410

rank lower bound (and poor reliability performance) is consistent with411

high AUC scores. We give a simple construction demonstrating a low412

dimensional embedding that gives nearly perfect AUC scores for an413

example sparse graph. This construction also highlights the primary414

weakness of AUC as a measure for link prediction.415

Theorem 1.2. There exists a connected bounded degree graph G416

with n vertices and a corresponding constant dimension embedding417

with the following properties. The AUC of edge prediction using the418

dot product score is 1 ≠ o(1).419

Proof. Consider a graph G first formed by a disjoint collection of420

triangles. To make it connected, we add an arbitrary spanning tree that421

connects all the triangles. We will construct a randomized embedding422

with a high probability of having AUC 1 ≠ o(1). By the probabilistic423

method, there must exist some embedding with such a large AUC.424

For each triangle, let us assign an independent, Gaussian uniform425

random unit vector in Rd. All vertices in the triangle are assigned to426

this vector. Hence for every edge (i, j), v̨i · v̨j = 1. Now, consider i427

and k that are not part of a triangle. Observe that v̨i · v̨k is distributed428

as the dot product of independent Gaussian random vectors. This is429

distribution as N (0, 1/
Ô

d), a standard Gaussian with 1/
Ô

d standard430

deviation. For sufficiently large constant c, the dot product is at 431

most 1/4 with high probability. Since a 3/4-fraction of edges are in 432

triangles, the average dot product of an edge is at least 3/4. For a 433

uniform random pair, with high probability, the score is at most 1/4. 434

Hence, the expected AUC is 1 ≠ o(1). 435

Note that in this construction there are �(n2) dot products with 436

value �(1/
Ô

d). The distributions Di will have a lot of noise, and the 437

true signal (the dot product of 1) will have negligible mass. 438

2. Experimental results 439

We follow the standard setup for transductive link prediction exper- 440

iments, as done in previous work. The experimental sections of the 441

node2vec (7) or role2vec (18) papers provide good examples. The 442

datasets are described in Tab. 3, taken from (22, 43). We also include 443

two link prediction datasets from the Open Graph Benchmark (26), 444

and two protein interaction datasets from (44, 45) We choose a dense 445

dataset, ogbl-ddi, as a counterpoint to the other sparse datasets. In 446

addition, we construct a small Stochastic Block Model. We create 447

an SBM with a block size of 50 and 200 such blocks. Within each 448

block, an edge is inserted with probability 0.3. Pairs across blocks are 449

connected with probability 0.3/n (where n is the number of vertices). 450

So blocks are extremely dense, and there are very few edges across 451

blocks. 452

The edges of each dataset (graph) is split into a train and test 453

set. We put 80% of the edges in the training set and 20% in the test 454

set (called Etest earlier). We then apply an embedding method to 455

embed each vertex into a 128-dimensional vector. We describe the 456

embeddings methods in the next subsection. 457

We also follow the usual setting for transductive link prediction 458

when computing the ROC-AUC and PR-AUC. First we randomly 459

generate an equal number of negative edges to add to the test and train 460

datasets. Now we train a logistic classifier over the training dataset 461

that computes a Hadamard product to predict edges. (In most cases, 462

the optimal Hadamard product is just the dot product.) 463

To compute the VCMPR plots, we sample 1000 uniform random 464

vertices. For each sampled vertex i, we sort all other vertices in 465

decreasing order of the Hadamard product used by the classifier. We 466

remove all pairs from the training data. We then compute the precision 467

and recall of the top k entries of this sorted list, where the ground 468

truth is the neighborhood of i in Etest. 469

Nodes Edges mean clust. Trans- Triangles
degree coeff. -itivity

amazon 334K 925K 5 0.39 0.21 667K
dblp 317K 1.04M 6 0.63 0.31 2.24M
blogcatalog 10K 333K 64 0.46 0.09 5.61M
sbm 10K 75K 15 0.29 0.29 105K
ogbl-collab 235K 1.28M 9 0.71 0.34 3.66M
ogbl-ddi 4.27K 1.33M 625 0.63 0.57 27.3M
bioplex 11K 56.6K 10 0.10 0.06 29.3K
HI-II-14 4.3K 14K 6 0.05 0.03 6.62K

