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Snapshot Compressive Imaging Using
Domain-Factorized Deep Video Prior
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Abstract—Snapshot compressive imaging (SCI) aims at ef-
ficiently capturing high-dimensional data (e.g., multi-spectral
images and videos) using a two-dimensional detector, which is a
hardware-friendly data acquisition paradigm. However, because
of the complex structure of videos (such as the dynamic back-
ground and moving foreground), it is challenging to reconstruct
a video from the captured measurement. Existing model-based
methods for video SCI reconstruction are inadequate to recon-
struct the complex structure of videos, and existing supervised
deep learning-based methods are with poor adaptability to
videos in real scenarios. Inspired by the physically interpreted
video decomposition, we suggest an unsupervised video SCI
reconstruction method with tailored deep video prior and affine
transformation, namely, FactorDVP-T. Our FactorDVP-T
infers the parameters of the neural networks and the underlying
structure of the original video from the captured measurement
using a non-reference loss function in an unsupervised manner.
Under FactorDVP-T, a video is first factorized into the moving
foreground and static background. The background is further
factorized into temporal bases and spatial coefficients, where
each factor can be modeled individually using the designated
unsupervised networks in FactorDVP-T. Moreover, to tackle
the dynamic background in real scenarios, we integrate the
affine transformation into FactorDVP-T. Benefiting from the
expressive power of unsupervised networks embedded in the
physically interpreted video decomposition framework, our meth-
ods can reconstruct the videos more effectively and better adapt
to various videos in real scenarios, as compared with the model-
based methods and supervised deep learning-based methods
respectively. Extensive experiments on various videos show that
our FactorDVP-T can better adapt to different videos, com-
pared with the state-of-the-art model-based and supervised deep
learning-based SCI reconstruction methods.

Index Terms—Affine transformation, deep video prior (DVP),
physically interpreted video decomposition, video compressive
sensing.

I. INTRODUCTION

Snapshot compressive imaging (SCI) [1], [2] offers an im-

∗Corresponding authors. Tel.: +86 28 61831016, Fax: +86 28 61831280.
the Key Project of Applied Basic Research in Sichuan Province (No.

2020YJ0216), the Applied Basic Research Project of Sichuan Province (No.
2021YJ0107) and National Key Research and Development Program of China
(No. 2020YFA0714001). The work of X. Fu is supported by NSF ECCS-
2024058 and NSF ECCS-1808159.

Y.-C. Miao, X.-L. Zhao, and J.-L. Wang are with the Research
Center for Image and Vision Computing, School of Mathematical Sci-
ences, University of Electronic Science and Technology of China, Chengdu
611731, P.R.China (e-mails: szmyc1@163.com; xlzhao122003@163.com;
wangjianli 123@163.com).

X. Fu is with the School of Electrical Engineering and Computer
Science, Oregon State University (OSU), Corvallis, OR 97331, United States
(e-mail: xiao.fu@oregonstate.edu).

Y. Wang is with the Institute for Information and System Sciences,
School of Mathematics and Statistics, Xian Jiaotong University, Xian 710049,
China (e-mail: yao.s.wang@gmail.com).

portant means for high-quality data (e.g., multi-spectral images
(MSIs) and videos) acquisition and transmission/broadcasting
under resource (e.g., storage and streaming bandwidth) limita-
tions. In a nutshell, SCI systems first compress multiple video
frames/MSI bands into one frame/band with the assistance
of a sensing mask and then recover the original data when
needed. Such compression may substantially reduce the mem-
ory complexity and communication overhead when storing or
transmitting high-quality data. In [3], [1], it was shown that
accurate recovery for such compression is possible.

Reconstructing the original data from a single measurement
is an ill-posed inverse problem. In essence, this problem is
a special compressive sensing (CS) problem [4] that uses a
particular hardware-friendly compressing strategy. Like other
CS-type problems, e.g., sparse signal reconstruction [5], [6],
matrix sensing/completion [7], [8], and tensor recovery [9],
[10], one of the key factors leading to success is how to deeply
explore the prior knowledge of the original data. Early SCI
reconstruction methods often employ hand-crafted priors (e.g.,
sparsity, low-rankness, and smoothness), such as those used
in GMM-TP [11], MMLE-GMM [12], GAP-TV [13] and DeSCI
[14]. These methods are effective in a certain extent, but the
hand-crafted priors oftentimes are inadequate to handle the
real-world data.

