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Abstract | Fluorescence imaging in the second near-infrared (NIR-Il) window enables
deep-tissue imaging with high resolution and improved contrast by taking advantage
of the reduced light scattering and tissue autofluorescence in this region of the
spectrum. NIR-Il fluorescence imaging uses photoluminescent contrast agents —
including carbon nanotubes, quantum dots, rare-earth doped nanocrystals, gold
nanoclusters, small molecules and their aggregates — and fluorescent proteins, which
all exhibit fluorescence in the 1,000-3,000 nm range. After administration of these
fluorophores in vivo, live animals can be imaged with specialized detectors and optical
instruments, yielding images with contrast and resolution unparalleled by conventional
visible and near-infrared fluorescence imaging. This powerful approach enables
dynamic imaging of vascular structures and hemodynamics; molecular imaging and
image-guided surgery of tumors; and visualization of deep-seated structures, such as
the gastrointestinal system. NIR-II fluorescence imaging has revolutionized biomedical
imaging over the past 15 years and is poised to make comparable advancements in
cardiology, neurobiology, and gastroenterology. This Primer describes the principles
of NIR-Il fluorescence imaging, reviews the most used fluorophores, outlines
implementation approaches, and discusses specific scientific and clinical applications.
Furthermore, the limitations of NIR-Il fluorescence imaging are addressed and future
opportunities across various scientific domains are explored.
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[H1] Introduction

The second near-infrared (NIR-Il) window, also known as the short-wave infrared
(SWIR) window, is a subregion of the electromagnetic spectrum with wavelengths
ranging from 1,000 to 3,000 nm.™* NIR-II fluorescence imaging is a technique that
uses fluorescence emission within this window to visualize anatomical structures,
biological molecules, and functional activities in biological tissues.>~” Compared to
traditional fluorescence imaging in the visible (400-700 nm) and conventional near-
infrared (NIR-I, 700-1,000 nm) windows, NIR-II photons exhibit deeper penetration in
biological tissues owing to reduced scattering [G] and autofluorescence [G] (Fig. 1).!
This advantage makes NIR-Il imaging particularly beneficial for capturing high-
resolution fluorescence images at depths of several millimeters, where conventional
fluorescence imaging struggles to provide clear visualization.>8° For this reason, the
NIR-Il spectrum is an attractive choice for imaging deep tissues, such as
subcutaneous lymph nodes, neurons in deep brain regions, deep-seated tumors, and
intestines within the abdominal cavities. This deep-tissue imaging ability is especially
important in live animals, such as mice,>'%'" pigs,’ non-human primates,'® and
humans.’

The underlying principle of NIR-Il imaging is to use photoluminescent contrast agents
or labels with emission in the 1,000-3,000 nm spectral region.>'#-® These agents,
when excited by a shorter-wavelength light source (700-1,650 nm), emit light in the
NIR-Il window."? Existing NIR-Il contrast agents include carbon nanotubes
(CNTs),48101517.18 guantum dots (QDs),>'%?" small molecules,'*?>2* fluorescent
proteins,?>?6 rare-earth nanoparticles (RENPs),'®27-29 and gold nanoclusters
(AuNCs).30-33 Amongst the several modes of NIR-II fluorescence imaging, widefield
and raster scanning are currently the most widely used.?* Widefield imaging, which is
common in epifluorescence [G] imaging and light sheet microscopy, involves a broad
laser beam or light-emitting diode (LED) to simultaneously stimulate NIR-II emitters
in a sample.>® The emitted fluorescence signal is then detected by a two-dimensional
(2D) indium gallium arsenide [G] (InGaAs) camera that produces an image of the
spatially distributed NIR-Il emitters projected onto a single plane.®® The other widely
used method, raster scanning, employs techniques such as NIR-Il confocal
microscopy for volumetric three-dimensional (3D) imaging.? Raster scanning involves
spatial scanning of a focused laser beam and point-by-point emission detection by
detectors such as InGaAs photodiodes [G] , photomultiplier tubes [G] (PMTs), or
superconducting nanowire single-photon detectors [G] (SNSPDs).?3¢ While NIR-II
fluorescence imaging has familiar optical setup designs, it achieves superior signal-
to-noise ratio [G] (SNR) and spatial resolution at greater tissue depths by harnessing
NIR-II photons that have reduced scattering and autofluorescence within the tissue.

Over the past decade, NIR-Il fluorescence imaging has advanced. Several new NIR-
Il contrast agents have emerged, encompassing molecularly engineered NIR-II
dyes, 43738 genetically engineered NIR-II fluorophores,?53° NIR-Il J-aggregates,*0-42
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and rare earth down-conversion nanoparticles.'®2%43 These emerging fluorophores
exhibit bright NIR-II emission, enhanced biocompatibility, and a wide range of
functionalities. In particular, the FDA-approved contrast agent indocyanine green has
been repurposed for NIR-II fluorescence imaging in rodents and humans due to its
extended emission spectrum beyond 1,000 nm.”?244 The development of brighter
fluorophores, along with faster detectors, has substantially improved NIR-II
fluorescence imaging by enhancing its temporal resolution up to ~100 frames per
second (fps).2%4546 This advancement has enabled dynamic events in living systems
to be visualized in real-time, such as quantitative dynamic monitoring of blood
perfusion in the cerebral and peripheral vessels,®'° time-resolved imaging of cardiac
cycles,*"*® and real-time in vivo imaging of renal clearance dynamics.' Alongside high
temporal resolution, advances in confocal? and light sheet microscopy?® yield higher
spatial resolution, enabling in vivo molecular imaging at the cellular level. Specifically,
NIR-II molecular imaging is now possible using clickable dyes to image brain tissue at
a molecular level.3” Expanding on molecular imaging, multiplexed NIR-Il molecular
imaging was achieved by developing probes with different emission wavelengths in
the NIR-II spectrum or with different excited state lifetimes.'®2° Several subregions of
the NIR-Il spectrum, such as NIR-lla (1,300-1,400 nm), NIR-llIb (1,500-1,700 nm), NIR-
llc (1,700-2,000 nm), and NIR-IId (2,100-2,300 nm) have been proposed based on
their relation to major water absorption peaks.? Lastly, integration with other imaging
techniques, such as multiphoton microscopy and structured light illumination, has
opened up new possibilities for NIR-Il imaging.4®°° These advances have paved the
way for diverse preclinical and clinical applications.”3251

The focus of this Primer is on preclinical NIR-II fluorescent imaging in animal models
and the clinical translatability of emerging small-molecule NIR-Il fluorescent agents for
imaging in humans. The emphasis on small-molecule NIR-II fluorophores arises from
their capability to provide high-resolution imaging in deep tissues, coupled with
enhanced molecular targeting precision and specificity, while ensuring rapid clearance
from the body. The latest methods for experimentation and interpretation of NIR-II
fluorescence imaging are explored in the context of its extensive applications.
Furthermore, best practices in reproducibility and data deposition are highlighted,
promoting consistency and comparability across different laboratories and
experiments, with the goal of setting widely accepted standards. By delving into these
specific aspects, the Primer aims to provide a comprehensive understanding of the
opportunities and challenges in translating NIR-II fluorescence imaging from bench to
bedside.

[H1] Experimentation

In a standard NIR-II fluorescence imaging experiment, an excitation light source is
used to stimulate NIR-II contrast agents or labels within biological tissues of live
subjects. These agents or labels subsequently emit photons in the NIR-II spectrum,
which are captured by a detector. The varied spectral and lifetime properties of the
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NIR-II fluorophores enable multiplexed imaging in both the spectral and time domains.
NIR-II fluorophores can either fill hollow structures — for example, blood vessels,
lymphatic vessels, ureters and intestines — to offer structural contrast or adhere to
specific tissues and molecules for targeted labeling. Before experimentation, it is
essential to assess the luminescence, biochemical, and pharmacological properties
of NIR-II fluorophores. Additionally, factors such as laser safety and ethical handling
of animal and human subjects are crucial when implementing NIR-Il fluorescence
imaging.

[H2] Optical systems for NIR-Il fluorescence imaging

[H3] Excitation sources

NIR-II imaging relies on detecting NIR-Il photons emitted by luminescent probes post-
excitation. Broadly, these NIR-IlI luminescent probes can be stimulated by various
excitation sources, including light, X-rays, pressure, and chemical reactions."1.52-56
Light in the 700-1,650 nm region is the most frequently used excitation source in NIR-
Il fluorescence imaging.21s

Custom-built and commercially available NIR-II fluorescence imaging systems come
with an excitation light source designed to stimulate NIR-II emission from the probes.
When choosing the operating wavelength for excitation sources, three critical factors
come into play. First, for maximum excitation efficiency, the power distribution
spectrum of the excitation source should closely match the excitation spectrum of the
NIR-II fluorophore. Notably, the excitation spectrum can be roughly gauged by the
fluorophore’s absorption spectrum. Second, the excitation wavelength must ensure
deep tissue penetration. This requirement ensures efficient excitation of deeply
situated NIR-II fluorophores, while minimizing scattering and absorption of excitation
photons by the biological tissue. The tissue penetration criterion requires the excitation
wavelength to fall within the two optical windows of biological tissues to reduce
attenuation of the excitation light.3 This stipulation establishes a lower bound of 700
nm for excitation.

The third critical factor is that the excitation light should cause minimal damage to the
biological tissue. In NIR-Il fluorescence imaging, there are two primary types of
excitation light-induced damage: photochemical and photothermal. Photochemical
damage arises from reactive oxygen species [G] that are predominantly generated by
endogenous chromophores after they absorb short-wavelength excitation light (< 600
nm).5-5% This type of damage hinders cellular functions because chemical reactions
with vital biomolecules, such as DNA, are initiated by reactive oxygen species.
Photothermal damage stems from the conversion of absorbed light into heat, primarily
driven by longer wavelengths, particularly red to near-infrared light (> 600 nm).%’
Simplifying for a first-order approximation, the photothermal absorption of tissues can
be attributed to water, which is abundant in most soft biological tissues. Since water’s
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overtone absorption [G] bands manifest at 970 nm, 1,200 nm, 1,450 nm, and beyond
1,800 nm,®° using excitation wavelengths different to these bands is recommended.