Table 3. Dataset Summary

Plots for blogcatalog are given in Fig. 1 and Tab. 1. Results 470

for ogbl-collab are in Fig. 2 and Tab. 2, and for the SBM are in 471

Tab. 4. All other plots and results are given in the SI. 472

Embedding Methods. We experiment on a large set of embeddings 473

methods, that subsume random walk methods, factorization meth- 474

ods, and deep models. When available, we use the implementations 475

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

of these algorithms provided by the KarateClub library (40). We476

included HOP-Rec (37), a leading method for ogbl-collab on477

the OGB leaderboard (26). For completeness, we run some classic478

non-embedding methods, such as Common Neighbors (28), Adamic479

Adar (4) and Resource Allocation (36). These methods typically have480

good performance (within top 10) on the leaderboard datasets (26).481

DeepWalk: DeepWalk (6) is a classic shallow embedding model482

that uses uniform random walks.483

Node2Vec: Node2Vec (7) is another important shallow embedding484

model.485

NetMF: NetMF (10) is a matrix factorization based model that486

approximates the DeepWalk matrix.487

GraRep: GraRep (39) is a direct matrix factorization based model.488

We ran GraRep only on small graphs.489

BoostNE: BoostNE (24) is an ensemble matrix factorization based490

embedding model.491

RandNE: RandNE (23) is a random projection based embedding492

model.493

Walklets: Walklets (8) is a random walk based embedding model494

that samples short random walks.495

Role2Vec: Role2Vec (18) is a random walk based embedding496

model that embeds vertices based on attributed random walks.497

GraphSage: GraphSage (9) is an deep learning based embedding498

algorithm. We use the unsupervised version of GraphSage, with the499

mean, LSTM and max-pooling aggregators.500

HPE: HPE (38) is a random walk based embedding model that501

embeds vertices based on preference edges.502

HOP-Rec: HOP-Rec (37) is an embedding model that combines503

random walks and matrix factorization.504

A. Key observations. High AUC values: Across all datasets and505

a majority of methods, the ROC-AUC and PR-AUC values are quite506

high (more than 0.8). For brevity, we only plot the ROC curves. We507

can see the characteristic “away from diagonal" trend that leads to high508

AUC. The AUC values are given in Tab. 1 and Tab. 4. Most methods509

give an AUC of at least 0.8 for all datasets; the maximum is at least510

0.95. Consistently, the Walklets algorithm has strong performance511

in the AUC metric. The dblp dataset appears to be easier to learn,512

since all methods give high AUC scores.513

Low VCMPR values: Across all methods and all datasets, the514

VCMPR values are quite low. We compute these values for k =515

10, 20, 50 (that is, the top 10, 20, and 50 scores for each vertex). The516

low performance for k = 10 is quite surprising, suggesting that the517

top scores are almost always non-edges. Note that VCMPR should518

go up for larger k, since recall will always increase. The average519

degrees in all the graphs are well below 50. So the VCMPR@50 is520

basically measuring recall, with a list that is much larger than the521

degree. Despite that, the values are low. For the amazon, dblp522

datasets, the average degree is at most 6, which is quite small. For523

that reason, we only measure VCMPR@10 and VCMPR@20. (For524

k = 50, it would be measuring recall over a list of almost 10 times525

the size of ground truth list, which is not meaningful.)526

For example, in the blog-Catalog dataset (Fig. 1, Tab. 1), the527

highest average VCMPR values is 0.21. Most methods have an528

average VCMPR value of less than 0.1. This means that, on the529

average, among the top 10 scores for a vertex i, at most one of them is530

a ground truth edge. We see the noise “drowning" out the signal, just531

as the theory in §1 suggests. For the dblp and amazon datasets, we532

see the same phenomenon, though the numbers are somewhat higher.533

The AUC scores for amazon are remarkably high, above 0.8. But534

the average VCMPR values are mostly at 0.3. Note that the average535

degree is 6, since VCMPR@20 is measuring how many of those536

neighbors are within the top 20 scores. This is rather permissive from 537

a prediction standpoint, and yet the values are quite low. Walklets 538

performs somewhat better, but nowhere near what the AUC would 539

suggest. (An average VCMPR@10 of 0.38 means that, for an average 540

vertex, at most 38% of the top 10 scores are actually edges.) We see a 541

similar story with the dblp dataset. 542

These results are evidence that the low-dimensional node embed- 543

ding methods are missing much of the graph structure. The high AUC 544

scores are misleading indicators of link prediction performance. In 545

numerous cases, a predictor with an AUC of more than 0.8 has an 546

average VCMPR of less than 0.05. We also compute the local NDCG 547

and consider metrics with both test and train data. The poor perfor- 548

mance is consistent across all these measures (detailed discussion in 549

the SI). 550

Quite surprisingly, we see this pattern even when evaluating non- 551

embedding based link prediction methods, such as the high performing 552

Resource Allocation method. 553

SBM experiments: The AUC values are nearly perfect, and one 554

might think that prediction is extremely accurate. But the average 555

VCMPR@10 values are quite low, typically around 0.25. Again, the 556

high AUC scores hide the fact that the link prediction is not accurate. 557

We see again the sharp contrast between AUC and the actual predictive 558

power. 559

ROC-AUC PR-AUC Avg VCMPR@10
Resource Allocation 0.96 0.98 0.26
Adamic Adar 0.96 0.98 0.26
Common Neighbors 0.96 0.98 0.26
HOP-Rec 0.99 0.99 0.26
HPE 0.99 0.99 0.25
NetMF 0.99 0.99 0.26
GraRep 0.99 0.99 0.24
Walklets 0.99 0.99 0.25
Node2Vec 0.98 0.98 0.23
Deepwalk 0.98 0.98 0.24
BoostNE 0.98 0.98 0.16
RandNE 0.98 0.98 0.24
Role2Vec 0.97 0.97 0.21
GraphSage-MP 0.76 0.82 0.11
GraphSage-M 0.72 0.77 0.06
GraphSage-L 0.69 0.71 0.02

Table 4. We run our experiments on a small SBM. Again we see the
stark contrast between AUC and VCMPR scores. AUC scores are
near perfect. But the VCMPR scores are quite low, under 0.25. See
Fig. 7

On other metrics. We get analogous results for VCNDCG 560

(vertex-centric Normalized Discounted Cumulative Gain). The VC- 561

NDCG plots are quite low, and average scores are lower than 0.2. This 562

emphasizes that the vertex-centric view highlights the weaknesses of 563

embedding-based link prediction. (Plots and more discussion in the 564

SI.) 565

We also experimented with the classic hits@k metric, which is 566

popular for knowledge completion tasks (26, 35, 46), . As discussed 567

in the introduction, the hits@k is a global metric where a predicted 568

score is compared against a sorted list of scores for ground truth edges 569

and non-edges. We note that the parameter k is incomparable for 570

hits@k and VCMPR@k, since the former considers a total list of 571

edges/pair, while the latter considers a list of edges/pairs for each 572

vertex. Tab. 2 and Fig. 2 highlight that hits@k can be quite large, 573

while corresponding VCMPR scores can be low. We give more details 574

for other datasets in the SI. 575

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 7



DRAFT
Fig. 3. We plot the network density vs clustering coefficient for all networks listed in
Tab. 3 The social networks includes the blogcatalog, ogbl-collab, and dblp
datasets. The PPI networks refers to bioplex and HI-II-14, while other networks
refers to amazon, a product co-purchasing dataset and ogbl-ddi, a drug interaction
dataset.

The connection to density. The theory and experiments related576

the weakness of AUC for sparse link prediction problems, where the577

VCMPR is able to identify weak performance. As a counterpoint, we578

do experiments on the ogbl-ddi link prediction benchmark, which579

is a dense graph. The average degree is more than one-tenth of the580

number of vertices. For this data, the VCMPR numbers are higher581

and comparable to the AUC scores. More details in the SI.582

Results on PPI networks, and the clustering coefficient con-583

nection. In Fig. 3, we plot the network density vs clustering coef-584

ficient for all the datasets we experiment with. Observe that most585

of the social networks lie far above the PPI networks (which have586

low clustering). For the latter setting, our mathematical analysis is587

not as applicable. We perform the same collection of link prediction588

experiments on the PPI datasets. We observe that AUC scores tend589

to be lower (closer to 0.5). It is likely the AUC does not suffer from590

the same problem for other datasets. There are a few algorithms, like591

Walklets, HPE, and HOP-rec that have high AUC. Nonetheless, in all592

cases, the VCMPR scores are quite low, consistent with other datasets.593

More details in the SI.594

Exploration of dot products595

In this section, we do a deeper investigation of the actual dot product596

values, to corroborate the theory in §1. Theorem 0.2 implies that597

when the rank of the vectors is low, the sparse ground truth cannot598

have significantly higher dot products than the non-edges. As a case599

study, we focus on the blogCatalog dataset, though our results600

are consistent over other graphs.601

Consider the set of vectors {v̨i} output by some embedding602

method for blogCatalog. For each vertex i, we first compute603

the average dot product v̨i · v̨j , for all edges (i, j) in the test set. Call604

this quantity ti. Then, we compute the average dot product v̨i · v̨j605

for the top 50 non-edges (i, j). Call this quantity fi. If we want to606

predictor to have detected the ground truth, we would want ti ∫ fi.607

So let us define the significance of i to be ti/fi. This is the ratio of608

the score of an average ground truth edge and the score of an average609

top-50 non-edge. The distributions (for a uniform random sample610

of 1000 vertices) are given in Fig. 4 for the Deepwalk, Walklets, and611

Role2Vec embedding methods. We mark the significance of 1 as a612

red line. (For Deepwalk, there are some negative significance values,613

since the average dot product of test edges for some i is negative.)614

For a predictor that captures the ground truth, we would expect 615

the distribution to have mass much to the right of the red line. As our 616

theory predicts for the low-dimensional vectors, this is not the case. 617

The distributions is to the left of the red line, so most vertices have 618

a significance less than 1. This means that among the top 50 scores, 619

non-edges dominate edges. 620

ACKNOWLEDGMENTS. C. Seshadhri was supported by NSF DMS- 621

2023495, CCF-1740850, 1839317, 1908384, 2245904, and ARO Award 622

W911NF1910294. 623

1. W Hamilton, Z Ying, J Leskovec, Inductive representation learning on large graphs in Neural 624

Information Processing Systems (NeurIPS). pp. 1024–1034 (2017). 625

2. I Chami, S Abu-El-Haija, B Perozzi, C Ré, K Murphy, Machine learning on graphs: A model 626

and comprehensive taxonomy. arXiv:2005.03675 (2020). 627

3. KP Murphy, Probabilistic Machine Learning: An introduction. (MIT Press), (2021). 628

4. L Adamic, E Adar, Friends and neighbors on the web. Soc. Networks 25 (2003). 629

5. D Liben-Nowell, J Kleinberg, The link prediction problem for social networks. J. Am. Soc. for 630

Inf. Sci. Technol. 58, 1019—-1031 (2007). 631

6. B Perozzi, R Al-Rfou, S Skiena, DeepWalk: Online learning of social representations in Con- 632

ference on Knowledge Discovery and Data Mining (KDD). (ACM Press), pp. 701–710 (2014). 633

