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1. Introduction

1.1.  Let g be the Kac-Moody Lie algebra corresponding to a root system of finite
type. Associated with a decomposition of the set of roots A = AT LI A~, there exists a
triangular decomposition:

g=nt@hon” (1.1)
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where:

"= P Q-ea (1.2)

aeAt

and analogously for n~. The elements e,, will be called root vectors. Formula (1.1) induces
a triangular decomposition' of the universal enveloping algebra:

U@ =U@")@Ub)®Un") (1.3)

Then the PBW theorem asserts that a linear basis of U(n™) is given by the products:

keN

Unt) = @ Q- ey, ... (1.4)

Y>>y EAT

and analogously for U(n™), for any total order of the set of positive roots A™ (the set N
will be assumed to include 0). The root vectors (1.2) can be normalized so that we have:

[ea,e8] = enes —egeq € L™ - eq+p (1.5)

whenever «, 8 and « +  are positive roots. Thus we see that formula (1.5) provides an
algorithm for constructing, up to scalar multiple, all the root vectors (1.2) inductively
starting from e; = e,,, where {a;};c; C A% are the simple roots of g. The upshot is
that all the root vectors e, and with them the PBW basis (1.4), can be read off from
the combinatorics of the root system.

1.2.  The quantum group U,(g) is a g-deformation of the universal enveloping algebra
U(g), and we will focus on emulating the features of the previous Subsection. For one
thing, there exists a triangular decomposition analogous to (1.3):

Uy(g) = Uy(n™) @ Uy(h) @ Ug(n™) (1.6)
and there exists a PBW basis analogous to (1.4):
keN
U,(n") = @ Q(q) - €y, - - -, (1.7)

> 2R EAT

The g-deformed root vectors e, € Uy(n™) are defined via Lusztig’s braid group action,
which requires one to choose a reduced decomposition of the longest element in the Weyl
group of type g. It is well-known ([34]) that this choice precisely ensures that the order >

1 Given subalgebras {Ak}ﬁ:1 of an algebra A, the decomposition A = A; ® - -+ ® Anx will mean that the
multiplication in A induces a vector space isomorphism m: A; ® --- @ Ay —A.
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on AT is convex, in the sense of Definition 2.19. Moreover, the g-deformed root vectors
satisfy the following g-analogue of relation (1.5), where «, 8 and a + 3 are any positive
roots that satisfy a < o+ 8 < 3 as well as the minimality property (4.15):

leareslq = eacs — 4 Pesea € Zlg,q7"]" - Carp (1.8)

where (-,-) denotes the scalar product corresponding to the root system of type g. As
in the Lie algebra case, we conclude that the g-deformed root vectors can be defined
(up to scalar multiple) as iterated g-commutators of e; = e,, (with ¢ € I), using the
combinatorics of the root system and the chosen convex order on AT,

1.3.  There is a well-known incarnation of Uy(n™) due to Green [15], Rosso [38], and
Schauenburg [40] in terms of quantum shuffles:

keN

U< F = @ Qo) fir...ixl (1.9)

01,00 €L

where the right-hand side is endowed with the quantum shuffle product (see Defini-
tion 4.11). As shown by Lalonde-Ram in [26], there is a one-to-one correspondence
between positive roots and standard Lyndon (or Shirshov) words in the alphabet I:

AT {standard Lyndon words} (1.10)

To this end, we recall that a word in an ordered finite alphabet I is called Lyndon if it
is lexicographically smaller than all of its cyclic permutations (see Definition 2.4). These
words naturally give rise to a basis of the free Lie algebra generated by the alphabet [
through the standard bracketing (cf. (2.9)). In [26], a Grobner basis type approach was
used to combinatorially describe a subset of all Lyndon words, called standard Lyndon
words, that gives rise to a basis of a Lie algebra generated by I (see Definition 2.12(b)).
Thus, in the context of (1.10), the notion of standard Lyndon words intrinsically depends
on a fixed total order of the indexing set I of simple roots. Furthermore, (1.10) gives rise
to a total order on the positive roots:

a<pB & (o) <L(B) lexicographically (1.11)

It was shown in [39], see [27, Proposition 26|, that this total order is convex, and hence
can be applied to obtain root vectors e, € U,(n™) for any positive root a, as in (1.8).
Moreover, [27] shows that the root vector e, is uniquely characterized (up to a scalar
multiple) by the property that ®(e,) is an element of Im ® whose leading order term
[i1...1%] (in the lexicographic order) is precisely ¢(a). We would also like to mention [4]
which contains alternative proofs of some of the results of [27], particularly leading into
a generalization to quantum supergroups.
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1.4.  The motivation of the present paper is to extend the discussion of Subsection 1.3
to affine root systems. This would yield a combinatorial description of PBW bases inside
the positive half of the Drinfeld-Jimbo affine quantum group. But there is an important
problem with this program: the root spaces are no longer one-dimensional in the affine
case (because of the imaginary roots), which creates various technical difficulties. We
will therefore not take this route, and instead take an “orthogonal” approach. We start
from Drinfeld’s new presentation of quantum loop groups as:

Uy(Lg) = Uq(Ln+) ® Uqy(Lh) @ Uy(Ln™)

where U, (Ln™T) is a g-deformation of the universal enveloping algebra of n*[t,t~1]. The
latter Lie algebra has the property that all its root spaces are one-dimensional, so we
are able to adapt many of the results mentioned in the previous Subsection. To do so,
we introduce the loop version F% of the algebra F in Sections 4.27-4.32:

keN

.(d .(d
P R
01yt €1
di,...,dx€Z

The algebra structure on F* is defined by the following shuffle product:

[ ] [t ] =

t t
z : § : YA,B,m1,..., g [Sg 1) - sgﬁ_ﬁrri_wk“)
{1,...,k+l}:A|_|B T4+ T4 =0
|Al=Fk,|B|=l Ty Tt EL

where if A= {a; <---<ag}and B={b <--- <b}, we write:

le 1if c = aq de ifc=ae
Se = 5 te =
je if c =D, ee if ¢ = b,

and the coefficients v4 B x, .. are explicitly given in (4.52). In fact, one actually

ST k41
needs to work with an appropriate completion above, see (4.55)—(4.56), in order for the

shuffle product to be well-defined (as it contains infinitely many summands).
Theorem 1.5. There exists an injective algebra homomorphism:

Uy (Ln*) <= FL

dezZ .

Fiz a total order of I, which induces the following total order on the set {i(d)}iej :
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d>e
i D < o) gy or (1.12)
d=eandi<j

[igdl) e i,(cd’“)] with respect to which we

may define the notion of standard Lyndon loop words by analogy with [26] (see Subsec-

This induces the lexicographic order on the words

tions 2.22-2.27 for details). Then, there exists a 1-to-1 correspondence:

AT x7Z {standard Lyndon loop words} (1.13)

The lexicographic order on the right-hand side induces a convexr order on the left-hand
side, with respect to which one can define elements:

€(a,d) € Uq(Ln+) (1.14)

for all (a,d) € At x Z. We have the following analogue of the PBW theorem:

keN

U,(Ln*) = P Q(q) - eq, ... eq, (1.15)

01>--->4), standard Lyndon loop words

There are also analogues of the constructions above with + <> — and e < f.
By analogy with the previous paragraph, the total order on A* x Z given by:
(a,d) < (B,e) &  Lla,—d) < £(B, —e) lexicographically (1.16)

is convex; this fact will be proved in Proposition 2.34. As such, this order comes from
a certain reduced word in the affine Weyl group associated to g (= the Coxeter group
associated to @), in accordance with Theorem 3.14. Therefore, the root vectors (1.14)
exactly match (up to constants) the classical construction of [2,5,29,30], once we pass it
through the “affine to loop” isomorphism (4.45).

We note that our notion of standard Lyndon loop words, as well as the order (1.16)
on A" x Z, are not the same as the similarly named notions of [19]. In general, our order
between («,d) and (f,e) is not determined by the order between o and (5, as was the
case in [19].

1.6.  There exists another shuffle algebra construction in the theory of quantum
loop groups, with its origins in the elliptic algebras defined by Feigin-Odesskii [13]. In
the setting at hand, the construction is due to Enriquez [9], who constructed an algebra
homomorphism:

Ufnt) At e @ Q@ziezin, )™
k=(k;)icr€NT
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where the direct sum is made into an algebra using the multiplication (5.2) (we refer the
reader to Definition 5.2 for the precise definition of the inclusion C above in terms of
pole and wheel conditions). In the present paper, we prove that:

Theorem 1.7. The map Y is an isomorphism.

In type A, this result follows immediately from the type A, case proved in [33] (see
also [42] for the rational, super, and two-parameter generalizations), but the methods
of [33] are difficult to generalize to our current setup. Instead, we use the framework
of the preceding Subsection to prove Theorem 1.7. To this end, in Subsection 5.20, we
construct an algebra homomorphism:

AT — FF
given explicitly by (5.25), such that
ol = .07
according to (5.29). Extending all algebras by adding Cartan elements, we obtain:
Uy(LbT) 5 AZ Ly Floext

see (5.15), (5.27), which are bialgebra homomorphisms by Propositions 5.13, 5.21. Fur-
thermore, in Proposition 5.15, we construct a bialgebra pairing

A= @ Uy(Lb™) — Q(q)

which is non-degenerate in the first argument by Proposition 5.17. To establish the
surjectivity of the embedding Y, we filter U, (Ln*) by U,(Ln*)<,, and A by A,, so that

Y (Uy(Ln*)<w) € AL, for any loop word  w

Using the non-degeneracy of the aforementioned pairing, we then obtain:

#{good loop words < w} = dim U, (In")<, <

dim A;w < dim U, (Ln™)S" = #{standard loop words < w}

with the dimension count understood in the sense of restriction to each QT x Z-graded
component. Evoking Proposition 4.41, we then conclude that both inequalities < above
must be equalities. This implies the surjectivity of T as AT = Uw.Ang.

The homomorphism ¢ can be construed as connecting the two (a priori) different
instances of shuffle algebras that appear in the study of quantum loop groups.



A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482 7

1.8. Many of the things discussed in the present paper are connected to existing
literature. Besides the strong inspiration from the finite type case studied in [26,27,39]
that we already mentioned, we encounter the following concepts:

o Theorems on convex PBW bases of affine quantum groups [2,5,23,29] inspired by the
constructions of [24,28,37] for quantum groups of finite type.

o Shuffle algebra incarnations of quantum groups [15,38,40], which we generalize to
quantum loop groups, obtaining the algebra F¥ that features in Theorem 1.5.

o Feigin-Odesskii shuffle algebras [13] and their trigonometric versions [9], which have
recently had numerous applications to mathematical physics, cf. survey [12].

The combinatorics of Lyndon words for finite types was connected with representa-
tions of KLR algebras in [25]. It would be very interesting if the combinatorics of Lyndon
loop words had such an interpretation. A priori, the setting of [25] generalizes to affine
types, which differs from our approach by the isomorphism (4.45).

1.9.  The structure of the present paper is the following:

e In Section 2, we study the Lie algebras g and Lg, recall the notion of standard
Lyndon words for the former, and extend this notion to the latter.

e In Section 3, we show that the order (1.16) on AT x Z corresponds to a certain
reduced decomposition in the extended affine Weyl group of g.

o In Section 4, we study the quantum groups Uy,(g) and U,(Lg), and their PBW bases
defined with respect to standard Lyndon (loop) words. We construct the objects
featuring in Theorem 1.5.

e In Section 5, we recall the trigonometric degeneration of the Feigin-Odesskii shuffle
algebra, and prove Theorem 1.7 using the results of Theorem 1.5.

The interested reader may find self-contained proofs of Theorem 4.8 ([27]) and The-
orem 4.25 ([11], which plays a key role in our proof of Theorem 1.5), as well as a list
of standard Lyndon loop words for the classical types in Section 5 and the Appendix
(respectively) of the aryiv version of the present paper.