The excitation wavelength should ideally fall within the 700-1,650 nm range, provided
it aligns well with the excitation spectrum of the NIR-Il fluorophore and avoids the
major absorption bands of water. Conventional NIR-Il fluorophores such as CNTs,
QDs, and RENPs, excited in the 700-1,000 nm range exhibit minimal photothermal
effects but face challenges with lingering scattering and autofluorescence. By
contrast, recent fluorophores that absorb above 1,000 nm in the NIR-II region improve
image clarity and penetration depth due to reduced scattering and autofluorescence,
however, there is a potential to increase tissue heating near water absorption
bands.6'-%* Selecting wavelengths within the 700-1,650 nm range for excitation is
justified by the availability of semiconductor diode lasers [G] and LEDs that operate
within this spectrum.®® Specifically, AlGaAs lasers, which commonly have output
wavelengths at 785 nm and 808 nm, emerge as primary choices for excitation in NIR-
Il fluorescence imaging.®’ In addition, Nd-doped yttrium aluminum garnet (Nd:YAG)
lasers with a typical emission band at 1,064 nm offer deep penetration with minimal
photothermal effects in biological tissues.6366.67 | asers typically have a narrow
spectral distribution of emitted power, making them suitable for optically exciting NIR-
Il fluorophores with a narrow absorption spectrum. However, NIR-II fluorophores with
wider absorption bands are more effectively excited by LEDs. This is because LEDs
typically have a broader power distribution spectrum, ensuring maximal overlap
between the light source’s excitation power and the fluorophore’s absorption.

The spectral width of a specific excitation light source has another important
implication. Since no light sources emit an ideal single-wavelength, they have a
residual power distribution in the NIR-II spectrum. Although this residual power is
weak compared to the peak power, it can surpass the fluorescence intensity, creating
undesired background in the image. Therefore, it is crucial to use a bandpass or
shortpass filter — referred to as an excitation filter [G] — before the light reaches the
subject to eliminate the light source’s long-wavelength residual power. Additionally,
an emission filter [G], usually a longpass filter, is needed between the subject and
detector to eliminate excitation light reflection off the subject. A general guideline for
selecting the excitation and emission filters is provided in Supplementary Note 1.

Finally, an additional consideration for excitation is the homogeneity of the illumination
intensity over the entire field of view. Quantitative analysis of NIR-Il fluorescence
images requires homogeneous excitation intensity over the whole field of view to
establish a correlation between NIR-Il intensity and local fluorescent probe
concentration. Homogeneous illumination can be achieved by using a multi-fibre array
or an optical diffuser [G]. Although optical diffusers offer a more uniform intensity
distribution, undesired impurities in the diffuser can alter the spectral purity of the laser
source. For instance, the glass used to build spatial diffusers may contain neodymium
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ions, which absorb the 808 nm excitation light, leading to 1,045 nm fluorescence that
causes false contrast in the in vivo image.®®

Schematic representations of conventional in vivo NIR-II imaging systems (Fig. 2)
illustrate the importance of the excitation source in NIR-II fluorescence imaging. In
widefield NIR-Il fluorescence imaging, the excitation appears as a broad plane of
photon flux (Fig. 2a). In addition, for raster-scan confocal fluorescence imaging in the
NIR-Il spectrum, the excitation manifests as a focused spot (Fig. 2b), which is
scanned point-by-point to traverse the entire 3D volume of the sample. Furthermore,
for NIR-II light-sheet microscopy, the excitation presents as a slim sheet of
illumination, which excites the fluorophores within a single plane at a time (Fig. 2c).

[H3] Image formation optics

The optical systems for NIR-Il fluorescence images include widefield, confocal, and
light-sheet configurations (Fig. 2a-c). However, a consistent principle for all setups is
that the image formation optics should always have a lens system paired with a
detector that is sensitive to photons in the NIR-Il spectrum. Beyond these elements,
individual NIR-II fluorescence imaging setups may incorporate unique components,
such as optomechanics [G] like a Galvo scanner, translation stage, and filter wheel.
Broadband mirrors and dichroic mirrors [G] are also typically added as required.

Detectors commonly used for NIR-II fluorescence imaging include single-pixel
detectors and 2D detector arrays. Among the single-pixel detectors, popular choices
are InGaAs photodiodes, InGaAs avalanche photodetectors [G] (APDs), InGaAs
PMTs, and NbTiN SNSPDs.236:37.6° These detectors capture the NIR-II fluorescence
intensity from a single point in space at a time. To generate full 2D or 3D images, the
pixel data is assembled using raster scanning enabled by optomechanical
mechanisms. For widefield imaging and light-sheet microscopy within the NIR-II
spectrum, a 2D array of InGaAs detectors is typically used.>78.10.11.2570 Thjs array can
simultaneously create a 2D image without requiring pixel-by-pixel signal capture.
Several examples of NIR-Il detectors and their characteristics are summarized in
Supplementary Note 2.

In NIR-II fluorescence imaging, the lens system performs two primary functions. First,
it shapes the excitation light into the desired illumination pattern. Second, it gathers
and directs the NIR-II fluorescence photons toward the detector to form an image. It
is crucial for the lens material to exhibit low absorption in the NIR-II range. Additionally,
each lens should feature an antireflective coating tailored to the NIR-II spectrum. For
generating the desired excitation patterns, the lens system might include a collimator
for widefield imaging, an objective lens for focused excitation in confocal imaging, or
a cylindrical lens for creating a light sheet. For widefield fluorescence imaging, the
image-formation lens system (Fig. 2d) has several important parameters — such as
focal length (f), working distance (WD), and back focal distance (BFD) — which are
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connected to the camera’s horizontal dimension (H) and the horizontal field of view
(FOV) as follows:

1
wp TEm =7 (1)
and
=07 = wp )

where M is the magnification of the imaging system. In widefield NIR-II fluorescence
microscopy that has an infinity-corrected objective [G], WD is the same as the
objective’s working distance, while BFD equals the focal length of the tube lens.

Combining Eq. (1) and (2) shows that the FOV can be expressed as:

FOV = gry— (3)

7
where the FOV is directly proportional to H. Eq. (3) also shows that for a lens system

with a fixed f, moving the entire system towards the imaged object magnifies the image
since the FOV is reduced. Second, when WD > BFD, FOV can be approximated as

Fovzﬂ-@ (4)

which is usually a good approximation for whole-body NIR-II fluorescence imaging of
rodents. The real-space pixel resolution d,¢ is proportional to the pixel size in the
camera d.,:

dys = deq *— ()

Additional components can be incorporated into the image formation optics as needed
to achieve specific functions, such as NIR-Il confocal microscopy, NIR-II fluorescence
tomography, or NIR-II fluorescence imaging in time and spectral domains. A detailed
discussion of these specialized methods can be found in Supplementary Note 3.

[H2] Fluorescent probes for NIR-Il imaging

The requirements of minimum tissue damage and maximum tissue penetration dictate
that the ideal fluorescent probes for NIR-II fluorescence imaging should be excited in
the 700-1,650 nm range, with emission wavelengths beyond 1,000 nm. Several NIR-
Il fluorescent probes have been developed that meet these criteria. These NIR-II
fluorophores can be grouped into three main categories: inorganic nanoparticles,
organic molecules (and their aggregates), and infrared fluorescent proteins (Fig. 3).

[H3] Inorganic NIR-Il nanoparticles

Inorganic nanoparticles that emit in the NIR-Il range are nanostructures with at least
one dimension measuring less than 100 nm. Common NIR-IlI emitting fluorophores
include CNTs, QDs, RENPs, and AuNCs (Table 1). The unusual NIR-Il emission of
these inorganic nanoparticles is closely tied to their chemical composition, structure,
and size. Different materials obtain their NIR-II fluorescence emission via different
mechanisms. The NIR-Il fluorescence of CNTs, QDs, and AuNCs arises from quantum
confinement effects due to their small size.”’"3 The NIR-II fluorescence of RENPs is

7
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governed by the energy levels and f-f transitions in doped lanthanide ions.*® Inorganic
NIR-II fluorophores benefit from sharp and intense emission peaks, tunable emission
wavelengths up to a few micrometers, and excellent photostability. On the downside,
their biocompatibility and pharmacokinetics are often limited due to the inclusion of
heavy metal ions and relatively large sizes.

Among all NIR-II-emitting fluorophores, CNTs have served as pioneers.3* Their NIR-
Il emission spectrum has narrow bandwidths (35-80 meV), enabling sensitive and
precise detection of local environments through quenching and solvatochromic
responses, as well as emission modulation via quantum defect sites.®'%'® Their
resistance to photobleaching is an additional advantage for long-term imaging.
However, the relatively low quantum efficiency of CNTs causes a photothermal effect
that has limited broader applications. Recently, copper—indium-selenium (CISe)
nanotubes have emerged as a promising alternative with a high quantum yield of
124% and an extended lifetime of 336.1 ps. CISe nanotubes facilitate
phosphorescence imaging with minimal interference from background
autofluorescence.’

NIR-II fluorophores based on QDs have also gained prominence. Among the first
examples are silver sulfide (Ag2S) QDs, renowned for high brightness, long circulation
half-life, and high tumor-targeting specificity.'®”> Ag2S QDs have a temperature-
dependent NIR-II fluorescence intensity, making them useful as nanothermometers
for non-contact brain temperature measurements.”®’” More recently, lead sulfide
(PbS) QDs have gained attention due to their extremely long emission wavelength,
extending into the NIR-llc window (1,700-2,000 nm), offering unparalleled tissue
imaging depths.? Another notable development is indium arsenide (InAs) QDs, which
have an exceptionally high fluorescence quantum yield, enabling fast image
acquisition for dynamic NIR-II fluorescence imaging.?® However, a major concern of
inorganic quantum dots (QDs) is the potential for heavy metals, such as lead and
arsenic, to be toxic in biological systems.

A newer class of inorganic NIR-II fluorophores is RENPs. These particles are
beneficial for advanced imaging because they offer discrete, narrow emission bands
and adjustable fluorescence lifetimes, enabling spectral-domain and time-domain
multiplexing techniques, respectively.'®7® The emission wavelengths of RENPs in the
NIR-II region can be tailored by selecting specific lanthanide ions, extending up to
2,842 nm.”® Moreover, RENPs can be engineered to offer the unique ability of being
excited by X-rays. X-ray excited RENPs produce persistent luminescence, which
continues for minutes or hours after the excitation source ceases.!" This long-lasting
luminescence delivers better SNR in deep-tissue imaging (up to 4 mm) compared to
traditional NIR-II fluorescence imaging, while enhancing the precision of in vivo
multiplexed encoding and multilevel encryption.


https://paperpile.com/c/X8apjP/kllLW
https://paperpile.com/c/X8apjP/rHQ0b+21a1K
https://paperpile.com/c/X8apjP/vOgsA+KM0QC+Zp7t2
https://paperpile.com/c/X8apjP/7feeD
https://paperpile.com/c/X8apjP/ColkN+H4VhO
https://paperpile.com/c/X8apjP/AffwG+e1ny3
https://paperpile.com/c/X8apjP/Whyl7
https://paperpile.com/c/X8apjP/EBfPW
https://paperpile.com/c/X8apjP/Y0d0D+Qs4jC
https://paperpile.com/c/X8apjP/BK4Zi
https://paperpile.com/c/X8apjP/FoAKv

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

Lastly, AuNCs represent an emerging and promising category of inorganic
fluorophores for in vivo NIR-1I imaging.3°-32 AUNCs have a metal core containing tens
of atoms stabilized by organic ligands. They are small, with sizes under 2 nm. This
small size reduces potential toxicity by minimizing accumulation in the body’s
mononuclear phagocytic system system and enhances renal clearance through the
kidneys.30-32.80

[H3] Organic NIR-Il molecules

In contrast to inorganic fluorophores, organic NIR-II molecules are developed to
enhance pharmacokinetics, biocompatibility, and targeting specificity. However, they
typically exhibit weaker fluorescence, poorer photostability, and shorter emission
wavelengths. To overcome these challenges, several organic molecules were
specifically tailored for NIR-II fluorescence imaging. Dyes, such as indocyanine green
(ICG) and IRDye 800CW, which have peak emission in the NIR-I spectrum, have been
repurposed for NIR-Il applications because their spectral tail extends into the NIR-II
range. Beyond free-form organic compounds, their protein complexes and
aggregates, particularly J-aggregates, are also gaining attention as NIR-II fluorescent
agents.