7. A Grover, J Leskovec, node2vec: Scalable feature learning for networks in Conference on 634

Knowledge Discovery and Data Mining (KDD). pp. 855–864 (2016). 635

8. B Perozzi, V Kulkarni, H Chen, S Skiena, Don’t walk, skip! online learning of multi-scale net- 636

work embeddings in Advances in Social Networks Analysis and Mining. p. 258–265 (2017). 637

9. W Hamilton, Z Ying, J Leskovec, Inductive representation learning on large graphs in Neural 638

Information Processing Systems (NeurIPS). p. 11 (2017). 639

10. J Qiu, et al., Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and 640

node2vec in Conference on Web Science and Data Mining (WSDM). pp. 459–467 (2018). 641

11. S Gurukar, et al., Network representation learning: Consolidation and renewed bearing. arXiv 642

abs/1905.00987 (2019). 643

12. A Ghasemian, H Hosseinmardi, A Galstyan, A Clauset, Stacking models for nearly optimal 644

link prediction in complex networks. Proc. Natl. Acad. Sci. (PNAS) 117, 23393–23400 (2020). 645

13. A Mara, J Lijffijt, TD Bie, Benchmarking network embedding models for link prediction: Are 646

we making progress? in International Conference on Data Science and Advanced Analytics 647

(DSAA). (2020). 648

14. L Torres, KS Chan, A Galstyan, T Eliassi-Rad, Glee: Geometric laplacian eigenmap embed- 649

ding. J. Complex Networks 8 (2020). 650

15. W Huang, Y Li, Y Fang, J Fan, H Yang, Biane: Bipartite attributed network embedding in 651

Proceedings of the 43rd International ACM SIGIR Conference on Research and Development 652

in Information Retrieval. (Association for Computing Machinery), Vol. 3, p. 149–158 (2020). 653

16. L Wang, C Huang, W Ma, X Cao, S Vosoughi, Graph embedding via diffusion-wavelets- 654

based node feature distribution characterization in Proceedings of the 30th ACM International 655

Conference on Information & Knowledge Management, CIKM ’21. p. 3478–3482 (2021). 656

17. J Qiu, L Dhulipala, J Tang, R Peng, C Wang, Lightne: A lightweight graph processing system 657

for network embedding in Proceedings of the 2021 International Conference on Management 658

of Data. (Association for Computing Machinery), p. 2281–2289 (2021). 659

18. NK Ahmed, et al., Role-based graph embeddings. IEEE Transactions on Knowl. Data Eng. 660

34, 2401–2415 (2022). 661

19. L Cappelletti, et al., Grape for fast and scalable graph processing and random-walk-based 662

embedding. Nat. Comput. Sci. 3, 552–568 (2023). 663

20. DJ Hand, Measuring classifier performance: a coherent alternative to the area under the 664

ROC curve. Mach. Learn. 77, 103–123 (2009). 665

21. R Lichtenwalter, NV Chawla, Link prediction: Fair and effective evaluation in Advances in 666

Social Networks Analysis and Mining. pp. 376–383 (2012). 667

22. R Zafarani, H Liu, Social computing data repository at ASU (2009). 668

23. Z Zhang, P Cui, H Li, X Wang, W Zhu, Billion-scale network embedding with iterative random 669

projection. pp. 787–796 (2018). 670

24. J Li, L Wu, H Liu, Multi-level network embedding with boosted low-rank matrix approximation 671

in Advances in Social Networks Analysis and Mining. pp. 49–56 (2019). 672

25. T Fawcett, An introduction to roc analysis. Pattern Recognit. Lett. 117, 861—-874 (2006). 673

26. W Hu, et al., Open graph benchmark: Datasets for machine learning on graphs in Pro- 674

ceedings of the 34th International Conference on Neural Information Processing Systems, 675

NIPS’20. (Curran Associates Inc., Red Hook, NY, USA), (2020). 676

27. W Krichene, S Rendle, On sampled metrics for item recommendation in Proceedings of the 677

26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 678

’20. (Association for Computing Machinery, New York, NY, USA), p. 1748–1757 (2020). 679

28. D Liben-Nowell, J Kleinberg, The link prediction problem for social networks in Proceedings 680

of the Twelfth International Conference on Information and Knowledge Management, CIKM 681

’03. (Association for Computing Machinery, New York, NY, USA), p. 556–559 (2003). 682

29. MA Hasan, MJ Zaki, A Survey of Link Prediction in Social Networks, ed. CC Aggarwal. 683

(Springer US, Boston, MA), pp. 243–275 (2011). 684

30. S Chanpuriya, C Musco, K Sotiropoulos, CE Tsourakakis, Node embeddings and exact 685

low-rank representations of complex networks in Neural Information Processing Systems 686

(NeurIPS). (2020). 687

31. C Seshadhri, A Sharma, A Stolman, A Goel, The impossibility of low-rank representations for 688

triangle-rich complex networks. Proc. Natl. Acad. Sci. 117, 5631–5637 (2020). 689

32. A Loukas, What graph neural networks cannot learn: depth vs width in International Confer- 690

ence on Learning Representations. (2020). 691

33. VK Garg, S Jegelka, T Jaakkola, Generalization and representational limits of graph neural 692

networks. arXiv:2002.06157 (2020). 693

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

(a) Significance plot for deepwalk (b) Significance plot for Walklets (c) Significance plot for role2vec
Fig. 4. We plot the distributions of significance values for the embedding vectors generated by different methods, for the blog-Catalog dataset. Roughly speaking, the
significance value for a vertex i is the average dot product with its neighbor vectors divided the average of the top 50 v̨i · v̨j values (varying over j). The plot gives the
distribution (over vertices) of significance values. For ground truth to be captured, we would need the significance to be much higher than 1. Our theory predicts that this will not
happen, and most significance values will be much smaller. This is exactly what we see in practice. The distribution of significance values is much lower than the red line, which
is at 1.

34. A Stolman, C Levy, C Seshadhri, A Sharma, Classic graph structural features outperform694

factorization-based graph embedding methods on community labeling in SIAM Conference695

on Data Mining (SDM). pp. 388–396 (2022).696

35. A Bordes, N Usunier, A Garcia-Duran, J Weston, O Yakhnenko, Translating embeddings for697

modeling multi-relational data in Advances in Neural Information Processing Systems, eds. C698

Burges, L Bottou, M Welling, Z Ghahramani, K Weinberger. (Curran Associates, Inc.), Vol. 26,699

(2013).700

36. LLYCZ Tao Zhou, Predicting missing links via local information. The Eur. Phys. J. B 25,701

623–630 (2009).702

37. JH Yang, CM Chen, CJ Wang, MF Tsai, Hop-rec: High-order proximity for implicit recommen-703

dation in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18.704

(Association for Computing Machinery, New York, NY, USA), p. 140–144 (2018).705

38. CM Chen, MF Tsai, YC Lin, YH Yang, Query-based music recommendations via preference706

embedding in Proceedings of the 10th ACM Conference on Recommender Systems, RecSys707

’16. (Association for Computing Machinery, New York, NY, USA), p. 79–82 (2016).708

39. S Cao, W Lu, Q Xu, GraRep: Learning graph representations with global structural informa-709

tion in Conference on Information and Knowledge Management (CIKM). pp. 891–900 (2015).710

