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A B S T R A C T

Maintaining the stability and reliability of large-scale networks and graph structures is a practical challenge,
particularly in sensor-intensive systems. One critical task in such networks is to identify anomalies and the
origin of disturbances in a timely manner. However, successful anomaly detection requires sufficient and
accurate data from sensors across the network. This work aims to develop an innovative framework to
improve the accuracy of anomaly detection tasks with binary sensor data through intelligent node selection
and inspection. Instead of relying only on stochastic insights obtained from network sensors, we explore how
a specific small set of nodes can be inspected using a Bayesian framework so that the anomaly detection
performance is improved. We demonstrate the effectiveness of the proposed model with a set of numerical
experiments.
1. Introduction

Many mechanical, electrical, social, communication, and computer
systems have a network/graph structure with numerous interlinked
nodes that represent physical entities, devices, or sensors. These nodes
are connected by edges that denote dependencies and interactions
between them. Many types of anomalies and disturbances may occur
across these networks during their operation. Anomalies can be defined
as disturbances or any deviation from normal/nominal behavior. Ex-
amples of anomalies in systems with graph structures are intrusions
in wireless networks (Hu et al., 2021), water contamination in wa-
ter distribution networks (Tuptuk et al., 2021), outages and power
disturbances in power distribution networks (Yuan et al., 2020), and
bnormal users on the social networks (Rahman et al., 2021). Anoma-
ies, also known as outliers, disturbances, or abnormal behaviors, can
esult from various events in networks and can initiated from any node
nd then be propagated to other nodes. Network anomalies can occur
n various forms, including sustained anomalies that persist over an
xtended period and temporary anomalies that occur briefly, affecting
ither a single node or multiple nodes within the network.
Anomaly detection in networks has gained more attention in recent

ears due to the growing availability of smart sensors and remote
evices, facilitating the continuous collection of real-time data from
pecific network segments or nodes. These collected sensor data serve
he purpose of real-time network health monitoring and, in turn, enable
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the identification of anomalies and nodes affected by such anomalies.
Examples of sensors used for health monitoring and anomaly detection
are the set of equipment and systems, referred to as Advanced Metering
Infrastructure (AMI), that assist with the intelligent health management
of power distribution networks (Lazim Qaddoori & Ali, 2023). This
article is motivated by the problem of outage detection and isolation in
modern power distribution networks, which are sensor-intensive graph-
based structures that are subject to various types of anomalies over
time. Monitoring and ensuring the healthy operations of the power grid
systems, and pinpointing the set of anomalous nodes is a challenging
task due to the large size of power distribution networks and the
complexity of the topology of such networks. Numerous algorithms and
mathematical techniques have been devised to address the problem of
network anomaly detection with sensor data (see for instance (Ma et al.,
2021) a review of neural network-based models used for graph anomaly
detection).

Despite all recent advances in graph and network anomaly detection
algorithms developed for various application systems, it is known that
many network-based anomaly detection methods may lead to a high
false positive rate (Akoglu et al., 2015), which can be due to several
challenges and complexities associated with network topology and real-
world network data. In this article, we explore the impact of selectively
inspecting a segment of the network, which could involve examining
only a limited number of nodes, in order to enhance the effectiveness
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of existing anomaly detection models that offer probabilistic assess-
ments of each node’s condition. After obtaining an estimation of the
status of each node within the network, it may be possible to boost
performance and enhance accuracy by conducting physical inspections
on a selected subset of nodes. These selective node inspections provide
supplementary information, allowing for more confident updates to the
initial node status estimations.

The main contributions made in the paper are summarized below.
First, we introduce two approaches for selective node inspection: a
baseline node selection algorithm and a refined node selection algo-
rithm. These algorithms aim to improve the efficiency of anomaly
detection in sensor-monitored networks. Additionally, we present two
distinct inspection strategies: static and sequential. The static method
involves selecting and inspecting all chosen nodes simultaneously,
while the sequential method inspects nodes one by one in an order that
is impacted by the outcome of the previous inspections. The proposed
inspection framework offers the flexibility to serve as an additional
step following any existing probabilistic anomaly detection method,
provided that the output of these methods includes the probability
distribution of each node being anomalous. This work focuses only on
using sensor attributes at the node level and anomalies that propagate
from a set of source nodes to other connected nodes given known
propagation paths/rules. An example of such anomalies includes power
outages and water contamination in power and water distribution
networks, where these anomalies have the potential to propagate to
all downstream nodes starting from the source of the anomaly. There-
fore, anomalies that occur on edges and those that are propagated
randomly across the networks are beyond the scope of this paper.
We have additionally devised computationally efficient procedures for
the refined method by leveraging vectorization and matrix operations.
This implementation has led to the elimination of nested ‘for’ loops,
resulting in reduced CPU time. In the context of Bayesian networks, the
utilization of sensor data to select network nodes for inspection aligns
with the foundational principles of Bayesian networks, emphasizing
the incorporation of evidence and optimization of information gain.
By focusing on nodes likely to reveal crucial information about the
latent states of the network nodes, the model enhances the efficiency
of Bayesian network inference, contributing to more informed decision-
making under uncertainty. This approach reflects a valuable integration
of probabilistic reasoning with practical considerations, reinforcing the
model’s significance within the Bayesian network framework.

The rest of this paper is organized as follows. In Section 2, we will
examine the relevant literature and discuss the relationship between
the existing work and this article. In Section 3, we will discuss the
general problem of anomaly detection in the Bayesian context and then
introduce the proposed frameworks for node selection and node in-
spection. Section 4 shows the performance of our proposed frameworks
on a comprehensive set of numerical experiments. Our conclusions are
presented in Section 5, along with a discussion on important areas for
further research.

2. Related work

Anomaly detection in networks has been studied in many disciplines
and application settings. Some examples can be found in network
intrusion detection (Ahmed et al., 2016; Bhuyan et al., 2014), credit
ard fraud detection (Phua et al., 2010; Popat & Chaudhary, 2018), and
oad traffic anomaly detection (Kim & Cho, 2018; Kumaran et al., 2019;
Radford et al., 2018). There are also plenty of survey articles avail-
able for network and graph anomaly detection models and algorithms
(see for instance (Akoglu et al., 2015; Erhan et al., 2021; Ma et al.,
021)). Many of the available work on network anomaly detection
elies solely on the data collected from sensors, which only stochas-
ically provide information regarding the health of the node level
ather than the entire network. Sensors play a pivotal role in anomaly
etection for network systems, such as smart and connected cities
2
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environment (Parra et al., 2015), telecommunication networks (Yang
et al., 2011), IoT (Cui et al., 2019), and wireless sensor networks
(WSNs) (Ifzarne et al., 2021). Many types of data are generated from
smart meters and sensors in large-scale networks on a regular basis,
which may be useful for anomaly detection. Most methods devel-
oped for network anomaly detection in the existing literature can
be categorized into the following groups: statistics-based approaches,
density-based techniques, clustering-based methods, as well as machine
learning and deep learning-based methodologies. (Chandola et al.,
2009). It is known that many network-based anomaly detection meth-
ods lead to a high false positive rate (Akoglu et al., 2015). This
characteristic, in turn, adds to the complexity of applying these ap-
proaches in real-world systems. Despite extensive research in the field
of network anomaly detection, it remains an evolving area with the
ongoing development of new algorithms and techniques. The goal is to
define methodologies that are highly reliable and produce fewer false
alarms in real-world scenarios.

One potential area of research to enhance the performance and
improve the accuracy of available anomaly detection methods arises
through node inspection. This process involves conducting physical
inspections on a selected subset of nodes within the network. These in-
spections can be carried out using physical inspectors, automated drone
techniques, or remote sensors for real-time data collection. Leveraging
the additional information obtained from these inspections, the initial
estimations of node statuses can be updated with greater certainty. This
expansion of the anomaly detection challenge entails identifying the
optimal set of nodes to inspect in order to maximize the accuracy of the
estimations. Over the past decade, research efforts have been conducted
towards the selection of cluster heads (CH) in Wireless Sensor Net-
works (WSNs) to reduce the network’s energy consumption, a problem
known to be NP-hard (Nguyen et al., 2011). Various research studies
have introduced different algorithms for selecting cluster heads. These
include probabilistic clustering algorithms, which involve randomly
assigning cluster head roles to nodes in the WSN, effectively rotating
the CH responsibilities for each node (Heinzelman et al., 2002; Shigei
et al., 2010); deterministic criteria-based selection methods, which
consider factors such as node distances, remaining energy, node degree,
centrality, and proximity (Kang & Nguyen, 2012; Ma et al., 2010); and
fuzzy-logic approaches (Lee & Cheng, 2012), among others.

Another research area closely related to the idea of node inspection
is influence maximization. Influence maximization deals with the task
of identifying a set of nodes capable of exerting the greatest influence
over other nodes or triggering the largest cascading effect within a
network (Pei et al., 2020; Song et al., 2016; Zhang et al., 2023). This
roblem is known to be NP-hard because the number of potential node
ets grows exponentially with network size. However, in the context of
nomaly detection within networks, the nodes responsible for causing
he most cascading effects may not necessarily possess the most critical
nformation. For instance, if we have a high level of confidence in
ur estimations regarding influential nodes, we might opt to inspect
ifferent nodes to gain a deeper understanding of the network, even
f these nodes are unlikely to influence a large number of nodes.
onsequently, methods developed to tackle the influence maximization
roblem are not directly applicable to the challenges addressed in this
ork.
To the best of our knowledge, no similar work has been conducted

rom our specific perspective: enhance the performance and boost the
ccuracy of identifying the source of anomalies and impacted nodes
y implementing node inspections guided by inferences drawn from
etwork sensor data regarding the anomaly status of the network. In
he existing literature, node inspections are mostly used to monitor
he status of facilities/equipment (Kuboki & Takata, 2019), the quality
f drinking water (Brentan et al., 2021; Santos-Ruiz et al., 2022),
he object or surface detection (Gronle & Osten, 2016; Trucco et al.,
997), and the indoor or outdoor surveillance (Suresh & Menon, 2023),

o name a few. There are available works that focus on the optimal
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Table 1
The list of notations used in the paper.
Notation Description

Topology Parameters
𝐺 = (𝑁,𝐀,𝐙,𝐏) Graph 𝐺 with adjacency matrix 𝐀, sensor-attribute

matrix 𝐙, propagation matrix 𝐏
𝑁 The set of nodes in the graph
𝑆 The set of sensor attributes
𝑎𝑖𝑗 The binary parameter representing whether there

is an edge between nodes 𝑖 and 𝑗
𝑧𝑖𝑠 The binary index representing whether node 𝑖

generates sensor attribute 𝑠
𝑝𝑖𝑗 A binary index representing whether an anomaly

propagates from node 𝑖 to node 𝑗
𝐀 = [𝑎𝑖𝑗 ]|𝑁|×|𝑁|

The adjacency matrix (representing
physical/virtual connections between nodes)

𝐙 = [𝑧𝑖𝑠]|𝑁|×|𝑆| The sensor-attribute matrix
𝐏 = [𝑝𝑖𝑗 ]|𝑁|×|𝑁|

The anomaly propagation matrix
𝐷𝑖 The set of downstream/descendant nodes of node 𝑖
𝐷𝑐

𝑖 The set of immediate children nodes of node 𝑖
𝑈𝑖 The set of upstream/ancestor nodes of node 𝑖
𝑈 𝑝

𝑖 The set of immediate parent nodes of node 𝑖
𝐸𝐼 The set of nodes selected for inspection
Network Variables
𝑦𝑖𝑠 The value of sensor attribute 𝑠 for node 𝑖
𝑥𝑖 The binary index representing the anomaly status

of node 𝑖
𝑜𝑖 The binary index representing whether node 𝑖 is

the source of an anomaly

sensor placement in networks, which can be solved as a mixed-integer
programming (MIP) (Berry et al., 2005), stochastic programming prob-
em (Shastri & Diwekar, 2006), multi-objective optimization problem,
r machine learning methods (El-Zahab et al., 2018), and heuristics
nd rule-based approaches. However, our work has a different purpose
rom all these works. The primary objective of our work is to identify
limited number of nodes for precise and meticulous inspection based
n the data collected from sensors distributed throughout the networks.
his will be succeeded by performing the preliminary network status
valuation to find the most likely status of the nodes in the network,
ith the aim of bolstering the reliability and precision of our initial
stimations. The proposed method leverages the large amount of data
enerated by sensors in a network to identify anomalies through a
ayesian framework. Also, by utilizing vectorization and matrix oper-
tions, we proposed a computationally efficient framework, making it
ore applicable to real systems and large-scale graph structures.