1.10.  We would like to thank Pavel Etingof and Boris Feigin for their help and
numerous stimulating discussions over the years. We also thank Alexander Kleshchev
and Weigiang Wang for their interesting remarks on a draft of the present paper. We
are indebted to the anonymous referee for useful suggestions on the exposition.

A.N. would like to gratefully acknowledge NSF grants DMS-1760264 and DMS-
1845034, as well as support from the Alfred P. Sloan Foundation and the MIT Research
Support Committee. A.T. would like to gratefully acknowledge NSF grants DMS-2037602
and DMS-2302661.
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2. Lie algebras and Lyndon words

It is a classical result that the free Lie algebra on a set of generators {e; };ecr has a basis
indexed by Lyndon words (see Definition 2.4) in the alphabet I. If we impose a certain
collection of relations among the e;’s, then [26] showed that a basis of the resulting Lie
algebra is given by standard Lyndon words (see Definition 2.12), and determined the
latter in the particular case of the maximal nilpotent subalgebra of a simple Lie algebra.
In the present Section, we will extend the treatment of [26] to the situation of loops into
simple Lie algebras.

We start with the exposition of the relevant classical results in Subsections 2.1-2.18.
2.1.  Let us consider a root system of finite type:
ATUA™ CQ
(where @ denotes the root lattice) associated to the symmetric pairing:
() ROQ—1Z

Let {ai}ier C AT denote a choice of simple roots. The Cartan matrix (a;;); jer and the
symmetrized Cartan matrix (d;;); jer of this root system are:

_ 2(i, )

aij = (ai,ai) and dij = (ai,aj) (21)

Definition 2.2. To the root system above, one associates the Lie algebra:

g= Q<ei, fis h¢> I/relations (2.2)—(2.4)

ic
where we impose the following relations for all ¢,j € I:
[61‘,[6i7[...7[€i,6j]...]]] = O7 lfl#] (22)

1—a;; Lie brackets

(hj,ei] = djie;, [hi, hj] =0 (2.3)

as well as the opposite relations with e’s replaced by f’s, and finally the relation:
[ei, fJ] = 53}12 (24)

We will consider the triangular decomposition (1.1), where n™, h, n~ are the Lie
subalgebras of g generated by the e;, h;, f;, respectively. We will write:

QT cQ
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for the monoids generated by +a;. The Lie algebra g is graded by @, if we let:
dege; = oy, degh; =0, degfi=—oy
The subalgebras n* are graded by Q¥ accordingly.

2.3.  We will now recall the construction of [26], which describes positive roots in
terms of the combinatorics of words:

[i1...in] (2.5)

for various i1,...,i; € I. Let us fix a total order on the set I of simple roots, which
induces the following total lexicographic order on the set of all words:

i1 =J1-+»%a = Jastat+1 < Jat1 for some a > 0
[iv .. ig] < [jr...q] if § or
i1=1J1,.., ik =Jr and k <1

Definition 2.4. A word ¢ = [i;...4] is called Lyndon (such words were also studied

independently by Shirshov) if it is smaller than all of its cyclic permutations:
[i1 .. ia—1ia--.ik] <[ia-. . iki1-.-iqo1]
forall a € {2,...,k}.
The following is an elementary exercise, that we leave to the interested reader.
Claim 2.5. If {1 < {5 are Lyndon, then {14 is also Lyndon, and so {14y < £of;.
Given a word w = [i; ... 1], the subwords:
W = [i1 .. .14 and Wi = [fk—at1 -]

with 0 < a < k will be called a prefix and a suffix of w, respectively. Such a prefix or a
suffix is called proper if a ¢ {0, k}. It is straightforward to show that a word w is Lyndon
iff it is smaller than all of its proper suffixes, i.e. w < w), for all 0 < a < k.

Proposition 2.6 (see [26, §1] for a survey). Any Lyndon word ¢ has a factorization:
=010 (2.6)

defined by the property that ls is the longest proper suffix of £ which is also a Lyndon
word. Under these circumstances, {1 is also a Lyndon word.
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Proposition 2.7. Any word w has a canonical factorization as a concatenation:

w=2~0... 4 (2.7)
where {1 > -+ >l are all Lyndon words.
2.8.  For any word w = [i1 ...14x], we define:
we=¢; ...6;, €UmnT) (2.8)
On the other hand, Propositions 2.6 and 2.7 yield the following construction.
Definition 2.9. For any word w, define e,, € U(n") inductively by e[y = e; and:
er = [eq,, e0,] €T (2.9)
if ¢ is a Lyndon word with factorization (2.6), and:
ew = ¢p, ..., € UMM (2.10)
if w is an arbitrary word with the canonical factorization ¢ ... /¢, as in (2.7).

Remark 2.10. Because [eq,eg] € QF - eq4p for all positive roots «, f such that a +
is also a root ([20, Proposition 8.4(d)]), then choosing a different factorization (2.6)
for various Lyndon words will in practice produce bracketings (2.9) which are non-zero
multiples of each other. Thus various choices will simply lead to PBW bases (1.4) which
are renormalizations of each other.

It is well-known that the elements (2.8) and (2.10) both give rise to bases of U(n™),
and indeed are connected by the following triangularity property:

ew = c? - e 2.11
> (2.11)

v>w

for various integer coefficients ¢!, such that ¢l = 1.

2.11.  If n™ were a free Lie algebra, then it would have a basis given by the ele-
ments (2.9), as £ goes over all Lyndon words (and similarly, U(n™) would have a basis
given by the elements (2.10) as w goes over all words). But since we have to contend with
the relations (2.2) between the generators e; € n™, we must restrict the set of Lyndon
words which appear. The following definition is due to [26].

Definition 2.12. (a) A word w is called standard if ,,e cannot be expressed as a linear
combination of ,e for various v > w, with ,e as in (2.8).
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(b) A Lyndon word ¢ is called standard Lyndon if e, cannot be expressed as a linear

combination of e, for various Lyndon words m > ¢, with e, as in (2.9).
The following Proposition is non-trivial, and it justifies the above terminology.
Proposition 2.13 (/26]). A Lyndon word is standard iff it is standard Lyndon.

According to [26, §2.1], n* has a basis consisting of the e;’s, as £ goes over all standard
Lyndon words. Since the Lie algebra nt is QT-graded by dege; = oy, it is natural to
extend this grading to words as follows:

deg[zlzk] =y, + -+, (2.12)

Because of the decomposition (1.2) of n*, and the fact that the basis vectors e, € n™t
all live in distinct degrees o € QT, we conclude that there exists a bijection:

0 AT {standard Lyndon WOI‘dS} (2.13)
such that deg {(a) = a, for all « € AT,

2.14.  The following explicit description of the bijection (2.13) was proved in [27,
Proposition 25], and allows one to inductively construct the bijection ¢:

la) = W1+7223)E/;CEA+ {concatenation E(’yl)é('yg)} (2.14)

£(v1)<L(v2)

We also have the following simple property of standard words.
Proposition 2.15 (/26, §2.4]). Any subword of a standard word is standard.

Combining Propositions 2.7, 2.13, 2.15, we conclude that any standard word can be
uniquely written in the form (2.7), where ¢; > --- > ¢}, are all standard Lyndon words.
The converse also holds (by a dimension count argument, see [26, §2.8]).

Proposition 2.16 (/26]). A word w is standard if and only if it can be written (uniquely)
as w = {1 ... 0, where £1 > -+ >} are standard Lyndon words.

Remark 2.17. The results of Propositions 2.13, 2.15, 2.16 hold for any finite dimensional
Lie algebra, according to [26]. In particular, we shall be applying them to Lie algebras
LEent of (2.22), generalizing LOnt ~ nt.
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Thus we obtain the following reformulation of (1.4):
keN
Un") = & Q-ep...eq (2.15)

01>--->¢ standard Lyndon words

By the triangularity property (2.11), we could also get a basis of U(n*) by replacing
ew = €g, ...€q, in (2.15) by e, for any standard word w.

2.18.  The bijection (2.13) yields a total order on the set of positive roots A™, induced
by the lexicographic order of standard Lyndon words, see (1.11). As observed in [27,39],
this order is convex, in the following sense.

Definition 2.19. A total order on the set of positive roots A7 is called convex if:
a<a+pB<p (2.16)
for all @ < B € At such that o + f3 is also a root.

It is well-known ([34]) that convex orders of the positive roots are in 1-to-1 correspon-
dence with reduced decompositions of the longest element of the Weyl group associated
to our root system. We will consider this issue, and its affine version, in more detail in
Section 3.

Proposition 2.20 (/27, Proposition 26]). The order (1.11) on A% is conver.

We will prove the loop version of the Proposition above in Proposition 2.34.
2.21.  We will now extend the description above to the Lie algebra of loops into g:
Lg=g[t,t"'] = g®q Q[t,t"']
where the Lie bracket is simply given by:
[r@t™ y@t"] =[x,y @ ™" (2.17)

for all z,y € g and m,n € Z. The triangular decomposition (1.1) extends to a similar
decomposition at the loop level, and our goal is to describe Lnt along the lines of
Subsections 2.11-2.14. To this end, we think of Ln™ as being generated by:

ez(.d) =e;@t?

Vi€ I,d € 7Z. Associate to egd) the letter i(¥), and call d the exponent of i(¥). We fix a
total order on I, which induces the total order (1.12) on the letters {i(¥ }¢SZ. Any word
in these letters will be called a loop word:
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[z’ﬁdl) o i}jk)] (2.18)

We have the total lexicographic order on loop words (2.18) induced by (1.12). All the
results of Subsection 2.3 continue to hold in the present setup, so we have a notion of
Lyndon loop words. Since Ln™ is Q7 x Z-graded by:

deg egd) = (a,d)
it makes sense to extend this grading to loop words as follows:
deg [z’§d1) . i,(j“] = (g, + -+, di+ e+ dy) (2.19)

The obvious generalization of (1.2) is:

Int= P PQ-e? (2.20)

acAt deZ
with (& = eq @4 If degwr = (a,d) € QF x Z, then we will use the notation:
hdeg z = « and vdeg x = d (2.21)

and call these two notions the horizontal and the vertical degree, respectively. While ob-

viously infinite-dimensional, Ln* still has one-dimensional QT x Z-graded pieces, which
is essential for the treatment of [26] to carry through.

The aim of Subsections 2.22-2.27 is to obtain a notion of standard (Lyndon) loop words.
This is a non-trivial task as the alphabet {i(d)}feelz is infinite. To do so, we shall consider
a filtration by finitely generated Lie algebras L(*)n* of (2.22), corresponding to the finite
alphabets {egd) |i € I,—s < d < s}. We then establish some basic properties of the corre-
sponding standard Lyndon loop words for L(*)nt in Propositions 2.23, 2.25, 2.26, 2.28.
The latter result implies that the notion of “standard Lyndon loop word” does not de-
pend on the particular L(*)nt with respect to which it is defined, thus establishing the

loop analogue (2.35) of the bijection (2.13).

2.22.  We now wish to extend Definition 2.12 in order to obtain a notion of standard
(Lyndon) loop words, but here we must be careful, because the alphabet {i(d)}feelz is
infinite. In particular, the key assumption “for any word v, there are only finitely many
words u of the same length and > v in the lexicographical order” of [26, §2] clearly does
not hold. To deal with this issue, we consider the increasing filtration:

Int = L®n?
s=0

defined with respect to the finite-dimensional Lie subalgebras:
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slal

It oLt = G Q- (2.22)

a€EAT d=—s|a|

where || denotes the height of a root, i.e.

la] = Zkz

el

ifa= Zie] kiai.

As a Lie algebra, L(®)n is generated by {ez(-d)|i € I,—s < d < s}. Therefore, we may
apply Definition 2.12 to yield a notion of standard (Lyndon) loop words with respect to
the finite-dimensional Lie algebras L(®)nt, where the corresponding words will only be
made up of the symbols (¥ with i € I,d € {—s,...,s}.