40. B Rozemberczki, O Kiss, R Sarkar, Karate Club: An API Oriented Open-source Python711

Framework for Unsupervised Learning on Graphs in Conference on Information and Knowl-712

edge Management (CIKM). (ACM), (2020).713

41. K Xu, W Hu, J Leskovec, S Jegelka, How powerful are graph neural networks? in International714

Conference on Learning Representations. (2019).715

42. K Swanapoel, The rank lemma (https://konradswanepoel.wordpress.com/2014/03/04/716

the-rank-lemma/) (2014).717

43. J Yang, J Leskovec, Defining and evaluating network communities based on ground-truth in718

Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12. (Associa-719

tion for Computing Machinery, New York, NY, USA), (2012).720

44. T Rolland, et al., A proteome-scale map of the human interactome network. Cell 159, 1212–721

1226 (2014).722

45. EL Huttlin, et al., Architecture of the human interactome defines protein communities and723

disease networks. Nature 545, 505–509 (2017).724

46. M Zhang, P Li, Y Xia, K Wang, L Jin, Revisiting graph neural networks for link prediction in725

Internation Conference on Learning Representations. (2021).726

47. K Järvelin, J Kekäläinen, Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf.727

Syst. 20, 422–446 (2002).728

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 9

https://konradswanepoel.wordpress.com/2014/03/04/the-rank-lemma/
https://konradswanepoel.wordpress.com/2014/03/04/the-rank-lemma/
https://konradswanepoel.wordpress.com/2014/03/04/the-rank-lemma/


DRAFT

(a) ROC curve (b) VCMPR@10 (c) VCMPR@20
Fig. 5. We show results for dblp dataset (43). The left figure has the standard ROC curves for each predictor. In the middle and right figures, we plot the distribution of
VCMPR@k values, for k = 10, 20. The dblp dataset has a small degree of 6, which is smaller than the choice of k. The ROC curves are quite high, consistent with the
literature. But the VCMPR values show that the predictor performance is not strong. The data is summarized in Tab. 5.

(a) ROC curve (b) VCMPR@10 (c) VCMPR@20
Fig. 6. We show results for amazon dataset (43). The amazon dataset also has a small average degree of 5, so k = 20 is significantly large for this dataset. The AUC scores
are high, more than 0.8 for almost all cases. The VCMPR values are quite low. Even for k = 20, the plots are quite low. There are very few vertices with VCMPR values above
0.7. The data is summarized in Tab. 6.

Supporting Information for “Link prediction us-729

ing low-dimensional node embeddings: the measure-730

ment problem"731

A. Details on experiments732

We give details on all the embedding methods used in our experiments. We733

have included HOP-REC, an embedding method that performs highly on the734

Open Graph Benchmark link prediction leaderboards (26). We explore general735

node embedding models, such as Node2Vec (7), NetMF (10), Role2Vec (18),736

as well as node embedding models specific designed for recommendations,737

such as Heterogenous Preference Embedding (HPE) (38) and HOP-Rec (37).738

Also, for the sake of completeness, we show results on some classic non-739

embedding methods, such as Common Neighbors (28), Adamic Adar (4), and740

Resource Allocation (36).741

DeepWalk: DeepWalk (6) is a classic shallow embedding model that uses742

uniform random walks paired with a skip-gram language model to learn a743

low dimensional embedding. DeepWalk aims to embed nodes with similar744

neighborhoods (nodes with high second order proximity) close together. We745

ran DeepWalk with the following parameters, dimension d = 128, window746

size w = 5, walks per vertex “ = 10, walk length t = 80.747

Node2Vec: Node2Vec (7) is another important shallow embedding model748

that expands on the random walks used in DeepWalk by introducing a transition749

probability associated with the 2nd order random walks. These two parameters750

correspond to the random walk behaving more like BFS or DFS, and is meant751

to help balance between the walk staying near the start vertex and exploring the752

graph. We ran Node2Vec with the following parameters, dimension d = 128,753

window size w = 5, walks per vertex “ = 10, walk length t = 80, p = 1,754

q = 1.755

NetMF: NetMF (10) is a matrix factorization based model that approxi-756

mates the DeepWalk matrix for a graph. The NetMF paper also showed that757

the previous random walk based models can be expressed in terms of matrix758

factorization with closed forms. We ran NetMF with the following parameters,759

dimension d = 128, 10 SVD iterations, and 2 PMI matrix powers.760

BoostNE: BoostNE (24) is an ensemble matrix factorization based em-761

bedding model. It iteratively factorizes the residual of the connectivity matrix762

found by NetMF to produce multiple weak embedding representations. These763

are combined with a gradient boosting technique to produce a final embed-764

ding. We ran BoostNE with the following parameters d = 128, 16 boosting765

iterations, and for the NetMF calls, we use 2 PMI matrix powers. 766

RandNE: RandNE (23) is a random projection based embedding model 767

that embeds the graph by using a Gaussian random projection. We ran RandNE 768

with dimension d = 128, iterations q = 2 and an unweighted average 769

–0 = –1 = 0.5. 770

Walklets: Walklets (8) is a random walk based embedding model that 771

generates multi-scale relationships of vertices by sub sampling short random 772

walks on the vertices of the graph. The parameters we choose for Walklets 773

are dimension d = 128, window size w = 4, walks per vertex “ = 10, walk 774

length t = 80. 775

Role2Vec: Role2Vec (18) is a random walk based embedding model that 776

embeds vertices based on attributed random walks. An attributed random 777

walk is a random walk on adjacent vertex types, where a type is defined by 778

Weisfeiler-Lehman structural features. We set the parameters of Role2Vec 779

to be d = 128, window size w = 2, walks per vertex “ = 10, walk length 780

t = 80. 781

GraphSage: GraphSage (9) is an deep learning based embedding algo- 782

rithm. We use the unsupervised version of GraphSage, with the mean, LSTM 783

and max-pooling aggregators. We set the parameters of GraphSage to have 784

output dimension d = 128, number of iterations 10,000, and the identity 785

dimension to be 128. 786

HPE: HPE (38) is an embedding method specifically designed for rec- 787

ommender systems. It first constructs a preference matrix, then creates an 788

embedding of this preference matrix using random walks. We set the param- 789

eters of HPE to be dimension to be 128, number of negative samples per 790

positive to be 5, window size 5, and learning rate 0.025. 791

HOP-REC: HOP-REC (37) is a embedding method designed specifically 792

for recommendations. It combines factorizations of the adjacency matrix and 793

higher order matrices approximated by random walks. We set the parameters 794

of HOP-REC to be dimension to be 128, number of updates to be 500, number 795

of negative samples per positive to be 5, window size 5, and learning rate 796

0.025. 797

A. Results on different datasets. We analyze the above models on the 798

following datasets. The amazon product co-purchasing network represents 799

products that are frequently purchased together as edges between vertices 800

in the graph (43). The dblp collaboration network is an unweighted graph 801

where edges represents two authors publishing 1 or more papers together (43). 802

The blog-Catalog social network represents bloggers and friendships 803

between them (22). The ogbl-ddi network represents interactions between 804

different drugs (26). The ogbl-collab network represents authors and 805

collaborations between them (26). These graphs vary in size, average degree,806

10 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

(a) ROC Curve (b) VCMPR@10 (c) VCMPR@deg20
Fig. 7. We show results for a small SBM. The SBM has a block size of 50 and 200 blocks. The AUC scores are exceptional, over 0.97 for almost all cases. However the
VCMPR values are quite low. The VCMPR@10 scores are quite low, under 0.3. Even for k = 20, there are no methods that score above 0.5, despite the fact that at this
threshold is more than half of the size of the block with the training edges removed. The data is summarized in Tab. 4.