Recently, triggered by the expressing power of deep neural
networks that is far beyond the capability of hand-crafted
priors [15], [16], [17], [18], [19], [20], [21], [22], a plethora
of supervised deep learning-based methods were developed.
These methods often use training data to learn a neural net-
work that can directly recover the original data from a single
measurement. A branch of these methods mainly concentrates
on exploring different neural network architectures to learn
a mapping from a single measurement to the reconstructed
video, such as fully connection network (FCN) [23], convolu-
tion neural network (CNN) [24], [25], [26], recurrent neural
network (RNN) [27], and graph neural network (GNN) [28].
Another branch of supervised deep learning-based methods
engages in constructing neural networks by unfolding the
iterative optimization algorithms, such as those in [29], [30],
[31], [32], [33], [34]. It is worth noting that for such supervised
deep learning-based methods when a network is trained for a
specific SCI system, it cannot be used in other SCI systems
that provide different modulation patterns or different com-
pression rates. As a result, a number of methods are proposed
by incorporating a pre-trained deep denoising network such as
FFDNet [35] into the plug-and-play (PnP) framework, such as
those in [36], [37]. Although these supervised deep learning-
based and PnP-based methods obtain high-quality recovered
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Fig. 1. (a) Illustration of the proposed domain-factorized deep video prior. (b): The original frame, the reconstructed frame by the model-based method
(DeSCI), the supervised deep learning-based method (RevSCI), and our unsupervised method FactorDVP-T.

data utilizing the data-driven priors, their limitation is widely
recognized:

Poor adaptability to videos in real scenarios. In real
scenarios, high-dimensional data is expensive to acquire and
always with complex structure, especially for videos with
moving foreground and dynamic background. For the data-
driven priors utilized in the supervised deep learning-based and
PnP-based methods, it is hard to collect training data contain-
ing all the distributions in real scenarios, and the reconstruction
performance would significantly degrade when the test data is
out of the training data’s distribution. Thus, poor adaptability
to videos in real scenarios is an important limitation for the
data-driven priors in supervised deep learning-based and PnP-
based methods.

Bearing these concerns in mind, in this work, we put
forth an unsupervised video SCI reconstruction method with
tailored deep video prior (DVP), which can cleverly address
the fore-mentioned limitation by virtue of the expressive
power of unsupervised networks embedded in the physically
interpreted video decomposition framework. For the videos
with static background, we take wisdom from classical video
modeling [38] to factorize a video into a static background
and a moving foreground. The background is low-rank, and
could be further factorized into several spatial coefficients and
temporal bases, which can be modeled using 2D U-Net [39]
and FCN, respectively. The foreground can be modeled by 3D
convolution-based U-Net (3D U-Net) [39]. Moreover, to tackle
the dynamic background in real scenarios, we introduce the
affine transformation for dynamic background modeling. Our
method is termed as FactorDVP-T. Our contributions are
mainly two folds:
• Inspired by physically interpreted video decomposition, we
designated unsupervised networks capturing the latent factors
and organically reconciled to deliver promising performance;
see Fig. 1 for illustration. The suggested methods which allow
us to unsupervisedly reconstruct the video only from the
captured measurement itself without any training data, can
flexibly adapt to various videos in real scenarios.

• Experiments on a wide range of videos (including 14
grayscale videos with static background, 3 color videos with
dynamic background, and 2 real videos) verify that the pro-
posed FactorDVP-T can more flexibly adapt to various
videos in real scenarios, as compared with the state-of-the-
art model-based and supervised deep learning-based methods,
see Section V.

The rest of this paper is organized as follows. Section
II briefly introduces some pertinent background information.
Section III introduces some related works. Section IV elab-
orates more details about the proposed method. Section V
provides the experiment results. Section VI reports the ablation
study. Section VII concludes this paper.

II. NOTATION AND PRELIMINARY

In this section, we first take a brief introduction of the
basic notations applied in this paper. Then, we introduce the
mathematical model of video SCI system.

A. Notation

A scalar, vector, matrix, and tensor are denoted as x, x,
X , and X , respectively. [x]i, [X]i,j , and [X]i,j,k denote the
i-th, (i, j)-th, and (i, j, k)-th element of x ∈ Rn1 , X ∈
Rn1×n2 , and X ∈ Rn1×n2×b, respectively. X(i) ∈ Rn1×n2

denotes the i-th frontal slices. The Frobenius norms of X

is denoted as "X"F =
!"

i,j,k[X]2i,j,k. The Hadamard
product of X ∈ Rn1×n2 and Y ∈ Rn1×n2 are denoted as
[X ⊙ Y ]i,j = [X]i,j [Y ]i,j . And X ◦ y ∈ Rn1×n2×b is the
outer product of y ∈ Rb and X ∈ Rn1×n2 , which is defined
as [X ◦ y]i,j,k = [X]i,j [y]k. The vec(X) operator represents
vec(X) = [[X]T:,1, . . . , [X]T:,n2

]T .

B. Degradation Model of Video SCI System

As an important branch with broad application prospects of
CS [40], video SCI aims to capture high speed videos with low
hardware requirement. Unlike conventional high-speed cam-
eras [41] that put high requirement on the quality of imaging
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3

devices and inevitably lead to high hardware costs, video SCI
systems consistently exploit the coded aperture compressive
temporal imaging (CACTI) [1]. The image compression pro-
cedure of CACTI system can be logically abstracted into two
stages: sampling stage and integration stage. In the sampling
stage, it samples a set of consecutive frames of the input video
stream with the assistance of a random binary mask In the
integration stage, the sampled frames are integrated into a
single measurement along the temporal dimension, and two-
dimensional sensors are utilized to capture this measurement.
With this compression procedure, the memory complexity,
bandwidth, and communication overhead can be substantially
reduced, therefore video SCI systems place low requirement
on the hardware quality.