CH1055 was the first organic molecule specifically designed for NIR-II fluorescence
imaging. CH1055 is a fluorescent compound with a donor—acceptor—donor (D—A-D)
structure that can be made water soluble for targeted delivery by addition of
polyethylene glycol (PEG), resulting in CH1055-PEG."* CH1055-PEG has a small
molecular weight (8.9 kDa) and can be quickly excreted through the kidneys within 24
hours of intravenous administration. To boost the low quantum yield of D-A-D type
fluorophores, shielding units have been added to both sides of the D-A-D structure.®
Besides D-A-D type fluorophores, cyanine dyes are another class of small molecules
that exhibit NIR-II fluorescence. For instance, FNIR-1072 is a specific type of cyanine
dye known as a nonamethine cyanine, which emits light at 1,103 nm. This emission
wavelength is longer than its heptamethine cyanine counterparts, owing to a more
extended Tr-conjugation system.?* The chromenylium heterocycle has emerged as a
promising, red-shifted scaffold for polymethine fluorophores. Recent advances have
introduced clickable groups to this structure, creating a modular scaffold that enables
tunable solubility and targeted activity.®? Lastly, tetra-benzannulated xanthenoid is
another class of NIR-II fluorophores with intense absorption and emission beyond
1,200 nm.%4

Besides rationally designed organic NIR-II molecules, well-known cyanine dyes like
ICG and IRDye 800CW have been repurposed for in vivo NIR-Il imaging due to their
tail emission beyond 1,000 nm.?24* |CG — FDA-approved since 1959 — and IRDye
800CW are being studied in clinical trials for fluorescence angiography and image-
guided cancer surgery.?384 This makes them promising candidates for NIR-Il imaging
in clinical settings, as recently showcased in the first human liver-tumor surgery guided
by NIR-II fluorescence.”
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Using organic molecule aggregates in a micelle or matrix for NIR-Il imaging was
originally motivated by the need to solubilize highly hydrophobic, water-insoluble
cyanine or thiopyrylium dyes.#"838 A sulfonated D-A-D dye (CH-4T) forms
supramolecular assemblies with proteins in the serum, resulting in the CH-4T@protein
complex with an exceptional NIR-Il quantum yield of 11%.4® Similarly, forming protein
complexes with cyanine dyes yields an NIR-II fluorophore with a quantum yield of
21.2%.87 Another method for enhancing NIR-Il fluorescence is via aggregation-
induced emission [G] (AIE). This approach increases the NIR-II fluorescence of
organic molecules that are otherwise non-emissive.88-%4 Notably, zwitterionic
isocyanorhodium(l) complexes exhibit intense NIR-Il phosphorescence upon
aggregation in an aqueous solution.®® J-aggregates are another promising strategy for
shifting the fluorescence of certain organic molecules from the visible and NIR-I ranges
into the NIR-II spectrum.41.96.97

Another significant research direction involves reducing the molecular weight and size
of NIR-II emitting molecules. Size reduction is driven by the need for rapid renal
excretion and ability to cross the blood-brain barrier (BBB). A notable development is
the creation of boron difluoride (BF2) formazanate NIR-II dyes, with modifications to
the aniline moiety to enhance BBB penetration for noninvasive brain imaging.%
Additionally, styrene oxazolone dyes, inspired by the chemical structure of
chromophores in fluorescent proteins, have been synthesized. These dyes exhibit NIR
fluorescence and have small molecular weights (<450 daltons), facilitating rapid renal
clearance and BBB crossing.®°

Inorganic lanthanide ions can be combined with organic ligand molecules to produce
NIR-II fluorophores with unique spectral properties. For example, a molecular
erbium(ll) complex coordinated with bacteriochlorin and a Klaui ligand exhibits a large
Stokes shift (>750nm) and exceptionally sharp emission peaks (peak
width <32 nm).100

[H3] Genetically engineered proteins with off-resonance NIR-Il emission

Genetically encoded fluorescent proteins are used to address the challenges of
exogenous NIR-II probes (Supplementary Note 4). Several genetically encoded red-
shifted NIR fluorescent proteins have been developed with fluorescence emission in
the NIR-Il window. MiRFP718nano was developed as a red-shifted NIR fluorescent
protein that efficiently binds to biliverdin chromophore, with a tail emission extending
well beyond 1,000 nm.?% Another infrared fluorescent protein, iRFP713, exhibits off-
resonance fluorescence in the NIR-Il spectrum despite having a peak emission at 713
nm.?® A genetic engineering method was used to produce a range of albumin
fragments and recombinant proteins that form covalent bonds with cyanine dyes to
enhance their off-resonance tail emission in the NIR-Il spectrum.3® The recombinant
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proteins covalently bind with cyanine dyes, enhancing their brightness and stability,
providing water solubility and the potential for further functionalization. The process is
similar to covalent integration of the exogenous chromophore biliverdin by genetically
encoded fluorescent proteins to achieve ultra-red and infrared emission.01.102

[H2] Preparation and administration of NIR-Il probes
Once the NIR-IlI probe has been selected, the following points must be considered
when preparing and administering the NIR-II probe in live subjects (Fig. 4):

[H3] Evaluation of cytotoxicity and systemic toxicity

The first step when preparing NIR-Il probes for in vivo imaging is to assess their
cytotoxicity in vitro (Fig. 4a). This evaluation should cover a range of concentrations
and employ model cell lines, such as human embryonic kidney cells [G]; specific
cancer cell lines like 4T1 and U87MG cells; cardiomyocytes; and primary hippocampal
neurons. The upper concentration bound for in vitro testing should be 2-10 times
higher than the intended in vivo concentration.’® Once a non-toxic concentration is
identified, it should be used for in vivo testing (Fig. 4b). A concentration proven safe
during in vitro testing may not be safe for in vivo studies. Critical metrics — such as
mouse survival rate, weight changes, circulation half-life, biodistribution in different
organs, excretion pathways, blood panels, and histological evaluation of major organs
— should be monitored to assess in vivo toxicity at specific concentrations, usually
reported in microgram or milligram per kg body weight.

[H3] Excitation power density evaluation

Once the specific excitation wavelength has been selected, either capillary tubes with
a 50-um diameter for mesoscopic imaging or subdiffraction-sized spherical beads for
microscopic imaging should be prepared and loaded with the chosen NIR-II
fluorescent probes.? The feature sizes and probe loading concentrations of the
capillary tubes or beads should match those intended for the in vivo experiments. The
samples should then be placed at an equivalent depth in a scattering phantom, such
as 5% Intralipid [G], to determine the minimum excitation power density required to
achieve an SNR of at least 5 (Fig. 4c).?2 The autofluorescence background of the
scattering phantom should also be evaluated as it might differ from in vivo conditions.

[H3] Photobleaching and photothermal effects

Before proceeding with live animal experiments, the photobleaching and photothermal
effects of the probes need to be characterized. Photobleaching can be assessed by
continuously illuminating the sample with the chosen excitation wavelength and
minimal excitation power density for 1 hour while monitoring the NIR-II fluorescence
intensity. Temperature recording with a thermal camera can be performed
simultaneously to understand any photothermal effects during fluorescence imaging
(Fig. 4d).

[H3] In vivo administration
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Upon satisfactory completion of the above steps, the probe solution can be
administered into live mice via a suitable route, such as intravenous, retro-orbital,
intratumoral, or intraperitoneal injection. To prevent agglomeration, the solution should
be sonicated thoroughly before administration. Initial imaging should use the
established minimum excitation power density, with adjustment of the excitation power
and exposure time as needed to optimize SNR, but without exceeding limits set by the
International Commission on Non-lonizing Radiation Protection.®” Throughout the
imaging procedure, real-time monitoring of the animal’s breath rate, skin, and rectal
temperatures is essential to ensure comfort during the experiment.

[H2] Data collection for NIR-Il fluorescence imaging

The data collection process for NIR-II fluorescence imaging requires carefully
coordinated steps to ensure high-quality images and meaningful results. After
choosing suitable excitation sources and setting up the imaging system, the imaging
process usually begins immediately after administration of the NIR-II fluorescent probe
to capture the dynamics of NIR-II fluorescence changes in the body. The excitation
power density and exposure time are carefully adjusted, starting at minimal settings
and fine-tuning to optimize the SNR. A few key considerations during data collection
are summarized in this section.

[H3] Frame rate of widefield NIR-Il imaging

In widefield imaging, each image is captured by projecting the entire field of view onto
the sensing area of a 2D InGaAs camera. Since all pixels are captured simultaneously,
the frame rate is typically determined by the sum of the exposure time and instrument
overhead time. Using brighter NIR-II fluorophores can reduce the exposure time, while
the overhead time can be reduced with buffered capture, batch operation, and pixel
binning.

[H3] Frame rate of confocal NIR-Il imaging

Confocal NIR-IlI fluorescence microscopy is based on raster scans rather than
simultaneous projection of the entire 2D field view. As a result, the frame rate of
confocal NIR-Il microscopy is less affected by the photodetector overhead time. In
confocal NIR-II microscopy, the frame rate for a 2D optical section is determined by
1/(dwell time/pixel x number of pixels/frame). As InGaAs photodetectors usually have
rise and fall times and pulse widths on the order of nanoseconds, a dwell time on the
order of microseconds is typical for exposure times that enable enough fluorescence
photons to be collected. In this case, the frame rate can be roughly estimated based
on the brightness and desired image size.

[H3] Controls in NIR-Il fluorescence imaging

Proper controls must be used for all NIR-II imaging experiments. These controls
include capturing NIR-II fluorescence images of the same animal before administering
the NIR-II probe, under identical imaging conditions — excitation wavelength, power
density, excitation and emission filters, exposure time — to assess the level of
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autofluorescence. Additionally, it is essential to include a control group that receive an
injection of a carrier, for example saline or empty lipids, via the same administration
route and check for fluorescence contributed by other molecules in the carrier solution.
If the goal is to demonstrate molecular imaging with NIR-II probes targeting a specific
molecule, controls involving administration of the same NIR-II fluorophore but without
the targeting ligands or with a mismatched control — such as arginine-alanine-aspartic
acid (RAD) as a control for arginine-glycine-aspartic acid (RGD) in the avps integrin
target'% — should be considered. Lastly, for fluorescence detection in a disease
model, a control group should be included. This group of animals should undergo a
sham operation that doesn’t induce disease, have the same NIR-Il probe injected, and
be imaged under identical conditions to the diseased group.