. Main approach

This section explains the sensor selection and inspection framework
n detail, which is based on a Bayesian graph anomaly detection
ethod. The list of notations used across the paper is provided in Ta-
le 1. Before illustrating the details of the node inspection problem and
he proposed method, we first introduce the concept of network/graph
nomaly detection problem through a Bayesian framework. Our work
s driven by the distinctive features of Bayesian Networks (BNs), which
nable us to model the topological structure of attributed networks and
he probabilistic relationship between network status and sensor data
n an interpretable manner. In this article, we assume that all network
opology characteristics are fixed, while network variables can change
ver time. However, as our proposed models treat data from different
ime points as independent samples, we have removed the time index
rom all variables for mathematical convenience.

.1. A generic structure for attributed networks with node sensors

The system under study is assumed to be represented as an at-
ributed network/graph through a Bayesian structure. The features of
3

the directed network topology and assumptions made for the Bayesian
framework-based anomaly detection are discussed in this subsection.
A. Graph Topology: A network, represented by 𝐺 = (𝑁,𝐀,𝐙,𝐏), is
a system made up of nodes and linked edges, where 𝑁 is the set of
nodes. In this article, we used the cardinality of a set (denoted by | |)
to represent the number of elements in the set. Here the set of nodes
can be obtained from a |𝑁| × |𝑁| adjacency matrix 𝐀 = [𝑎𝑖𝑗 ], where
𝑎𝑖𝑖 = 1, and 𝑎𝑖𝑗 = 1 if there is a directed link from node 𝑖 to node
𝑗, where {𝑖, 𝑗} ∈ 𝑁 . Each node corresponds to a unique entity, such
as a sensor, device, equipment, or user, and can be a potential source
of the original location of an anomaly. To indicate whether the sensor
attribute 𝑗 is available or collected at node 𝑛, we use a matrix 𝐙 = [𝑧𝑛𝑗 ],
where 𝑧𝑛𝑗 = 1 if the sensor generates attribute 𝑗 and collected at node
𝑛. Otherwise, we set 𝑧𝑛𝑗 = 0 to denote that the sensor that generates
attribute 𝑗 is not installed or when that specific data is missing at
node 𝑛. The fourth argument of the network is a |𝑁| × |𝑁| matrix of
𝐏 = [𝑝𝑖𝑗 ], where 𝑝𝑖𝑗 = 1 if an anomaly can propagate from node 𝑖 to
node 𝑗, which summarizes the anomalies propagation paths through
the network. The propagation matrix is needed to define the sets of
downstream and upstream nodes (e.g., 𝑈𝑖, 𝑈

𝑝
𝑖 ) concerning anomalies.

For instance, 𝑗 ∈ 𝐷𝑖 if 𝑝𝑖𝑗 = 1. We should point out that when
anomalies are propagated to all downstream nodes, matrix 𝐏 can be
defined directly from the adjacency matrix 𝐀. The propagation matrix
𝐏 is given, and 𝑝𝑖𝑗 is a known binary variable in deterministic scenarios.
In stochastic propagation cases, 𝑝𝑖𝑗 can represent the probability of an
anomaly propagating from node 𝑖 to node 𝑗, which is out of the scope
of this work.
B. Monitoring Variables: In our framework, there are two sets of
hidden variables to monitor the status of the network-structured sys-
tem. For node 𝑛, variable 𝑥𝑛 is defined to indicate whether node 𝑛 is
under the effect of an anomaly, and 𝑜𝑛 is to reflect whether node 𝑛 is
the original source of an anomaly in the network. Both 𝑥𝑛 and 𝑜𝑛 are
binary variables, are not directly observable, and can only be inferred
stochastically from the available sensor data. There is a deterministic
relationship between 𝑥𝑛 and 𝑜𝑛, therefore, the anomaly status of all
nodes, represented by 𝑥1, 𝑥2..., 𝑥|𝑁|

can be known if 𝑜1, 𝑜2,… , 𝑜
|𝑁|

are
known.
C. Observable Sensor Data: There are |𝑆|(|𝑆| ≥ 1) different types of
sensor attributes in our framework. The variable 𝑦𝑛𝑠 is defined to store
the observation or sensor data at node 𝑛, where 𝑦𝑛𝑠 is either binary
or NULL if there is no output at node 𝑛. In our work, the stochastic
relationship between the sensor attributes and the status of the node
where the sensor attributes are collected can be defined as follows:

Pr(𝑦𝑛𝑠 = 1|𝑥𝑛 = 1) = 𝛼𝑠, Pr(𝑦𝑛𝑠 = 1|𝑥𝑛 = 0) = 𝛽𝑠, ∀𝑛 ∈ 𝑁, ∀𝑠 ∈ 𝑆.

(1)

where 𝛼𝑠 can be considered as the true positive rate and 𝛽𝑠 is the false
positive rate for attribute 𝑠. Therefore, the larger 𝛼𝑠 with a smaller 𝛽𝑠
makes a stronger sensor. Further, we assume that the binary sensor
features are conditionally independent given the node’s binary sta-
tus, therefore, the joint probability distribution of sensor observations
across the network is shown as follows:

Pr(𝑦𝑛1 = 𝑣1,… , 𝑦𝑛|𝑆| = 𝑣
|𝑆||𝑥𝑛 = 𝑎) =

[

∏

𝑠∈𝑆
𝛼𝑣𝑠𝑠 (1 − 𝛼𝑠)1−𝑣𝑠

]𝑎 [
∏

𝑠∈𝑆
𝛽𝑣𝑠𝑠 (1 − 𝛽𝑠)1−𝑣𝑠

]1−𝑎
,∀𝑛 ∈ 𝑁, 𝑎 ∈ {0, 1}.

3.2. Network anomaly detection through Bayesian networks

Our work focuses on detecting those anomalies that are not able
to be observed or cannot be detected directly by processing stochastic
sensor data. In order to better explain the node inspection problem, we
will briefly review the anomaly detection problem through a Bayesian
network in this section. The generic problem of anomaly detection for
a sensor-driven network is defined below.
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Problem 1 (Anomaly Detection for Heterogeneous Networks). Given a
etwork-structured system with known topology 𝐺 and sensor obser-
ations (𝐘 = [𝑦𝑛𝑠; 𝑛 ∈ 𝑁, 𝑠 ∈ 𝑆]), how to estimate the most likely status
f all nodes in the network (𝒙 = [𝑥1,… , 𝑥

|𝑁|

]) and locate the sources
f potential anomalies (𝒐 = [𝑜1,… , 𝑜

|𝑁|

])?

This problem can be framed through a Bayesian network, where a
irected acyclic graph (DAG) (shown in Fig. 1) represents the deter-
inistic and stochastic causal relationships between sensor nodes and
idden variables. There are three stochastic variables in the Bayesian
ramework defined for each node in the DAG: hidden monitoring
ariables 𝑜𝑛 and 𝑥𝑛, and observation variables/sensor outputs 𝒚𝑛 =

[𝑦𝑛1,… , 𝑦𝑛|𝑆|]. We used a DAG to indicate the relationships between
the parent and the children nodes, where the direction of the edges
represents the propagation flow. The hidden nodes are shown in circles,
while the observable sensor nodes are shown as rectangles. Two types
of dependency relationships are represented by two different edges in
the DAG. The solid edges stand for the deterministic causal relation-
ships, and the dashed lines symbolize the stochastic relationships. It
is assumed in our work that the topology of the network will remain
the same, therefore, the propagation paths from ancestor nodes to
descendant nodes are deterministic. Additionally, the solid directed
edge from 𝑜𝑛 to 𝑥𝑛 confirms the fact that if the node is one of the sources
of anomalies, the status of the node itself must be anomalous as well.
Mathematically, 𝑥𝑛 = 1 if 𝑜𝑛 = 1. The constraints below are defined to
ensure the deterministic dependencies between the variables 𝒙 and 𝒐,
that is:

𝛷(𝐺,𝒙,𝒐) ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑜𝑛 +
∑

𝑚∈𝑈𝑛

𝑥𝑚 ≤ (|𝑈𝑛| + 1)𝑥𝑛 ∀ 𝑛 ∈ 𝑁 ;

𝑥𝑛 ≤ 𝑜𝑛 +
∑

𝑚∈𝑈𝑛

𝑥𝑚 ∀ 𝑛 ∈ 𝑁.
(2)

The first constraint in Eq. (2) suggests that if node 𝑛 is the original
source of anomalies (i.e., 𝑜𝑛 = 1) and/or at least one of the upstream
nodes of node 𝑛 is anomalous (i.e., ∑𝑚∈𝑈𝑛

𝑥𝑚 ≥ 1), then node 𝑛 will also
be anomalous (i.e., 𝑥𝑛 = 1). The second constraint of Eq. (2) ensures
that if node 𝑛 is not the source of anomalies (i.e., 𝑜𝑛 = 0), and none
of its upstream nodes are anomalous (i.e., ∑𝑚∈𝑈𝑛

𝑥𝑚 = 0), then node 𝑛
must also not be anomalous (i.e., 𝑥𝑛 = 0). The outcome of the anomaly
detection algorithm provides the distribution of Pr(𝑜1, 𝑜2,… , 𝑜

|𝑁|

|𝐘, 𝐺)
for any values of 𝑜1, 𝑜2,… , 𝑜

|𝑁|

. Once this probability is found, we can
generate 𝐾 posterior MCMC samples, denoted by {𝑜(𝑘)1 , 𝑜(𝑘)2 ,… , 𝑜(𝑘)

|𝑁|

} for
1 ≤ 𝑘 ≤ 𝐾. Clearly, the MCMC samples for variable 𝑜𝑛 automatically
give the corresponding values for 𝑥𝑛 as well (and vice versa). The
most basic way of getting these stochastic samples is from the marginal
distribution of sensor outputs as follows:

Pr(𝑥1, 𝑥2,… , 𝑥
|𝑁|

|𝒚1, 𝒚2,… , 𝒚
|𝑁|

) ∝
|𝑁|

∏

𝑛=1
Pr(𝑦𝑛|𝑥𝑛) Pr(𝑥1,… , 𝑥

|𝑁|

).

In other words, one can sample each 𝑥𝑛 from its corresponding distribu-
tion Pr(𝑦𝑛|𝑥𝑛) (from Eq. (1)) and then keep it if sample {𝑥1, 𝑥2,… , 𝑥

|𝑁|

}
atisfies Eq. (2). In this paper, we utilize the MCMC samples that are
obtained from a stochastic sampling approach in a Bayesian framework
proposed in (Xu & Moghaddass, 2023). The summary of the steps for
the MCMC sampler we used in the paper is presented in Algorithm
1. The output of Algorithm 1 will be 𝐾 stochastic samples for each
variable, where the 𝑘th sample is denoted by 𝒐(𝑘) = {𝑜(𝑘)1 ,… , 𝑜(𝑘)

|𝑁|

} and
𝒙(𝑘) = {𝑥(𝑘)1 ,… , 𝑥(𝑘)

|𝑁|

}. Samples generated from the Markov chain in
Algorithm 1 can be used to estimate the unknown monitoring variables
𝑜1,… , 𝑜

|𝑁|

and 𝑥1,… , 𝑥
|𝑁|

. Also, through the characterization of the
stochastic behavior via the approximation of probability distributions
from MCMC samples (empirical distribution estimation), we can also
infer the uncertainty associated with the health status estimation of
4

each node.
Fig. 1. A graphical model representing the dependencies between BN variables for node
𝑛 and its immediate children and parents. Circle nodes represent hidden variables.