Mathematically, given a video with B frames, each of which
contains n (= n1×n2) pixels, the imaging model of SCI can
be formulated as follows:

y = Φx+ n, (1)

where Φ ∈ Rn×nB represents the sensing mask, x ∈ RnB is
the desired video, y ∈ Rn is the captured measurement, and
n denotes the noise.

Eqn. (1) is consistent with the formulation of CS [40].
Different from traditional CS, the sensing mask considered
here has very specific structure:

Φ =
#
D(1), . . . ,D(B)

$
, (2)

where {D(k)}Bk=1 are diagonal matrices. Specifically, taking
video X ∈ Rn1×n2×b as an example, it is modulated and
compressed by shifted random binary sensing mask M ∈
Rn1×n2×b. The measurement Y ∈ Rn1×n2 is given by

Y =

b%

k=1

X(k) ⊙M (k) +N , (3)

where ⊙ denotes the Hadamard product, and N represents the
noise.

Notably, by defining D(k) = diag(vec(M (k))) ∈
Rn1n2×n1n2 , for k = 1, ..., B, y = vec(Y ) ∈ Rn1n2 , n =
vec(N) ∈ Rn1n2 , and x = [vec(X(1))T , ..., vec(X(B))T ]T ∈
Rn1n2B , we have the vector formulation of Eqn. (3), i.e., Eqn.
(1).

III. RELATED WORK

In order to highlight the relationship between the proposed
methods and previous methods, in this section, we introduce
two families of methods separately, i.e., deep image prior
(DIP)-based methods and unsupervised SCI reconstruction
methods.

A. DIP-Based Methods

DIP was first proposed in [42], which is an unsupervised
image restoration framework that aims at alleviating the data
adaptability problems of supervised deep learning-based meth-
ods. The main idea of this work is that a neural network with
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Fig. 2. Comparison of low-rankness between the foreground, background
without transformation, background with transformation, and original video
consisting of foreground and background by computing the accumulation en-
ergy ratios (AccEgyR). Here, the AccEgyR is defined as: AccEgyR=

!
i σi,

where σi is the i-th singular value.

an appropriate structure can encode much critical prior infor-
mation of nature images in an unsupervised manner. Under
DIP framework, the minimization problem is formulated as:

min
θ

E (Gθ(z); Y ) , (4)

where Gθ(·) : Rn1×n2×n3 → Rn1×n2×n3 is the network
capturing the unsupervised deep prior of the desired data, θ
denotes the network parameters, and z is the random but fixed
input of Gθ(·). The reconstructed data can be estimated as

&X = G!θ(z), (5)

where &X is the reconstructed data, and 'θ is the estimated
network parameters.

Due to its unsupervised nature, DIP has received much
attention in a wide range of application domains, such as im-
age super-resolution [43], semantic photo manipulation [44],
video motion transfer [45], and hyperspectral imaging [39].
Recently, Gandelsma et al. [46] showed that when utilizing
multiple DIPs to jointly reconstruct a single observed image,
these DIPs tend to split the image into different layers with
simple patch distribution. Motivated by these methods, Miao
et al [47] design two types of DIPs, i.e, deep spatial prior and
deep spectral prior, to model the abundance maps and end-
members contained in the HSIs, based on the classical spatio-
spectral decomposition. Although such DIP-based methods
have achieved promising results on RGB images and HSIs,
it is hard for them to reconstruct the videos accurately. In this
paper, we will explore how to extend DIP to video for video
SCI.

B. Unsupervised SCI Reconstruction Methods

To the best of our knowledge, there is only one unsupervised
SCI reconstruction method, i.e., PnP-DIP [48]. In PnP-DIP,
DIP is integrated into the PnP regime, leading to exciting
results on MSIs. However, the poor reconstructed quality
of this method on complex videos prevents it from wide
applications. The reason is that, as compared with MSIs,
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Fig. 3. (a) The network structure of 2D U-Net. (b) The network structure of FCN. (c) The network structure of 3D U-Net.

videos are always with more complex structures, e.g., dynamic
background and moving foreground, which preclude the direct
exploration of the underlying structure of videos. In this paper,
we will explore how to leverage the underlying structure of a
video.

IV. PROPOSED METHOD

A video could be represented as a third-order tensor X ∈
Rn1×n2×b, which could be factorized into a static background
B ∈ Rn1×n2×b and a moving foreground F ∈ Rn1×n2×b ,
i.e.,

X = B + F . (6)

Note that the background B lies in a subspace of low
dimension along the temporal dimension; see Fig. 2. The
background B can be further factorized into temporal bases
and spatial coefficients [49], [50], [51]. Thus, video X can be
represented as

X =

r%

i=1

Si ◦ ci + F , (7)

where ◦ denotes the outer product, Si ∈ Rn1×n2 denotes the
i-th spatial coefficient, ci ∈ Rb denotes the i-th temporal base,
and r denotes the number of temporal bases.