[H1] Results

This section provides results that demonstrate the benefits of in vivo NIR-II
fluorescence imaging compared to imaging in the NIR-I spectrum. Various types of
data analysis methods specific to NIR-lIl imaging are explored, detailing the
mathematical tools and key equations commonly used. Lastly, the critical role of
statistical analysis and error calculation is discussed.

[H2] Representative results

[H3] Comparison of NIR-I and NIR-Il fluorescence imaging

As a specific example, a representative image of a live mouse’s cerebral vasculature
through an intact scalp and skull taken in the NIR-I spectrum (850-900 nm, using
IRDye 800 as a label) is shown in Fig. 5a. This image is contrasted with another, taken
in the NIR-lIb spectrum (1,500-1,700 nm, labeled with CNTs), through both the intact
scalp and skull (Fig. 5b). Comparing these two cerebrovascular images shows striking
differences. The image captured in the NIR-IIb spectrum displays much clearer,
detailed features of the brain vasculature, even with the light-scattering scalp and
skull above the brain.>'% By contrast, the image taken in the NIR-I window appears
blurrier due to strong light scattering from the scalp and skull. As a result, it usually
requires craniotomy — a surgical procedure to remove the scalp and part of the skull
— to effectively visualize these vessels in the visible and NIR-I spectra. The
substantial increase in the visibility of deep-tissue structures in the NIR-IIb window
underscores its unique properties. Compared to its shorter-wavelength counterparts,
the NIR-IIb window benefits from significantly reduced scattering of photons and
autofluorescence in biological tissues, making it an effective tool for imaging
applications.

[H3] Dynamically enhanced NIR-Il fluorescence imaging

Dynamic NIR-II fluorescence imaging enables mapping of cerebral blood flow in deep
tissues using principal component analysis (PCA). For example, real-time images of
a mouse brain captured at 5.3 fps through an intact scalp and skull, immediately after
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injecting NIR-II fluorescent probes (SWCNTSs) intravenously.® This dynamic imaging
produces a 3D dataset, where the first two dimensions are spatial coordinates and the
third is a time component, for example frame number. Applying PCA to this dataset
reduces its high dimensionality by focusing on a few principal components that
account for the most variance.”® This enables isolation of pixels that show distinct
intensity patterns over time to effectively distinguish arterial from venous features.® In
a study of cerebrovascular hemodynamics, PCA-enhanced images from a healthy
mouse showed arterial and venous vessels in both hemispheres of the brain (Fig. 5¢).
By contrast, a mouse with a surgically induced middle cerebral artery occlusion
(MCAOQ), commonly used as a stroke model, exhibited a lack of arterial features in the
affected hemisphere (Fig. 5d).° These findings validate the capability of dynamic NIR-
Il imaging to differentiate hemodynamics in deep tissues of live mice via image
processing techniques such as PCA.

[H3] Deep-learning enhanced NIR-Il fluorescence imaging

A neural network—based method was demonstrated to transform a blurred image
taken in the less optimal NIR-I or NIR-lla window to resemble the more effective NIR-
IIb window. To validate this approach, researchers experimentally acquired an NIR-Ila
image of a mouse’s hindlimb vasculature (Fig. 5e), along with a deep-learning
generated image of the same sample in the NIR-IIb window (Fig. 5f). The generated
image shows a remarkable resemblance to the ground truth NIR-IIb image (Fig. 5f,
inset), demonstrating the ability of the neural network to faithfully enhance the contrast
and features of the original NIR-lla images without introducing artifacts.'®® The
outcome suggests promising applications in clinical diagnostics and biomedical
research. Specifically, the technology could elevate the capabilities of FDA-approved
ICG and preclinical dye IRDye 800CW, which primarily emit in the NIR-I range but can
be used for NIR-Ila imaging through tail emission.??>#* This innovation could transform
the less invasive and cost-efficient NIR-I and NIR-Ila imaging techniques into robust
alternatives to current, more expensive imaging methods.

[H2] Analysis methods

[H3] Static NIR-Il fluorescence imaging
In widefield NIR-II fluorescence imaging, raw images need to be processed with
background subtraction and flat-field correction according to the following equation:

_ Io(x,¥)=Ibackground(X,y)
[(x,y) = Ifiatfietld@y)—min( rige Fieid %)) (6)

max( rigtfieldCoYN-minl fiaefield Y))

where Iy(x,y) is the raw 2D NIR-II fluorescence image, lpqckgrouna (X, y) represents

the background image captured by the camera when the sample is not exposed to the
camera lens, achieved by keeping the camera shutter closed while maintaining the
same exposure time. Iy(x,y) — Ipackgrouna (%, ¥) helps correct for non-uniformities,
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noise, as well as dead, stuck, and hot pixels of the camera. In the denominator of Eq.
(6), Iriatfiera(x,y) is usually recorded with laser excitation on a uniform material that
emits light within the emission window and has an area larger than the field of view.
Such a material could be the reverse side of a black laser safety material or a silicon
wafer.?* The denominator in Eq. (6) represents a normalized flatfield image. This
normalized image is used to divide the background-subtracted 2D fluorescence image,
yielding the flatfield-corrected image.

In confocal NIR-II fluorescence microscopy, an important quantitative parameter is the
point spread function (PSF) of the system. The PSF is the impulse response of an
optical system that describes how a point source of light is imaged, capturing its spatial
resolution and blurring effects. The PSF function of an NIR-Il confocal system is given
as:

PSFconfocal (X, Y Z)

= PSFexcitation(_ x,—y,—z) ) f f PSFemission(€' an)D(f —Xxn - }’)dfdﬂ
& I

= PSFexcitation(=%, =¥, - 2) - [PSFemission(x: y,z) * D(x, y)] (7)

where ¢ and n are integration variables, PSF.,citation represents the 3D spatial
distribution of the excitation power, PSF,, ;.sion represents the PSF of a widefield
microscope without a pinhole, D is the pinhole function.

In both widefield and confocal NIR-II fluorescence imaging, features such as blood
and lymphatic vessels are usually quantified to characterize the smallest discernible
structures in the image.?510.11.23.88,107 A |ine is typically drawn across the feature of
interest, and the resulting intensity along the line is graphed to produce an intensity
profile. This profile is fit with a Gaussian function (Supplementary Note 6). The
parameters derived from the Gaussian fit enable the SNR and the size of a feature,
such as vessel width, to be determined. The feature size is often approximated by the
full width at half maximum of the Gaussian peak.

In hyperspectral NIR-Il fluorescence imaging, each pixel is associated with an
emission spectrum of the fluorophore. Emission peaks are typically fit with a
Lorentzian function. Lorentzian fitting of NIR-Il emission peaks from organic color
centers [G] in SWCNTs has detected changes in local environments, including
acidification and cancer biomarkers, with high sensitivity.8.108

[H3] Dynamic NIR-Il fluorescence imaging

Video-rate dynamic NIR-Il imaging can capture rapid hemodynamic changes in blood
vessels, where blood carries the systemically administered NIR-Il contrast agent
during flow. If the blood flow is slow, as occurs in ischemic reperfusion, the leading
edge of the blood, marked by the injected contrast agent, can be tracked after systemic
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injection of the NIR-II contrast agent. By plotting the position of the flow front over time
and fitting a linear curve to it, one can determine the blood velocity from the slope of
this linear equation.%.63

However, if the blood flow is very fast, as seen in normal femoral and cerebral arteries,
the leading edge often moves too quickly to be identified. In such cases, to determine
blood velocity, the fluorescence intensity within a designated region of interest (ROI)
is plotted over time. The varying NIR-Il fluorescence intensity in a vessel segment
reveals the blood flow dynamics.>'% In previous studies, this dynamic variation was
modeled using a linear flow model that includes axial mixing.'® This model suggests
that the NIR-II fluorescence intensity / at a given location (x) and time (t) depends on
the instantaneous blood flow velocity (v):

I(x,t,v) = % (8)

T+exp(G Tieop)

where [, represents the fluorescence intensity of the injected contrast agent solution
without any mixing, A, represents the degree of initial mixing at t = 0, and K is the
mixing constant (K = 0 indicates no mixing, while K = co indicates maximum mixing).

Eq. (8) is a logistic function with its S shape — the flow front — moving in the +x
direction and becoming less steep with increasing t. By applying the Taylor series
expansion, it can be demonstrated that, to the first order, I(x,t,v) has a linear
relationship with ¢, with the slope directly proportional to v:

ol (x,tv)
at

l¢=0 x v 9)

By calibrating the dynamic imaging system using several flow rates of NIR-II
fluorescent agents pumped into a catheter tubing filled with water, the slope of
ol (x,t,v)
at
NIR-II fluorescence imaging to determine the blood velocity.>19.109

|¢=0 VS v can be determined. This slope can then be applied to in vivo dynamic

Bright NIR-Il contrast agents enable high-speed dynamic imaging — for example, over
20 fps — making it possible to detect individual cardiac cycles from the intensity curve
of a specific arterial ROI.2%4748 Such variation in the fluorescence intensity curve is
possible because arterial blood flow fluctuates, accelerating during the systolic phase
and decelerating during the diastolic phase. The deep tissue penetration of NIR-II
fluorescence allows researchers to observe fast dynamics in arteries, which are
typically deeper than veins and challenging to see with shorter-wavelength visible and
NIR-I spectra.

Alongside tracking the flow front or ROIl-averaged fluorescence intensity in specific
blood vessels, directly observing the endothelial cells and vascular lumen is an
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effective hemodynamic imaging method. This technique has been used to study
neurovascular coupling in live animal brains, however, it requires a cranial window and
is limited to surface vessels due to depth constraints with traditional fluorophore
labels.'%111 A recent breakthrough in NIR-II fluorescence imaging uses fluorescence-
amplified nanocrystals doped with NIR-Il emitting Er®* and Tm3* ions to label cerebral
vessel linings and lumens. The deep penetration of NIR-IIb photons enables dynamic
monitoring of changes in the width of cerebral arteries, veins, and capillaries during
neurovascular coupling through an intact mouse skull.*6

[H3] Longitudinal NIR-Il fluorescence imaging

Compared to cross-sectional studies, where images are collected from subjects at a
single point in time to assess variations within a population, longitudinal studies involve
time-dependent structural, molecular, and functional imaging of the same group of
subjects over extended time periods. Longitudinal NIR-II fluorescence imaging data is
typically analyzed using the same approach as static and dynamic NIR-Il fluorescence
imaging. During each imaging session, subjects may undergo static imaging, dynamic
imaging, or both. The data from these images, which ranges from hours to months, is
plotted over the sessions. For instance, the NIR-II fluorescence intensity in specific
areas — such as the liver,2>26 tumors?%41.112.113 or [ymph nodes®?'"* — is normalized
to its peak value and charted at various intervals post-injection or treatment.
Furthermore, chronic assessment of blood perfusion in the cerebrovasculature via
dynamic NIR-II fluorescence imaging can indicate the recovery trajectory following a
traumatic brain injury.109.115

Besides these analysis methods, emerging data mining and machine learning
methods, such as principal component analysis (PCA) and deep learning, have also
been used for NIR-II fluorescence imaging. A detailed theoretical discussion of PCA
and deep learning can be found in Supplementary Note 6.