Algorithm 1 Proposed Stochastic Sampler to Estimate Network Status
Variables
Input: Network Structure (𝐺), Sensor Data (𝐘 = [𝑦𝑛𝑠]|𝑁|×|𝑆|), Stopping
riterion (Number of Iterations 𝐾), burn-in period (𝑘0)
utput: MCMC Samples 𝒐(𝑘) and 𝒙(𝑘) for 𝑘 ∈ {1, ..., 𝐾} denoted by 𝒐(1∶𝑘)
nd 𝒙(1∶𝐾) and estimated network status variables 𝒐̂ = {𝑜̂1, ..., 𝑜̂|𝑁|

} and
̂ = {𝑥̂1, ..., 𝑥̂|𝑁|

}

1: Initialize 𝒐(0) = {𝑜(0)1 , ..., 𝑜(0)
|𝑁|

} from the corresponding priors (or
randomly generate) and then find 𝒙(0) = {𝑥(0)1 , ..., 𝑥(0)

|𝑁|

} from Eq. (2).
2: Set 𝒐𝑢𝑝𝑑𝑎𝑡𝑒 = 𝒐(0) and 𝒙𝑢𝑝𝑑𝑎𝑡𝑒 = 𝒙(0).

3: for 𝑘 = 1 ∶ 𝐾 do
4: for 𝑛 = 1 ∶ 𝑁 do
5: Propose 𝑜𝑛𝑒𝑤𝑛 = 1 − 𝑜(𝑘−1)𝑛 .
6: The acceptance rate is obtained as
7:

𝛼 = min
{

1,

Pr(𝑜𝑛𝑒𝑤𝑛 )
∏

𝑛′∈{𝑛,𝐷𝑛}
Pr(𝐘𝑛′ |𝑥𝑛𝑒𝑤𝑛′ , 𝒛𝑛′ )

Pr(𝑜(𝑘−1)𝑛 )
∏

𝑛′∈{𝑛,𝐷𝑛}
Pr(𝐘𝑛′ |𝑥

𝑢𝑝𝑑𝑎𝑡𝑒
𝑛′ , 𝒛𝑛′ )

}

,

8: where

𝑥𝑛𝑒𝑤𝑛′ = min
{

1, 𝑜𝑛𝑒𝑤𝑛′ +
∑

𝑛′′∈𝑈𝑛 ,𝑛′′≠𝑛
𝑜𝑢𝑝𝑑𝑎𝑡𝑒𝑛′′

}

, 𝑛′ ∈ {𝑛,𝐷𝑛}. (3)

9: Sample a random number 𝑢 from U(0, 1).
10: if 𝑢 ≤ 𝛼 then
11: Accept the proposed sample and update network status

variables as follows:

𝑜(𝑘)𝑛 = 𝑜𝑛𝑒𝑤𝑛 , 𝑜𝑢𝑝𝑑𝑎𝑡𝑒𝑛 = 𝑜𝑛𝑒𝑤𝑛

𝑥(𝑘)𝑛′ = 𝑥𝑛𝑒𝑤𝑛′ , 𝑥𝑢𝑝𝑑𝑎𝑡𝑒𝑛′ = 𝑥𝑛𝑒𝑤𝑛′ ∀𝑛′ ∈ {𝑛,𝐷𝑛}

12: else
13: Reject the proposed sample 𝑜𝑛𝑒𝑤𝑖 , set

𝑜(𝑘)𝑛 = 𝑜(𝑘−1)𝑛 , 𝑥(𝑘)𝑛 = 𝑥(𝑘−1)𝑛 .

14: end if
15: end for
16: - Record new samples 𝒐(𝑘) = {𝑜(𝑘)1 , ..., 𝑜(𝑘)

|𝑁|

} and 𝒙(𝑘) =

{𝑥(𝑘)1 , ..., 𝑥(𝑘)
|𝑁|

}.
17: end for
18: Estimate network status variables 𝒐̂ = {𝑜̂1, ..., 𝑜̂|𝑁|

} and 𝒙̂ =
{𝑥̂1, ..., 𝑥̂|𝑁|

} based on MCMC samples. In this paper, the estimates
for each variable are obtained by calculating the mean of the MCMC
samples collected after the burn-in period of length 𝑘0, which is set
by the user).
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Fig. 2. A toy model representing the node selection problem, that is, which node(s) should be selected for inspection?
.3. Node selection for inspection in network/graph structures

The outcome of Section 3.2 only provides an uncertain estimation of
ach node’s status. In the context of anomaly detection, if can verify the
tatus of certain nodes, we can improve our confidence in the original
stimation. However, it is not feasible to inspect all nodes in a net-
ork due to budget and time limitations. Therefore, it is important to
hoose which nodes should be selected for inspection. In many network
ystems, such as power networks, we can obtain the true status (𝑜 and
𝑥 values) of each node through physical inspections, such as ground-
based, helicopter-based, and drone-based inspections. To formalize the
node inspection problem in the context of Bayesian networks, we
propose an approach that filters the MCMC samples generated from a
stochastic MCMC sampler. This approach can simulate the distributions
of the hidden variables 𝑥 and 𝑜, and update the estimations of network
nodes’ status based on the results of the inspection.

There can be three scenarios for a selected node after inspec-
tion, as discussed below. (1) Anomalous node that is the source of an
anomaly : In this case, all downstream nodes on the propagation path
of this node are anomalous. Scenario (2) Anomalous node that is not
the source of an anomaly : In this case, we can determine that an
anomaly must come from one of its upstream nodes. (3) Non-anomalous
node: We can confirm that all the upstream nodes of the inspected
node should be healthy, and anomalies, if exist, can only come from
downstream nodes. Algorithm 2 summarizes the steps needed to be
taken to update the health status of the network after each inspection.
It is assumed in the paper that multiple sources of anomalies may exist
in the network. Regarding the sources of anomalies along any given
path in the network, two distinct assumptions can be made. First, it
can be assumed that each node is subject to, at most, one anomaly
at a time. In other words, there is a maximum of one anomalous
source that may exist upstream of any node. Second, an alternative
assumption is that multiple anomalous sources may coexist within the
same path, and each node may be impacted by multiple anomalies
simultaneously. Under this assumption, both parent and child nodes
can simultaneously serve as sources of anomalies. Assuming that there
is only one source of anomalies within any given path in the network
can lead to additional updates in the status of certain nodes within the
network after inspection. For example, when the inspected node 𝑛 is
identified as the source of the anomaly, we can infer that all upstream
nodes must be non-anomalous and there is no downstream node as
the source of another anomaly. Conversely, if the inspected node 𝑛
is found to be anomalous but not the source of the anomaly, we can
conclude that there is only one source of anomalies located upstream
of node 𝑛 and there is no downstream node as the source of another
anomaly. When the inspected node is found to be non-anomalous, the
5

assumption of a single-source anomaly does not impact the network’s
update. In Algorithm 2, we have included these additional steps as
optional updates. Algorithm 2 still covers cases where multiple sources
of anomalies exist, only if there is no directed path between any pair
of these anomalies. The problem of node selection is now formalized as
follows:

Problem 2 (Node Selection for Inspection Problem). For a network with
set of nodes denoted by 𝑁 , given 𝑜̂1, 𝑜̂2,… , 𝑜̂

|𝑁|

as the estimated status
of nodes 1,… , |𝑁| in the network, how to determine which set of 𝑚
(𝑚 ≥ 1) nodes should be inspected in order to improve the reliability
and confidence of previous estimations of the network status?

Consider a simple 8-node network as depicted in Fig. 2, where
the true source of the anomaly is node 3, and thus nodes 3-8 are all
anomalous. Also, assume that the outcome of the anomaly detection
algorithm suggests that node 6 is the source of the anomaly, which
means it also identifies node 4 and node 5 as anomalous. Now, if we
decide to inspect node 6, the inspection outcome will confirm that node
6 is indeed anomalous, and it will also flag nodes 7 and 8 as anomalous
since they are downstream from node 6. However, this inspection alone
cannot conclusively determine whether the source of the anomaly lies
in node 1 or node 3, both of which are upstream nodes of node 6. On
the other hand, if we choose to inspect node 3, the inspection outcome
will reveal that node 3 is the source of the anomaly, and it will also
mark all of its downstream nodes (4-8) as anomalous. Selecting nodes
1 or 2 for inspection does not provide crucial information regarding the
location of anomalies since inspection merely confirms that these nodes
are not anomalous. While selecting node 4 or node 5 for inspection may
not directly pinpoint the source of anomalies, it does provide additional
information about the network’s status. In other words, inspection of
nodes 4 or 5 would confirm that they are anomalous and suggest that
the source of anomalies must be either node 1 or node 3 (note that
inspection reveals that node 4 or 5 are not the source of an anomaly).
Consequently, inspection leads to the determination that nodes 6, 7,
and 8 are anomalous as well. It is evident that even in a relatively
small network, such as the one depicted in Fig. 2, there can be many
possible inspection outcomes depending on what node to be chosen for
inspection. In this paper, we only focus on selecting a limited number
of nodes for physical inspection, which can be fine-tuned according
to specific time and cost constraints or other reliability requirements.
To mathematically define the node inspection problem, we use 𝐸𝐼 =
{𝑖1, 𝑖2,… , 𝑖𝑚} to denote the set of 𝑚 nodes that are selected for an
inspection, where |𝐸𝐼 | = 𝑚. Here, {𝑖1, 𝑖2,… , 𝑖𝑚} are the node numbers
selected from {1,… , |𝑁|}. The corresponding optimization problem
for selecting 𝑚 nodes for inspection can be defined mathematically as
below:
max 𝑧 = Pr(𝑜1, 𝑜2,… , 𝑜
|𝑁|

|𝒐𝐸𝐼
,𝐘, 𝐺) (4)
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s.t. 𝛷(𝐺,𝒙,𝒐)

|𝐸𝐼 | = 𝑚

𝑜𝑛 ∈ {0, 1}, 𝑥𝑛 ∈ {0, 1}, ∀𝑛 ∈ 𝑁, 𝐸𝐼 ∈ 𝑁𝑚.

Now, the goal is to identify a set of 𝑚 nodes, in 𝐸𝐼 , such that knowledge
of their true status will allow us to make the most accurate prediction
of the status of the entire network 𝐺.