A. Integrating Domain-Factorized DVP to SCI

In this subsection, we design a domain-factorized DVP by
designating unsupervised networks to capture the correspond-
ing latent factors; see Fig. 1 for illustration. The motivations
of our designs are as follows:

For the background, inspired by [47], the physically in-
terpretation of the latent factors (i.e., {Si}ri=1 and {ci}ri=1)
makes it possible to utilize some neural network structures to
model these factors. According to [52], the spatial coefficients
reveal similar qualities of the natural images. Hence, it is
reasonable to utilize 2D convolutional neural networks (2D
CNN) designed for nature images to capture the unsupervised
deep prior of the spatial coefficient Si. Moreover, the i-th
temporal base ci can be considered as a relatively simple 1D
continuous smooth signal. Therefore, ci can be approximated
by FCN accurately.

For the foreground, in most cases, it contains much com-
plex information—which is difficult to be modeled in real

scenarios. Since 3D convolutional neural networks (3D CNN)
can capture motion information encoded in multiple adjacent
frames in videos and show promising results on video action
recognition [53], it is reasonable to employ 3D CNN to model
the unsupervised deep prior of the foreground.

Following the above perspectives, we model the video as
follows:

X =

r%

i=1

Sθi(zi) ◦ Cζi(wi) + Fς(u), (8)

where Sθi(·) : Rn1×n2 → Rn1×n2 , Cζi(·) : Rb → Rb, and
Fς(·) : Rn1×n2×b → Rn1×n2×b are the neural networks
capturing the unsupervised deep prior of the i-th spatial
coefficient, the i-th temporal base, and the foreground, re-
spectively; θi, ζi, and ς collect the corresponding network
parameters, respectively; zi, wi, and u are random but fixed
input of the neural networks responsible for generating the i-th
spatial coefficient, the i-th temporal base, and the foreground,
respectively.

Our detailed designs for Sθi , Cζi , and Fς are as follows:
Unsupervised Deep Background Prior. The background is
factorized into spatial coefficients and temporal bases. As
mentioned, the spatial coefficients reveal similar qualities to
natural images and focus on conveying spatial information.
In this work, we utilize the 2D U-Net architecture in [39]
for modeling the spatial coefficients. Moreover, the temporal
bases are relatively easy to be modeled, as they can be
regarded as 1D smooth signals. From this perspective, we
utilize FCN architecture to capture the unsupervised deep prior
of the temporal bases. The corresponding detailed structures
are shown in Fig. 3 (a) and (b).
Unsupervised Deep Foreground Prior. As mentioned, the
3D CNN is with a powerful capacity to capture motion
information encoded in multiple adjacent frames in videos.
Because of this, we employ the 3D U-Net architecture in [39]
for modeling the foreground F . The corresponding detailed
structure is shown in Fig. 3 (c).

Based on the above-mentioned unsupervised deep prior
designs, the proposed video SCI reconstruction model could
be formulated as:

min
{θi,ζi}r

i=1,ς

(((((Y −
b%

k=1

X(k) ⊙M (k)

(((((

2

F

, (9)
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5

where

X =

r%

i=1

Sθi(zi) ◦ Cζi(wi) + Fς(u).

B. Domain-Factorized DVP with Affine Transformation

Due to the moving cameras and the changing circumstance,
the background sometimes is dynamic, which fails to obey
the low-rank assumption. Thus, how to exploit the underlying
structure is a nontrivial problem. Addressing this problem,
hereby, we integrate affine transformation to the aforemen-
tioned domain-factorized DVP, namely, FactorDVP-T.

From Fig. 2, we can observe that the dynamic background
B ∈ Rn1×n2×b is implicitly low-rank. In other words, there
exists an explicitly low-rank tensor BL ∈ Rn1×n2×b and an
affine transformation Tγ parameterized by γ, satisfying B =
Tγ(BL). Here, Tγ : Rn1×n2×b → Rn1×n2×b is defined as:
[B]ijk = [Tγ(BL)]ijk = I(B

(k)
L , (̂i, ĵ)), where γ ∈ R2×3×b

is the learnable parameters,

)
î

ĵ

*
=

)
[γ]

11k
[γ]

21k

[γ]
12k

[γ]
22k

[γ]
13k

[γ]
23k

*+

,
i
j
1

-

. ,

I(·) is the bilinear interpolation function, and I(B
(k)
L , (̂i, ĵ))

returns the interpolation result of the matrix B
(k)
L at the co-

ordinate (̂i, ĵ). Notably, we perform the affine transformation
on each frame of the generated background separately. That is
to say, the parameters of affine transformation on each frame
are independent of each other.

Integrating affine transformation into the aforementioned
domain-factorized DVP, the video SCI reconstruction model
could be reformulated as:

min
{θi,ζi,}r

i=1,ς,γ

(((((Y −
b%

k=1

X(k) ⊙M (k)

(((((

2

F

, (10)

where

X = Tγ(
r%

i=1

Sθi(zi) ◦ Cζi(wi)) + Fς(u).