[H2] Statistical analysis and error calculations

In NIR-II fluorescence imaging, an accurate representation and understanding of the
data uncertainty and variability is crucial.'® When interpreting results, it is essential to
note the number of independent experiments — for example, the number of animals
administered with NIR-II fluorescent probes — typically denoted in figure legends. For
consistency and reproducibility, experiments are often performed multiple times and
in multiple biologically distinct samples, with the number of replicates indicated as n.""”
Power analysis during experiment design determines the minimum sample size
required to detect statistical significance in pairwise comparisons.'8.11°

The uncertainty and variability of NIR-II imaging studies are usually reported with the
standard deviation and standard error of the mean (Supplementary Note 7). Several
statistical tests are commonly used to determine whether a comparison shows
statistical significance, especially when comparing the NIR-II fluorescence intensity
across different conditions. For example, when NIR-II fluorescent sensors are used to
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detect concentrations of specific markers, such as pH, hydroxyl radical, or dopamine,
it is essential to compare the NIR-II fluorescence intensity across different treatment
groups.1518120 Fyrthermore, when assessing fluorescent probes’ tumor-targeting
efficiency, metrics such as the tumor-to-background ratio or tumor-to-spleen ratio are
often used.?429.114

The t-test, analysis of variance (ANOVA) and certain non-parametric tests are the
most frequently used statistical methods. The t-test compares the means of two
groups to see if they are statistically different. The p-value from a t-test indicates the
probability of observing the given data if the null hypothesis, typically positing no
difference between the groups, were true. A smaller p-value suggests a stronger case
against the null hypothesis.’?' When there are more than two groups to compare,
ANOVA is employed. It evaluates the differences among group means in a sample.
Similar to the t-test, a smaller p-value in ANOVA suggests that at least one of the
group means is significantly different from the others.'??2 However, when the data does
not meet certain assumptions, such as normal distribution, non-parametric tests
become preferable. These tests, such as the Mann-Whitney U test or the Kruskal-
Wallis test, do not rely on the usual assumptions of parametric tests. As a result, they
are more robust in certain situations.'?® Regardless of the test, a common threshold
for significance is a p-value less than 0.05, implying that the observed result would be
unlikely under the null hypothesis.?’

[H1] Applications

NIR-II fluorescence imaging is emerging as a crucial tool in various biomedical
research domains. It has been instrumental in the study of cardiovascular and
cerebrovascular diseases, such as peripheral ischemia, %2 stroke,>3' and traumatic
brain injury.8115 The technique has also been applied to study the lymphatic system
by imaging lymphatic vessels and lymph nodes.?14190.125 Additionally, in vivo NIR-II
fluorescence imaging has demonstrated potential in early cancer detection and
diagnosis, image-guided tumor surgery, and cancer immunotherapy.
7,14,16,19,22,24,29,74,108,114,126,127  Applying NIR-Il  fluorescence imaging requires
optimization of NIR-II fluorophores, refining imaging systems and tailoring delivery
methods while conducting thorough evaluations in preclinical models for potential
clinical translation. Additionally, NIR-Il fluorescence imaging applications are
expanding into new areas, such as neural activity imaging,*6-28 genetically encoded
NIR-II reporters,?°2%:39 and innovative instrumentation approaches such as light-sheet
and structured illumination microscopy.&9°

[H2] Demonstrated applications

[H3] Hemodynamic imaging in cardiovascular and cerebrovascular diseases

By dynamically imaging femoral vessels immediately after intravenous administration
of NIR-II fluorophores, the hemodynamics can be imaged in a mouse model of
peripheral ischemia. This provides deeper anatomical penetration, distinguishes
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between arterial and venous vessels based on their unique hemodynamics, and
enables precise blood velocity quantifications in normal and ischemic femoral
arteries.’® NIR-Il fluorophores with enhanced brightness enable precise imaging of
cardiac cycles by measuring intensity changes in femoral arteries, which are distant
from the heart, via ultrafast dynamic imaging.364748 Cardiac cycles can also be directly
monitored by dynamic NIR-Il imaging in a mouse heart.??

Hemodynamic NIR-Il imaging facilitates detection of cerebrovascular abnormalities in
a mouse model of stroke caused by MCAO. By dynamically monitoring the NIR-II
fluorescence intensity within the mouse cerebrovasculature through an intact scalp
and skull, areas of reduced cerebral blood flow can be identified (Fig. 6a).° A similar
decrease in NIR-Il fluorescence signal is observed in a mouse traumatic brain injury
model, suggesting that dynamic cerebrovascular NIR-Il imaging can effectively detect
hypoperfusion.''® The dynamics of NIR-Il fluorescence in cerebral vessels also reveals
cardiac cycles with sufficiently bright fluorophores for fast video-rate imaging.?® The
different absorption characteristics of oxygenated and deoxygenated hemoglobin at
two distinct excitation wavelengths (650 nm and 980 nm) of NIR-Il emitting RENPs,
enables differentiation of cerebral arteries from veins based on their varying
oxyhemoglobin saturation levels.'?®

Methods based on single particle tracking and vessel diameter changes are also used.
Particle image velocimetry [G] can track NIR-Il fluorescent particles in the blood,
enabling high-resolution 3D flow maps of microvascular networks. From this, healthy
brain tissue and the glioblastoma margin in a mouse brain can be differentiated.?°
Cerebrovascular hemodynamics can be monitored by observing changes in the
diameter of the lumen, which is labeled by NIR-II fluorescent agents, such as thulium-
based cubic-phase downshifting nanoparticles (a-TmNPs) with 1,632 nm fluorescence
amplification. Using this method, changes in vessel diameters in response to drugs
such as norepinephrine can be dynamically imaged.4®

[H3] Lymphatic imaging in cancer monitoring and immunotherapy

The lymphatic system can be imaged in the NIR-II spectrum by labeling the lymphatic
fluid or lymphatic cells with NIR-II fluorescent agents. For example, intradermal
injection of NIR-II fluorescent agents at the base of a tumor-bearing mouse tail enables
visualization of internodal collecting lymphatic vessels and inguinal lymph node
(iLN).'* By intradermally and intravenously injecting two unique NIR-II fluorophores
with different excitation or emission wavelengths, lymphatic and vascular systems can
be differentiated using two-color NIR-II imaging (Fig. 6b). Being able to distinguish
and monitor both systems simultaneously enhances non-invasive diagnostics and
advances fluorescence-guided surgical techniques. 09125

Noninvasive imaging of lymph nodes, such as iLNs, is possible with the deep tissue
penetration of NIR-Il fluorescence. Without the invasive installation of transparent
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windows needed for conventional intravital microscopy, researchers can
simultaneously map the peripheral node addressin [G] on high endothelial venules [G]
and surrounding blood vessels in the same iLN region. In addition, by labeling
macrophages and T cells with spectrally resolved NIR-II agents, two-color NIR-II
fluorescence microscopy can reveal the distribution of different immune cells in iLNs
in a noninvasive manner.?

[H3] Molecular imaging and immunotherapy in cancer

Several small-molecule NIR-II fluorophores and NIR-Il emitting nanoparticles have
been used for molecular imaging of cancer. Functional groups in small molecules can
be attached to a peptide, antibody, or affibody [G] to achieve tumor-specific
targeting.’3° Some representative examples include cetuximab-IRDye800CW, with tail
emission in NIR-II; trastuzumab-IRDye800CW; and anti-EGFP affibody-CH1055 with
peak emission in NIR-Il, Table 1 and Fig. 3.'422131 Besides small molecules, NIR-I|
emitting nanoparticles, such as RENPs, can be conjugated with antibodies for
molecular tumor imaging. For example, the anti-PD-L1 monoclonal antibody (aPDL1),
atezolizumab, has been conjugated to cubic-phase (a-phase) erbium-based RENPs
(ErNPs) yielding a ErNPs-aPDL1 complex. NIR-lIl molecular imaging of mice with
tumors that had undergone intravenous administration of the nanoparticle complex
showed a higher specificity to CD-26 tumors, which have high PD-L1 expression,
compared to 4T1 tumors with lower PD-L1 expression.?® Using lifetime-engineered
RENPs, multiplexed images of tumor-bearing mice can resolve the composition of
different biomarkers in distinct tumor types.'®

Cancer immunotherapy benefits from NIR-Il fluorescence imaging for noninvasive
tracking and visualization of immune cells following treatment with monoclonal
antibodies or cancer vaccines. For instance, labeling CD8* cytotoxic T lymphocytes
with 1,600-nm emitting PbS QDs that have a short fluorescence lifetime, accumulation
of T cells in the tumor periphery can be detected while simultaneously imaging tumor
cells with ErNPs.2° Additionally, pure NaErF4 nanoparticles (pErNPs) were used to tag
a cancer vaccine formulated from the ovalbumin antigen combined with the adjuvant
[G] class-B cytosine-phosphate-guanine (CpG B). This nanovaccine compound has
strong fluorescence emission in the NIR-lIb range, facilitating in vivo tracking of the
vaccine’s movement through the lymphatic system, from the subcutaneous injection
site, through iLNs and axillary lymph nodes (aLNs), before finally reaching the
tumor.'* The efficacy of this trackable nanovaccine is confirmed by noninvasive three-
color microscopy in an E.G7 mouse lymphoma tumor model. Using three distinct
channels, the molecular characteristics of CD8" and ovalbumin-antigen-specific T
cells, as well as the nanovaccine’s distribution can be concurrently visualized with
minimal crosstalk (Fig. 6¢). The NIR-II emitting cancer nanovaccine can achieve in
vivo tracking and imaging of the associated immune response with approximately 1
pm resolution and 1 mm penetration depth. To ensure that labeling does not
compromise nanovaccine efficacy, the effectiveness and safety should be validated
through preclinical studies in a variety of animal models and cancer types.'3?
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[H3] Image-guided tumor surgery

Image-guided tumor surgery benefits from early tumor detection. This early detection
relies on the ability to distinguish small tumor tissue from normal healthy tissue with
high sensitivity.”>3 One promising method for early detection is NIR-II fluorescence
imaging. Advantages include the low autofluorescence background of biological tissue
in the NIR-II spectrum, providing greater contrast; high SNR due to reduced tissue
scattering, creating sharp images with clearly defined tumor boundaries; minimal
interference from ambient lighting, making the technique reliable in various imaging
settings’ ; and, because NIR-Il imaging is an optical imaging method, it has a high
spatiotemporal resolution to detect and eliminate small lesions at primary and
metastatic locations (Fig. 6d). Additional examples of NIR-Il image-guided tumor
surgery, as well as those of NIR-II fluorescence imaging of inflammation and the
gastrointestinal system can be found in Supplementary Note 8.