Proposition 2.23. There exists a bijection:
L: {(a,d) €AT xZ,|d < 8|O¢|} - {standard Lyndon loop words for L(s)tﬁ} (2.23)
explicitly determined by ¢(a;,d) = [i(d)] and the following property:

(a, d) {concatenatz’on £(y1,d1)l(ya, dg)} (2.24)

= max
(71,d1)+(v2,d2)=(c,d)
TEAT, |dik|<s|vi]
£(v1,d1) <l(v2,d2)

In view of Proposition 2.16 (see Remark 2.17), this also gives a parametrization of
standard loop words for L(*)n*. We note that both the property (2.24), as well as the
main idea of the subsequent proof, are direct adaptations of the analogous results in [27]
(cf. (2.14)).

Proof of Proposition 2.23. Because the root spaces of L(®)nt are one-dimensional, as in
(2.22), then for any Lyndon loop word ¢ of degree (o, d) € QT x Z with |d| < s|af, we
have:

er €Q-eld (2.25)

The right-hand side is 0 if & ¢ A™. By Definition 2.12(b), a word £ is standard Lyndon
if and only if it is the maximal Lyndon loop word of its given degree, with the property
that ey # 0. Together with the fact [26, §2.1] that {e/|¢ — standard Lyndon} is a basis
of L(®)n*, this establishes the existence of a bijection (2.23).

Let us now prove that this bijection takes the form (2.24). Consider any 1,72 € AT
such that 73 + 72 € AT, and any integers dq, ds such that |dg| < s|vx| for all k € {1,2}.
Let us write ¢ = (v, dy) for all k € {1,2} and £ = €(v1 + 7¥2,d1 + d2); we may assume
without loss of generality that ¢; < £5. We have:
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e, = D ¢ ye (2.26)

v 2Ly,

Yk € {1,2}, due to property (2.11) (which holds in L&*)n* as it did in n*). Thus:

€p,€p, = Z Ty * p€ (2.27)

’UZ£1EQ

for various coefficients z,.> As a consequence of Claim 2.5, we have an analogue of
formula (2.27) when the indices 1 and 2 are swapped in the left-hand side. Hence we
obtain the following formula for the commutator:

[6517652] = Z Yy~ v€ (228)

1;22122

for various coefficients y,. Furthermore, we may restrict the sum above to standard
v’s since, by the very definition of this notion, any ,e can be inductively written as a
linear combination of ,e’s for standard u > v (this uses the fact that there exist finitely
many words of any given degree, as we use a finite alphabet {i(d)}i_esfdgs). By this very
same reason, we may restrict the right-hand side of (2.11) to standard v’s, and conclude
that {e,|w — standard} yield a basis which is upper triangular in terms of the basis
{we|w — standard}. With this in mind, (2.28) implies:

[ee,,€0,] = Z Zy - €y (2.29)
1}2[1(2
v—standard

for various coefficients z,.
However, [e,,,€,,] € Q* - €, 44, implies [eﬁffl), 6%2)} cQ*- eg‘fl_:;iz), so that:
lee,,e,] € Q™ - ey (2.30)

As {e,|v — standard} is a basis of U(L{®*)n*) ([26, §2.2]), comparing (2.29) and (2.30),
we conclude that ¢ > ¢1¢5. This proves the inequality > in (2.24). As for the opposite
inequality <, it follows from the fact that ¢(«, d) admits a factorization (2.6) ¢(«,d) =
010y (with ¢1 < l(a,d) < £3), and Propositions 2.13, 2.15 (see Remark 2.17) imply that
Ok = U(Vk, dy,) for some decomposition (a,d) = (y1,d1) + (72,d2). O

Since standard Lyndon loop words give rise to bases of the finite-dimensional Lie
algebra L(*)nt then the analogue of property (2.15) gives us:

2 Here we are using the fact that if v4 > ¢; and vy > £a, then vivs > £1¥2; this fact is not true for arbitrary
words v; and va, because we could have v; = f;u for some word u < f2. However, such counterexamples
are not allowed because the words v, which appear in (2.26) have the same number of letters as £, for
degree reasons.
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UL®nt) = B Qe ... e (2.31)

£1>--->4, standard Lyndon loop
words with all exponents in {—s,...,s}

By the triangularity property (2.11), we could also get a basis of U (L(S)n+) by replacing
ew = € ...€p, in (2.31) by e, for any standard loop word w with all exponents in

{—s,...,s}
2.24. Property (2.24) will allow us to deduce some facts about the bijection (2.23).
Proposition 2.25. For any positive root o € AT and integer d € Z, we have:
La,d) < l(a,d—1) (2.32)

where £ is the function of (2.23), which a priori depends on a natural number s (so we
implicitly need d — 1,d € {—s|a|,...,s|a|} in order for (2.32) to make sense).

Proof. Let us prove (2.32) by induction on |af, the base case || = 1 being trivial.
According to (2.24), there exist decompositions a = 1 + 2, d = d; + da such that:

Lo, d) = L(y1,d1)l(7y2,d2)

with £(y1,d1) < €(72,d2). Note that 1 # 42 as 1 + 72 is a root. Because we assume
d > —s|a|, then at least one of the following two options holds:

e dy > —s|v|, in which case the induction hypothesis implies ¢(y1,d; — 1) > ¢(y1,dq).
Then we either have £(v1,d; — 1) < £(72,dz), in which case:

la,d —1) > l(y1,dy — 1)l(y2, d2) > L(y1,dy)l(y2, d2) = U, d)
or £(y1,d; — 1) > £(7y2,dz), in which case:
Ua,d —1) > U(vy2,d2)l(v1,d1 — 1) > £(y2,d2)l(y1,d1) > €(71,dr) (2, do) = (e, d)

e dy > —s|v2|, in which case the induction hypothesis implies £(vs,ds — 1) > (72, d2),
and so £(y2,ds — 1) > £(1,d1). Then we have:

Ua,d—1) > L(y1,di)l(y2, d2 — 1) > U1, d1)l( 2, d2) = U(a, d)

In all chains of two or three inequalities above, the first inequality is due to (2.24),
while the third inequality uses Claim 2.5. O

Next, we estimate the exponents of letters in the standard Lyndon loop words for
LGt
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Proposition 2.26. For all « € AT and d € {—sk,...,sk} with k = |a|, we have:

Ua,d) = [igdl) . i,(fdk)] for various di,...,dg € { {ZJ , {Z-‘ } (2.33)

Proof. We will prove (2.33) by induction on k, the base case k = 1 being trivial.

If % =t € Z, then we must show that all exponents of ¢(a, d) are equal to ¢. Indeed,
pick a decomposition a = 1 +72 into positive roots, and assume without loss of generality
that £(y1,t|v1|) < €(7y2,t|y2|) (otherwise, swap their order). Then:

e, d) = L(yas tnl) (2, ty2])

by (2.24). By the induction hypothesis, the word on the right has all exponents equal to
t, which implies that the first letter of ¢(«,d) has exponent < ¢t. But because the first
letter of a Lyndon loop word is its smallest one, this implies that all letters of ¢(c, d)
have exponent < t. Because vdeg £(«,d) = d = tk is also the sum of the exponents of
£(a, d), this implies that all letters of £(«, d) must have exponent equal to ¢, as we needed
to prove.

If tk < d < (t + 1)k for some ¢ € Z, then we must show that all exponents of ¢(«a, d)
are equal to either t or ¢t + 1. By a slight modification of the argument in the preceding
paragraph, we conclude that the first letter of ¢(a,d) has exponent = ¢ + 1, which
implies that all letters of £(c,d) have exponent < t 4+ 1. Then assume for the purpose
of contradiction that there is some letter of ¢(«a, d) with exponent <t — 1. Consider the
factorization (2.6):

U, d) = L(y1,d1)l(72,d2) (2.34)

for some decomposition & = 41 + 2, d = dy + dg with |di| < s|y| for k € {1,2}. Since
the first letter of ¢(vy1,d1) has exponent ¢ + 1, the induction hypothesis does not allow
£(~1,dy) to have any letters with exponents < ¢ — 1. Therefore, the letters with exponents
<t — 1 must lie in £(72,ds), and so the induction hypothesis yields:

d1 > t|’)/1| and d2 < t|’)/2|

However, if £(y1,d; — 1) < €(7y2,d2 + 1) then the word £(y1,d1 — 1)¢(y2,d2 + 1) would
be greater than £(~y;,d1)l(7y2,d2) = £(a, d), by Proposition 2.25, thus contradicting the
maximality of £(«, d) provided by (2.24). The only other possibility is that £(y;,d; —1) >
£(v2,dy + 1), at which point the same property (2.24) implies that:

Ua,d) > l(y2,d2 + 1)l(71,d1 — 1)

However, by the induction hypothesis, all the letters of £(y2,ds + 1) have exponents < ¢,
which contradicts the fact that the first letter of ¢(a, d) has exponent ¢t +1. O
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2.27. Property (2.33) has one great advantage: it is independent of s.

Proposition 2.28. Any loop word w with exponents in {—s,...,s} is standard (Lyndon)
with respect to L$nt iff it is standard (Lyndon) with respect to LETDnt,

Proof. Due to Proposition 2.16 (see Remark 2.17), it suffices to consider the case of
standard Lyndon loop words. In other words, we must show that if « is a positive root
and d is an integer such that |d| < s|a|, then the Lyndon loop words:

(= U, d) of (2.23) with respect to L®n*
0 = U, d) of (2.23) with respect to LG+ nT

are equal. We may do so by induction on |a|, the base case |a| = 1 being trivial. Due to
property (2.24), both £ and ¢’ are defined as the maximum over various concatenations,
but the set of concatenations defining ¢ is a priori larger. In other words, the only
situation in which £ # ¢’ would be if:

O = U(y1,d1)l(y2,d2) > £

with €(v1,d1) or £(y2,d2) having an exponent +(s + 1). However, this can not happen
due to (2.33) applied to ¢, since it would force |d| > s|a|. O

Proposition 2.28 implies that the notion “standard Lyndon loop word” does not de-
pend on the particular L®*)n™ with respect to which it is defined. We conclude that there
exists a bijection:

AT xZ = {standard Lyndon loop words} (2.35)

satisfying properties (2.24) and (2.33) (with s = c0).

2.29. Because of the Lie algebra isomorphism:

Int = Int  given by  el@ s eldtlaD
the procedure:
[Z-gdﬂ . i,(cd’“)} ~ [i§d1+1) . z',(cd’f“)} (2.36)

preserves the property of a loop word being standard. It obviously also preserves the
property of a loop word being Lyndon, hence also of being standard Lyndon, due to
Proposition 2.13 (see Remark 2.17). This implies the following result.

Proposition 2.30. For any (o, d) € AT xZ, l(a,d+]|al) is obtained from {(«,d) by adding
1 to all the exponents of its letters, i.e. by the procedure (2.36).
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Therefore, to describe the bijection (2.35), it suffices to specify a finite amount of
data, i.e. the standard Lyndon loop words corresponding to («,d) for all & € AT and
d e {0,...,]a] —1}. The s = 0 case of Proposition 2.28 also implies:

Proposition 2.31. The restriction of (2.35) to At x {0} matches (2.13).

Since U(Ln") is the direct limit as s — oo of the U(L(*)nT), then (2.31) implies:

keN

U(LnT) = &y Qe ...e (2.37)

£1>--->¥¢}, standard Lyndon loop words

By Proposition 2.16 (see Remark 2.17), we then have:

U(Lnt) = P Q- ew (2.38)

w standard loop words

The following result will be used in Section 4.

Corollary 2.32. For any loop word w, there exist finitely many standard loop words < w
in any fived degree (a,d) € Q1 x Z.

Proof. Any standard loop word v admits a canonical factorization v = £; ... ¢, where
£y > --- > {y are all standard Lyndon loop words. If v < w, then we note that all the
¢,’s are bounded from above by w, due to ¢, < ¢; < v. Combining this with (2.33),
we see that the exponents which appear among the letters of the ¢,.’s are bounded from
below. Therefore, there are only finitely many choices of /1, ..., ¢, with a fixed number
of letters, whose exponents sum up to precisely d. O

We conclude this Section with a few fundamental properties of the total order (1.16) on
AT x Z induced by (2.35) from the lexicographic order. The loop version of the convexity
result from Proposition 2.20 is established in Proposition 2.34. A corollary of the latter
implies Proposition 2.38 which is key to the proof of Theorem 4.25.