ROC PR Avg VCMPR Avg VCMPR
AUC AUC @10 @20

Common Neighbors 0.92 0.96 0.65 0.71
Adamic Adar 0.92 0.96 0.70 0.75
Resource Allocation 0.92 0.96 0.70 0.74
Role2Vec 0.98 0.99 0.52 0.60
Walklets 0.95 0.97 0.54 0.63
HOP-Rec 0.95 0.97 0.64 0.71
Deepwalk 0.90 0.93 0.37 0.41
Node2Vec 0.90 0.93 0.40 0.43
NetMF 0.89 0.91 0.02 0.03
GraphSage-M 0.86 0.89 0.27 0.30
GraphSage-MP 0.84 0.88 0.23 0.26
GraphSage-L 0.84 0.87 0.17 0.20
BoostNE 0.83 0.87 0.00 0.00
RandNE 0.83 0.85 0.26 0.28
HPE 0.75 0.79 0.00 0.01

Table 5. This table complements Fig. 5, which has results from link
prediction on the dblp dataset. We give the ROC-AUC, PR-AUC,
and average VCMPR@k for k = 10, 20. The AUC numbers are ex-
tremely large for real data, close to 0.9, with all methods showing
good scores. Comparatively, the average VCMPR@10 numbers are
low. Walklets gets a score of 0.56, but other methods are below
0.4.

and clustering coefficient as shown in Tab. 3. We train each model on 90%807

of the edges of the graph and withhold 10% for testing. The results for808

amazon can be found in Fig. 6 and Tab. 6, for dblp in Fig. 5 and Tab. 5,809

for blog-Catalog in Fig. 1 and Tab. 1, for ogbl-collab in Fig. 2 and810

Tab. 2, and for ogbl-ddi in Fig. 8 and Tab. 7.811

We do some small scale experiments with simple Stochastic Block Models812

(SBMs) to make our point more compelling. We create an SBM with a block813

size of 50 and 200 such blocks. Within each block, an edge is inserted with814

probability 0.3. Pairs across blocks are connected with probability 0.3/n815

(where n is the number of vertices). So blocks are extremely dense, and there816

are few edges across blocks. We show the results in Tab. 4 and Fig. 7.817

B. The connection to graph density. We show results on the dense818

ogbl-ddi dataset. In Tab. 7, we can see that VCMPR scores are quite819

high, and in many cases, almost the same as AUC scores. For the leading820

HOP-rec and Walklets algorithms, the scores are quite close to each other.821

This is an empirical converse of our main result theory that connects poor822

link prediction performance for low-dimensional embeddings to sparsity of823

the ground truth data. When the ground truth is dense, then both AUC and824

VCMPR suggest that the algorithms are performing well in link prediction.825

C. Results on PPI datasets. Unlike other datasets, PPI networks tend to826

have low clustering coefficients. Hence, they are not covered by our theoretical827

analysis. We perform the same link prediction experiments on the PPI datasets,828

Bioplex (45) and HI-II-14 (44), described by Fig. 9 and Fig. 10. We829

observe that AUC scores are already quite low, typically between 0.6 and 0.8.830

There are few notable examples like Walklets and HOP-rec on the Bioplex831

where AUC scores are above 0.85, despite having VCMPR@10 scores below 832

ROC PR Avg VCMPR Avg VCMPR
AUC AUC @10 @20

Adamic Adar 0.83 0.91 0.51 0.60
Resource Allocation 0.83 0.91 0.52 0.60
Common Neighbors 0.82 0.91 0.49 0.58
HOP-Rec 0.96 0.97 0.56 0.67
Walklets 0.95 0.96 0.47 0.59
Role2Vec 0.90 0.93 0.24 0.31
Deepwalk 0.88 0.91 0.26 0.29
Node2Vec 0.88 0.91 0.25 0.29
GraphSage-M 0.88 0.92 0.31 0.37
GraphSage-MP 0.88 0.92 0.29 0.37
GraphSage-L 0.87 0.90 0.21 0.26
RandNE 0.83 0.87 0.22 0.26
NetMF 0.81 0.82 0.00 0.01
BoostNE 0.80 0.85 0.00 0.00
HPE 0.69 0.71 0.01 0.01

Table 6. This table complements Fig. 6, which has results from link
prediction on the amazon dataset. We give the ROC-AUC, PR-AUC,
and average VCMPR@k for k = 10, 20. The AUC numbers are quite
high, with a highest of 0.97. But the average VCMPR number is quite
low. Even the highest for Walklets is at 0.58, while other methods
are lower than 0.4. The average degree is amazon is 5, so a choice
of k = 20 is quite large.

0.2 and VCMPR@50 scores below 0.35. Observe that NetMF has higher 833

VCMPR scores than Walklets, despite having lower ROC-AUC and PR-AUC 834

scores. But in all cases, the VCMPR scores are extremely low. Overall, 835

AUC is typically sufficient to demonstrate poor performance of link prediction 836

algorithms for such datasets. Hence, VCMPR may have limited utility for 837

such settings. 838

D. Exploration of Normalized Discounted Cumulative Gain. We also
compute a vertex-centric Normalized Discounted Continuous Gain (NDCG).
NDCG is a metric that analyzes how well a ranking method ranks relevant
documents (47). Similarly to VCMPR, we compute VCNDCG@k for some
threshold k. Formally, VCNDCG@k is computed as follows. For a given
vertex i of non-zero degree, we rank all other vertices j in decreasing order
of their scores. Let L be a list of the binary ground truth values ordered by
their ranking. Let I , the ideal ranking, be a list of binary ground truth values
in sorted order. We consider all ground-truth lists only contain values of 0 or
1, i.e. relevant or not. Then VCNDCG@k for the vertex i is defined as

VCDCG@k =
kÿ

s=1

Ls

log2(s + 1)
VCIDCG@k =

kÿ

s=1

Is

log2(s + 1)

VCNDCG@k = V CDCG@k

V CIDCG@k
We compute VCNDCG for all data-sets and plot their scores in Fig. 12. Just 839

as with VCMPR, the scores are quite low, which indicates that the low- 840

dimensional embeddings have poor overall performance.841

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 11



DRAFT

(a) ogbl-ddi ROC-AUC (b) ogbl-ddi VCMPR@10 (c) ogbl-ddi VCMPR@50
Fig. 8. We compute VCMPR curves for the ogbl-ddi dataset.

(a) bioplex ROC-AUC (b) bioplex VCMPR@10 (c) bioplex VCMPR@50
Fig. 9. We compute VCMPR curves for the bioplex dataset.

ROC-AUC PR-AUC Avg VCMPR Avg VCMPR
@10 @50

Common Neighbors 0.88 0.80 0.77 0.82
Adamic Adar 0.88 0.80 0.78 0.82
Resource Allocation 0.88 0.81 0.80 0.84
Deepwalk 0.80 0.75 0.71 0.66
Node2Vec 0.82 0.78 0.72 0.68
NetMF 0.74 0.74 0.74 0.70
RandNE 0.75 0.63 0.00 0.06
Walklets 0.89 0.83 0.84 0.83
BoostNE 0.85 0.79 0.41 0.57
Role2Vec 0.78 0.74 0.59 0.52
GraphSage-M 0.50 0.50 0.08 0.08
GraphSage-MP 0.50 0.50 0.07 0.07
GraphSage-L 0.50 0.50 0.07 0.07
HPE 0.82 0.76 0.38 0.46
HOP-rec 0.89 0.81 0.82 0.90

Table 7. This table complements Fig. 8, which has results from link
prediction on the ogbl-ddi dataset. We give the ROC-AUC, PR-AUC
average VCMPR@k for k = 10, 50.