[H2] Considerations when applying NIR-Il imaging

[H3] Selection of appropriate NIR-Il fluorophores

Selecting the right fluorophore with optimal excitation and emission wavelengths within
the NIR-II window is crucial. The goal is to achieve high SNR, sufficient spatial
resolution, and deep penetration while minimizing interference from the inherent
autofluorescence of tissues. Scattering and autofluorescence considerations typically
favor fluorophores with longer emission wavelengths. Various biological tissues
display an inverse relationship between scattering and wavelength.! Additionally,
tissue autofluorescence rapidly diminishes with increasing wavelength, becoming
negligible beyond 1,300 nm."34 Using NIR-II fluorophores that emit in the NIR-IIb and
NIR-llc regions can substantially reduce scattering and autofluorescence. However,
when considering tissue absorption in the context of NIR-Il imaging and the
requirement for diffraction-limited resolution in NIR-Il microscopy, it is essential not to
select excessively long wavelengths. There are overtone absorption bands of water at
970 nm, 1,200 nm, 1,450 nm, 1,900 nm, and beyond 2,300 nm.®° Effective imaging
requires the peak emission wavelength of the chosen NIR-II fluorophores not to
overlap with these bands. Since the diffraction-limited spatial resolution is roughly
equivalent to the wavelength of imaged photons, the resolution may deteriorate to ~2
um in the lateral plane and considerably above 2 ym in the axial direction when
performing confocal microscopy in the NIR-llc spectrum.?

[H3] Biocompatibility of NIR-Il fluorophores

Ensuring the biocompatibility and non-toxicity of NIR-II fluorophores and their
conjugated targeting agents is crucial, as they interact with biological tissues and cells.
It is imperative that NIR-Il agents undergo rigorous evaluations to confirm their non-
toxicity at the desired concentrations, both in cell cultures and within living organisms.
Additionally, thorough assessments of the pharmacokinetics of NIR-Il agents are
essential. These assessments include understanding their behavior in the
bloodstream, how they accumulate in tumors or other desired locations, their
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distribution in various organs, if and how they are metabolized into subsequent
compounds, and their excretion pathway. When using NIR-II agents to label and
monitor immune cells, care must be taken. It is vital to ensure that the labels do not
alter the natural behavior of the cells, in particular that they don’t block membrane
receptors, which would affect cell functionality. An emerging strategy to improve
biocompatibility is to use the biological system to naturally produce NIR-II fluorophores
through genetic engineering. This approach could reduce the potential toxicity
associated with externally synthesized NIR-II agents.

[H3] Delivery routes of NIR-Il fluorophores

Delivery routes of NIR-II fluorophores should be meticulously chosen based on their
intended application. For instance, hemodynamic NIR-Il imaging requires intravenous
or retro-orbital injection. By contrast, imaging the lymphatic system typically requires
fluorophores to be introduced via intradermal or subcutaneous injections. However, it
is vital to acknowledge that the chosen delivery method introduces a degree of
invasiveness to the NIR-Il imaging process. This means that both the efficacy and
potential toxicity of the NIR-II agents needs to be evaluated within the entire trajectory
towards the target. For all delivery routes, there is a limited time frame for imaging
post-delivery due to the wash-out effect. There is growing interest in prompting
biological tissues to intrinsically produce NIR-Il agents through genetic engineering.
This approach holds promise in reducing toxicity, enhancing tissue and cell specificity,
and negating the wash-out effect, presenting a more streamlined method.

[H3] Optimization of NIR-Il imaging systems

Optimization of NIR-Il imaging systems is at the forefront of advancing medical
imaging techniques. Enhancing the sensitivity and speed of detectors is crucial. This
can substantially increase the frame rate, enabling faster capture of dynamic biological
processes. Extending the response wavelength of existing InGaAs detectors can
broaden imaging capabilities into longer wavelength regions, such as the NIR-lIc and
NIR-lld windows. A notable development is the incorporation of superconducting
nanowire single photon detectors, which were used for NIR-llc confocal imaging.?
Advances in excitation methods offers the potential to transition from conventional
one-photon excitation to two- and three-photon excitation for NIR-II fluorescence with
deep-tissue optical sectioning. This shift necessitates longer-wavelength, pulsed IR
light sources. To push the boundaries of imaging resolution, super-resolution
methodologies, such as stimulated emission depletion, photoactivated localization
microscopy, and superresolution imaging with minimal photon fluxes may be

integrated to enhance the resolution beyond the diffraction limit of NIR-II photons."3%-
137

[H1] Reproducibility and data deposition

[H2] Reproducibility of NIR-Il fluorophores
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Reproducibility in NIR-II fluorescence imaging largely depends on the consistency of
the NIR-II fluorescent agents. Besides validating their structures and compositions
(Supplementary Note 9), it is crucial to ensure that the spectral properties and
targeting specificity of NIR-Il fluorescent probes are reproducible between batches and
across different laboratories.

Measures of spectral reproducibility include the absorption, excitation, and emission
spectra, sometimes including the 2D photoluminescence vs. excitation (PLE)
spectrum.'® Lifetime measurements also play a vital role in characterizing NIR-II
fluorescent agents used in time-multiplexed imaging. A critical parameter, the quantum
yield (QY), often defines the brightness of specific NIR-Il fluorophores. However,
measuring QY in NIR-Il fluorescence imaging is debated, especially regarding
discrepancies in the reported QY of the reference fluorophore, IR-26, which ranges
from ~0.05 to 0.5%."3813° Consequently, absolute QY measurements using integrating
spheres rather than relative measurements is now advocated.?® To establish the QY
measurement standard, it is recommended to use an integrating sphere connected to
a sensitive spectrophotometer in the NIR-IlI spectrum, following the methodologies
outlined in previous reports.'3® The photostability of NIR-II fluorophores can differ
considerably. Certain NIR-Il fluorophores with extended light exposure might exhibit
compromised photostability, leading to potential data discrepancies.® As a result, it is
crucial to report the duration and power density a fluorophore was illuminated under
for accurate image interpretation.

Reproducibility of specificity in targeted NIR-II fluorescence imaging is also essential
for an NIR-Il agent. In vitro cell targeting experiments, complemented by negative
controls — where the same NIR-Il probe is used but without the targeting ligand or
cells lacking specific receptors — provide an assessment of specificity. For in vivo
experiments, incorporating a control group is essential. This control group should be
injected with a solution of the same NIR-Il agent, at the same concentration, but
without the targeting ligand.''* Another method of establishing a control group is to
simultaneously administer a blocking dose of the anti-receptor affibody or antibody
alongside the bioconjugate, which contains the NIR-Il agent and targeting ligand.'

[H2] Reproducibility of NIR-Il imaging systems

One of the primary challenges in NIR-Il fluorescence imaging reproducibility is the use
of relative fluorescence intensity scales. Many research papers normalize their
fluorescence intensity to the maximum intensity in their images, masking the original
intensities in the raw data. This normalization process complicates direct comparison
between different studies. To address this lack of transparency, it is crucial that
researchers provide detailed specifics about the experimental conditions. Details such
as the concentration of NIR-IlI probe, exposure time for image acquisition, type and
wavelength of excitation light source, incident power density, emission filters, and
camera make and model are crucial for standardization. The incident power density,
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not the output power density of the light source, should be reported. This distinction is
critical because the output power density can be attenuated by optical components,
such as filters and diffusers in the excitation path.

To drive uniformity, it is strongly recommended that p s~ cm~2 sr-' be used as an

absolute unit for direct, standardized comparison of brightness in NIR-II fluorescence
imaging. This standard has been widely adopted in rodent bioluminescence
imaging. % Adopting this practice would supplant the current trend of reporting relative
fluorescence intensities, enabling more direct comparisons across studies.

Another complicating factor is emission filters. Researchers often use filters to obtain
images in different subregions of the NIR-II spectrum, such as NIR-lla, NIR-IIb, NIR-
llc, and NIR-Ild. However, stating that a filter for a particular subregion, such as the
NIR-IIb window, was used is insufficient to ensure reproducibility. Filters, even with
identical nominal cutoff wavelengths, can differ substantially in their optical density
both in their pass bands and stop bands. Furthermore, the edge steepness between
passband and stopband can vary between filters. This variation means that even if two
imaging studies claim to be in the same NIR-Il subregion, the actual photon detection
efficiency varies depending on the exact filters used, leading to discrepancies in
results. A laser’s excitation power, for instance, can seep through the stop band of an
emission filter if the optical density is not sufficiently high. A specific filter might not
perform strictly to its nominal specification. A filter labeled as 1000LP might have some
level of attenuation at wavelengths much longer than its cutoff, such as around 1500
nm. Similarly, it might show transparency at wavelengths much shorter than its
nominal cutoff, around 600 nm. This often requires a combination of filters to achieve
the desired filtration effect.

[H2] Reporting of image processing and analysis

Other reproducibility issues relate to a lack of clarity in image processing and analysis.
An absence of standardized protocols for data processing, analysis, and quantification
can lead to inconsistent interpretation of results. To overcome this, standardized
guidelines and best practices for data analysis and dissemination need to be adopted.
A unified approach would ensure that findings are reliable within individual studies and
comparable across different laboratories.

Equations and methods for analysis should be clearly described. For instance, use of
background subtraction and flatfield correction in widefield NIR-II imaging; details on
theoretically-calculated versus experimentally-measured point spread functions in
confocal NIR-II microscopy; the functions peaks are fitted to; and algorithms for
machine learning-enhanced NIR-Il imaging, should all be transparently reported.

[H2] Data deposition and sharing
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To enhance collaboration, verify data, and improve reproducibility, data from NIR-II
fluorescent imaging studies should be deposited in universally accessible repositories.
It is suggested that the repositories listed in Table 2 be used for in vivo NIR-Il imaging
data. Specifically, the Image Data Resource (IDR) is advised for general reference
image datasets from scientific publications.'*' Clinical NIR-Il images should go to The
Cancer Imaging Archive (TCIA), while NIR-II brain images are best suited for the Brain
Image Library (BIL) or Distributed Archives for Neurophysiology Data Integration
(DANDI). In these repositories, authors should submit datasets that meet the highest
standards for reproducibility and comply with the FAIR (Findable, Accessible,
Interoperable, and Reusable) principles. Submissions usually require the inclusion of
comprehensive metadata that details experiments, samples, imaging techniques, and
processing methods. Depositing raw data, processed images, and analytical methods
is also recommended for thorough assessment and results interpretation. By following
these data submission standards, an increasing collection of NIR-IlI fluorescence
images can be produced and shared, encouraging progress and novel applications.