To simplify the representation, we denote the objective
function in Eqn. (10) is denoted as:

min
{θi,ζi}r

i=1,ς,γ
Loss ({θi, ζi}ri=1 , ς,γ) . (11)

It is worth noting that Eqn. (11) is differentiable w.r.t. γ,
as affine transformation and bilinear interpolation are differ-
entiable w.r.t. γ, respectively [54]. Any off-the-shelf neural
network optimizer can be considered to solve the problem
w.r.t. {θi, ζi}ri=1, ς,γ in Eqn. (11), since this problem is
essentially a regression problem with neural models. Here, we
consider the adaptive moment estimation (Adam) algorithm
that is empirically validated for such complex network learning
problems [55]. Letting t denote the iteration number, the

solution of the optimization problem in Eqn. (11) is as follows:

θt+1
i ← θt

i − αt∇θi Loss ({θi, ζi}ri=1 , ς,γ) (12a)

ζt+1
i ← ζt

i − αt∇ζi Loss ({θi, ζi}ri=1 , ς,γ) (12b)

ςt+1 ← ςt − αt∇ς Loss ({θi, ζi}ri=1 , ς,γ) (12c)

γt+1 ← γt − αt∇γ Loss ({θi, ζi}ri=1 , ς,γ) (12d)

for i = 1, . . . , r and αt is the step size of iteration t. Notably,
the activation functions in networks Sθi , Cζi , and Fς are not
differentiable at one point, thus sub-gradient is utilized in this
algorithm denoted by ∇. Moreover, the gradient w.r.t. θi, ζi,
ς , and γ can be computed by the standard back-propagation
algorithm [56]. The algorithm is summarized in Algorithm 1,
which is dubbed domain-factorized deep video prior with

affine transformation (FactorDVP-T).

Algorithm 1 FactorDVP-T for video SCI reconstruction.
Input: the measurement Y ∈ Rn1×n2 , the number of tempo-

ral bases r, and the max iteration T .
1: sample random zi, wi, and u from uniform distribution.
2: for t = 1 to T do
3: 'Si = Sθt−1

i
(zi), 'ci = Cζt−1

i
(wi), 'F = Fςt−1(u);

4: 'Tγ = Tγt−1 ;
5: Update {θi}ri=1, {ζi}ri=1, ς , and γ using Adam [55];
6: end for
7: &X = 'Tγ(

"r
i=1

'Si ◦ 'ci) + 'F ;
Output: the reconstructed video &X .

V. EXPERIMENTS

In this section, we validate the proposed FactorDVP-T
on diverse datasets, including fourteen grayscale videos with
static background and three color videos with dynamic back-
ground. Notably, rather than only using the commonly used
benchmarks in [14], [36], [24], other videos are also utilized to
verify the data adaptability of our methods. We select a wide
range of compared methods to showcase the effectiveness of
our method, including two model-based methods, two PnP-
based methods, an unsupervised deep learning-based method,
and a supervised deep learning-based method. First, we pro-
vide the experiment settings in Subsection V-A. Then, we
evaluate the proposed methods on simulation and real datasets
in Subsection V-B and Subsection V-C respectively.

A. Settings

In the simulation experiment, we select fourteen different
grayscale videos with static background (i.e., Aerial, Vehical,
Kobe, Traffic, Drop, Runner, Truck, River, Trees, Water, Foun-

tain, Highway, Lobby, and Bridge)1,2 and three color videos
(i.e., Waterfall, Flower, and Park)3 with dynamic background
to test the performance of the proposed FactorDVP-T.
Among them, video Aerial, Vehical, Kobe, Traffic, Drop, and

1http://trace.eas.asu.edu/yuv/
2http://perception.i2r.a-star.edu.sg/bkmodel/bkindex.html
3http://trace.eas.asu.edu/yuv/
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TABLE I
QUANTITATIVE COMPARISON OF THE RECONSTRUCTED RESULTS BY DIF FERENT METHODS. THE BEST AND SECOND BEST VALUES ARE HIGHLIGHTED IN

BOLD AND UNDERLINED, RESPECTIVELY.

Data Fountain Highway Trees Water Aerial Truck River Drop Runner

Index PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

GAP-TV 21.59 0.71 0.34 23.01 0.79 0.02 17.09 0.52 0.34 22.34 0.66 0.34 25.05 0.82 0.54 24.47 0.85 0.54 24.44 0.77 0.51 34.74 0.97 0.53 28.81 0.90 0.53

PnP 19.58 0.65 0.48 22.35 0.75 0.19 15.75 0.40 0.44 22.93 0.68 0.45 24.02 0.81 0.16 23.62 0.82 0.15 21.13 0.62 0.15 40.70 0.98 0.15 32.15 0.93 0.15

PnP-TV 23.98 0.82 2.62 27.75 0.88 1.10 19.75 0.68 3.07 24.81 0.65 2.67 24.31 0.83 1.11 27.22 0.90 1.12 26.28 0.84 1.10 35.50 0.97 1.10 29.95 0.92 1.12