2.33.  The bijection (2.35) gives rise to a total order (1.16) on AT xZ, by transporting
the total lexicographic order on loop words. We will now show that this order is convex,
a notion which is the direct generalization of Definition 2.19.

Proposition 2.34. For all (a,d), (B,e),(a+ B,d+e) € AT x Z, we have:

L a,d) <lla+B,d+e) <lf,e) (2.39)

if U, d) < £(B,e).
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Proof. We will prove the required statement by induction on |a+ /3|, the base case being
vacuous. By (2.24), we have:

la+ B,d+e) > La,d)l(B,e) > {(a,d)

Therefore, it remains to show that £(a+3,d+e) < £(5,e). Let us assume for the purpose
of contradiction that the opposite inequality holds:

La+B,d+e)>L0(B,e) > la,d) (2.40)
By (2.24), we have:

la+ B, d+e) =L, d ) e) (2.41)
where £(a/,d") < £(f’,€), for certain positive roots o/, 8’ satisfying a + 5 = o' + 5’ and
integers d’, e’ satisfying d + e = d’ + ¢/. Comparing the formulas above, we have two

options:

Case 1: ((d/,d") > 4(B,e)
Case 2: ((d',d") < 4(B,e)

(note that the equality (o/,d’) = (8,€) would imply (a,d) = (8’,e’), which would con-
tradict various inequalities above). In Case 1, we would have:

LB, €e) >, d) > l(B,e) > la,d) (2.42)
We will use (2.42) to obtain a contradiction, but first we make an elementary claim:
Claim 2.35. Given positive roots a, B3,a/, 8" such that o+ 8 = o' + ', then:
o =a+vy and B =B-7
or:
o =B+~ and B =a—7
for some v € AL{0}.

The Claim is proved as follows. Suppose first that (a,a’) > 0. Then, the reflection
sa(a@’) = o — ka is also a root, for some positive integer k > 0. This implies that o' — «
is either a root or 0, hence o/ —a = for some v € AU{0}, thus proving the claim. The
analogous argument applies if (a, ') > 0, (8,a') > 0, or (8,8’) > 0. However, one of
the aforementioned 4 inequalities must hold, or else 0 > (a+8,a' 4+ 5') = (a+ 5, a+ ),
a contradiction.
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Using Claim 2.35, we conclude that there exist v € AU {0} and 2 € Z such that:
(o d)=(a+v,d+x) and (B,¢)=(B—v,e—x) (2.43)
or:
(o/,d)=(B+v,e+x) and (B,¢)=(a—~,d—1) (2.44)

(one just needs to pick the integer x such that the equalities above hold). First of all,
we cannot have v = 0, as Proposition 2.25 and the chain of inequalities (2.42) would
simultaneously require z > 0 and « < 0. If v # 0, then the induction hypothesis of (2.39)
contradicts the chain of inequalities in (2.42), as per the following:

o If (2.43) holds and v € AT, the contradiction arises from the fact that ¢(v,z) would
have to be simultaneously bigger than £(o/,d’) and smaller than £(5, e).

o If (2.43) holds and v € A~, the contradiction arises from the fact that ¢(—v, —x)
would have to be simultaneously bigger than ¢(8’, ¢’) and smaller than ¢(«, d).

o If (2.44) holds and v € AT, the contradiction arises from the fact that ¢(v, ) would
have to be simultaneously bigger than ¢(o/,d’) and smaller than £(«, d).

o If (2.44) holds and v € A~, the contradiction arises from the fact that ¢(—v, —z)
would have to be simultaneously bigger than ¢(8’,¢’) and smaller than ¢(8,e).

In Case 2, the only situation when (2.40) and (2.41) are compatible would be if:
0(B,e) =L(a,d)w (2.45)
for some loop word w, which would need to satisfy:
0B, €e) >w>B,e)

(the first inequality is a consequence of (2.40) and (2.41), while the second inequality is
a consequence of the fact that £(53,e) is Lyndon). However, being a suffix of a standard
loop word, w is also standard and hence admits a canonical factorization:

w = L(v1, f1) - A(Ves fr)

for various (v, fr) € AT x Z which satisfy (v, ) < l(71, f1) < w < £(f',¢€') for all
1 <r < k. However, (2.45) implies:

k k
(ﬁae) = (O‘/7d/)+2(7ﬁf¢) = (ﬁ/ae,) = (O‘vd)+2(’7rafr)
r=1 r=1
Because a,71,...,7,, 3 are all positive roots, we claim that there exist positive roots

€1,...,€; and a permutation o € S(k) such that:



22 A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482

&r=a+ Y%+ e YVre{l,... k} (2.46)

Since ¢(o, d) and all the £(v,, f,) are < £(5',¢€’), then the induction hypothesis of (2.39)
implies (inductively in r) that:

K(ET, d+ fa(l) +- 1+ fa(?“)) < g(ﬁl, el)

However, (ex,d+ f1+ -+ fx) = (8',¢€'), which provides the required contradiction.

It remains to prove (2.46), which we will do by induction on k, the base case
k = 1 being trivial. If (a,7,) < 0 for some r, then the reflection s,(v,) = v + pa
is also a root, for some positive integer p > 0. This implies that a + v, is a
root, hence we can apply the induction hypothesis for the collection of positive roots
(A Yry V1o o s Vel Vrt1s - - - Vi ') The analogous argument applies if (5',4,) > 0 for
some 7, in which case we can apply the induction hypothesis for the collection of positive
rOOS (G, Y1y -+« s Y1y V1, - - 5 Vi 3 — V). Hence the only situation when we could not
prove the claim via the argument above would be if:

(047%)202(5/,%) vr = (aaﬂ/ia)zoz(ﬂlvﬂlia)
But this would imply (8" — «, 8/ — «) < 0, which is impossible since 5’ —a #0. O

Remark 2.36. We note that such “lexicographic order on Lyndon words are convex”
results are well-known in representation theory, see e.g. [1] for slightly different (but
more systematic and general) setting from ours.

Corollary 2.37. Consider any k, k' > 1 and any:

(’Ylvdl)v" '7(7k7dk)7(717dl1)""7(7{@’7 ;g’) S AJ’_ x 7

such that:

Then we have:
min {E(’yl, dy)y .. (Y, dk)} < max {Z('y{,d’l), e (Vi s ;C,)} (2.48)

Proof. Proposition 2.34 is simply the (k, k") € {(1,2),(2,1)} case of the Corollary. Let
us prove the Corollary by induction on min(k,k’), and to break ties, by k + k’. This
means that we must start with the case min(k, k') = 1, and we will show how to deal
with the &/ = 1 case (as the k = 1 case is an analogous exercise that we leave to the
interested reader). The assumption implies that v; +---+7% € AT, in which case (2.46)
shows that we can relabel indices such that 1 +v2 € A*. Then the induction hypothesis
shows that:
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min {5(71 +v2,d1 + da), (73, d3), . .. 7€('7k:7dk)} <U(y+- -+ Yk di+ -+ di)

Then Proposition 2.34 for (y1,d1) and (72, ds2) implies that the left-hand side is > the
minimum of all the £(vs, ds)’s, as we needed to prove.
Let us now assume that k, &’ > 1. Since:

Vit =

there exist s,s” such that (vs,7.) > 0. Let us relabel indices such that s = s’ = 1. As
we saw in the proof of Claim 2.35, this implies that:

(71,d1) = (1, d1) + (€, 2)
for some € € AU {0} and some x € Z. Then (2.47) implies:
(v2:d2) + -+ (Vs die) = (Y, dy) + -+ (Yo, dj) + (€, @)
If e € AT, then the induction hypothesis gives us:
min {£(y1,dy). {(e,) | < €34, d})
min {012, da), ..., €0n, dy) } < max {£e,2), 60k, ), . 0o i) |
which implies (2.48). If ¢ € A™, then the induction hypothesis gives us:
£(y1,d1) < max {E(—e, —x),ﬂ(’yi,d'l)}
min { (=, ), £(y2,da), ., 0ok i) } < mmax { €, ), . v i) |

which also implies (2.48). Finally, if e = 0 and 2 < 0, then Proposition 2.25 implies that
l(y1,d1) < £(~1,d]), which easily yields (2.48). If e = 0 and « > 0, then:

min {‘6(727652)7 cee 76(’7167 dk)} S min {6(727(12 - .’L')7£(’}/37 d3)7 cee 76(’7/67 dk)} S

< max {K(fyé, db), . .. ,E(v,g,,d%,)}

where the first inequality is due to (2.32) and the second inequality holds because of the
induction hypothesis. The chain of inequalities above implies (2.48). O

Proposition 2.38. If {1 < {5 are standard Lyndon loop words such that {145 is also a
standard Lyndon loop word, then we cannot have:

b <Oy < Uy < Lo
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for standard Lyndon loop words £}, 0y such that degty + degls = deg ¢} + deg ¢5,.
Proof. Assume such ¢, ¢ existed. Then by (2.24), we would have:
0l < lily (2.49)
The only way this is compatible with ¢; < ¢} is if:
fll = Elw

for some loop word w, which must be standard due to Proposition 2.15 (or more precisely,
its straightforward loop generalization). However, (2.49) then implies:

If we consider the canonical factorization (2.7) of w = uy ... uy for standard Lyndon loop
words uy > - -+ > ug, then (2.50) implies that:

up <o <up <y

Together with the assumption that £, < ¢, this violates Corollary 2.37 since:

deguy + - -+ + deguy, + deg £y = degw + deg ¥, = deg ¢} — deg (1 + deg 5 = degly O
3. Lyndon words and Weyl groups

In the present Section, we will show that the lexicographic order (1.16) on A™ x Z
induced by (2.35) is closely related to the construction of [35,36] applied to a reduced
decomposition of a certain translation element in the extended affine Weyl group associ-
ated to g. The reader who is interested in quantum groups, and prepared to accept the

proof of Theorem 3.14, may skip ahead to Section 4.

3.1.  Let us consider the affine root system of type g:

A=ATUA CQ

The affine root system has one more simple root «g besides the simple roots {«;}ier of
the finite root system. Therefore, we may use formulas (2.1) for I replaced by:

IT=T110

which lead to the affine Cartan matrix (ai;),; ;.7 and the affine symmetrized Cartan
+. There is a natural identification:

matrix (dij)z',jel'
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Q-5 Qx7Z with ;> (,0) Viel, ag— (—0,1) (3.1)

where § € AT is the highest root of the finite root system. Note that (0,1) € Q x Z is
the minimal imaginary root of the affine root system. With this in mind, we have the
following explicit description of the affine root system in terms of finite roots:

At = {A+ X Zzo} U {0 X Z>0} U {A‘ X Z>0} (3.2)
A= {A— XZSO}U{OX Z<0}u{A+ xZ<0} (3.3)
where Z>q, Lo, Z<o, Z<o denote the obvious subsets of Z.
Definition 3.2. Let § be as in Definition 2.2, but using I instead of I.

As opposed from the non-degenerate pairing on finite type root systems, the pairing on
affine type root systems has a 1-dimensional kernel, which is spanned by the imaginary
root. Explicitly, this implies the fact that:

(Oéo+9,—):0 & doj+ZGidU:O
el

for all j € I, where the positive integers {0;};cs (called the “labels” of the corresponding
extended Dynkin diagram) are defined via:

iel

Using formula (2.3), this implies that the Cartan element:

il
is central in g. Furthermore, we have the following relation between g and Lg.
Lemma 3.3. There exists a Lie algebra isomorphism:
a/(c) — Lg
determined by the formulas:
e e @0 eoi—>f9®t1

fim fiet forreg@t !

thhz(X)tO hoH*Z@ﬂli@tO
i€l

for all i € I, where eg (resp. fg) is a root vector of degree 6 (resp. —0).
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3.4.  We have already mentioned that convex orders of AT are in 1-to-1 correspon-
dence with reduced decompositions of the longest element of the finite Weyl group W
associated to g. To define the latter explicitly, consider the coroot lattice:

Q' =Pz o (3.6)

i€l

where for any o € At the corresponding coroot «" is defined via:

al = (3.7)

The finite Weyl group W, i.e. the abstract Coxeter group associated to the Cartan matrix
(asj)i jer, acts faithfully on the coroot lattice QY as well as on the root lattice Q:

WAy and Wn~nQ (3.8)
via the following assignments:
si(p) = p— (o, p)a) and siA) = A=\, o))y (3.9)
Viel, pe@V,Aeq.