[H1] Limitations and optimizations

Current NIR-Il fluorescent imaging techniques excel in capturing structural,
hemodynamic, and molecular information, such as vascular and lymphatic imaging,
blood flow dynamics, and specific targeting to tumor and immune cells. However, vital
functional and molecular data remains beyond the reach of NIR-Il imaging. For
instance, dynamic intracellular calcium concentrations, membrane potential changes,
neurotransmitter levels, neuropeptide concentrations, and the presence of signaling
molecules are not readily accessible with this approach (Supplementary Note 10).

[H2] Equipment constraints

The equipment required for NIR-II fluorescence imaging has some limitations,
particularly in terms of accessibility and cost-effectiveness. A key factor contributing
to these limitations is the high price of InGaAs cameras, which are essential for
capturing NIR-II signals. These cameras can be prohibitively expensive, making it
challenging for researchers and institutions with limited budgets to access. NIR-II
fluorescent imaging often uses additional advanced optics in, for example, confocal
microscopy and light-sheet microscopy. This limits NIR-II fluorescent imaging to well-
funded universities and laboratories, creating a barrier to enter the NIR-Il imaging
research community.

While cost is highly prohibitive, technical limitations also exist. InGaAs cameras
require deep cooling to reduce thermal noise, which can be expensive and technically
challenging to maintain at optimal operating conditions. InGaAs cameras need to be
placed in a humidity-regulated room to prevent condensation on the sensors.
Additionally, the thermal background noise generated by living organisms can interfere
with detection in the NIR-Il window. This would be particularly impactful for future
applications in the long wavelength, NIR-IId region. Using Planck’s radiation law, the
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blackbody radiation of an organism at 310 K is over 10° times more intense at 2,200
nm in the NIR-IId subregion than at 1,300 nm in the NIR-lia subregion. Consequently,
long-wavelength fluorophores need to be made exponentially brighter to overcome
thermal background before the benefits of reduced scattering can be realized. Lastly,
the Abbe limit, which defines the maximum spatial resolution attainable, is more
restrictive for fluorescence microscopy performed in the NIR-Il than in the visible
spectrum. While NIR-II fluorescence imaging produces sharper features and higher
resolution at greater depths, it may not surpass visible spectrum microscopy in terms
of resolution for superficial features.

In clinical applications, manufacturing NIR-Il imaging instruments faces several
challenges. The cost of InGaAs cameras, along with their requirement for deep cooling
and humidity control, limits their accessibility. Clinical imaging of human subjects
demands large-area, high-quality focal plane arrays (FPAs). The commonly used 640
x 512 pixel FPA restricts the potential for high-resolution and large-area imaging in
humans. The readout integrated circuit, which is essential for high-quality NIR-II
images, presents challenges, especially when the FPA size is large. While current
systems primarily use high-power lasers as excitation sources, achieving uniform
illumination across the large size of a human subject, while remaining within the
maximum permissible exposure, poses a technical challenge. Sourcing large and
high-quality cutoff filters and focusing lenses in the NIR-II spectrum further complicates
instrument manufactured for clinical applications.'#?

[H2] NIR-II fluorescent agent constraints

Alongside equipment limitations, NIR-Il fluorophores have limitations, including low
quantum yields and poor aqueous solubility. Improving quantum yields has been an
area of investigation, but there is still room for development. For inorganic NIR-II
fluorophores, adding a shell around the fluorescent core can prevent Forster energy
transfer to ligands and solvent molecules, improving the quantum yield.'3 For organic
NIR-Il fluorophores, engineering the donor and acceptor moieties and introducing
shielding units to prevent intermolecular interactions can create brighter NIR-II
fluorophores.37:38.81

Poor water solubility and serum stability are also issues when developing NIR-II
fluorophores. These problems can lead to aggregation of fluorophores in physiological
environments, which is often associated with fluorescence quenching. Strategies to
improve water solubility include covalent and non-covalent functionalization with
hydrophilic groups — such as PEG and sulfonate'42%7482 — and incorporation in
proteins and amphiphilic polymers.2°3948.114 Despite this aggregation challenge, AIE
and J-aggregates can be used to enhance fluorescence and red-shift the emission of
potential fluorophore candidates.*?88 Emerging genetic engineering approaches hold
promise for addressing limitations with the stability, biocompatibility,
pharmacokinetics, and excretion of NIR-II fluorophores.?%26:39
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[H2] Unexpected outcomes and alternatives

Unexpected technical issues — such as photobleaching, autofluorescence, signal
interference, or photothermal effects — can influence data quality and interpretation.
Recent advances have enhanced the photostability of NIR-II fluorophores, however,
photobleaching remains a concern that can affect long-term performance and impact
results (Fig. 7a). Inorganic nanoparticles, such as RENPs, typically demonstrate
greater photostability than organic counterparts.'** Anti-quenching NIR-Il molecular
fluorophores have been developed to address the challenges of organic NIR-II
agents.?> The reverse intersystem crossing strategy may help to reduce
photobleaching in NIR-II emitting fluorescent proteins.’# Autofluorescence can also
impede data collection, particularly when imaging at the shorter end of the NIR-II
spectrum (Fig. 7b)." A comprehensive examination of NIR-Il autofluorescence showed
that it is strongly influenced by mouse coat pigmentation and consumed food.46:147
Signal interference is another potential pitfall in multiplexed NIR-II imaging, especially
when using multiple probes with overlapping emission spectra and similar lifetimes,
leading to signal crosstalk (Fig. 7c¢). If the excitation light source is powerful enough,
its reflection can cause crosstalk in the emission channel, particularly if the optical
density of the emission filter's stop band cannot adequately filter out the excitation
photons. This issue becomes problematic when the fluorescence is substantially
weaker than the excitation. When fluorescence emission wavelengths approach the
far end of the NIR-Il spectrum — closer to 2,300 nm — absorption by water and other
organic molecules should be considered, along with the consequent heating (Fig. 7d).
Such heating can alter the native physiological activity of the subject under study,
potentially skewing results.

[H1] Outlook

It is expected that several challenges in NIR-II fluorescence imaging will be addressed
in the coming years. Currently, most NIR-Il imaging focuses on targeting and imaging
extracellular structures, receptors, and events rather than intracellular molecules and
processes. While there has been some development of intracellular NIR-II fluorescent
imaging,'® improving intracellular sensitivity would present opportunities to answer
new biological questions. Potential advances include NIR-Il sensors for monitoring
dynamic calcium concentrations, membrane potential changes, and protein kinase
activity. In addition, instrumentation limits are a critical challenge to solve. Developing
2D InGaAs arrays with sensitivity beyond 1,700 nm is vital for NIR-II fluorescence
imaging in biomedical research, especially when offered at an affordable price with
low thermal noise levels.

As the NIR-II fluorescent imaging field continues to develop, novel approaches and
questions emerge. These potential directions include methods for imaging in the NIR-
llc and NIR-Ild subregions, with further reduced scattering. Although different NIR-I
subregions are intentionally defined to avoid water absorption, moderate absorption
of photons by water can enhance resolution via absorption-induced image resolution
enhancement in scattering media.'#814° Based on this strategy, theories predict that
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wavelengths up to 2,340 nm can provide best image quality through scattering
tissues.’™ NIR-Il imaging at these extremely long wavelengths requires high
performance detectors such as SNSPDs and rationally designed nanoprobes 43151
for deeper penetration and higher resolution.

Another emerging direction involves the use of machine learning and artificial
intelligence to enhance NIR-II imaging. Deep learning techniques can be used to
extract hidden information from images, providing insights that may not be apparent
in the original NIR-Il images. It is predicted that large language models will be
combined with computer vision to enhance clinical NIR-Il imaging by revealing
information not obvious to the operator. In addition, deep learning-adaptive optics
could be used for wavefront correction, improving resolution and correcting
aberrations in the NIR-II fluorescent imaging process.'? Integration of other imaging
methods with NIR-Il fluorescence imaging is another area of exploration. Integrating
super-resolution microscopy with NIR-Il imaging enables in vivo sub-diffraction
imaging, compensating for the unfavorable long-wavelength-dependent resolution.

Over the next 5-10 years, several priorities should be addressed to advance NIR-II
fluorescence imaging and increase its impact. A key priority is the development of
compact and cost-effective, potentially portable NIR-II imagers to enable wider
adoption by researchers and clinicians. In addition, cost-effective imaging will enable
point-of-care NIR-Il imagers to be distributed to under-resourced populations.’®3
Another important focus is to create more specific NIR-II probes for imaging molecular
and functional information with high resolution and deep penetration. This would
expand the range of biological processes that can be studied. For example, activable
NIR-Il probes that respond to various biomarkers, may enable sensitive detection of
neurodegenerative diseases.'®*1%5 Lastly, integrating deep-brain NIR-Il imaging of
neural activity with neuromodulation using widefield NIR-II illumination provides
opportunities for an all-optical, bidirectional noninvasive brain-machine
interfaces.66:156-158
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[Au: All figure legends need a title. | have edited the figure legends to put titles
in bold.]

Fig. 1 | Schematic summary of NIR-ll fluorescence imaging. Deep tissue
penetration is highlighted as the main advantage, along with representative NIR-II
fluorophores.

Fig. 2 | Representative in vivo NIR-ll imaging systems. (a) Widefield NIR-II
fluorescence imaging. (b) Raster-scan confocal NIR-II fluorescence imaging. (¢) NIR-
Il light-sheet microscopy. (d) The image-formation lens system. WD: working distance;
FOV: field of view; BFD: back focal distance; H: the horizontal dimension of the
camera.

Fig. 3 | Different NIR-Il fluorescent probes and their emission spectral ranges.
Blue: inorganic nanopatrticles; red: organic molecules; yellow: genetically engineered
proteins.

Fig. 4 | Preparation and administration of NIR-Il probes. (a) Evaluation of
cytotoxicity. (b) Evaluation of systemic toxicity. (¢) Evaluation of minimum excitation
power. (d) Evaluation of photobleaching and photothermal effects. (e) Intravenous
administration. (f) Retro-orbital administration.

Fig. 5 | Representative results of NIR-Il fluorescence imaging. (a&b)
Epifluorescence images showing the cerebrovasculature through the intact scalp and
skull of a live mouse in the NIR-I window (<900 nm, a) and the NIR-IIb window (1,500-
1,700 nm, b). (c&d) Principal component analysis (PCA) of dynamic NIR-II
fluorescence images in the mouse cerebrovasculature, revealing arterial (red) and
venous (blue) vessels in a healthy mouse (¢) and in a mouse with surgically induced
middle cerebral artery occlusion (MCAOQO) (d). (e&f) A representative fluorescence
image of a mouse hindlimb taken in the NIR-lla window (1,000-1,300 nm, e), alongside
a contrast-enhanced image via deep learning (f). A corresponding ground truth image
of the same region taken in the NIR-IIb window (1,500-1,700 nm) is shown as the inset
of f. All scale bars represent 5 mm. Panels a,c,&d adapted with permission from ref.
5 Springer Nature. Panels e&f adapted with permission from ref. 1%  National
Academy of Sciences.