DeSCI 25.84 0.81 40.85 24.73 0.82 595.61 22.41 0.63 40.95 24.09 0.83 40.12 25.33 0.85 643.62 29.28 0.95 633.56 26.26 0.84 627.22 43.22 0.99 642.65 38.76 0.97 635.18

DVP 25.44 0.66 19.31 20.88 0.62 16.29 21.14 0.49 18.29 24.86 0.80 18.29 21.19 0.66 16.01 19.61 0.69 15.98 24.81 0.69 16.27 18.78 0.51 16.13 19.42 0.64 16.29

RevSCI 30.09 0.89 0.03 31.07 0.93 0.02 26.62 0.85 0.02 32.94 0.88 0.02 29.10 0.92 0.03 30.47 0.92 0.02 33.76 0.96 0.02 39.84 0.99 0.02 36.14 0.97 0.02

FactorDVP-T 31.81 0.89 14.78 34.06 0.97 15.14 24.59 0.72 15.14 32.51 0.96 14.86 26.84 0.86 15.42 29.57 0.94 16.44 30.81 0.91 15.35 36.69 0.97 16.24 30.76 0.89 15.99

Data Lobby Bridge Vehicle Kobe Traffic Waterfall Flower Park Average

Index PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

GAP-TV 22.30 0.82 0.01 24.83 0.75 0.01 24.82 0.838 0.52 26.45 0.85 0.53 20.89 0.71 0.55 25.81 0.73 1.63 19.82 0.76 1.68 19.45 0.59 1.61 23.87 0.76 0.60

PnP 22.02 0.79 0.11 21.84 0.63 0.12 25.42 0.85 0.15 30.50 0.92 0.14 24.18 0.83 0.14 21.82 0.53 0.49 16.99 0.51 0.53 17.42 0.55 0.45 23.67 0.72 0.26

PnP-TV 26.62 0.90 0.68 26.29 0.79 0.67 25.30 0.80 1.10 26.42 0.84 1.11 21.60 0.74 1.11 27.03 0.71 3.36 20.53 0.77 3.42 20.45 0.66 3.34 25.51 0.80 1.75

DeSCI 24.09 0.83 40.12 25.84 0.81 40.85 27.04 0.91 638.76 33.25 0.95 635.26 28.72 0.92 641.37 24.65 0.70 1930.85 19.86 0.75 1929.66 17.58 0.51 1928.36 27.11 0.83 687.35

DVP 24.86 0.80 18.29 25.44 0.66 19.31 18.34 0.54 15.99 18.77 0.51 16.15 18.61 0.57 16.22 23.76 0.49 97.01 17.71 0.63 88.83 12.23 0.23 102.21 20.93 0.59 30.99

RevSCI 31.46 0.95 0.02 30.96 0.88 0.03 27.94 0.92 0.02 31.80 0.92 0.02 27.93 0.92 0.02 31.52 0.93 0.11 23.36 0.88 0.12 22.99 0.76 0.10 30.47 0.91 0.04

FactorDVP-T 32.51 0.96 14.86 31.81 0.89 14.78 26.05 0.85 15.41 25.54 0.74 16.08 23.38 0.76 15.98 34.52 0.95 46.64 25.26 0.91 46.68 23.88 0.77 46.32 29.44 0.88 20.91

Runner are selected from the commonly used benchmarks
for video SCI, and others are used to validate the data
adaptability of the proposed methods. Additionally, two real
captured videos UCF and Handlen [57] is selected in our
real experiment. Before the experiment, the pixel values of
all datasets are normalized to [0, 1] band-by-band.

To thoroughly evaluate the performance of this method, we
compare it with two model-based methods (e.g., GAP-TV [13]
and DeSCI [14]), two PnP-based methods (e.g., PnP [36] and
PnP-TV [37]), a supervised deep learning-based method (e.g.,
RevSCI [24]), and an unsupervised learning-based method
(e.g., DVP [58]). Peak signal-to-noise ratio (PSNR) and struc-
ture similarity (SSIM) are selected to evaluate the performance
of these methods [47]. For GAP-TV, PnP, PnP-TV, and
DeSCI, their parameters are manually adjusted according
to the authors’ suggestions to uplift their performance. For
RevSCI, we retrain the networks with our sensing mask and
training datasets generated from DAVIS2017 [59] following
the authors’ suggestions. For DVP, we set the max iteration
as 10000, and report the highest PSNR and SSIM during the
iteration. In the proposed FactorDVP-T, only one parameter
needs to be manually tuned, e.g., the number of temporal
bases r—which is selected from {1, 3} for all selected videos.
Moreover, the learning rate is selected from {0.01, 0.001,
0.0001}, and the max iteration is set as 4000 and 10000 for
grayscale videos and color videos, respectively.

The experiments of PnP, PnP-TV, DVP, RevSCI, and
FactorDVP-T are executed using Python on a computer
with an AMD Ryzen 7 5800X 8-Core processor @ 3.79 GHz,
32.0 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU.
The experiments of GAP-TV, and DeSCI are implemented in
MATLAB (2021a) on the same computer.