E. Comparison with Hits@k. As mentioned in the main body, the hits@k842

is a global metric appropriate for knowledge completion tasks. The natural843

choice of k for VCMPR is the average degree (or maybe twice average degree).844

For the hits metric, the k can vary depending on the instance. On the OGBL845

leaderboard, common choices are k = 20, 50. We performed a comparison of846

all methods on the ogbl-collab dataset, where we see that VCMPR scores847

are much lower than then hits scores.848

We also perform the same experiments on the sbm datasets we generated.849

We simply set the k parameter to 20, for both VCMPR and hits. We see that850

again, hits scores are significantly higher than VCMPR scores. The results851

are summarized in Tab. 11. For example, the HOP-rec method has a hits@20852

value of 0.83, but the average VCMPR@20 is 0.49. There are numerous hits853

values above 0.65, where the average VCMPR@20 is less than 0.5.854

For the dense ogbl-ddi dataset, the recommended metric on OGBL is855

hits@20. Here, we see the opposite: VCMPR scores are large, but the hits856

scores are low. This is another indication that the hits@k and VCMPR metrics857

are fundamentally different. 858

ROC-AUC PR-AUC Avg VCMPR Avg VCMPR
@10 @50

Common Neighbors 0.65 0.81 0.10 0.19
Adamic Adar 0.65 0.81 0.10 0.19
Resource Allocation 0.65 0.81 0.10 0.18
Deepwalk 0.73 0.76 0.06 0.12
Node2Vec 0.73 0.76 0.06 0.11
NetMF 0.80 0.85 0.16 0.31
RandNE 0.63 0.61 0.04 0.07
Walklets 0.86 0.90 0.13 0.27
BoostNE 0.50 0.75 0.00 0.00
Role2Vec 0.82 0.84 0.05 0.08
GraphSage-M 0.54 0.55 0.01 0.02
GraphSage-MP 0.59 0.59 0.01 0.02
GraphSage-L 0.53 0.53 0.00 0.01
HPE 0.82 0.86 0.11 0.26
HOP-rec 0.89 0.92 0.18 0.34

Table 8. This table complements Fig. 9, which has results from link
prediction on the Bioplex dataset. We give the ROC-AUC, PR-AUC,
average VCMPR@k for k = 10, 50.

F. Results on entire datasets. For the same setup as described in the paper,
we compute VCMPR@k plots for the entire dataset, not just the graph consist-
ing of Etest. This includes edges seen in training. This allows us to closely
examine the local structure of the embedding. Under this setting, VCMPR@k
is defined as follows.

VCMPR@k for vertex i = ti(k)
min(k, Di)

where Di is the degree of vertex i in the entire graph G = (V, E). We report 859

the scores in Fig. 13 and Fig. 14. As expected the scores are much higher. 860

However, we see that in general, across all data-sets, thresholds, and methods, 861

very few vertices have a VCMPR of 0.8, despite the embedding having seen 862

80% of the graph’s edges. As before VCMPR curves drop quite steeply. This 863

shows that the low-dimensional node embedding methods are not capturing 864

much of the graph structure.865

G. Results using a variable threshold for VCMPR. We also investigate
the use of a variable threshold in our evaluation. We compute VCMPR as fol-
lows. Let Di be the degree of vertex i in the original graph G = (V, E)

12 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

(a) HI-II-14 ROC-AUC (b) HI-II-14 VCMPR@10 (c) HI-II-14 VCMPR@50
Fig. 10. We compute VCMPR curves for the HI-II-14 dataset.

ROC-AUC PR-AUC Avg VCMPR Avg VCMPR
@10 @50

Common Neighbors 0.64 0.79 0.05 0.10
Adamic Adar 0.65 0.79 0.05 0.11
Resource Allocation 0.65 0.79 0.05 0.11
Deepwalk 0.61 0.62 0.02 0.04
Node2Vec 0.60 0.62 0.02 0.04
NetMF 0.71 0.75 0.03 0.09
RandNE 0.58 0.50 0.01 0.01
Walklets 0.82 0.85 0.08 0.24
BoostNE 0.50 0.75 0.00 0.00
Role2Vec 0.75 0.77 0.03 0.05
GraphSage-M 0.53 0.54 0.00 0.01
GraphSage-MP 0.60 0.62 0.01 0.04
GraphSage-L 0.50 0.51 0.00 0.02
HPE 0.69 0.70 0.02 0.07
HOP-rec 0.53 0.58 0.01 0.02

Table 9. This table complements Fig. 10, which has results from link
prediction on the HI-II-14 dataset. We give the ROC-AUC, PR-AUC,
average VCMPR@k for k = 10, 50.

and di be the degree of i in the test graph Gtest = (V, Etest). Then
VCMPR@Deg(v) is defined as follows:

VCMPR@Deg(i) for vertex i = ti(Di)
min(Di, di)

We set Di and di to not be the same to ensure each threshold is sufficiently866

large. This experiment is motivated by the fact that in some graphs, the degree867

of vertices tends to obey a power law distribution. Under such a distribution,868

a small portion of vertices are incident to a large portion of the edges. Thus,869

variable thresholds may be more appropriate. The results of these experiments870

are in Fig. 11 and Tab. 12, where we see low scores as before. The performance871

of all methods is extremely low in comparison to the AUC scores. 872

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 13



DRAFT

blogcatalog amazon dblp sbm collab ddi bioplex HI-II-14
Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG Avg VCNDCG
@50 @10 @10 @10 @10 @50 @10 @10

Common Neighbors 0.23 0.30 0.49 0.15 0.21 0.82 0.07 0.03
Adamic Adar 0.24 0.31 0.53 0.15 0.23 0.82 0.07 0.03
Resource Allocation 0.24 0.31 0.2 0.15 0.23 0.84 0.06 0.03
Deepwalk 0.04 0.15 0.26 0.14 0.14 0.66 0.04 0.01
Node2Vec 0.03 0.15 0.27 0.14 0.14 0.68 0.04 0.00
NetMF 0.10 0.00 0.03 0.18 0.02 0.70 0.13 0.03
RandNE 0.00 0.13 0.18 0.14 0.09 0.07 0.03 0.00
Walklets 0.14 0.34 0.42 0.17 0.20 0.05 0.09 0.05
BoostNE 0.00 0.00 0.00 0.12 0.00 0.53 0.00 0.00
Role2Vec 0.02 0.17 0.43 0.15 0.15 0.52 0.04 0.02
GraphSage-M 0.01 0.18 0.17 0.04 0.00 0.08 0.00 0.00
GraphSage-MP 0.02 0.17 0.15 0.07 0.00 0.07 0.01 0.01
GraphSage-L 0.01 0.12 0.11 0.01 0.00 0.07 0.00 0.00
HPE 0.21 0.00 0.00 0.17 0.02 0.44 0.07 0.01
HOP-rec 0.26 0.39 0.50 0.15 0.25 0.85 0.12 0.01

Table 10. This table complements Fig. 12, which plots the Normalized Discounted Cumulative Gain of each method over multiple datasets. We
give the average NDCG. We see that across all datasets, the scores are very low, typically below 0.2. Since blog-Catalog and ogbl-ddi
have high datasets, we set the parameter to be 50.