Fig. 6 | Applications of in vivo NIR-Il fluorescence imaging. (a) Hemodynamic NIR-
Il imaging of a shaved healthy mouse head (top) and that with middle cerebral artery
occlusion (MCAO) (bottom). (b) Dual-channel NIR-II fluorescence images of lymph
structures (top left: EB766, an erbium(lIl)-bacteriochlorin complex) and blood vessels
(top right: NaYF4:20% Yb, 2% Er@NaYF4 downconversion nanoparticles, DCNPs) in
the same mouse (bottom: overlaid image). (¢) 3D reconstructed NIR-Il image of CD8*
T cells (red), ovalbumin-antigen-specific T cells (green), and pErNP-OVA-CpG B
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nanovaccine (blue) in the tumor. (d) Surgical removal of tumors with NIR-II
fluorescence guidance. Representative whole-abdomen NIR-Il images taken before
NIR-II probe injection (top left), pre-surgery (top right), post-unguided surgery (bottom
left), and after NIR-Il-guided surgery (bottom right) are shown. A white arrow points to
a nodule detected only in the NIR-Il-guided surgery. Panel a adapted with permission
from ref. 5, Springer Nature. Panel b adapted with permission from ref. 1%, Springer
Nature. Panel ¢ adapted with permission from ref. ' Springer Nature. Panel d
adapted with permission from ref. 27, National Academy of Sciences.

Fig. 7 | Examples of unexpected outcomes in in vivo NIR-lIl imaging. (a)
Photobleaching of NIR-Il fluorophores. (b) Autofluorescence from illuminated
biological tissues. (¢) Fluorescence crosstalk between different emission channels,
and between excitation and emission. (d) Photothermal effect of illuminated tissues.
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Table 1 | NIR-Il fluorophores.

NIR-lI fluorophores

Emission

wavelengths (nm)

Quantum yield
(%)

Fluorescence
lifetime

Refs

Inorganic NIR-Il nanoparticles

CNTs 1,000 — 1,800 0.5 10 ps 1,71,159
ClISe NTs 1,138 124 336.1 us 74
Ag2S QDs 1,050 — 1,200 5—15 (depending | ns — s 19,1071
on surface 60-163
coating)
PbS QDs 1,600 — 2,000 1.0 - 57 | 46 ps 2,36,164
(depending on
emission
wavelengths)
InAs QDs 1,000 — 1,400 30 100 ns 20,165
NaGdF4: 5% 1,060 NA NA 166

Nd@NaGdF4

NaGdFs@NaGdF4:Yb,L
n@NaYFs:Yb@NaNdF4:
Yb nanoparticles

1,155 (Ln = Ho)
1,525 (Ln = Er)

0.009-0.24 (Ln =
Er)

40 — 920 ps (Ln =
Ho)

5.8 uys —20.9 ms (Ln

16

= Er)
NaYbF4:2%Er,2%Ce,10 | 1,550 5 4.6 ms 2
%Zn@NaYF4
nanoparticles
Cubic phase 1,632 14 1.5-3.7ms 46
NaYF4:Ybos/Tmo.os@Na
YbFs@NaYF4 (a-
TmNPs)
NaErF4/NaYF4 1,550 NA 2.7 ms 114
nanoparticles
AuNCs 1,000 — 1,350 0.1-4 ns — Us 30-
33,167
Organic NIR-Il molecules
CH1055-PEG 1,055 0.3 NA 4
IR-26 1,130 0.05-0.5% 22 ps 138,139,
168
IR-FTAP 1,048 5.3 NA 81
FNIR-1072 1,103 0.12 NA 24
ICG 820 (peak; tail 0.9 0.166 ns 22,169

extending to NIR-II)
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IRDye 800CW 800 (peak; tail 3.3 0.5ns 22,170
extending to NIR-II)

CH-4T@protein 1,000 11 NA 48

complex

IR-783@BSA complex 800 (peak; tail 21.2 NA 87
extending to NIR-II)

AlE nanoparticles of 1,030 11.5 NA 88

2TT-0C26B

J-aggregates of meso- 1,010 6.4 NA 41

[2.2]paracyclophanyl-

BODIPY dye

J-aggregates of FD- 1,370 0.0545 172 ps 97

1080 cyanine dye

Erbium(l)— 1,530 0.01 1.73 s 100
bacteriochlorin complex

Genetically engineered proteins with off-resonance NIR-Il emission

miRFP718nano 718 (peak; tail 5.6 NA 25
extending to NIR-II)

iRFP713 713 (peak; tail 0.33 NA %
extending to NIR-II)

IR783@PDlll 810 (peak; tail 0.97 -9.73 NA 39
extending to NIR-II)

1257  AIE: aggregation-induced emission; BSA: bovine serum albumin; ClSe: copper indium
1258  selenium (CulnSe2); CNT: carbon nanotube; DIII: domain Il of human serum albumin;
1259 ICG: indocyanine green; NT: nanotube; PEG: polyethylene glycol.
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Table 2 | Recommended repositories for depositing and sharing NIR-Il imaging

data.

Repository Name

Type of Data

Data Formats Accepted

Image Data

Resource (IDR)

Image datasets

A study file, assay file including the
images, and processed data files

The Cancer Imaging
Archive (TCIA)

Cancer medical image
datasets

De-identified images in Digital Imaging
and Communications in Medicine
(DICOM) international standard

Brain Image Library
(BIL)

Brain image datasets

Both raw and processed data is
accepted, preferred image format is tiff
but for.swc format is acceptable for
higher-level traced-neuron data

Distributed Archives
for Neurophysiology
Data Integration
(DANDI)

Electrophysiology,
optophysiology, and
behavioral time-series,
and images from
immunostaining
experiments

Neurodata Without Borders (NWB)
format for electrophysiology and
optophysiology data; Brain Imaging
Data Structure (BIDS) format for
neuroimaging data
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Glossary

Scattering | The deviation of light rays from their original path, a phenomenon
exacerbated in animal tissue by the inhomogeneity of refractive indices among
components like water, lipid membranes, and subcellular organelles.

Autofluorescence | The natural emission of light upon excitation of biological tissues,
largely contributed by endogenous chromophores such as NADH (emission ~460 nm)
and flavins (500—-600 nm), as well as pigmented cellular structures such as lipofuscin
(450—650 nm) and reticulin (470-520 nm).

Epifluorescence | The fluorescence observed in an optical microscope or imaging
system when the object is illuminated from the side that is being viewed.

Indium gallium arsenide | A compound semiconductor material that is sensitive to
infrared light and commonly used in photodetectors for NIR-II fluorescence imaging.

Photodiode | A semiconductor device that converts light into an electrical current, the
amplitude of which is directly proportional to the light intensity shining on the diode.

Photomultiplier tube | An electronic device that detects and greatly amplifies weak light
signals by converting photons generated by a photocathode into an intensified
electrical signal through a series of secondary electron multipliers.

Superconducting nanowire single-photon detector | An ultra-sensitive device that
detects individual photons by measuring the disruption in the bias current, which
arises when single photons absorbed by the superconducting nanowire break Cooper
pairs.

Signal-to-noise ratio | The ratio of fluorescence signal to the background noise, the
latter of which comprises the shot noise and dark noise of the photodetector, the
readout noise from the camera electronics, as well as autofluorescence and scattering
from biological tissues.

Reactive oxygen species | Chemically reactive molecules that contain oxygen, such
as hydrogen peroxide (H20:2), superoxide anion (Oz), hydroxyl radical (*OH), and
singlet oxygen ('Oz).

Overtone absorption | The absorption of light by a molecule at a frequency (or

wavelength) that is a multiple of the fundamental frequency of a vibrational mode of
that molecule.
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Semiconductor diode laser | A type of laser with a semiconductor active medium, akin
to an LED, but it produces coherent light through stimulated emission from the
recombination of electrons and holes.

Optical density | A measure of how much a substance or an object attenuates the
intensity of light that passes through it. Mathematically, optical density (OD) is defined
as OD = -log1o(//lp) where [ is the intensity of light transmitted through the substance,
and /o is the intensity of the incident light.

Excitation filter | An optical filter, typically positioned in front of the excitation light
source, selectively transmits wavelengths suitable for exciting a specific fluorophore,
while blocking other undesired wavelengths.

Emission filter | An optical filter, typically positioned in front of the detector, selectively
transmits wavelengths corresponding to the emission of a specific fluorophore, while
blocking other undesired wavelengths, such as those from the excitation light source.

Optical diffuser | A device that scatters light in various directions to produce a uniform
illumination.

Optomechanics | Elements including optical tables, breadboards, construction
components such as mounts, and mechanically integrated optoelectronic devices.

Dichroic mirror | An optical filter that reflects light below (for shortpass) or above (for
longpass) a specific cut-off or cut-on wavelength, respectively, while transmitting the
rest.

Avalanche photodetector | A type of photodiode that is specifically designed to use
the avalanche effect, which involves the multiplication of charge carriers (electrons
and holes) due to high applied voltages, to amplify the electrical signals generated by
the absorption of photons.

Infinity-corrected objective | An optical lens system designed to produce parallel rays
between the objective and the eyepiece or camera, typically used in microscopy for
clearer imaging and easier integration of additional optical components.

Aggregation-induced emission | a phenomenon where a material, often an organic
compound, emits light more efficiently when it is aggregated or clustered together than
when it is in an isolated, dissolved state.
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Human embryonic kidney cells | A cell line derived from human embryonic kidney
tissue, known for robust growth and ease of transfection, commonly used in the
production of recombinant proteins, viral vectors, and in vitro drug toxicity assays.

Intralipid | A sterile fat emulsion commonly used in medical settings as a parenteral
nutrition supplement and in research as a scattering medium to simulate biological
tissues in optical imaging experiments.

Organic color centers | Synthetic defects in semiconducting single-walled carbon
nanotubes created by covalently bonding organic molecules to the crystal lattice,
resulting in quantum emitters that fluoresce in the NIR-II spectrum, emitting pure single
photons at room temperature.

Particle image velocimetry | A visual measurement technique used to obtain
instantaneous velocity fields by tracking the movement of small particles seeded in a
fluid flow.

Peripheral node addressin | A carbohydrate ligand for L-selectin that plays a crucial
role in the homing of white blood cells, specifically directing their migration to
peripheral lymph nodes during the immune response.

High endothelial venules | Specialized post-capillary venous structures found in lymph
nodes and Peyer's patches that facilitate the entry of lymphocytes from the

bloodstream into lymphatic tissues.

Affibody | Small protein scaffolds derived from the Z domain of staphylococcal protein
A, engineered to bind specific target proteins with high specificity and affinity.

Adjuvant | A substance added to vaccines to enhance the body’s immune response to
the vaccine’s antigen.
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