B. Simulated Data Experiment Results

Table I lists PSNR, SSIM, and execution time (in minutes)
of the compared methods on grayscale and color videos
respectively. The best and the second-best results for each
quality index are highlighted in boldface and underlined,
respectively. We can observe that our method generally out-
performs DeSCI with an average improvement of 2.33 dB
in PSNR, especially on some datasets with fine details, e.g.,
Fountain, Highway, Trees, and Water. For the testing dataset
in RevSCI, the supervised RevSCI performs better than
our unsupervised method. The underlying reason may be the
distribution of these testing datasets is similar to its training
dataset. For the wild datasets not in the testing dataset, our
method performs better than RevSCI, e.g., Fountain, High-

way, Waterfall, Flower, and Park. This observation reveals the
adaptability of our method as compared with the model-based
and supervised deep learning-based methods.

The reconstructed results on gray-scale and color videos
by the compared methods are shown in Fig. 4. For better
visualization, two regions are chosen and enlarged. We can
observe that, PnP, PnP-TV, and DeSCI are with relatively
dissatisfactory performance, especially for parts with so many
fine details. Compared with these three methods, RevSCI
performs better by training on a large number of external
datasets, but some blurring details still exist. In contrast, our
FactorDVP-T could preserve the most detailed information
and demonstrates the best performance among the compared
methods, which is consistent with its good performance on
PSNR and SSIM. We conjecture that such promising results
can be attributed to the strong adaptability to various videos of
the unsupervised networks embedded in the physicallyly in-
terpreted video decomposition framework, which is beneficial
to preserve complex scenes with plenty of details.
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GAP-TV PnP PnP-TV DeSCI DVP RevSCI FactorDVP-T Original

Fig. 4. The reconstructed results produced by the compared methods. From top to bottom: the 1-st frame of Lobby, Bridge, Highway, Fountain, Waterfall,
Flower, and Park, respectively. From left to right: the reconstructed results produced by GAP-TV, PnP, PnP-TV, DeSCI, DVP, RevSCI, the proposed
FactorDVP-T, and the original videos, respectively.
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Fig. 5. PSNR and SSIM values of all frames obtained by different methods on video Highway, Fountain, Lobby, Flower, Park, and Waterfall.
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GAP-TV PnP PnP-TV DeSCI DVP RevSCI FactorDVP-T

Fig. 6. Visual comparison on real video UCF and Handlen. From top to bottom: the selected frame of UCF and Handlen, respectively. From left to right:
the reconstructed results produced by GAP-TV, PnP, PnP-TV, DeSCI, DVP, RevSCI, and the proposed FactorDVP-T, respectively.

To test our methods performance on every frame, each
frame’s PSNR and SSIM values on six selected data are shown
in Fig. 5. As observed, in most frames, the PSNR values of the
proposed FactorDVP-T are higher than those of the other
compared methods.

Moreover, in order to verify our motivation, the learned
background and foreground by our method are shown in Fig. 7.
Videos Highway, Water, Truck, and Drop are selected as exam-
ples. We can observe that the deep background prior and deep
foreground prior could be indeed captured in FactorDVP-T
respectively.

Background Foreground Reconstructed Original

Fig. 7. The learned backgrounds and foregrounds by our method. From top
to bottom: the selected frame of video Highway, Water, Truck, and Drop,
respectively.

C. Real Data Experiment Results

In this part, we demonstrate the efficacy of the proposed
FactorDVP-T with real data captured from SCI systems.

We consider two real grayscale videos UCF and Handlen

which are captured by the CACTI system [1]. For video
UCF, the snapshot measurement of size 256 × 256 pixels
encodes 10 frames of the same size. For video Handlen, the
snapshot measurement of size 256 × 256 pixels encodes 14
frames of the same size. The sensing masks are the same
as that used in [14]. The corresponding results are shown
in Fig. 6. It can be seen clearly that all of the model-based
methods, including GAP-TV, PnP, PnP-TV, and DeSCI, lose
much detailed information and lead to blurring details. In
contrast, the supervised method RevSCI and our unsupervised
method FactorDVP-T both offer visually more pleasing
results. Notably, as compared with supervised RevSCI, our
unsupervised method could preserve more sharp edges and
fine details; see the zoom-in region for edges and details
preservation. This further verifies the strong adaptability to
videos of our methods.

VI. DISCUSSIONS

In this section, we present some necessary discussions about
the proposed FactorDVP-T.

A. Effectiveness of The Deep Foreground Prior

To verify the effectiveness of deep foreground prior, we
compare it with some commonly used hand-crafted priors
(e.g., sparse prior and total variation prior) in the proposed
FactorDVP-T. The reconstructed videos and the corre-
sponding foregrounds are shown in Fig. 8. We can observe that
our designed deep foreground prior could be captured more
faithfully relative to the sparse prior and total variation prior.
And the performance of deep background prior with deep fore-
ground prior and affine transformation (i.e., FactorDVP-T)
is much more visually pleasing compared with other methods.
These observations support our idea for imposing the deep
foreground prior on the foreground.