8.5.  We will also encounter the affine Weyl group, which is by definition the semidi-

rect product:
W=WwxQqY (3.10)

defined with respect to the action (3.8). It is well-known that W is also the Coxeter

group associated to the Cartan matrix (a;;), el In other words, the affine Weyl group

is generated by the symbols {s;},_; defined by:

Si:(si,O), Viel

s0 = (s, —0")
The affine analogue of the action W ~ @ from the previous Subsection is:
WAQ (3.11)
where the generators of the affine Weyl group act by the following formulas:

siiNd) = (A= (N, o))y, d), Viel (3.12)
so(A,d) = (A= (N, 0Y)0,d+ (\,60Y)) (3.13)
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for all (A\,d) € Q x Z ~ @7 see (3.1). An important feature of the affine Weyl group is
that it contains a large commutative subalgebra:

IxQYcW
which acts on the affine root lattice @ ~ () X Z by translations:
A d) = (A d— (A, p)) (3.14)

Ve QV, e Q,de Z. Here and henceforth, we write 7i for the element 1 x p € /V[7,
and call it a translation element.

3.6. We will also need to consider the extended affine Weyl group, which is by def-

inition the semidirect product:

Wt =W x PV (3.15)
Above, PV is the coweight lattice:
pY — @Z cwY (3.16)
iel

where the fundamental coweights {w,’ }ic; are dual to the simple roots {a;}jer:
(o)) = & (3.17)
In particular, QV is a finite index subgroup of PV. It is well-known that:
W~ T x W (3.18)

where the finite subgroup T of Wext i naturally identified with a subgroup of automor-
phisms of the Dynkin diagram of g. The semi-direct product (3.18) is such that:

Tsi=s.nT, VreT,el
Finally, the action (3.11) extends to:
Wt A Q (3.19)
via:
(i) = iy VreT,iel

We still have the following formula, akin to (3.14):
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A d) = (A d— (A, ) (3.20)
VYue PV, A€ Q,de Z, where i denotes the translation element 1 x p € Text,

3.7. Recall that the length of an element x € W, denoted by I(x) € N, is the smallest
number [ € N such that we can write:

T =S4, .. Si, (3.21)

for various iy_;,...,io € 1. Every factorization (3.21) with I = I(z) is called a
reduced decomposition of z. Given such a reduced decomposition, the terminal subset

(a priori, a multiset) of the affine root system is:

E, = {Si05171 N (Olzk) 0>k> *l} C 3 (322)

It is well-known that F, is independent of the reduced decomposition of x, and consists
of the positive affine roots (all with multiplicity one) that are mapped to negative ones
under the action of x:

B, = {X e £+‘x(X) e E—} (3.23)
In particular, we get the following description of the length of x:
@) =#{\e &’z(X) ed} (3.24)
The aforementioned length function /: W — N naturally extends to Wext via:
I(rw) =1l(w), VreT,weW
Thus, the length I(z) of z € Wet is the smallest number I such that we can write:
T=TSiy_, - Siy (3.25)
for various i1_y,...,i9 € T and (uniquely determined) 7 € 7. Given a reduced decom-
position of z € W as in (3.25) with [ = [(z), define E, via (3.22). We note that E, is
still described via (3.23) since T acts by permuting negative affine roots. Therefore, E,,
is independent of the reduced decomposition of z and we still have:

I(z) = #{X € AW(X) e &—} (3.26)

Remark 3.8. A restricted case of the discussion above is when ﬁ/\,ﬁ are replaced by
W, A. In this case, applying (3.23) to the longest element wy € W yields E,, = A*.
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Furthermore, choosing a reduced decomposition wy = s;,_, ...s;, amounts to placing a
total order on E,, = A" via:

iy < S (041;1) <L <S5 Siq - Si2fz(ailfz) (327)

According to [34], this total order of A% is convex (see Definition 2.19), and conversely,
any convex order of A arises in this way for a certain (unique) reduced decomposition
of wy. We will study the affine version of this picture in Subsection 3.10.

Let us recall the element p € %Q defined by:

p=%§:a

aEAT

The following result is standard ([22, Exercise 6.10]).
Proposition 3.9. For any u € PV such that (o, p) €N for alli € I:

() = (20, 1)

Proof. Applying formula (3.20) for the action of i € West on @ ~ () X Z, we see that
the only positive affine roots A € AT that are mapped to negative ones are:

{(a,d)‘a€A+70§d<(a,u)} (3.28)
Combining this with formula (3.26), we find

0@ = Y (a,p) =(2p,p) O

aeAt

3.10.  Let us pick any p € PV such that (a;, ) € N for all i € I. Let | = (2p, u) be
the length of i € W' (Proposition 3.9) and consider any reduced decomposition:

= TSi,_,Siy_, ---Sig (3.29)
Extend i1y, ...,ip to a (T-quasiperiodic) bi-infinite sequence {ij }rez via:
Tl = T(ik), VkeZ (330)

To such a bi-infinite sequence (3.30), one assigns the following bi-infinite sequence of
affine roots:

Br =

{silsh ...sikfl(—aik) ifk>0 (3 31)

SigSi_q ~-~5ik+1(aik) if k& S 0
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According to [35,36], the sequences:

fr>P2> Pz > ... (3.32)
fo<f-1<B2<... (3.33)

give convex orders of the sets AT x Z o and AT x Z>, respectively.

Remark 3.11. The above exposition follows that of [6] as we consider p € PY. To reduce
it to the setup of [2,35,36], where only elements of Qv are treated, we note that if r € N

is the order of 7, then ru € QV, i, ,,8i, ., ---Si_, i, is a reduced decomposition of 7,

and the sequence {iy ez is periodic with period I(71) = rli.
Remark 3.12. For any k € Z, if 8, = (a,d) and By = (¢/,d’), then:
Br+1 = 1i(Bk) = a=a andd=d + (a,p) (3.34)

due to (3.20). This reveals a periodicity of the entire set A" x Z, not just of its two
halves AT x Z o and A" X Z>q (it is also the reason for the minus sign in (3.31)).

3.13.  Recall the element p¥ € PV N 1QV defined by:

PVZZW;/:% Zav

el a€eAt

The following is the main result of this Section.
Theorem 3.14. There exists a reduced decomposition ofgV € W such that:

e the order (3.32) of the roots {(a,d)|a € AT, d < 0} matches the lezicographic order
of the standard Lyndon loop words {(a, —d) via (1.16),

o the order (3.33) of the roots {(a,d)|a € AT, d > 0} matches the lezicographic order
of the standard Lyndon loop words £(a, —d) via (1.16).

The second bullet implies that i equals the smallest letter in I. On the other hand,
combining s;, 0¥ = Sr(i,_)TSi,_ Siy_; - - - Sig = TSiy_, - - - Si, With the fact that I(s;p") >
I(pY) ¥j € I (a consequence of (3.26)), implies that i; = 0.

Proof of Theorem 3.14. Consider the finite subset:

L:“m@peAtogd<m@

of At ordered via:



A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482 31

(a,d) < (B,e) & L(a,—d) <L(B,—e) (3.35)

If (o, d), (B,¢e) € L, (a,d) < (B,¢e) and (a+ B,d+e) € ﬁ then clearly (a4 8,d+e) € L,
as well as (a,d) < (a+ B,d +e) < (f,e), due to Proposition 2.34.

Furthermore, we claim that if A L E A+ with X + 1 € L, then at least one of X or I
belongs to L and is < A+ ft. This is obvious when A= (a,d), i = (B,¢e) with o, 3 € AT

and d,e > 0. In the remaining case, we may assume A\ = (a + §,d), g = (—p5,¢e), so
that o, 8, + 8 € At and d > 0,e > 0. Thend < d+e < |a| < |a—|—B| so that
X € L. It remains to verify A\ < X + fi, that is, £(a + 8,—d) < (o, —d — €). Since

(a+ B,—d) = (B,e) + (a, —d — e), it suffices to prove £(83,e) < (a, fd —e), due to
Proposition 2.34. But applying Proposition 2.26, we see that the exponent of the first
letter in (S, e) is > 0, while the exponent of the first letter in £(«, —d —e) is < 0, hence,
indeed £(5,¢) < l(co,—d — e).

Invoking [34] (which also applies to finite subsets in affine root systems), we get:

(I) there is a unique element w € W such that L = E,,
(IT) the order of L arises via a certain reduced decomposition of w, cf. (3.27).

However, as noticed in our proof of Proposition 3.9, we have
L=Eg = {8081, it}

There is a unique 7 € 7 such that 7=2p¥ € W (note that 72 = 1 since 2p¥ € Q). Then:

Therefore, in view of the uniqueness statement of (I), the result of (II) implies that
there exists a reduced decomposition (3.29) of ﬁ such that the ordered finite sequence
Bo < -1 < -+ < P1-; exactly coincides with L ordered via (3.35).

The proof of Theorem 3.14 now follows by a simple combination of (3.34) and Propo-
sitions 2.26, 2.30. Indeed, let us split AT x Z into the blocks:

Ly = {(a,d)’a € AT, Nla| <d < (N + 1)|a\}

so that:

| | Ly = AT x Z>0 = {B }r<0

N>0

|_| Ly =A% x Z<o = {Br}r>0
N<O

According to (3.34) and Lo = L = {fo,-..,P1-1}, we have:
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Ly = {Bleuﬂlefla e 751—(N+1)l}7 VN €Z

For any (a,d) € Ly, the exponent of the first letter in ¢(«, —d) is —N, due to Propo-
sition 2.26 (and its proof). Therefore, for any (a,d) € Ly, (8,e) € Ly with M > N,
we have l(a,—d) > £(8,—e). As for the affine roots from the same block, consider
Br_ni;,Bs—n1 € Ly with 1 =1 < s < r < 0. If 8, = (a,d) and 3; = (3,e), then
Br—ni = (a,d + Nla|) and Bs—ni = (8,e + N|F|), due to (3.34). On the other hand,
the words ¢(«, —d — N|«|) and ¢(8, —e — N|3]|) are obtained from ¢(a, —d) and (83, —e),
respectively, by decreasing each exponent by N, due to Proposition 2.30. Since the latter
operation obviously preserves the lexicographic order, and ¢(«, —d) < £(3, —e) as a conse-
quence of r > s, we obtain the required inequality ¢(«, —d— Nla|) < ¢(8,—e—N|3|). O

We actually have the stronger result that the order of A™ x Z given by:

< P3< Pa<Pr<Po<Po1 <P (3.36)

matches the lexicographic order of the standard Lyndon loop words £(a, —d) (since
Lo, —d) < £(B,—e) if d < 0 < e, itself a consequence of Proposition 2.26).

Remark 3.15. We expect that a similar treatment can be done for any u € PV such that
(as, ) > 0 for all ¢ € I. On the side of Lyndon loop words, this would require an analogue
of Proposition 2.30 stating that £(a, d+ («, 1)) is obtained from £(«, d) by adding («;, i)
to all the exponents of letters ¢ € I. For this operation to preserve the property of words
being Lyndon, one can replace the order (1.12) on loop letters {i(d)}géz by:

d .
om) > )
i@ < j(e) if or
d

@ = @ and i<y
We expect the contents of Sections 2 and 3 to carry through in this more general setup,
but we make no claims in this regard.