Algorithm 2 Network Status Update After a Node Inspection
Input: Network Structure (𝐺), Inspected Nodes (𝐸𝐼 ), Estimated Net-
work Status Variables from Algorithm 1 and Previous Inspections 𝒐̂ =
{𝑜̂1, ..., 𝑜̂|𝑁|

} and 𝒙̂ = {𝑥̂1, ..., 𝑥̂|𝑁|

}, and True values of 𝑜𝑛 and 𝑥𝑛 for all
𝑛 ∈ 𝐸𝐼
Output: Updated Network Status Variables 𝒐̂ and 𝒙̂

1: for 𝑛 ∈ 𝐸𝐼 do
2: if 𝑜𝑛 = 1 and 𝑥𝑛 = 1 then
3: Set 𝑥𝑑 = 1,∀𝑑 ∈ 𝐷𝑛

⊳ Optional Updates for Single-Source Anomaly Scenarios
4: Set 𝑜̂𝑑 = 0,∀𝑑 ∈ 𝐷𝑛
5: Set 𝑜̂𝑢 = 0,∀𝑢 ∈ 𝑈𝑛
6: Set 𝑥̂𝑢 = 0,∀𝑢 ∈ 𝑈𝑛
7: else if 𝑜𝑛 = 0 and 𝑥𝑛 = 1 then
8: Set 𝑥𝑑 = 1,∀𝑑 ∈ 𝐷𝑛
9: Set ∑

𝑢∈𝑈𝑛

𝑜̂𝑢 ≥ 1 (at least one upstream node of node 𝑛 is the

source of an anomaly)
⊳ Optional Updates for Single-Source Anomaly Scenarios

10: Set 𝑜̂𝑑 = 0,∀𝑑 ∈ 𝐷𝑛
11: Set ∑

𝑢∈𝑈𝑛

𝑜̂𝑢 = 1 (exactly one upstream node of node 𝑛 is the

source of an anomaly.)
12: else if 𝑥𝑛 = 0 then
13: Set 𝑜̂𝑢 = 0, ∀𝑢 ∈ 𝑈𝑛
14: Set 𝑥𝑢 = 0,∀𝑢 ∈ 𝑈𝑛
15: end if
16: end for

3.4. A baseline node selection method for inspection

In the remainder of this section, we will explore various approaches
to determine the set of nodes for inspection in a network where we
have an estimated status of its nodes based on a probabilistic anomaly
detection framework. First, we will introduce a baseline approach that
involves using the chain rule, which enables us to get the following:

Pr(𝑜1, 𝑜2,… , 𝑜
|𝑁|

|𝒐𝐸𝐼
,𝐘, 𝐺) =

Pr(𝑜1, 𝑜2,… , 𝑜
|𝑁|

|𝐘, 𝐺)
Pr(𝒐𝐸𝐼

|𝐘, 𝐺)
. (5)

Therefore, it is straightforward that the set of nodes with a minimum
value of Pr(𝒐𝐸𝐼

|𝐘, 𝐺) can maximize Eq. (5) if we assume that the value
of [𝑜1, 𝑜2,… , 𝑜

|𝑁|

] is known and fixed. In other words, we will need to
select 𝑚 nodes for inspection with the lowest levels of certainty in their
initial estimation, that is

𝐸𝐼 ∶ argmin
𝑖1∶𝑖𝑚∈𝑁

Pr(𝑜𝑖1∶𝑖𝑚 |𝐘, 𝐺).

There are
(

|𝑁|

𝑚

)

possible combinations of the joint probabilities in

the above optimization problem, which cannot be solved analytically
for 𝑚 > 1. However, from the outcome of the MCMC samplers, it is
possible to estimate Pr(𝒐𝐸𝐼

|𝐘, 𝐺). For any set of the initial estimations
[𝑜̂1, 𝑜̂2,… , 𝑜̂

|𝑁|

] from the anomaly detection algorithm, if we select 𝒐𝐸𝐼
as the set of inspection nodes and the inspection outcome verifies
that the true 𝒐𝐸𝐼

∈ [𝑜̂1, 𝑜̂2,… , 𝑜̂𝑛], then we can maintain the initial
estimation with a higher confidence level. We can also update the
estimations for other nodes by filtering the samples that match the
6

inspection outcomes of 𝒐𝐸𝐼
. However, if it turns out that the inspection d
outcomes 𝑜𝐸𝐼
do not match the prior estimation, then the previous

estimations [𝑜̂1, 𝑜̂2,… , 𝑜̂
|𝑁|

] become infeasible. As a result, the stochas-
tic MCMC samples for each node in the network should be filtered
based on the true inspection values of 𝒐𝐸𝐼

. For cases where more
than one node is to be inspected (𝑚 > 1), we can divide the node
inspection method into static (Algorithm 3) and sequential (Algorithm
4) scenarios. The difference between these two scenarios is in the
manner in which multiple nodes are selected and inspected. For the
static selection, we first inspect all selected nodes and then update the
network status. However, for sequential selections, we will select one
node at a time, and then conduct an inspection for that node. Then
based on the updated information obtained from the last inspected
node, we will select the next node for inspection, and repeat this
process until we meet the maximum Number of Inspection Nodes. The
details of the static and sequential algorithms for the baseline model
are given in Algorithms 3 and 4, respectively. The sequential model
involves an additional step that occurs after inspecting each node,
which involves filtering the set of MCMC samples based on the outcome
of each inspection. This step is necessary as the updated set of MCMC
samples can influence the selection of the next node for inspection.
While this filtering step contributes to improving the effectiveness of
inspection, it is computationally intensive and, consequently, more
time-consuming than the static approach. We will discuss this in the
numerical experiment section.

3.5. A refined node inspection method

In this subsection, a refined search method is proposed to select
nodes for inspection based on an initial estimation of network nodes.
Recall Eq. (5), the denominator Pr(𝒐𝐸𝐼

|𝐘, 𝐺) is actually a part of the
numerator Pr(𝑜1, 𝑜2,… , 𝑜𝑛|𝐘, 𝐺), which means that when the set of
nodes for inspection changes, the estimation of the entire network
changes as well. Therefore, only minimizing the denominator in Eq. (5)
may not be sufficient, as the outcome is relative to the changing of
the denominator and nominator. As a result, it becomes challenging
to directly solve the maximization problem shown in Eq. (4). To find
the optimal values of network status variables, we developed a refined
search method to select the set of nodes for node inspection. In this
subsection, we explain the proposed algorithm for the general case of
𝑚 ≥ 1. Similar to the method discussed in Section 3.4, the static and
sequential policies for node selection would also apply here. For each
node 𝑛, there are two possible scenarios, that is, anomalous or healthy
(i.e., 𝑜𝑛 = 1 or 𝑜𝑛 = 0). In the proposed search algorithm, we estimate
the value of Eq. (5) for both scenarios and set the larger value as the
measure for node selection, denoted by 𝛾(𝑛) = max{𝛾1(𝑛), 𝛾0(𝑛)}, as
shown below

𝛾(𝑛) = max
(Pr(𝑜̂1𝑛1,… , 𝑜𝑛 = 1, .., 𝑜̂1𝑛|𝑁|

|𝐘, 𝐺)

Pr(𝑜𝑛 = 1|𝐘, 𝐺)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛾1(𝑛)

,
Pr(𝑜̂0𝑛1,… , 𝑜𝑛 = 0,… , 𝑜̂0𝑛|𝑁|

|𝐘, 𝐺)

Pr(𝑜𝑛 = 0|𝐘, 𝐺)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛾0(𝑛)

)

,

(6)

where Pr(𝑜̂1𝑛1,… , 𝑜𝑛 = 1, .., 𝑜̂1𝑛|𝑁|

|𝐘, 𝐺) and Pr(𝑜̂0𝑛1,… , 𝑜𝑛 = 0,… , 𝑜̂0𝑛|𝑁|

|𝐘, 𝐺) are respectively the joint probability of the most likely status
of the network given that node 𝑛 is anomalous and non-anomalous,
respectively. Variables 𝑜̂1𝑛𝑖 and 𝑜̂0𝑛𝑖 represent the conditional a posteriori
estimates of 𝑜𝑖 given that node 𝑛 is in anomalous and non-anomalous
modes, respectively. These variables can be estimated by their posterior
means obtained from the 𝐾 known MCMC samples with a burn-in
period of 𝑘0 (𝑘0 ≥ 0) as follows:

𝑜̂1𝑛𝑖 = ⌊

∑

𝑘=𝑘0∶𝐾 𝑜(𝑘)𝑖 × 𝑜(𝑘)𝑛
∑

𝑘=𝑘0∶𝐾 𝑜(𝑘)𝑛

⌉, 𝑜̂0𝑛𝑖 = ⌊

∑

𝑘=𝑘0∶𝐾 𝑜(𝑘)𝑖 × (1 − 𝑜(𝑘)𝑛 )
∑

𝑘=𝑘0∶𝐾 (1 − 𝑜(𝑘)𝑛 )
⌉, (7)

where ⌊ ⌉ represents the round to the nearest integer function. The
enominators in Eq. (6) can be estimated by their posterior means (or
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mode/median) from 𝐾 MCMC samples as follows:

Pr(𝑜𝑛 = 1|𝐘, 𝐺) = ⌊

∑

𝑘=𝑘0∶𝐾 𝑜(𝑘)𝑛

𝐾 − 𝑘0 + 1
⌉; and

Pr(𝑜𝑛 = 0|𝐘, 𝐺) = 1 − Pr(𝑜𝑛 = 1|𝐘, 𝐺).

(8)

Once 𝛾(𝑛) is calculated for all 𝑛 ∈ 𝑁 , we can add the node with a
maximum value of 𝛾 to the set of inspection nodes (denoted by 𝐸𝐼 ),
that is

𝐸𝐼 ⟵ 𝐸𝐼 ∪ { argmax
𝑛∈𝑁,𝑛∉𝐸𝐼

𝛾(𝑛)}. (9)

We can also establish additional criteria in the event of a tie in the
variable 𝛾, such as choosing the node with a greater number of con-
nected nodes (either upstream or downstream). Similar to the baseline
node inspection algorithm, both static and sequential scenarios can be
considered for the refined method when 𝑚 > 1. The details of the static
and sequential refined node inspection methods are given in Algorithm
5 and Algorithm 6, respectively.
Algorithm 3 A Baseline Node Selection Algorithm for Inspection —
Static
Input: Network Structure (𝐺), Sensor Data (𝐘 = [𝑦𝑛𝑗 ]|𝑁|×|𝑆|), MCMC
Samples 𝒐(𝟏∶𝑲) and 𝒙(𝟏∶𝑲), Number of Inspection Nodes (𝑚), Propaga-
tion Matrix 𝑷 , and Estimated Network Status Variables 𝒐̂ = {𝑜̂1, ..., 𝑜̂|𝑁|

}
and 𝒙̂ = {𝑥̂1, ..., 𝑥̂|𝑁|

}
Output: Set 𝐸𝐼 for Inspection and Updated Network Status Variables 𝒐̂
and 𝒙̂ After Inspection

I. Node Selection
1: Set 𝐸𝐼 = {}
2: while |𝐸𝐼 | < 𝑚 do
3: 𝑖 ⟵ argmin

𝑗∉𝐸𝐼

Pr(𝑜𝑗 |𝐘, 𝐺) using the MCMC results.

4: 𝐸𝐼 ⟵ 𝐸𝐼 ∪ 𝑖
5: end while

II. Inspection Step
6: Inspect and find the true values of 𝑜𝑛 and 𝑥𝑛 for all 𝑛 ∈ 𝐸𝐼 .

III. Update Selected Anomaly Status Variables Based on Inspection
Outcomes

7: for 𝑛 ∈ 𝐸𝐼 do
8: Run Algorithm 2 for node 𝑛 and obtain updated network status
variables 𝒐̂ and 𝒙̂.

9: end for

IV. Update Estimated Network Anomaly Status Variables
10: Estimate network status variables 𝒐̂ and 𝒙̂ based on updated MCMC

samples (see line 18 of Algorithm 1).

3.6. Efficient computation in the refined method

The implementation of the refined method discussed in Section 3.5
is computationally expensive, particularly because 𝛾(𝑛), which needs
to be calculated for all network nodes, has two terms where each
term comprises elements that depend on other nodes in the network.
A typical implementation of the refined method would need to se-
quentially compute 𝛾(𝑛) and its constituent terms using two nested
‘‘for’’ loops. This sequential process contributes to the overall time-
consuming nature of the implementation. Employing matrix operations
instead of multiple ‘‘for’’ loops can often be a more efficient approach
in many numerical libraries of programming languages (e.g., NumPy in
Python, which we used for numerical experiments). Matrix operations
are typically highly efficient and often parallelized to take advantage
of multiple CPU cores. Additionally, they enable code vectorization,
enhancing execution speed through optimized libraries like NumPy.
The following Remarks are developed to elevate the efficiency of
the method discussed in Section 3.5. The core concept behind these
7

Algorithm 4 A Baseline Node Selection Algorithm for Inspection —
Sequential
Input: Network Structure (𝐺), Sensor Data (𝐘 = [𝑦𝑛𝑗 ]|𝑁|×|𝑆|), MCMC
amples 𝒐(𝟏∶𝑲) and 𝒙(𝟏∶𝑲), Number of Inspection Nodes (𝑚), Propaga-
ion Matrix 𝑷 , and Estimated Network Status Variables 𝒐̂ = {𝑜̂1, ..., 𝑜̂|𝑁|

}
and 𝒙̂ = {𝑥̂1, ..., 𝑥̂|𝑁|

}
Output: Set 𝐸𝐼 for Inspection and Updated Network Status Variables 𝒐̂
and 𝒙̂ After Inspection

1: Set 𝐸𝐼 = {}
2: while |𝐸𝐼 | < 𝑚 do

I. Node Selection
3: 𝑖 ⟵ argmin

𝑗∉𝐸𝐼

Pr(𝑜𝑗 |𝑜𝐸𝐼
,𝐘, 𝐺) using the MCMC results.