Comparison of VCMPR to Hits
sbm collab ddi bioplex

VCMPR Hits VCMPR Hits VCMPR Hits VCMPR Hits
@20 @20 @20 @50 @50 @20 @50 @50

Common Neighbors 0.50 0.52 0.31 0.53 0.82 0.18 0.19 0.32
Adamic Adar 0.50 0.74 0.34 0.65 0.82 0.18 0.19 0.32
Resource Allocation 0.50 0.74 0.33 0.65 0.84 0.05 0.18 0.32
Deepwalk 0.44 0.53 0.21 0.22 0.66 0.01 0.12 0.31
Node2Vec 0.44 0.59 0.21 0.22 0.68 0.02 0.11 0.28
NetMF 0.50 0.73 0.03 0.35 0.70 0.00 0.31 0.58
RandNE 0.50 0.67 0.15 0.09 0.06 0.05 0.07 0.09
Walklets 0.49 0.75 0.29 0.59 0.83 0.02 0.27 0.64
BoostNE 0.31 0.64 0.00 0.08 0.57 0.04 0.00 0.00
Role2Vec 0.42 0.52 0.21 0.44 0.52 0.00 0.08 0.47
GraphSage-M 0.10 0.11 0.00 0.00 0.08 0.00 0.02 0.09
GraphSage-MP 0.23 0.44 0.00 0.00 0.07 0.00 0.02 0.10
GraphSage-L 0.03 0.04 0.00 0.00 0.07 0.00 0.01 0.07
HPE 0.50 0.69 0.02 0.21 0.46 0.00 0.26 0.54
HOP-rec 0.49 0.83 0.35 0.66 0.90 0.00 0.34 0.71

Table 11. This table compares VCMPR to Hits of each method over multiple data-sets.

VCMPR@Deg(V)
blog-
catalog amazon dblp sbm collab ddi bioplex HI-II-14

Common Neighbors 0.16 0.14 0.35 0.08 0.17 0.65 0.05 0.02
Adamic Adar 0.16 0.15 0.38 0.08 0.18 0.66 0.05 0.02
Resource Allocation 0.16 0.14 0.38 0.08 0.19 0.69 0.05 0.02
Deepwalk 0.03 0.07 0.18 0.08 0.12 0.45 0.03 0.01
Node2Vec 0.02 0.07 0.18 0.08 0.11 0.49 0.03 0.01
NetMF 0.06 0.00 0.01 0.10 0.02 0.46 0.10 0.02
RandNE 0.00 0.06 0.12 0.08 0.06 0.30 0.02 0.00
Walklets 0.09 0.19 0.29 0.10 0.15 0.63 0.06 0.04
BoostNE 0.00 0.00 0.00 0.07 0.00 0.49 0.00 0.00
Role2Vec 0.01 0.11 0.31 0.08 0.11 0.35 0.02 0.01
GraphSage-M 0.01 0.08 0.09 0.03 0.00 0.07 0.00 0.00
GraphSage-MP 0.01 0.07 0.09 0.03 0.00 0.07 0.00 0.01
GraphSage-L 0.01 0.05 0.06 0.01 0.00 0.07 0.00 0.00
HPE 0.12 0.00 0.00 0.09 0.01 0.40 0.05 0.01
HOP-rec 0.18 0.22 0.36 0.08 0.19 0.40 0.09 0.01

Table 12. This table complements Fig. 11, which plots the VCMPR scores using a variable threshold based on the deg(v). We give the average
scores here. For amazon and dblp, we see a slight drop in scores when compared to the fixed thresholds.

14 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT
(a) blog-Catalog VCMPR@deg(v) (b) amazon VCMPR@deg(v) (c) dblp VCMPR@deg(v) (d) SBM VCMPR@deg(v)

(e) ogbl-collab VCMPR@deg(v) (f) ogbl-ddi VCMPR@deg(v) (g) bioplex VCMPR@deg(v) (h) HI-II-14 VCMPR@deg(v)
Fig. 11. We compute VCMPR curves with a variable threshold set to the degree of each vertex v in the ground-truth graph. In the more sparse amazon and dblp data-sets,
the VCMPR values are lower than in the fixed threshold plots. In the blog-Catalog dataset, the VCMPR values are slightly higher.

(a) blog-Catalog VCNDCG@50 (b) amazon VCNDCG@10 (c) dblp VCNDCG@10 (d) sbm VCNDCG@10

(e) ogbl-collab VCNDCG@10 (f) ogbl-ddi VCNDCG@50 (g) Bioplex VCNDCG@10 (h) HI-II-14 VCNDCG@10
Fig. 12. We compute VCNDCG for all datasets. Similarly to VCMPR, the VCNDCG scores are quite low, indicating that the top predictions are of poor quality. Thus most edges
are not in the top k predictions or are not ranked highly within said predictions.

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 15



DRAFT

(a) blog-Catalog VCMPR@10 (b) blog-Catalog VCMPR@50 (c) blog-Catalog VCMPR@Deg(v) (d) blog-Catalog VCNDCG@50

(e) amazon VCMPR@10 (f) amazon VCMPR@20 (g) amazon VCMPR@Deg(v) (h) amazon VCNDCG@10

(i) dblp VCMPR@10 (j) dblp VCMPR@20 (k) dblp VCMPR@Deg(V) (l) dblp VCNDCG@10

(m) sbm VCMPR@10 (n) sbm VCMPR@20 (o) sbm VCMPR@Deg(v) (p) sbm VCNDCG@10

(q) ogbl-collab VCMPR@10 (r) ogbl-collab VCMPR@20 (s) ogbl-collab VCMPR@Deg(v) (t) ogbl-collab NDCG@10

(u) ogbl-ddi VCMPR@10 (v) ogbl-ddi VCMPR@50 (w) ogbl-ddi VCMPR@Deg(v) (x) ogbl-ddi VCNDCG@50
Fig. 13. VCMPR@k scores for multiple data-sets over both the test and train edges. Despite the fact that the majority of edges have been seen by the model in training, the
VCMPR curves show that the models often do not reflect those results. blog-Catalog still has quite poor scores, but even for the other datasets only a small percentage of
nodes have high VCMPR scores.

16 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT(a) bioplex VCMPR@10 (b) bioplex VCMPR@50 (c) bioplex VCMPR@Deg(v) (d) bioplex VCNDCG@10

(e) HI-II-14 VCMPR@10 (f) HI-II-14 VCMPR@50 (g) HI-II-14 VCMPR@Deg(v) (h) HI-II-14 VCNDCG@10
Fig. 14. VCMPR@k scores for PPI data-sets over both the test and train edges. Despite the fact that the majority of edges have been seen by the model in training, the
VCMPR curves show that the models often do not reflect those results.

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 17



DRAFT

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @50 @Deg(V) @50

Common Neighbors 0.25 0.29 0.15 0.22
Adamic Adar 0.25 0.29 0.15 0.23
Resource Allocation 0.20 0.18 0.12 0.17
Deepwalk 0.19 0.17 0.12 0.16
Node2Vec 0.20 0.18 0.12 0.17
NetMF 0.43 0.34 0.25 0.38
RandNE 0.03 0.02 0.02 0.03
Walklets 0.39 0.38 0.27 0.37
BoostNE 0.01 0.01 0.01 0.01
Role2Vec 0.17 0.15 0.11 0.15
GraphSage-M 0.03 0.04 0.03 0.04
GraphSage-MP 0.06 0.06 0.05 0.06
GraphSage-L 0.03 0.03 0.03 0.03
HPE 0.49 0.43 0.29 0.44
HOP-rec 0.82 0.77 0.64 0.73

Table 13. This table complements Fig. 13, which has results from link
prediction on the entire blogcatalog dataset. We give the average
VCMPR@k for k = 10, 50, VCMPR@Deg(v), and VCNDCG@50.