4. Quantum groups and shuffle algebras

We will review the connection between Drinfeld-Jimbo quantum groups and shuffle
algebras, following [15,38,40]. We will also recall the point of view of [27] (see also [39]),
which connects shuffle algebras with the notion of standard Lyndon words. Then we
develop a loop version of this treatment, and prove Theorem 1.5.

We start with the exposition of the relevant results for finite quantum groups in Subsec-
tions 4.1-4.14, following the aforementioned references [15,38,40] and [27].
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4.1.  Let us recall the notation of Subsection 2.1 which, as we have seen, corresponds
to a finite-dimensional simple Lie algebra g. Consider the g-numbers, g-factorials and
g-binomial coefficients:

F g " n n|l;
W= L%y = (1) R, <>:L

qi — 4q;
for any i € I, where ¢; = q%i
Definition 4.2. The Drinfeld-Jimbo quantum group associated to g is:

Us(a) = Q) (ew, fir ") /relations (4.1)-(4.3)

where we impose the following relations for all ¢, j € I:

170@_7'

1—ay —ai;— . .
Z(—Dk( ka”)efejei R0, ifi#y (4.1)

k=0 ?

piei = qYieip;, PP = PjP; (4.2)

as well as the opposite relations with e’s replaced by f’s, and finally the relation:

) L
lei, f5] = 6] - TP (4.3)
qi — q;

If we let ¢; = ¢/ and take the limit ¢ — 1, then U,(g) degenerates to U(g).
4.8.  Recall that U,(g) is a bialgebra with respect to the coproduct ([21, §4.11]):

Alp:) = i ® i
A(el):gﬁl®61+61®1
A(f,)=10fi+fi®p;!

This bialgebra structure preserves the @-grading induced by setting ([21, §4.13]):
dege; = a;, degp; =0, degf,=—q;
Recall the triangular decomposition ([21, §4.21]):
Uylg) = Uy(n*) @ Uy () © Uy(n°) (4.4)

where U, (nt), U, (h), U,(n~) are the subalgebras of U,(g) generated by the e;’s, o',
fi’s, respectively. We will also consider the following sub-bialgebras of U,(g):
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=

—
=N
+
Il

Uq(n+) ® Uy(h)
Ug(b7) = Uy(h) @ Uy(n™)

Remark 4.4. As an associative algebra, U, (n") (resp. U, (b)) is generated by e;’s (resp.
ei, pi'’s) with the defining relations (4.1) (resp. (4.1), (4.2)), sce e.g. [21, §4.21].

4.5. Tt is well-known ([21, §6.12]) that there is a non-degenerate bialgebra pairing:
() Ug(6h) @ Ug(67) — Q(q) (4.5)
where the word “bialgebra” means that it satisfies the following properties:

{a,bcy = (A(a),b® c) (4.6)
(ab,c) = (b® a, A(c)) (4.7)

for all applicable a, b, c. Then (4.5) is determined by the assignments:

& iy
(ei, f5) = —, (@i, 05) = q dis
q; — 4

and the fact that
(a,b) =0 wunless dega+degb=0

The quantum group U,(g) is the Drinfeld double of (U,(b1),U,(b7), (-,-)), which
means that the multiplication map induces an isomorphism:

Ua(6%) @ Ug(67) /(i @67 = 1@1) 5 Uy(g)
and that the commutation rule of the two factors is governed by the relation®:

a1b1<a2,b2> = (al,bl>b2(12 (4-8)

for all @ € Uy(b*) and b € U,(b~). Here we use Sweedler notation A(a) = a3 ® as for
the coproduct of Subsection 4.3 (a summation sign is implied in front of a; ® as).

3 Henceforth, given two algebras A, B over a ring K, a K-valued bilinear pairing A x B — K shall be
rather denoted A ® B — K (with ® standing for ® k) to indicate its K-bilinear nature.

4 According to [33, Remark 2.4], formula (4.8) is equivalent to a more standard commutation rule appear-
ing in the literature. We prefer our formula as it does not require us to define the antipode, which exists
but will not be necessary in the present paper.
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4.6.  Since the quantum group of Definition 4.2 is a g-deformation of the universal
enveloping of the Lie algebra of Definition 2.2, it is natural that many features of the
latter admit g-deformations as well. For example, let us recall the notion of standard
Lyndon words from Subsections 2.3-2.11, and consider the following g¢-version of the
construction of Definition 2.9.

Definition 4.7. ([27]) For any word w, define e,, € Uy(n') by:
e[i] = €;
for all 4 € I, and then recursively by:

deg 01 ,deg £
e0 = [en,, en,), = er,e0, — 1B TIE ey e, (4.9)

if ¢ is a Lyndon word with factorization (2.6), and:
€w = €y - .- €p, (4.10)
if w is an arbitrary word with the canonical factorization ¢; ... ¢, as in (2.7).

We also define f,, € Uy(n™) by replacing e’s by f’s in the Definition above. Then we
have the following g-deformation of the PBW statement (2.15).

Theorem 4.8. We have:

keN

Uy(nt) = D Qq)-er, - et, =

01>->Ly standard Lyndon words

B Qe (@1

w standard words

The analogous result also holds with + <> — and e +> f.

This result is a consequence of the usual PBW theorem for U,(n*), since e,’s are
simply renormalizations of the standard root vectors constructed in [30], according to [27,
Theorem 28] (alternatively, the interested reader may find a detailed proof of this result
in Subsections 5.1-5.5 of the aryiv-version of the present paper).

Remark 4.9. It’s instructive to recall the argument of [27, Theorem 28]. Given any convex
order < of the set of positive roots A", as in Definition 2.19, Lusztig [30] established:

keN
U = @ Q@)-Ein ... Eiy, (4.12)

ML EAT



36 A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482
with the “root vectors” Eig € Uq(ni)7 B € AT, constructed using the braid group
action. Following [28], these root vectors also satisfy the “convexity property”:
keN
EipEia —q P EroFsip € P Q@ Eiy.. By, (4.13)

a<y < <yp<p
it tve=atB

for any positive roots a < §. In particular, this implies that
[Eig,Exalq = BipEia — ¢ P E aELg € Q(g)* “Eiatp) (4.14)

whenever « + [ is also a positive root such that its decomposition as the sum of o and
[ is minimal in the following sense:

Ad B eAt st. a<d <p <B and a+p=d+p5 (4.15)
The property (4.14) together with (the finite counterpart of) Proposition 2.38 allows to
prove (by induction on the height of v € A™) that e,y € Q(q)* - w(E_o), where £ is the

bijection (2.13) and w is the anti-isomorphism of U,(g), determined by e; — f;, fi — e,
©; — ;. Hence, (4.11) is indeed a direct consequence of (4.12).

4.10.  One of the main tools of [27] is the g¢-shuffle algebra interpretation of the
quantum group U, (n™), due to [15,38,40], which we recall now.

Definition 4.11. Consider the Q(g)-vector space F with a basis given by words:
[i1 ... ix) (4.16)

for arbitrary k € N, 41,...,4; € I, and endow it with the following shuffle product”:

[iv .. ig] % [j1... 5] = > OB sy Sk (4.17)
{1,....k+1}=AUB
|A|=k,|B|=I

where in the right-hand side, if A ={a; < --- < ax} and B = {b; < --- < b;}, we write:

le If ¢ = ae

Se = (4.18)
je if c =,

and:

5 We note that formula (4.17) is worded differently from [27, formula (9)], but it is an immediate conse-
quence of [27, formula (8)].
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Map = Y das, (4.19)
A>a>beB

It is straightforward to see that (F,#) is an associative algebra. If we set ¢ = 1, then
F coincides with the classical shuffle algebra on the alphabet I. The classical shuffle
algebra is actually a bialgebra, with coproduct defined by splitting words:

A(fiy. . ik]) = i1 ia) ® [ias1 .. ix]

But for generic ¢, the coproduct above is no longer multiplicative with respect to the
shuffle product (4.17). To remedy this, we consider the extended shuffle algebra:

Ft = F 2 Q(q) [%ﬂ]iel

with pairwise commuting ¢;’s, where the multiplication is governed by the rule:
. . k s . .
©; i1 ik = g1 Yialiy . ig] - (4.20)

Tt is straightforward to check that the assignment A(p;) = ¢; ® p; and:

k
A(fir- . ik]) =) i1+ tal@iny - - Pir @ iat - - k] (4.21)
a=0

is both coassociative and gives rise to a bialgebra structure on Fext.

Remark 4.12. Our construction differs slightly from [15,38], where F itself is endowed
with a bialgebra structure by modifying the product on F ® F in the spirit of [30, p. 3].
However, the two approaches are easily seen to be equivalent.

4.13. Tt is straightforward to check that there is a unique algebra homomorphism:
U,(nt) 25 F (4.22)

sending e; to [i] (as one just needs to check that relations (4.1) hold in F, due to
Remark 4.4). Moreover, it is easy to prove by induction on |degz| (using the bialgebra
pairing properties (4.6)—(4.7)) that the map ® is explicitly given by:

keN k
®(z) = Y [H(qz‘_al - qia)] <1’7fz'1 fzk> lin k] (4.23)
i1in€l La=1

Because the bialgebra pairing (4.5) is non-degenerate and (x,yo~) = (x,y) for any
xz € Uy(n"),y € Uy(n~) and ¢~ a product of ¢; ’s (which is a simple consequence of the
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bialgebra pairing properties (4.6)—(4.7)), (4.23) implies the injectivity of ®. The image
of the map ® is described in [27, Theorem 5], which states that:

reN
m® =< > A(iy...ip) - [ir...i] (4.24)

i1,eeytr €1

where the constants (i ...4,) € Q(¢) vanish for all but finitely many values of r and
satisfy the following property:

1—(171]'
1—ay
_1\k ij . . . . . ] _
Z( 1)< k >4’y Wi ... .01 w 0 (4.25)
k=0 g k symbols 1—a;;—k symbols

for any distinct 4,7 € I and any words w, w’'.
Comparing (4.2) with (4.20), it is easy to see that the algebra homomorphism (4.22)
extends to a bialgebra homomorphism:
Uy (™) 25 Fot

by sending ¢; — ;.

4.14. Asin Subsection 2.3, we fix a total order on the set I, and consider the induced
lexicographic order on the set of all words (2.5).

Definition 4.15. ([27]) A word w is called good if there exists an element:

w + Z Cy -V (4.26)

in Im ®, for certain constants ¢, € Q(q).

If a word is good, then so are all its prefixes and suffixes and hence all its subwords
([27, Lemma 13], see also Proposition 4.36 for a version of this statement in the loop
case).

Proposition 4.16. (/27, Lemma 21]) A word is good if and only if it is standard.

Above, we invoke the notion of standard words from Definition 2.12(a). Likewise, the
standard Lyndon words from Definition 2.12(b) as well as the bijection (2.13) can also
be characterized in terms of the map ®, as follows.

Lemma 4.17. (/27, Corollary 27, Theorem 36]) For any o € AT, the leading word of
P(eqay) is L(a). Moreover, the word £(c) is the smallest good word of degree a.
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In the rest of this Section, we develop the loop version of the above results with the aim
of proving Theorem 1.5. To this end, we construct a PBW basis of U, (Ln") parametrized
by standard loop words in Theorem 4.25, introduce the loop version F% of the shuffle
algebra F and relate it to U,(Ln™) in Subsections 4.27-4.32, establish a loop version
of Proposition 4.16 in Proposition 4.41, and conjecture a loop version of Lemma 4.17
in Conjecture 4.44. Finally, with the aim of proving Theorem 1.7 in Section 5, we filter
U,(Ln") by the subspaces Uy(Ln*)<,, of (4.67) for any loop word w, whose graded
dimension (4.74) is expressed in terms of good words < w, and discuss their pairing with
U, (In™)=Y of (4.66) in Proposition 4.39.