4: 𝐸𝐼 ⟵ 𝐸𝐼 ∪ 𝑖

II. Inspection Step (See Algorithm 3)

III. Update Selected Network Anomaly Status Variables (See
Algorithm 3)

IV. Update All Network Anomaly Status Variables
5: Filter MCMC samples obtained from Algorithm 1 based on the
outcomes of I-III.

6: Estimate network status variables 𝒐̂ and 𝒙̂ based on updated
MCMC samples (see line 18

7: of Algorithm 1).
8: end while

remarks is to convert the sequential computational procedures required
for calculating 𝛾 for all nodes into matrix forms. This transformation
enables the simultaneous computation of the necessary quantities for all
nodes through the utilization of efficient matrix operations in a concise
manner. For notational convenience, we discuss the remarks for 𝑘0 = 1.

Remark 1. Denote the set of known MCMC samples for all nodes from
iteration 1 to 𝐾 (i.e., the outputs of Algorithm 1) and the unknown
posterior estimates 𝑜̂1𝑛𝑖 and 𝑜̂0𝑛𝑖 for all 𝑛 and 𝑖 ∈ 𝑁 given in Eq. (7) in
atrix forms as follows:

(1∶𝐾) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑜(1)1 … 𝑜(1)
|𝑁|

⋮ ⋮ ⋮

𝑜(𝑘)1 … 𝑜(𝑘)
|𝑁|

⋮ ⋮ ⋮

𝑜(𝐾)
1 … 𝑜(𝐾)

|𝑁|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐎̂1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑜̂111 … 𝑜̂11|𝑁|

⋮ ⋮ ⋮

𝑜̂1𝑛1 … 𝑜̂1𝑛|𝑁|

⋮ ⋮ ⋮

𝑜̂1
|𝑁|1 … 𝑜̂1

|𝑁∥𝑁|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

̂ 0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑜̂011 … 𝑜̂01|𝑁|

⋮ ⋮ ⋮

𝑜̂0𝑛1 … 𝑜̂0𝑛|𝑁|

⋮ ⋮ ⋮

𝑜̂0
|𝑁|1 … 𝑜̂0

|𝑁∥𝑁|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

et us also define the following square matrices based on MCMC sample
atrix 𝐎(1∶𝐾):
1
|𝑁|×|𝑁|

= 𝐎(1∶𝐾)𝑇 ×𝐎(1∶𝐾),Ψ0
|𝑁|×|𝑁|

=
[

[𝟏]
|𝑁|×𝐾 −𝐎(1∶𝐾)]𝑇 ×𝐎(1∶𝐾)𝑇 ,

1
|𝑁|×|𝑁|

= diag( 1
𝛹 1
11

, 1
𝛹 1
22

,… , 1
𝛹 1
|𝑁||𝑁|

),

𝐃0
|𝑁|×|𝑁|

= diag( 1
𝐾 − 𝛹 1

11

, 1
𝐾 − 𝛹 1

22

,… , 1
𝐾 − 𝛹 1

|𝑁||𝑁|

).

Here, [𝟏]
|𝑁|×𝐾 is a matrix consisting of all ones, 𝛹 1

𝑛𝑖 denotes the 𝑛𝑖-th
elements of the square matrix Ψ1, and ‘‘diag(.)’’ represents a diagonal
square matrix with a given set of diagonal elements. Now, the unknown
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elements of matrices 𝐎̂1 and 𝐎̂0 can be simultaneously computed as
follows:

𝐎̂1 = ⌊𝐃1 ×Ψ1
⌉ and 𝐎̂0 = ⌊𝐃0 ×Ψ0

⌉. (10)

Proof of Remark 1. The validity of the above remark can be estab-
lished by examining the element of matrices 𝜳 1 and 𝜳 0. Given that
a) the 𝑘th row of matrix 𝐎(1∶𝐾) represents the 𝑘th sequence of MCMC
amples for all nodes and (b) matrix 𝐎(1∶𝐾) is a binary matrix, the 𝑛𝑖-th
element of matrix 𝜳 1 (e.g., 𝛹 1

𝑛𝑖 =
∑𝐾

𝑘=1 𝑜
(𝑘)
𝑛 𝑜(𝑘)𝑖 ) is the numerator of 𝑜̂1𝑛𝑖

n Eq. (7). Also, the 𝑛th diagonal elements of matrix 𝜳 1 (e.g., 𝛹 1
𝑛𝑛 =

𝐾
𝑘=1 𝑜

(𝑘)
𝑛 ) serve as the denominator of 𝑜̂1𝑛𝑖 in Eq. (7). In other words, by

onstructing the diagonal matrix 𝐃1 with the inverses of the diagonal
lements of matrix 𝜳 1, denoted as 𝐃1

𝑛𝑛 = 1
∑𝐾

𝑘=1 𝑜
(𝑘)
𝑛
, we can directly

calculate the average number of samples having values 1, as needed
in the denominators of 𝑜̂1𝑛𝑖 in Eq. (7). Now, the multiplication of the
atrix 𝐃1 by Ψ1 provides a square matrix that includes all the terms
eeded for the left measure in Eq. (7) for all combinations of two nodes.
o mitigate numerical instability and prevent division by zero errors,
e add a small epsilon value to the denominator of 𝐃0 and 𝐃1. A
imilar relationship can be derived for 𝐎̂0, 𝐃0, and Ψ0 to calculate 𝑜̂0𝑛𝑖
n Eq. (7). This completes the proof. □

Now, to simultaneously calculate the terms in 𝛾(𝑛) (Eq. (6)) for all
odes, we introduce Remark 2.

emark 2. Denote 𝐎̂1
𝑛 and 𝐎̂0

𝑛 as the 𝑛th row of matrices 𝐎̂1 and 𝐎̂0,
respectively. Also, denote 𝐎(1∶𝐾)

𝑘 as the 𝑘th row of matrix 𝐎(1∶𝐾). We
can compare each row of matrix 𝐎̂1 and 𝐎̂0 with matrix 𝐎(1∶𝐾) and
ompute the number of times each sample 𝐎̂1

𝑛 and 𝐎̂0
𝑛 is repeated in

he MCMC samples. Then, by dividing those counts for node 𝑛 by the
number of times the variable 𝑜(𝑘)𝑛 is 1 and 0 in the MCMC samples, we
an simultaneously compute the two terms in Eq. (6) for all nodes as
ollows:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾1(1)

⋮

𝛾1(𝑛)

⋮

𝛾1(|𝑁|)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐃1 ×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾
∑

𝑘=1
𝐈{𝐎̂1

1 = 𝐎(1∶𝐾)
𝑘 }

⋮
𝐾
∑

𝑘=1
𝐈{𝐎̂1

𝑛 = 𝐎(1∶𝐾)
𝑘 }

⋮
𝐾
∑

𝑘=1
𝐈{𝐎̂1

|𝑁|

= 𝐎(1∶𝐾)
𝑘 }

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾0(1)

⋮

𝛾0(𝑛)

⋮

𝛾0(|𝑁|)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐃0 ×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾
∑

𝑘=1
𝐈{𝐎̂0

1 = 𝐎(1∶𝐾)
𝑘 }

⋮
𝐾
∑

𝑘=1
𝐈{𝐎̂0

𝑛 = 𝐎(1∶𝐾)
𝑘 }

⋮
𝐾
∑

𝑘=1
𝐈{𝐎̂0

|𝑁|

= 𝐎(1∶𝐾)
𝑘 }

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(11)

ere, 𝐈{.} is an indicator function that returns 1 if the condition inside
.} is true and 0 otherwise. For example, 𝐈{𝐎̂1

𝑛 = 𝐎(1∶𝐾)
𝑘 } is 1 if all the

lements in the 𝑛th row of matrix 𝐎̂1
𝑛 match the elements in the 𝑘th

ow of matrix 𝐎(1∶𝐾)
𝑘 . The sum (i.e., ∑𝐾

𝑘=1 𝐈{𝐎̂
1
𝑛 = 𝐎(1∶𝐾)

𝑘 }) adds up as
he number of times this condition is true for all 𝐾 MCMC samples. Now
y dividing the sum by the total number of samples where 𝑜𝑛 = 1, we
an calculate 𝛾1(𝑛) in Eq. (6). Similar computation applies to calculate
0(𝑛). Now, it can be noticed that the entire computation of 𝛾(𝑛) for
ll nodes in the network can be streamlined into a series of matrix
8

ultiplications (i.e., Eq. (10)) and row-wise matrix alignment processes
i.e., Eq. (11)). These operations are computationally efficient and can
e readily implemented in various programming languages, such as
ython using NumPy, as utilized in this article. We should also point
ut that since most of the elements of the MCMC sample matrix 𝐎1∶𝐾

re zero, algorithms available for sparse matrix multiplication can take
dvantage of this sparsity to reduce the number of operations required,
eading to faster computations. Please refer to Section 4.4 and Table 7
o see how the proposed framework can be efficiently implemented on
ifferent network topologies within a reasonable timeframe.

Algorithm 5 A Refined Node Selection Algorithm for Inspection —
Static
Input: Network Structure (𝐺), Sensor Data (𝐘 = [𝑦𝑛𝑗 ]|𝑁|×|𝑆|), MCMC
amples in matrix form 𝐎(𝟏∶𝐊) and 𝑿(1∶𝐾), Number of Inspection Nodes
𝑚), Propagation Matrix 𝑷 , and Estimated Network Status Variables
̂ = {𝑜̂1, ..., 𝑜̂|𝑁|

} and 𝒙̂ = {𝑥̂1, ..., 𝑥̂|𝑁|

}
utput: Set 𝐸𝐼 for Inspection and Updated Network Status Variables
n matrix form After Inspection

. Node Selection
1: Set 𝐸𝐼 = {}

2: Compute 𝐎̂1 and 𝐎̂0 from Eq. (10)
3: Compute

[

𝛾1(1)⋯ 𝛾1(𝑛)⋯ 𝛾1(|𝑁|)
]𝑇 and

[

𝛾0(1)⋯ 𝛾0(𝑛)⋯ 𝛾0(|𝑁|)
]𝑇

from Eq. (11).
4: while |𝐸𝐼 | < 𝑚 do
5: 𝑖 ⟵ argmax

𝑛∈𝑁,𝑛∉𝐸𝐼

𝛾(𝑛).

6: 𝐸𝐼 ⟵ 𝐸𝐼 ∪ 𝑖

7: end while
II. Inspection Step (See Algorithm 3)

III. Update Selected Network Anomaly Status Variables (See
Algorithm 3)

IV. Update All Network Anomaly Status Variables (See Algorithm 3)

4. Numerical experiments

A comprehensive set of randomly generated graphs with different
network configurations is used to evaluate the performance of the
proposed methods in the paper. Our objective is to demonstrate the
effectiveness of node inspection, compare variations among these meth-
ods, and delve into their functionality across various network setups.
These setups encompass factors such as the number of sensor attributes,
sensor power levels, and the total number of nodes. The inputs for the
entire network node selection phase are the stochastic samples that
are the outcomes of the MCMC sampler (Algorithm 1). We also com-
pare our results with two simplistic random node inspection policies,
illustrating the benefits of employing the proposed methods. Lastly, we
conduct a numerical assessment of the computational complexity of
each method.