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @20 @Deg(V) @10

Common Neighbors 0.48 0.57 0.15 0.29
Adamic Adar 0.52 0.59 0.15 0.31
Resource Allocation 0.52 0.58 0.14 0.31
Deepwalk 0.40 0.45 0.31 0.33
Node2Vec 0.42 0.47 0.31 0.34
NetMF 0.00 0.01 0.00 0.00
RandNE 0.53 0.56 0.43 0.46
Walklets 0.55 0.69 0.40 0.51
BoostNE 0.00 0.00 0.00 0.00
Role2Vec 0.37 0.45 0.28 0.36
GraphSage-M 0.38 0.47 0.25 0.29
GraphSage-MP 0.33 0.42 0.22 0.25
GraphSage-L 0.28 0.34 0.18 0.21
HPE 0.01 0.01 0.00 0.01
HOP-rec 0.67 0.78 0.86 0.63

Table 14. This table complements Fig. 13, which has results from
link prediction on the entire amazon dataset. We give the average
VCMPR@k for k = 10, 20, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @20 @Deg(V) @10

Common Neighbors 0.64 070 0.34 0.48
Adamic Adar 0.68 0.73 0.36 0.51
Resource Allocation 0.68 0.73 0.35 0.50
Deepwalk 0.53 0.55 0.44 0.46
Node2Vec 0.53 0.54 0.43 0.45
NetMF 0.03 0.03 0.02 0.02
RandNE 0.50 0.4 0.40 0.47
Walklets 0.67 0.75 0.55 0.65
BoostNE 0.00 0.00 0.00 0.00
Role2Vec 0.52 0.57 0.39 0.51
GraphSage-M 0.32 0.35 0.24 0.27
GraphSage-MP 0.26 0.28 0.21 0.22
GraphSage-L 0.23 0.25 0.17 0.19
HPE 0.01 0.01 0.01 0.01
HOP-rec 0.77 0.82 0.66 0.74

Table 15. This table complements Fig. 13, which has results from
link prediction on the entire dblp dataset. We give the average
VCMPR@k for k = 10, 20, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @20 @Deg(V) @10

Common Neighbors 0.25 0.50 0.08 0.15
Adamic Adar 0.24 0.50 0.08 0.14
Resource Allocation 0.24 0.50 0.08 0.15
Deepwalk 0.29 0.39 0.30 0.25
Node2Vec 0.29 0.39 0.30 0.26
NetMF 0.38 0.46 0.38 0.38
GraRep 0.40 0.49 0.39 0.39
RandNE 0.67 0.70 0.60 0.60
Walklets 0.40 0.49 0.38 0.41
BoostNE 0.22 0.27 0.21 0.22
Role2Vec 0.33 0.40 0.32 0.33
GraphSage-M 0.09 0.10 0.08 0.08
GraphSage-MP 0.14 0.19 0.15 0.12
GraphSage-L 0.03 0.03 0.03 0.03
HPE 0.41 0.48 0.39 0.40
HOP-rec 0.76 0.76 0.69 0.68

Table 16. This table complements Fig. 13, which has results from link
prediction on the entire sbm dataset. We give the average VCMPR@k
for k = 10, 20, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @20 @Deg(V) @10

Common Neighbor 0.27 0.31 0.17 0.22
Adamic Adar 0.30 0.34 0.19 0.24
Resource Allocation 0.30 0.34 0.19 0.24
Deepwalk 0.62 0.56 0.40 0.56
Node2Vec 0.62 0.56 0.41 0.56
NetMF 0.08 0.08 0.07 0.08
RandNE 0.61 0.50 0.33 0.65
Walklets 0.71 0.71 0.58 0.62
BoostNE 0.02 0.02 0.02 0.02
Role2Vec 0.50 0.48 0.34 0.49
GraphSage-M 0.00 0.00 0.00 0.00
GraphSage-MP 0.00 0.00 0.00 0.00
GraphSage-L 0.00 0.00 0.00 0.00
HPE 0.04 0.03 0.03 0.04
HOP-rec 0.79 0.79 0.67 0.74

Table 17. This table complements Fig. 13, which has results from
link prediction on the entire collab dataset. We give the average
VCMPR@k for k = 10, 20, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @50 @Deg(V) @50

Common Neighbors 0.76 0.81 0.64 0.76
Adamic Adar 0.77 0.82 0.65 0.77
Resource Allocation 0.79 0.83 0.68 0.79
Deepwalk 0.86 0.90 0.68 0.88
Node2Vec 0.84 0.89 0.70 0.86
NetMF 0.95 0.92 0.69 0.93
RandNE 0.01 0.12 0.62 0.60
Walklets 0.94 0.95 0.80 0.95
BoostNE 0.47 0.70 0.66 0.65
Role2Vec 0.76 0.83 0.60 0.79
GraphSage-M 0.27 0.27 0.27 0.27
GraphSage-MP 0.28 0.28 0.27 0.28
GraphSage-L 0.27 0.27 0.27 0.27
HPE 0.55 0.72 0.68 0.67
HOP-rec 0.86 0.94 0.94 0.90

Table 18. This table complements Fig. 13, which has results from link
prediction on the entire ddi dataset. We give the average VCMPR@k
for k = 10, 50, VCMPR@Deg(v), and VCNDCG@50.

18 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Menand et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @50 @Deg(V) @10

Common Neighbors 0.10 0.18 0.05 0.07
Adamic Adar 0.10 0.19 0.05 0.07
Resource Allocation 0.09 0.18 0.05 0.07
Deepwalk 0.23 0.31 0.19 0.20
Node2Vec 0.23 0.31 0.19 0.20
NetMF 0.49 0.57 0.40 0.49
RandNE 0.36 0.31 0.22 0.39
Walklets 0.49 0.64 0.48 0.45
BoostNE 0.00 0.00 0.00 0.00
Role2Vec 0.28 0.42 0.25 0.25
GraphSage-M 0.01 0.02 0.01 0.01
GraphSage-MP 0.02 0.03 0.02 0.02
GraphSage-L 0.01 0.01 0.01 0.01
HPE 0.53 0.60 0.42 0.47
HOP-rec 0.64 0.74 0.67 0.57

Table 19. This table complements Fig. 14, which has results from
link prediction on the entire Bioplex dataset. We give the average
VCMPR@k for k = 10, 50, VCMPR@Deg(v), and VCNDCG@10.

Avg VCMPR Avg VCMPR Avg VCMPR VCNDCG
@10 @50 @Deg(V) @10

Common Neighbors 0.04 0.10 0.02 0.03
Adamic Adar 0.05 0.11 0.02 0.03
Resource Allocation 0.04 0.11 0.02 0.03
Deepwalk 0.17 0.25 0.13 0.16
Node2Vec 0.17 0.25 0.14 0.16
NetMF 0.42 0.52 0.34 0.45
RandNE 0.23 0.23 0.14 0.25
Walklets 0.48 0.57 0.42 0.46
BoostNE 0.00 0.00 0.00 0.00
Role2Vec 0.35 0.45 0.28 0.32
GraphSage-M 0.03 0.04 0.02 0.03
GraphSage-MP 0.04 0.06 0.03 0.04
GraphSage-L 0.02 0.03 0.01 0.02
HPE 0.36 0.42 0.26 0.33
HOP-rec 0.03 0.04 0.02 0.03

Table 20. This table complements Fig. 14, which has results from
link prediction on the entire HI-II-14 dataset. We give the average
VCMPR@k for k = 10, 50, VCMPR@Deg(v), and VCNDCG@10.

Menand et al. PNAS | January 5, 2024 | vol. XXX | no. XX | 19


	More on AUC and Local VCMPR-type measures
	Broader Context and Related Work
	Limitations
	Theoretical details
	On AUC and the rank bound

	Experimental results
	Key observations

	Details on experiments
	Results on different datasets
	The connection to graph density
	Results on PPI datasets
	Exploration of Normalized Discounted Cumulative Gain
	Comparison with Hits@k
	Results on entire datasets
	Results using a variable threshold for VCMPR