4.18.  We will now develop a loop version of the above notions, with the goal of
proving Theorem 1.5. In what follows, we will use the generating series:

o +
a@) =% =Yl =) A

keZ kEZ =0

and consider the formal delta function 6(z) = >, 5 z*. For any i,j € I, set:
—dis
z z —wq~ %
Gij (_) = = (4.27)

w zZ—w

We now recall the definition of the quantum loop group (new Drinfeld realization).

Definition 4.19. The quantum loop group associated to g is:

Uqg(Lg) = Q(q)<ei,k, fiks apfl> / relations (4.28)(4.32)

i€l,k€Z,leN

where we impose the following relations for all 7, j € I:

ei(2)e;j(w)¢ji (%) = e;(w)e; (2)Gj (%) (4.28)

l—aij

> ().

o€S(1—ai;) k=0

€i(zo(1)) - - - €i(2o k) )ej(W)ei(2o(k41)) - - - €i(Zo(1-a;;)) = 0, i i # 5 (4.29)

o (w)ei(2)Gij (%) = ei(2)¢; (w)¢i (%) (4.30)
0F(2)pf (w) = oF (W)eF(2),  efgwin =1 (4.31)

as well as the opposite relations with e’s replaced by f’s, and finally the relation:

o) )] = 22 () — g ) (432)

qi — g,
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Note that there is a unique algebra homomorphism:
Uq(g) = Uqy(Lg)
sending e; — €;0, fi = fio0, (piil — @fo.

4.20.  Recall that U,(Lg) is a topological bialgebra with respect to the following
coproduct ([8, formulas (5)—(7)]):

A (97 (2)) = ¢F(2) @ 9 (2) (4.33)
A(ei(2) = ¢ (2) @ ei(z) +ei(2) @1 (4.34)
A(fi(2) = 1@ fi(2) + fi(2) @ p; (2) (4.35)

This bialgebra structure preserves the @ x Z-grading induced by setting:

dege;r = (a;, k), deg ‘P?,[z = (0,£l), degfir= (- k)

for all applicable indices. Recall the triangular decomposition ([18, §3.3]):
Uy(Lg) = Ug(Ln™) @ Uy(Lb) @ Uy(Ln™) (4.36)

where U, (Ln™), U, (L), U,(Ln~) are the subalgebras of U,(Lg) generated by the e; ;’s,
@fl’s, fik’s, respectively. We note that the following subalgebras of U,(Lg):

U,(LbT) = U,y (In™) ® Q(q) [@fo,sp?:p@j:%...]iel

Ug(Lb™) = Q(g) [90:'?07 Pi,1Pi2s - 'L‘e[ ® Uq(Ln™)

are preserved by the coproduct A, and hence are sub-bialgebras of U,(Lg).

4.21. Tt is well-known ([16, Lemma 9.1], see also [9, §4], [17, §1.3-1.4] for more
details) that there exists a bialgebra pairing:

()t Ug(Lb™) @ Uy(Lb™) — Q(q) (4.37)

that satisfies (4.6)—(4.7) and is determined by the properties:

(o), ) = S0 ) (4.39)
q; qi
(¢F ()07 (w)) = g Eg; (4.39)

(the right-hand side of (4.39) is expanded in |z| > |w|) and the fact that:
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(a,b) =0 wunless dega+degb=(0,0)€Q xZ

This pairing is known to be non-degenerate (cf. [16, Section 9.3], [17, Proposition 9], [10,
Theorem 1.4]), although we will provide an alternative argument below.

Proposition 4.22. The pairing (-,-) of (4.37) is non-degenerate in each argument.
We will give a proof of this result in Subsection 5.16.
4.23.  Let us now provide a loop version of the constructions of Subsection 4.6.
Definition 4.24. For any loop word w, define e,, € Uy(Ln™), f, € Uy(Ln™) by:
e = €i,a and  fw) = fi—a

for all i € I, d € Z, and then recursively by:

ep = [6@17642](1 = ep, €0, — q(hdegéhhdegiz)eezeel (4.40)
fo= o, foly = foo fo, — g8l desl2) g, £, (4.41)

if ¢ is a Lyndon loop word with factorization (2.6), and:
ECw = €4y ... €4y and fw = fgl ce fgk (442)

if w is an arbitrary loop word with the canonical factorization ¢; ... /¢, as in (2.7).

Note that dege,, = —deg f,, = degw for all loop words w. We have the following
result, which is simultaneously an analogue of both (2.37)—(2.38) and Theorem 4.8.

Theorem 4.25. We have:

keN

Uy(In*) = D Qq)-er, - et, =

£1>--->4), standard Lyndon loop words

B Qe (443

w standard loop words

The analogous result also holds with 4+ <+ — and e <> f.

Remark 4.26. (a) Similar to Theorem 4.8 and Remark 4.9 in finite case, the above result
is a consequence of the PBW theorem for U, (Ln*) established in [11, §3]°:

6 Alternatively, the interested reader may find a detailed proof of this result in Subsections 5.6-5.28 of
the aryiv-version of the present paper.
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keN
UIn*) = @  Qlq) Esp,, .- Exp,, (4.44)

1> 21 €L

where the set {3, },cz coincides with AT x Z ordered via:
Ba < PBp < a>0b.

This PBW result essentially follows from the Beck’s PBW basis [2] of the Drinfeld-Jimbo
affine quantum group U, (g) through the “affine to loop” isomorphism:

Uqg(Lg)—U,s(8)/(C = 1) (4.45)
of [2,3,6]. Moreover, the root vectors Eg, also satisfy the “convexity property”:

keN

EipEip —q P P Eip By € T Q(q) - Exvy ... Exny, (4.46)
B/ <y <Ly <p
Vit +vR=p"+8

for any pair 8’ < B of elements of AT x Z. In particular, this implies that
[Exp, Biply = ExsBsp — PP BipEip € Q(q)" Ei(prap) (4.47)
whenever 8’ 4+ 8 € AT x Z and ', B are minimal in the following sense:
PV vEATXZ st. B <y <y<pB and B +B=7+7 (4.48)
(b) The property (4.47) combined with Proposition 2.38 allow to prove that
et(and) € Q@) T(E(—a,q))

(by induction on the height of @ € AT), where £ is the bijection (2.35) and w is the
anti-isomorphism of U,(Lg), determined by e; x — fix, fix — em,(pfz — cpii’g. Thus,
(4.43) follows from (4.44).

4.27.  We will now define a “loop” version of the shuffle algebra, which is to U,(Lg)
as the shuffle algebra of Definition 4.11 is to Uy(g). The careful reader will observe a
slight error in Definition 4.28 as the right-hand side in the shuffle product (4.50) contains
infinitely many summands. This will be remedied in Subsection 4.32 by introducing an
appropriate completion, but we prefer this slightly imprecise approach in order to keep
the exposition clear.

Definition 4.28. Take the Q(q)-vector space FZ with a basis given by loop words:

[Z-gdﬂ . i,‘f“} (4.49)
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for arbitrary k € N, d1,...,i, € I, dy,...,dr € Z, and endow it with the following
shuffle product:

[ ] [ ] =

(t1+m1) (thri+mra1) <4.50)
Z § : YA,B,mi,.meqr |51 <o Sk
{1,....,k+1}=AuB | m1++7k4+1=0
|A|=k,| B|=l =Y

where in the right-hand side, if A = {a; <--- < ax} and B = {b; < --- < i}, we write:

le If ¢ = ae de ifc=ae
Se = te = (4.51)

Je ifc:b.’ e if Cc = bq
and Y4,B,r,,...,m.4, are defined as the coefficients of the Taylor expansion:

Csasb <§_Z) ot Tht1
H —_— = Z YABmy s " A1 e Pt (4.52)

Zb
A>a>beB CSbSa Za T+ F =0
Ty, Tt €L

in the limit when |z, > || for alla € A, b € B.
Remark 4.29. (a) We note that in the inner sum of (4.50) the only terms which appear
with non-zero coefficient are those with 7. <0ifc€ A and 7. > 0 if ¢ € B.

(b) We also have y4 po,.. 0= ¢*4F with A4 p defined in (4.19).

It is straightforward to see that (FL,x) is an associative algebra, Q* x Z-graded
by (2.19), and we leave this check as an exercise to the interested reader.

Proposition 4.30. There is a unique algebra homomorphism:
L
Uy(Int) 25 FL (4.53)

sending e; q — [i(d)]. The homomorphism ®* is injective and is explicitly given by

keN k
(I)L(x) = Z [H(q;1 B qia)‘| <£E, fir,—ay -+ fik,—dk> ’ {igdl) T il(cdk)} (4.54)

i1,..i €L
di,...,dx€EZ

a=1

for all x € U,(Ln™), where the pairing is that of (4.37).
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The Proposition above is straightforward, so we leave it as an exercise to the interested
reader (alternatively, it follows from Proposition 5.21 below). The injectivity follows
immediately from the non-degeneracy of (4.37), due to Proposition 4.22.

Remark 4.31. We note that our definition of F% is actually equivalent to the main
construction of [17, §2] (in fact our presentation is to [17, §2] as Green’s presentation [15]
is to Rosso’s presentation [38] of shuffle algebras in the finite type case). Moreover, a
version of the above construction of 7~ and the homomorphism (4.53) (which correspond
in our notation to |I| = 1, but a more complicated (-factor) featured in [41, §1.9].

4.32.  We note a certain imprecision in Definition 4.28, which we will remedy now: the
right-hand side of (4.50) is an infinite sum. However, because of the power series nature
of this infinite sum, the imprecision can be easily fixed as follows. Amend Definition 4.28
by considering instead:

Fl= @ F (4.55)
keQ+,dezZ

where we consider the following completions:

L +(dy) (di)
Fia= E Civ,oyigidi,enndy {21 co (4.56)
di+-+-4d, bounded from N——
below, for all a€{1,...,k} has degree (k,d)

with arbitrary coefficients ¢;, .. i.idy....dr € Q(q).
Proposition 4.33. The shuffle product (4.50) is well-defined on F* of (4.55)(4.56).

Proof. We begin by showing that the operation w*w’ of (4.50) extends to a well-defined
operation on infinite linear combinations of the form:

Z Cow - w | * Z ey w' (4.57)
deg w=(k,d) deg w’=(k’,d’)

where we have ¢,, # 0 (resp. ¢, # 0) only if every prefix of w (resp. w’) has vertical
degree bounded from below by some fixed m € Z. Take an arbitrary word v and consider
the set:

S = {(w, w') such that ¢, # 0,¢},, # 0 and v appears as a summand in w * w’}

We need to show that S is finite, which would imply that the coefficient of v in the shuffle
product (4.57) is well-defined. Let us assume for the purpose of contradiction that S is
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infinite. Since the vertical degrees of arbitrary prefixes of w and w’ are bounded from
below, this implies that one of these prefixes has arbitrarily large vertical degree. Without
loss of generality, let us assume that we are talking about the length a prefix of w. Thus,
for any N € N, there exists (w,w’) € S such that the vertical degree of w, is at least
N. However, since all the prefixes of w’ have vertical degree at least equal to the fixed
constant m, then all terms in the shuffle product w*w’ will have some prefix with vertical
degree at least N + m. If N is large enough, this contradicts the fact that v appears as
a summand in w * w'.