4.1. Experiment setup

To evaluate the effectiveness of the proposed inspection methods
with respect to the size of the network (number of nodes), the number
of sensor attributes, the power of sensors, the topology of networks,
and the number of nodes selected for inspection, we generated a
comprehensive set of random graphs, including three types of widely-
used directed acyclic graphs (DAG): (i) regular DAG (a non-tree DAG
where every node has about the same degree), (ii) tree DAG (a DAG that
follows a tree structure with no nodes having more than one parent),
and (iii) Watts Strogatz (WS) DAG (a non-tree DAG that interpolates
between the regular and the Erdos–Renyi graph, which is a non-tree
graph that connects two nodes based on the edge probability or the
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Algorithm 6 A Refinded Node Selection Algorithm for Inspection —
equential
Input: Network Structure (𝐺), Sensor Data (𝐘 = [𝑦𝑛𝑗 ]|𝑁|×|𝑆|), MCMC
Samples 𝒐(𝟏∶𝑲) and 𝐗(1∶𝐾), Number of Inspection Nodes (𝑚), Propaga-
tion Matrix 𝑷 , and Estimated Network Status Variables 𝒐̂ = {𝑜̂1, ..., 𝑜̂|𝑁|

}
and 𝒙̂ = {𝑥̂1, ..., 𝑥̂|𝑁|

}
Output: Set 𝐸𝐼 for Inspection and Updated Network Status Variables 𝒐̂
and 𝒙̂ After Inspection

1: Node Selection
2: Set 𝐸𝐼 = {}
3: while |𝐸𝐼 | < 𝑚 do

4: Compute 𝐎̂1 and 𝐎̂0 from Eq. (10)
5: Compute

[

𝛾1(1)⋯ 𝛾1(𝑛)⋯ 𝛾1(|𝑁|)
]𝑇 and

[

𝛾0(1)⋯ 𝛾0(𝑛)⋯ 𝛾0(|𝑁|)
]𝑇 from Eq. (11).

6: 𝑖 ⟵ argmax
𝑛∈𝑁,𝑛∉𝐸𝐼

𝛾(𝑛).

7: 𝐸𝐼 ⟵ 𝐸𝐼 ∪ 𝑖.

II. Inspection Step (See Algorithm 3)

III. Update Selected Network Anomaly Status Variables (See
Algorithm 3)

IV. Update All Network Anomaly Status Variables
8: Filter MCMC samples obtained from Algorithm 1 based on the
outcomes of I-III.

9: Estimate network status variables 𝒐̂ and 𝒙̂ based on updated
MCMC samples (see line 18

10: of Algorithm 1).
11: end while

edges selected uniformly at random). For each type of topology, we
considered four configurations of sensors, representing different levels
of sensor power, strong sensors {𝛼 = 0.9, 𝛽 = 0.1}, moderate sensors
𝛼 = 0.8, 𝛽 = 0.2}, mild sensors {𝛼 = 0.7, 𝛽 = 0.3}, and weak sensors
{𝛼 = 0.6, 𝛽 = 0.4}, where a higher 𝛼 and a lower 𝛽 makes a stronger
and more reliable sensor. In addition, we will discuss the effectiveness
of the node inspection methods with respect to the size of the networks.
To do that, we consider three scenarios (i.e., |𝑁| ∈ {500, 1000, 2000}) of
he number of sensors for each type and configuration of the network.
hen interpreting the results for the Watts Strogatz DAGs, the readers
hould note that the graph simulator (igraph) used to generate random
raphs generated networks with a slightly smaller size, specifically
𝑁| ∈ {495, 991, 1973}.

.2. Main observations

For each combination of the network topology, number of nodes,
ower of sensors, and number of sensors, we applied the baseline node
nspection model and refined node inspection model, in both static
nd sequential manners. To evaluate the performance of these models,
e calculated key metrics, including true positives or TPs (correctly
dentified anomalous nodes), true negatives or TNs (correctly identified
on-anomalous nodes), false positives or FPs (incorrectly identified
nomalous nodes), and false negatives or FNs (missed anomalies).
hese metrics were based on the estimated status of all nodes within the
etwork. Additionally, we tracked whether the source of an anomaly
ould be successfully detected. To ensure robust results, each experi-
ent was repeated 100 times. This approach allowed us to obtain more
eliable and statistically significant outcomes by averaging the results
cross multiple runs. The rest of this section presents the results of the
ode inspection experiments and provides comparisons among different
ethods and network configurations.
9

s

.2.1. Performance evaluation metrics
Our experiments effectively assessed the performance of both the

aseline and refined inspection models, confirming their efficacy in
mproving anomaly detection. We report three widely recognized per-
ormance metrics to evaluate the results: the F1-score, the overlap
oefficient, and the source detection accuracy (SDA). The F1-score, a
tandard comprehensive metric in binary classification, offers a bal-
nced view of precision and recall. It measures the accuracy of de-
ecting network anomalies while considering the potential trade-offs
etween precision and recall, with precision representing the per-
entage of correctly identified anomalies and recall indicating the
ercentage of anomalies identified out of the total number of nodes in
ach network. A higher F1-score indicates better overall performance
n terms of anomaly detection accuracy. The formula used to calculate
1-score is as follows:

1-Score = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

.

The overlap coefficient, which calculates the degree of overlap between
the actual anomalies and those correctly identified by the model, serves
as a valuable measure of anomaly detection efficiency in networks. A
higher overlap coefficient (closer to 1) is an indicator of better perfor-
mance in anomaly detection. This measure is calculated by dividing the
number of true positives by the sum of true positives, false negatives,
and false positives, as shown below

Overlap Coefficient = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

.

Neither the F1-score nor the overlap coefficient can effectively evaluate
the performance of a model in terms of correctly identifying the source
of anomalies. To address this, we utilize the source detection accuracy
(SDA) metric, which measures the model’s ability to accurately pinpoint
the source or origin of anomalies within a network. The SDA can be
defined as the ratio of the number of correctly identified source nodes
to the total number of source nodes as shown below

SDA =
Number of Correctly Identified Anomalous Source Nodes

Total Number of Anomalous Source Nodes .

By evaluating these metrics, we can gain a fair and comprehensive
nderstanding of the improvements in anomaly detection that result
rom conducting node inspections. To better illustrate the potential
utcome of the proposed models, we first provide a simple example
elow. In Fig. 3, a 495-node Watts Strogatz network with 14 anomalous
odes is shown. Prior to conducting physical inspections, a total of
4 nodes were estimated to be anomalous, resulting in an anomaly
etection accuracy of 96%. However, this accuracy was accompanied
y a high false positive rate (FPR) of 56%, primarily due to the
dentification of 19 false positive nodes. Following the implementation
f the refined node selection model, which involved inspecting only
wo nodes (𝑚 = 2) sequentially, the accuracy of the anomaly detection
ask surged to 100%. This remarkable improvement occurred because
oth of the inspected nodes corresponded to previously estimated false
ositive nodes. As a result, the inspection outcome confirmed the non-
nomalous status of these nodes and their upstream nodes, leading to
he removal of all false positive nodes. In this example, the inspection
odel intelligently selected two non-anomalous nodes that happened
o be the parents of the true source node and had been initially
isclassified as anomalous. This serves as a compelling demonstration
f the effectiveness of the inspection model. By selecting and inspect-
ng two closely positioned nodes in proximity to the true source of
nomalies, the accuracy of network anomaly detection significantly
mproved, showcasing the potential impact of intelligent node selection
n anomaly detection outcomes.

.2.2. Comparison between the baseline and refined node selection models
In Tables 2–3, we provide a summary of the outcomes obtained

rom our numerical experiments on 1000-node networks, with a single
ensor attribute collected at each node. We considered both randomly
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a

Fig. 3. An example of a Watts Strogatz network, where the mahogany node indicates the source of anomalies, small red nodes are the true impacted nodes, purple square nodes
re the previously estimated anomalous nodes prior to inspection, and yellow diamond nodes are the two nodes selected for sequential inspection.
Table 2
Performance metrics for tree and regular DAGs (|𝑁| = 1000, |𝑆| = 1).
Topology Tree Regular

Sensor Properties
Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDA𝛼 𝛽

0.6 0.4

Before Inspection 0.7113 0.5520 0.1200 NA 0 0

𝑚 = 1
Baseline 0.8442 0.7304 0.4200 0.1075 0.0568 0.0400
Refined 0.7843 0.6452 0.3100 0.1089 0.0576 0.0400

0.7 0.3

Before Inspection 0.9213 0.8540 0.6300 0.1209 0.0643 0.0400

𝑚 = 1
Baseline 0.9708 0.9432 0.8500 0.2625 0.1511 0.1000
Refined 0.9402 0.8871 0.7100 0.2985 0.1754 0.1000

0.8 0.2

Before Inspection 0.9880 0.9764 0.8400 0.2854 0.1665 0.1100

𝑚 = 1
Baseline 0.9973 0.9946 0.9500 0.4177 0.2640 0.1414
Refined 0.9994 0.9988 0.9600 0.5664 0.3951 0.3000

Before Inspection 0.9999 0.9998 0.9900 0.6489 0.4803 0.4100

Baseline 0.9999 0.9998 0.9900 0.7356 0.5818 0.3579

0.9 0.1 𝑚 = 1 Refined 0.9999 0.9998 0.9900 0.8696 0.7693 0.6400
generated tree and regular DAGs. For these experiments, we applied
both the baseline and refined node selection methods in a static manner
considering only one node for inspection (i.e., 𝑚 = 1). As shown in
Tables 2–3, both the baseline node selection and the refined node
selection models for inspection exhibited a substantial improvement
in the accuracy of detecting anomalies and their sources before in-
spection across all experiment configurations with inspecting only one
node. Similar results were obtained for larger networks, and larger
numbers of sensor attributes (as can be seen in Tables 3–6). This
underscores the effectiveness of intelligent inspection in enhancing the
performance of the anomaly detection task. The findings presented
in Tables 2–3 also reveal that the refined node selection model for
10
inspection outperforms the baseline version in the case of Regular
and WS networks. However, for tree networks with weaker sensors,
the results show a slightly better performance for the baseline node
selection method. Interestingly, the refined model proves to be equally
effective or superior to the baseline model for tree networks equipped
with stronger sensors. To facilitate a direct comparison between the
baseline and the refined node selection methods, Table 3 highlights
the differences between these two approaches on the Watts Strogatz
networks and two network sizes of 1000 and 2000. The table clearly
demonstrates that the refined method surpasses the baseline method
in performance. Consequently, we can employ the baseline method to
enhance anomaly detection in simpler networks, such as tree networks.
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Table 3
Performance Metrics for Watts Strogatz DAGs (|𝑆| = 1).
Number of Nodes |𝑁| = 1,000 |𝑁| = 2,000

Sensor Properties
Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDA𝛼 𝛽

0.6 0.4

Before Inspection 0.2939 0.1723 0.0200 NA 0 0

𝑚 = 1
Baseline 0.3238 0.1932 0.0300 0.0525 0.0270 0
Refined 0.3170 0.1883 0.0200 0.2096 0.1170 0.0300

0.7 0.3

Before Inspection 0.5709 0.3994 0.1000 0.3450 0.2085 0.0800

𝑚 = 1
Baseline 0.6368 0.4672 0.1500 0.4043 0.2533 0.0700
Refined 0.6836 0.5193 0.2000 0.5765 0.4050 0.1700

0.8 0.2

Before Inspection 0.7173 0.5592 0.1800 0.6240 0.4535 0.2000

𝑚 = 1
Baseline 0.7323 0.5777 0.1939 0.6965 0.5344 0.2020
Refined 0.8174 0.6911 0.3200 0.7789 0.6379 0.3000

0.9 0.1

Before Inspection 0.8060 0.6750 0.3500 0.7494 0.5992 0.3300

𝑚 = 1
Baseline 0.8529 0.7435 0.3636 0.8010 0.6681 0.3125
Refined 0.9086 0.8325 0.5600 0.8640 0.7605 0.4000
4

m

However, for more intricate networks, the refined method emerges as
the superior choice for achieving improved anomaly detection results.