B. Effectiveness of U-Net Structure

In this part, we evaluate the effectiveness of the 2D and 3D
U-Net structure in FactorDVP-T by replacing them with
the corresponding state-of-the-art network (e.g., ResNet). To
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24.28 dB/0.66 24.41 dB/0.69 23.93 dB/0.63 30.68 dB/0.81

Fig. 8. Effectiveness of the deep foreground prior, sparse prior, and total
variation prior for foreground modeling. 1st row: the reconstructed video
by deep background prior, deep background prior with sparse prior, deep
background prior with total variation prior, and deep background prior with
deep foreground prior, with affine transformation, respectively. 2nd row: the
original video, the foreground captured by sparse prior, total variation prior,
and our deep foreground prior, respectively.

PnP-DIP FactorDVP-T Original

PSNR: 20.153 dB PSNR: 29.57 dB PSNR: Inf

Fig. 9. The reconstructed videos by our method and PnP-DIP.

be more specific, the compared methods are listed as follows:
• 2D ResNet + 3D U-Net: In this method, 2D ResNet is
utilized for background spatial coefficient modeling, and 3D
U-Net is used for moving foreground modeling.
• 2D U-Net + 3D ResNet: In this method, 2D U-Net is
utilized for background spatial coefficient modeling and 3D
ResNet is used for moving foreground modeling.
• 2D ResNet + 3D ResNet: In this method, 2D ResNet is
utilized for background spatial coefficient modeling and 3D
ResNet is used for moving foreground modeling.
• 2D U-Net + 3D U-Net: This is our FactorDVP-T, in
which 2D U-Net is utilized for background spatial coefficient
modeling and 3D U-Net is used for moving foreground
modeling.

The results are reported in Table II. We can observe that the
method with 2D U-Net and 3D U-Net demonstrates the best
performance. This observation reveals that U-Net has more
powerful ability in encoding image priors as compared with
ResNet.

TABLE II
QUANTITATIVE COMPARISON OF DIF FERENT METHODS ON VIDEO

Highway. THE BEST VALUES ARE HIGHLIGHTED IN BOLD.

Method PSNR SSIM
2D ResNet + 3D U-Net 32.07 0.93
2D U-Net + 3D ResNet 31.91 0.90
2D ResNet + 3D ResNet 30.27 0.89
2D U-Net + 3D U-Net 34.06 0.97

C. FactorDVP-T v.s. PnP-DIP

PnP-DIP has shown excellent performance on SCI recon-
struction for multi-spectral images. However, for video, the
performance of this method would be compromised because
it pays less attention to video data’s unique traits, e.g.,
moving foreground and dynamic backgrounds. Distinct from
PnP-DIP, in FactorDVP-T, we disentangle background
and foreground, and model them individually. The recon-
structed videos are shown in Fig. VI-A. We can observe that
PnP-DIP shows promising performance in recovering the
background while blurring the foreground. This observation
reveals that PnP-DIP sometimes fails to capture the fore-
ground information faithfully. In contrast, our FactorDVP-T
presents satisfactory performance both in recovering fore-
ground and background.

D. Sensitivity Analysis of the Parameter r
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Fig. 10. PSNR values of the results by FactorDVP-T with different r on
video Trees.

We study the parameter sensitivity of the number of tem-
poral bases r, which mainly depicts the low rankness of
background. Fig. 10 displays the PSNR values of the results by
FactorDVP-T with different temporal bases number r. We
can observe that the proposed FactorDVP-T exhibits stable
and superior performance within a certain range of r (r =1, 3).
Considering that larger r would lead to unsatisfactory visual
quality, we set r to be 3 for video Trees in our experiments.

E. Robustness to Noise
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Fig. 11. Comparison of FactorDVP-T and DeSCI with noisy measure-
ments on video Waterfall.

In real scenario, the captured videos are inevitably corrupted
by noise, which usually leads to the performance degradation
for further video processing. To verify the robustness to noise
of our method, we perform the experiments on Waterfall

datasets by adding different levels of white Gaussian noise.
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The results produced by FactorDVP-T and DeSCI are
summarized in Fig. 11. As one can see, the performance of
DeSCI deteriorates significantly as the noise level increases,
but our method does not fluctuate greatly. Therefore, our
method is recommended in realistic system with noise.

VII. CONCLUSION

We extend the well-known DIP from natural images to
videos and further propose a domain-factorized DVP-based
method (i.e., FactorDVP-T) for video SCI reconstruction.
In this work, inspired by the physicallyly interpreted video
decomposition, we first decompose a video into a foreground
and a background. And then, the background could be further
decomposed into spatial coefficients and temporal bases. In
this way, 2D U-Nets and FCNs could be employed to model
these factors individually. Besides, 3D U-Net is employed to
model the foreground. In addition, we employ affine transfor-
mation to overcome the dynamic background challenge in real
scenarios. Extensive experiments on various videos verify that
the proposed method can better adapt to various videos in real
scenarios, as compared with several state-of-the-art methods.
Moreover, the limitation of our method is the relatively long
running time. The reason is that adaptively learning different
CNN parameters for each observed measurement is time-
consuming. One of the directions for future research is how
to overcome this limitation.
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