4.2.3. Comparison between static and sequential inspection strategies
To effectively compare the static and sequential node selection

for inspection methods, it is necessary to conduct experiments with
more than one inspected node (i.e., 𝑚 > 1). This is because both
static and sequential methods yield equivalent results when 𝑚 = 1.
Table 4 is provided to compare the performance of the baseline node
inspection model with the refined node inspection model in both static
and sequential manners for 𝑚 = 2 for 3 types of networks and four
ensor power configurations. It can be seen that across nearly all exper-
ments, the sequential node selection policy outperforms the static node
election policy. However, the extent of improvement is less significant
hen applied to tree and Regular networks, especially in scenarios
here sensors possess higher capabilities (e.g., when 𝛼 = 0.9 and
= 0.1). Similar trends have been observed for networks of different
izes and with a greater number of sensor attributes. However, due to
pace constraints, detailed results for these cases are not provided. In
onclusion, it is evident that employing the node inspection policy in
sequential manner enhances the accurate identification of anomalous
odes and their sources.

.2.4. Effectiveness of increasing inspection efforts
One practical limitation of implementing inspections is the time

nd cost involved. Therefore, it is desirable to minimize the num-
er of nodes subjected to inspection. By comparing the results in
ables 2–3 with Table 4, we can see that increasing the number of
nspection nodes can have a positive impact on the task of anomaly
etection for most cases with some variations among different network
etups. To investigate whether increasing the number of inspected
odes contributes to improvements in anomaly detection and to assess
he extent of this improvement, we compared the cases with 1, 2, and
nodes for inspection in the baseline node selection model, and 1
nd 2 nodes for inspection in the refined node selection model. The
esults consistently indicated that augmenting the number of nodes
ubjected to inspection enhances the performance of anomaly detection
cross most scenarios. However, it is important for the model user to
arefully consider the cost–benefit trade-offs, resource constraints, and
he expected impact on detection accuracy associated with conducting
dditional inspections and determine the optimal number of nodes
o select for inspection based on the specific context and constraints.
egular monitoring, experiments on historical data, and expert input
11

an help guide this decision.
.2.5. Sensitivity analysis with respect to the number of sensor attributes

In Table 5, we present the results of our proposed node inspection
ethods for 1000-node networks with five sensor attributes (|𝑆| =

5) across three network topology types. Comparing this table with
Table 4 where |𝑆| = 1 shows that increasing the number of sensor
attributes leads to improved performance in the original anomaly de-
tection task. Although the benefits of node inspection diminish as the
number of sensors per node increases, both the baseline and refined
node inspection models consistently enhance anomaly detection perfor-
mance. For networks with five sensors at each node and strong sensor
performance (e.g., when 𝛼 = 0.9 and 𝛽 = 0.1), anomaly detection
accuracy approaches nearly 100%. Consequently, the improvement
from pre-inspection to node inspection decreases, and the difference
between static and sequential node selection approaches becomes less
significant. These findings suggest that the choice of node selection
approach has a limited impact on performance when sensor attributes
are abundant and perform strongly. However, node selection becomes
critical for networks with fewer sensor attributes and weaker sensor
performance. It is worth noting that similar trends were observed across
networks of different sizes, although detailed results for those cases are
not presented due to space constraints.

4.2.6. Sensitivity analysis with respect to the power of sensors

The results presented so far in Tables 2–5 consistently reveal that as
sensor reliability improves, characterized by higher 𝛼 values and lower
𝛽 values, the overall performance of the original anomaly detection
methods also sees significant enhancements. This trend suggests that
with more reliable sensors, there is less room for improvement through
node inspections, regardless of the selection approach employed. For
instance, taking Table 5 as an example, when dealing with weak
sensors (𝛼 = 0.6, 𝛽 = 0.4), the Source Detection Accuracy (SDA)
demonstrates substantial improvement from the no-inspection policy,
with an approximate increase ratio of 300%. As the sensors become
moderately reliable (𝛼 = 0.7, 𝛽 = 0.3), the rate of improvement
remains notable but decreases to approximately 43%. Finally, with
strong sensors (𝛼 = 0.9, 𝛽 = 0.1), the improvement is limited, and
the performance of the anomaly detection system is already close to
achieving optimal accuracy. In conclusion, these results emphasize
the sensitivity of anomaly detection performance to sensor reliability.
As sensors become more powerful, the potential gains from node in-
spections diminish. Therefore, the choice of node inspection strategy
becomes particularly critical when dealing with networks featuring less
reliable sensors, where inspections can have a substantial impact on

anomaly detection performance.
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Table 4
Comparison between static vs. sequential policies (|𝑁| = 1000, |𝑆| = 1, 𝑚 = 2).
WS Networks Baseline Model Refined Model
Sensor Properties

Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDA𝛼 𝛽

0.6 0.4

Before Inspection 0.2939 0.1723 0.0200 0.2939 0.1723 0.0200

𝑚 = 2
Static 0.3250 0.1940 0.0404 0.3256 0.1944 0.0300
Sequential 0.3211 0.1913 0.0400 0.3235 0.1930 0.0300

0.7 0.3

Before Inspection 0.5709 0.3994 0.1000 0.5709 0.3994 0.1000

𝑚 = 2
Static 0.6521 0.4838 0.1500 0.7111 0.5518 0.1919
Sequential 0.6598 0.4923 0.2000 0.7119 0.5526 0.1939

0.8 0.2

Before Inspection 0.7173 0.5592 0.1800 0.7173 0.5592 0.1800

𝑚 = 2
Static 0.7728 0.6297 0.2268 0.7991 0.6654 0.2929
Sequential 0.7675 0.6227 0.2268 0.8075 0.6772 0.3131

0.9 0.1

Before Inspection 0.8060 0.6750 0.3500 0.8060 0.6750 0.3500

𝑚 = 2
Static 0.8657 0.7632 0.4271 0.9019 0.8214 0.5000
Sequential 0.8766 0.7803 0.4700 0.9002 0.8185 0.5051

Regular Networks Baseline Model Refined Model

Sensor Properties
Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDA𝛼 𝛽

0.6 0.4

Before Inspection NA 0 0 NA 0 0

𝑚 = 2
Static 0.1694 0.0926 0.0700 0.1694 0.0926 0.0700
Sequential 0.1406 0.0756 0.0600 0.1694 0.0926 0.0700

0.7 0.3

Before Inspection 0.1209 0.0643 0.0400 0.1209 0.0643 0.0400

𝑚 = 2
Static 0.3489 0.2113 0.1414 0.3456 0.2089 0.1600
Sequential 0.3368 0.2025 0.1400 0.3456 0.2089 0.1600

0.8 0.2

Before Inspection 0.2854 0.1665 0.1100 0.2854 0.1665 0.1100

𝑚 = 2
Static 0.4664 0.3041 0.2188 0.5806 0.4090 0.2828
Sequential 0.4501 0.2904 0.1919 0.5882 0.4166 0.2857

0.9 0.1

Before Inspection 0.6489 0.4803 0.4100 0.6489 0.4803 0.4100

𝑚 = 2
Static 0.7916 0.6551 0.4783 0.8647 0.7617 0.5859
Sequential 0.7829 0.6432 0.4947 0.8631 0.7592 0.5816

Tree Networks Baseline Model Refined Model

Sensor Properties
Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDA𝛼 𝛽

0.6 0.4

Before Inspection 0.7113 0.5520 0.1200 0.7113 0.5520 0.1200

𝑚 = 2
Static 0.8575 0.7506 0.4600 0.8238 0.7004 0.4100
Sequential 0.8581 0.7515 0.4700 0.8238 0.7004 0.4100

0.7 0.3

Before Inspection 0.9213 0.8540 0.6300 0.9213 0.8540 0.6300

𝑚 = 2
Static 0.9708 0.9432 0.8500 0.9549 0.9136 0.7800

Sequential 0.9708 0.9432 0.8500 0.9572 0.9178 0.7900

0.8 0.2

Before Inspection 0.9880 0.9764 0.8400 0.9880 0.9764 0.8400

𝑚 = 2
Static 0.9972 0.9945 0.9596 0.9994 0.9988 0.9600
Sequential 0.9973 0.9946 0.9500 0.9994 0.9988 0.9600

0.9 0.1

Before Inspection 0.9999 0.9998 0.9900 0.9999 0.9998 0.9900

𝑚 = 2
Static 0.9999 0.9998 0.9900 0.9999 0.9998 0.9900
Sequential 0.9999 0.9998 0.9900 0.9999 0.9998 0.9900
4.3. Comparison with random inspection policies

In all previous experiments, we discussed the performance of the
models with respect to no inspection. In this section, we discuss how
the proposed node inspection models can provide significantly better
results than random policies for inspection. We considered 2 random
policies as follows:
Random Inspection Policy I: In this random inspection policy, nodes
re selected for inspection using a uniform discrete distribution, which
eans that all nodes (excluding leaf nodes) have an equal probability
f being chosen for inspection. This approach ensures that the selection
rocess is random and unbiased, with each eligible node having an
qual opportunity to be inspected.
andom Inspection Policy II: Several extensions of Random Inspec-

tion Policy I may be considered, where nodes do not necessarily have
12
an equal likelihood of being selected for inspection. One such example
involves weighing each node based on the number of downstream or
upstream nodes. In this article, after exploring various possible random
policies, we adopt a policy in which nodes are chosen based on rankings
determined by the proportions of estimated anomalous downstream
nodes. In essence, between two nodes, the one with a higher percentage
of estimated anomalous nodes is selected for inspection. Unlike the
Random Policy Inspection I, this model benefits from utilizing the out-
comes of the anomaly detection framework prior to inspection. Thus, it
represents a hybrid policy that combines randomness with information
derived from sensor data. It is worth noting that numerous similar
policies could be considered, and we included only this policy due
to the page limit and as it performed slightly better than comparable
policies in our numerical experiments. In the event of a tie between two
nodes with the same proportion of estimated anomalous downstream
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Table 5
Performance metrics in 1000-Node networks when |𝑆| = 5.
WS Networks Baseline Model Refined Model

Sensor Properties
Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDA𝛼 𝛽

0.6 0.4

Before Inspection 0.6295 0.4593 0.14 0.6295 0.4593 0.14

𝑚 = 2
Static 0.6639 0.4969 0.22 0.6601 0.4927 0.3448
Sequential 0.6807 0.516 0.27 0.6601 0.4927 0.3448

0.7 0.3

Before Inspection 0.7957 0.6608 0.34 0.7957 0.6608 0.34

𝑚 = 2
Static 0.837 0.7197 0.4124 0.8085 0.6785 0.4103
Sequential 0.8408 0.7253 0.4592 0.8370 0.7197 0.4783

0.8 0.2

Before Inspection 0.9102 0.8352 0.65 0.9102 0.8352 0.65

𝑚 = 2
Static 0.9340 0.8761 0.7053 0.9632 0.9291 0.7925
Sequential 0.9377 0.8827 0.7041 0.9521 0.9087 0.7937

0.9 0.1

Before Inspection 0.9535 0.9111 0.8 0.9535 0.9111 0.8

𝑚 = 2
Static 0.9339 0.9682 0.8970 0.9663 0.9348 0.8182
Sequential 0.9860 0.9723 0.9149 0.9753 0.9518 0.8519

Regular Networks Baseline Model Refined Model

Sensor Properties
Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDAAlpha Beta

0.6 0.4

Before Inspection 0.1440 0.0776 0.0400 0.1440 0.0776 0.0400

𝑚 = 2
Static 0.4198 0.2657 0.1546 0.4014 0.2511 0.1753
Sequential 0.3848 0.2382 0.1600 0.4227 0.2680 0.1856

0.7 0.3

Before Inspection 0.6325 0.4625 0.3400 0.6325 0.4625 0.3400

𝑚 = 2
Static 0.7582 0.6106 0.4149 0.7918 0.6553 0.5051
Sequential 0.7617 0.6151 0.4421 0.7945 0.6591 0.5102

0.8 0.2

Before Inspection 0.9217 0.8547 0.7300 0.9217 0.8547 0.7300

𝑚 = 2
Static 0.9561 0.9158 0.8125 0.9662 0.9345 0.8469
Sequential 0.9641 0.9307 0.8469 0.9629 0.9285 0.8454

0.9 0.1

Before Inspection 0.9854 0.9711 0.9400 0.9854 0.9711 0.9400

𝑚 = 2
Static 0.9943 0.9887 0.9697 0.9972 0.9943 0.9697
Sequential 0.9938 0.9876 0.9600 0.9972 0.9943 0.9697

Tree Networks Baseline Model Refined Model

Sensor Properties
Before/After F1-score Overlap Coefficient SDA F1-score Overlap Coefficient SDAAlpha Beta

0.6 0.4

Before Inspection 0.9256 0.8615 0.6600 0.9256 0.8615 0.6600

𝑚 = 2
Static 0.9700 0.9418 0.8500 0.9541 0.9122 0.7800
Sequential 0.9700 0.9418 0.8500 0.9541 0.9122 0.7800

0.7 0.3

Before Inspection 0.9988 0.9976 0.9400 0.9988 0.9976 0.9400

𝑚 = 2
Static 0.9990 0.9980 0.9600 0.9990 0.9980 0.9600

Sequential 0.9990 0.9980 0.9600 0.9990 0.9980 0.9600

0.8 0.2

Before Inspection 0.9968 0.9936 0.7200 0.9968 0.9936 0.7200

𝑚 = 2
Static 0.9987 0.9974 0.8800 0.9986 0.9972 0.8700
Sequential 0.9987 0.9974 0.8800 0.9987 0.9974 0.8800

0.9 0.1

Before Inspection 0.9998 0.9996 0.9700 0.9998 0.9996 0.9700

𝑚 = 2
Static 0.9998 0.9996 0.9800 0.9998 0.9996 0.9800
Sequential 0.9998 0.9996 0.9800 0.9998 0.9996 0.9800
t
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nodes, our policy selects the one with a greater number of downstream
nodes.

For both of the above random selection policies, two key consider-
ations should be highlighted. First, it is clear that selecting leaf nodes
(nodes with no child nodes) for inspection in anomaly detection can
be highly inefficient due to their limited network influence and infor-
mation. Moreover, it is important to recognize that anomalies typically
propagate through interconnected nodes before affecting distant parts
of the network. Consequently, single-node anomalies are often less
frequent and less critical than multi-node anomalies. To avoid selecting
nodes with no downstream nodes, we have implemented a strategy to
exclude leaf nodes from the inspection process for both random inspec-
tion policies. This consideration is particularly valuable in systems such
as power distribution networks, where inspecting a single customer
node yields limited information. Instead, nodes with more connections
13
and downstream nodes are prioritized for inspection, offering a more
meaningful assessment of network status and anomalies. Secondly, it
is important to note that the distinction between static and sequential
inspection policies applies to both of the random policies mentioned
above. We conducted an additional set of experiments, considering var-
ious network configurations and setup parameters. While we provide
results for specific settings with |𝑁| = 1, 000, |𝑆| = 1, and 𝑚 = 2 due
o space limitations, we explored three different network topologies
nd two sensor types. We applied the proposed and random inspection
olicies in both static and sequential manners. The results presented
n Table 6 demonstrate that both random inspection policies have the
otential to slightly improve the performance of the anomaly detection
odel. In almost all cases, performance metrics show improvement
fter the application of random inspections. However, these random
nspection policies cannot outperform the proposed models. In other
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Table 6
Comparison between the proposed models and random inspection policies.
(|𝑁| = 1000, |𝑆| = 1, 𝑚 = 2).
Type 𝛼 𝛽 Method Static Policy Sequential Policy

F1-Score Overlap Coefficient SDA F1-score Overlap Coefficient SDA

WS
Networks

0.6 0.4

Before Inspection 0.294 0.172 0.020 0.294 0.172 0.020
Random Inspection I 0.295 0.173 0.020 0.292 0.171 0.020
Random Inspection II 0.299 0.176 0.020 0.294 0.172 0.020
Baseline Model 0.325 0.194 0.040 0.321 0.191 0.040
Refined Model 0.326 0.194 0.030 0.324 0.193 0.030

0.9 0.1

Before Inspection 0.806 0.675 0.350 0.806 0.675 0.350
Random Inspection I 0.822 0.697 0.320 0.825 0.703 0.330
Random Inspection II 0.840 0.724 0.354 0.832 0.712 0.350
Baseline Model 0.866 0.763 0.427 0.877 0.780 0.470
Refined Model 0.902 0.821 0.500 0.900 0.818 0.505

Regular
Networks

0.6 0.4

Before Inspection 0.000 0.000 0.000 0.000 0.000 0.000
Random Inspection I 0.000 0.000 0.000 0.000 0.000 0.000
Random Inspection II 0.000 0.000 0.000 0.000 0.000 0.000
Baseline Model 0.169 0.093 0.070 0.141 0.076 0.060
Refined Model 0.169 0.093 0.070 0.169 0.093 0.070

0.9 0.1

Before Inspection 0.649 0.480 0.410 0.000 0.000 0.000
Random Inspection I 0.674 0.508 0.430 0.651 0.483 0.400
Random Inspection II 0.616 0.445 0.320 0.613 0.442 0.350
Baseline Model 0.792 0.655 0.478 0.783 0.643 0.495
Refined Model 0.865 0.762 0.586 0.863 0.759 0.582

Tree
Networks

0.6 0.4

Before Inspection 0.711 0.552 0.120 0.711 0.552 0.120
Random Inspection I 0.711 0.552 0.120 0.711 0.552 0.120
Random Inspection II 0.711 0.552 0.120 0.711 0.552 0.120
Baseline Model 0.858 0.751 0.460 0.858 0.752 0.470
Refined Model 0.824 0.700 0.410 0.824 0.700 0.410

0.9 0.1

Before Inspection 1.000 1.000 0.990 1.000 1.000 0.990
Random Inspection I 1.000 1.000 0.990 1.000 1.000 0.990
Random Inspection II 1.000 1.000 1.000 1.000 1.000 1.000
Baseline Model 1.000 1.000 0.990 1.000 1.000 0.990
Refined Model 1.000 1.000 0.990 1.000 1.000 0.990
s
r

-

words, the performance measures corresponding to the baseline and
refined models in both static and sequential scenarios are better than
random inspection policies. As discussed earlier, it becomes evident
that the impact of inspection policies (whether random or proposed)
diminishes as sensors become more powerful and network structures
become less complex (e.g., tree structures). Similar results were ob-
served across various values of |𝑁|, |𝑆|, and sensor parameters 𝛼 and
, although detailed results are not included due to space constraints.

.4. CPU time comparisons for inspection models

The random inspection policies are evidently computationally less
xpensive, especially in the case of the Random Inspection Policy I
here only 𝑚 nodes need to be selected from the set of |𝑁| (excluding
on-leaf) nodes. However, in random inspection policy II, we need
o calculate the proportion of downstream anomalous nodes for all
odes, which results in complexity linearly increasing with the number
f nodes in the network. For the baseline model in a static scenario,
ince only one measure is calculated for each node, the complexity
epends on the number of nodes (|𝑁|). However, for the sequential
olicy, a measure needs to be calculated sequentially for each node,
hich increases the complexity to depend on |𝑁| × 𝑚. The refined
odel without the utilization of matrix operations includes 2 nested for
oops over network nodes to calculate 𝛾(𝑛), making the complexity to
epend on |𝑁|

2. With introducing efficient matrix operations as shown
n Section 3.6, we expect the CPU time needed for Algorithms 5 and
to be very low and not much longer than the baseline model. To
umerically evaluate the computational time, we recorded the average
PU time required for each method to determine the status of the
odes after inspection for 3 types of networks with different sizes
s shown in Table 7. All experiments in this section were conducted
n a cloud-based platform Google Colab Pro with CPU only (Intel(R)
eon(R) CPU @ 2.20 GHz, 12 GM RAM). Further improvements in
14
peed may be attainable with access to more advanced computing
esources. The results summarized in Table 7 confirm our expectations
regarding CPU time. Specifically, the refined model and its sequential
scenarios take slightly longer than random inspection models while
random inspection policy I is the quickest. Overall, all experiments
were completed within a very reasonable timeframe, enhancing the
applicability of the findings in real-world scenarios. Users of our paper
should consider high-performance computing resources as well as the
trade-off between accuracy improvement and CPU time and decide
whether inspection is feasible and whether inspecting more nodes is
beneficial. For instance, in power distribution networks, utility opera-
tors need to respond swiftly to detect the sources of outages and assess
impacted customers because sustained outages can lead to substantial
financial losses and societal consequences. Consequently, dispatching
repair crews to numerous locations is not a viable option, and the final
decision should be based on a very small set of inspection nodes.

5. Concluding remarks

In the realm of monitoring complex systems structured as graphs,
such as power distribution networks, where many sensors collect stochas
tic data about nodes’ health conditions, we have explored an alternative
to relying solely on stochastic insights derived from anomaly detection
models. Our objective was to investigate whether targeted inspection of
a small subset of nodes could enhance anomaly detection performance.
In this paper, we introduced two node selection methods for inspection,
taking into account both static and sequential approaches. These meth-
ods have the potential to significantly enhance anomaly detection, thus
improving the overall monitoring of network status. We formulated
the anomaly detection problem using Bayesian networks and utilized
samples from a stochastic sampler for node selection and inspection.
Our numerical results confirmed that this approach effectively boosts

anomaly detection accuracy by focusing on intelligent inspection efforts
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Table 7
CPU time (in seconds) comparison between random and proposed inspection models.
Network Size Inspection Scenario WS Networks Regular Networks Tree Networks

Random I Random II Baseline Refined Random I Random II Baseline Refined Random I Random II Baseline Refined

|𝑁| = 500
Static 0.02 0.63 0.02 0.42 0.02 0.71 0.02 0.44 0.02 0.35 0.02 0.43
Sequential 0.02 0.62 0.02 0.72 0.02 0.60 0.02 0.73 0.02 0.36 0.02 0.76

|𝑁| = 1000
Static 0.02 1.17 0.02 1.24 0.02 1.13 0.02 1.31 0.02 0.63 0.03 1.36
Sequential 0.02 1.16 0.03 2.19 0.02 1.18 0.02 2.36 0.02 0.64 0.02 2.42

|𝑁| = 2000
Static 0.03 2.29 0.04 5.56 0.03 2.32 0.03 5.43 0.03 1.32 0.02 5.61
Sequential 0.02 2.55 0.03 9.92 0.02 2.46 0.03 9.78 0.03 1.30 0.03 9.98
L

L

M

M

N

P

P

P

P

R

R

S

S

S

S

S
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on just a few critical nodes. The current work has limitations as it solely
focuses on deterministic anomaly propagation paths while disregarding
potential time dependencies within anomalies and sensor data. In
future research, we plan to explore the dynamic nature of anomalies
and sensor data, incorporating more intricate anomaly scenarios where
propagation sets are either stochastic or not predefined. Additionally,
we aim to investigate how the findings from this study can be extended
to guide the optimal placement of new sensors within the network.
This strategic sensor placement will enable anomaly detection models
to make more effective use of new sensor data, leading to improved
accuracy and quicker detection of anomalies. Another area for future
work is to extend the proposed models by defining new criteria for node
selection and efficiently executing them using matrix operations similar
to those proposed in this paper.
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