We now need to prove that the expression (4.57) is of the form (4.55)—(4.56). The
loop words v that appear in the expression (4.57) also do appear in the shuffle products
w * w’, where w and w’ are loop words of fixed degrees, such that every prefix of w
and w’ has vertical degree bounded from below by some fixed m € Z. Thus, any loop
word appearing in the shuffle product w * w’ has degree degw + degw’, while any of
its prefixes has vertical degree bounded from below by 2m (an immediate consequence
of (4.50) and (4.52)), which is precisely what we needed to prove. O

4.34. Just like in Subsection 4.10, there is no bialgebra structure on F~. However,
there is a bialgebra structure on the extended shuffle algebra:

Fhet = FEo Qo) [(plo) ™ el i1y

with pairwise commuting ¢’s, where the multiplication is governed by the rule:

.(d .(d (di+m (dp+m
(pjte * [’Lg v ce 7’56 k)} = Z Hry,mye [Zg ) ce ch e k)} *90;’:6—71'1—"'—7719 (458)

Tlyeees T =

where gojf <0 = 0 and pir, .. x, are defined as the coefficients of the Taylor expansion:

,,,,,

1 Tk
H Gir (W/2) R
: : Ky, T+

C“J (z:/w) Ty T 20

It is straightforward to check that the right-hand side of (4.58) indeed lies in F%
of (4.55)—(4.56) tensored with Q(q) [((pio)ﬂ, gojjl, 0 g .LGI, and that (4.58) extends

to the entire . It is also easy to check that the assignment

Alpf (2)) = ¢ (2) ® ¢ (2)

and

A ([ﬁ 2 iff“D = (4.59)

.(d (dgr1—Ta (dp—7g
SN [ e [

a=07mg41,...,m >0
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is both coassociative and gives rise to a bialgebra structure on F%*. We note that the
coproduct (4.59) is topological, in the same sense as the coproduct (4.34).

Finally, comparing (4.30) with (4.58) as well as (4.34) with (4.59), we see that the
algebra homomorphism (4.53) extends to a bialgebra homomorphism:

U, (LbT) 25 Fles
by sending goj:r — go;-fr.
4.85.  Define good loop words just like in Definition 4.15 (by replacing ® with ®%).
Proposition 4.36. Any subword of a good loop word is good.

Proof. It is enough to prove that any prefix and suffix of a good loop word is good. To
this end, assume that w is a good loop word of length k, which implies that there exists
x € Uy(Lnt) such that:

@L(m):w—i—ch-v

for various ¢, € Q(q). We may assume that z is homogeneous of degree degw = (k, d),
which implies that ¢, # 0 only if degv = (k,d). Formula (4.59) implies:

k
A@5(z) = wy - @ wpy + - (4.60)
b=0

where the ellipsis denotes tensors ap’ ® 8 with ¢’ being products of gpj,r’s and «, 8 being
loop words, such that if the loop word a has length b, then either (a < wy)) or (o = wy
and f < w)r_p) or (a = wy and vdeg B < vdeg wy,_p) 7: the latter option accounts for
the situation when ¢’ is a product of Cartan elements gojjT with at least one such element
having r > 0. Fix a € {0, ..., k}. We will write:

A(x):Zyc-<p®zc+

for some y., z. € Uy(Ln™) of degrees (Kq,dq), (k—kq,d—d,), respectively, where (above
and henceforth) (k,,d,) = degw,|, ¢ is a product of cp;to’s and their inverses that
depends only on (k — k,,d — d,), and the blank denotes tensors of degrees other than
(kqo,do) ® (k — kg, d — dg). Therefore, we have:

(2% @ 05 ) (A@@) = D@L (ye) - p @ OF(z) + (4.61)

7 Here the vertical degree vdeg of a word (4.49) is naturally defined to be d1 + - - - + dj, cf. (2.21).
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Using the fact that ®% intertwines the coproducts, we conclude that the left-hand sides
of (4.60) and (4.61) are equal, hence so are their right-hand sides. If we just look at the
tensors of degrees (kq,d,) ® (k — kg, d — d,), then we obtain the following identity:

> (ye) @ D (20) = we @ Wi + - .- (4.62)

where the ellipsis denotes tensors ap’ ® 8 with ¢’ being products of goifr’s and «, 8 being
loop words, such that if the loop word « has length a, then either (a < wa|) or (a = wy
and 8 < wjp—,). Among all the tensors y. ® z. that appear in (4.62), let us consider the
one for which:

o (ye)

has the maximal leading order term. If there are several such tensors with the same
maximal leading order term, then by taking appropriate linear combinations, we can
ensure that there is a single one. Formula (4.62) then requires:

(I)L(yc) = 5" Wq| + Z Tv,a * U (463)

V< Wq|

for s € Q(¢)* and various r, , € Q(g). Since only the tensor y. ® z. can produce terms
of the form wy) ® in (4.62), then:

Ol(ze) =t wp_q + Z oo VU (4.64)

V<W|k—q

for t € Q(q)* and various 7, , € Q(g). Formulas (4.63)—(4.64) imply that both w, and
W)k—q are good loop words, as we needed to show. O

Proposition 4.37. A loop word is good if and only if it can be written as:
by ..l
where £1 > -+ > Ly, are good Lyndon loop words.

Proof. The “only if” statement is an immediate consequence of Proposition 2.7 and
Proposition 4.36. As for the “if” statement, suppose that we have good Lyndon loop
words £ > - -+ > {i. By definition, there exist elements:

dL(z,) =10, + Z coefficient - v (4.65)

v<ly

for various x, € U,(Ln"). We may assume that each z, is homogeneous, and that so
are the v’s in (4.65), hence all of them have the same number of letters as ¢,. But
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then the leading order term of ®X(x;...x;) is the leading word in the shuffle product
0y % -+ % f. By the obvious analogue of [27, Lemma 15], this shuffle product has the
leading order term equal to the concatenation ¢; ... /. This exactly means that the latter
concatenation is a good loop word, as we needed to show. 0O

4.38.  Invoking Definition 4.24, for any loop word w consider:

Uy(Ln™)=" = o, Q(q) - fo (4.66)

v<w standard loop word

which is finite-dimensional in any degree € @~ X Z according to Corollary 2.32. For any
loop word w, we also define:

U,(In") <, C Uy(Ln™) (4.67)

to consist of those elements z such that the leading order term of ®(z) is < w. Invok-
ing (4.54), we note that Uy(Ln*)<,, consists of those € U,(Ln™) such that:

(¢, wf)=0, Vu>w (4.68)
where for any loop word u = [z’gdl) . i,idk)] we set:

of = fir—di -+ fin,—dn (4.69)
Proposition 4.39. The restriction of the pairing (4.37) to the subspaces:

Ug(Ln)<w @ Ug(Ln™)=" — Q(q)
is still non-degenerate in the first factor, i.e. (x,—) =0 implies x = 0.
Proof. Assume z € U,(Ln")<,, has the property that:
(x, fo) =0 (4.70)

for any standard loop word v < w, and our goal is to show that x = 0. To this end, note
that for any loop word v we have (by analogy with [27, Proposition 20]):

fo €Y Q(q) - uf (4.71)

u>v

Since (x,f) = 0 for all u > w by (4.68), we conclude:

(, fo) =0 (4.72)



A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482 49

for any loop word v > w. By Theorem 4.25, the set { f,|v standard loop word} is a basis
of Uy(Ln™), so relations (4.70) and (4.72) imply that:

(2, Uq(Ln7)) =0
Thus = = 0 due to the non-degeneracy statement of Proposition 4.22. O

4.40.  As a consequence of Proposition 4.39, we conclude that:
dim U, (In") <, < #{standard loop words < w} (4.73)

Note a slight imprecision in the inequality above: what we actually mean is that the
dimension of the left-hand side in any fixed degree (o,d) € QT x Z is less than or equal
to the number of standard loop words < w of degree (a,d) (the latter number is finite
by Corollary 2.32). On the other hand, by the very definition of a good loop word, we
have:

dim Uy (In") <, = #{good loop words < w} (4.74)
The following Proposition establishes the fact that we have equality in (4.73).
Proposition 4.41. A loop word is standard if and only if it is good.

Proof. Assume for the purpose of contradiction that there exists a good loop word w
which is not standard, and choose it such that its degree (o, d) € Q1 x Z has minimal |«/|.
This minimality, combined with Propositions 2.16 (see Remark 2.17) and 4.37, implies
that w must be Lyndon. Therefore, we may write it as (2.6):

w = 6152

where /1 < w < {5 are Lyndon loop words. By Proposition 4.36, ¢; and /{5 are good
Lyndon loop words, hence by the minimality of |«|, standard Lyndon loop words. How-
ever, because of (4.73) and (4.74), there must exist a standard loop word v < w with
degv = degw. Then let us consider the canonical factorization (2.7) v = ¢} ... ¢}, where
¢y > --- >, are standard Lyndon loop words. Because:

degy +degly = degw = degv = deg l| + - - - + deg ¢},
Corollary 2.37 implies that ¢; > ¢;. However, the only way this is compatible with:
!

6162:w>v:£'1...€k

is if ¢} = ¢yu for some loop word u that satisfies:
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by >uly.. . 0, and degly = degu + deg 0y + - - - + deg ), (4.75)

Because ¢} is standard, Proposition 2.15 (see Remark 2.17) implies that so is u. Therefore
we may write u = ¢7 ... ¢/ for various standard Lyndon loop words ¢/ > --- > £/ .
Formula (4.75) implies that ¢ > u, so o > ¢ > ... > {7 However, we also have
by >w>wv >0y >--- >/, and so (4.75) contradicts Corollary 2.37. Thus, any good
loop word is standard.

For the converse, let us prove by induction on |a| that for any standard loop word w
of degree («, d), there exists a linear combination:

Z coefficient - ®L(e,) € Q(q)* - w + smaller words (4.76)

v>w

for various coefficients in Q(g) with v being standard loop words, where we may further
assume that all summands have the same Q1 x Z-degree («,d).

Claim 4.42. If (4.76) holds for two loop words w = 1 and w' = Ly ..., where £y > Ly >
-+« >4y, are all standard Lyndon loop words, then (4.76) also holds for the concatenation

ww'.

Let us first show how the Claim allows us to complete the proof of the Proposition.
Since any standard loop word can be written as w = ¢; ...£; where {1 > --- > {}, are
standard Lyndon loop words, then the Claim says that it suffices to prove (4.76) when
w = /£ is a standard Lyndon loop word. To this end, let us write:

dl(e)) =c-u+ Z coefficient - v

v<u

for some ¢ € Q(q)* and a loop word u. Since u is the leading word, it must be good,
hence standard. Corollary 2.37 implies that u > £. If u = ¢, then we have proved (4.76).
If w > £, then w is a concatenation of standard Lyndon loop words of length less than
that of £, to which we may apply the induction hypothesis. According to the Claim, we
may thus use (4.76) for u to write:

L (eg) — coefficient - ®L(e,) = Z coefficient - v

v<u

By repeating this argument (finitely many times, due to Corollary 2.32) we either estab-
lish (4.76) for w = £ as wanted, or arrive at the following equality:

dL(ey) — Z coefficient - ®L(e,) = Z coefficient - v (4.77)
>0 v<l

Since ®L is injective and {e,|v standard loop word} is a basis of U,(LnT) due to The-
orem 4.25, the left-hand side of (4.77) is non-zero, hence so is the right-hand side. This
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implies that there are good, hence standard, loop words of degree deg? which are < ¢.
The latter contradicts Corollary 2.37, and so (4.77) is impossible.

Claim 4.42 follows immediately from the two facts below (assume w,w’, ¢y, ..., are
as in the statement of the Claim):

(1) the largest word which appears in the shuffle product w * w’ is ww’
(2) eye, is a linear combination of e;’s with ¢ > ww’, for all v > w and v' > w’ satisfying
degv = degw and degv’ = degw’

The first fact is proved as in [27, Lemma 15] (cf. our proof of Proposition 4.37). To
prove the second fact, note (using the convexity property (4.46) and the identification
of €g(a,q) with scalar multiples of w(E_(, 4)) from Remark 4.26) that for all standard
Lyndon loop words £ < £/, we can write:

e¢ep = a linear combination of ey and various emy...m?,, (4.78)

with ¢ > m{ > --- > m}, > ¢ standard Lyndon loop words. Consider the canonical
factorizations (2.7):

/ / /
v=mp...my and v =mj...my

where mq > --- > my and mj > --- > mj, are standard Lyndon loop words. It is
elementary to prove that v > w, degv = degw, and w being Lyndon imply that either
my > w, or that v = w. In the former case (my > w), (4.78) implies that:

€€y’ = Emy - - €m,Em] - .- Em!, = 2 linear combination of e;’s

for standard ¢ with the canonical factorization mY ... m}, satisfying m{ > m; > w. A
result of Melangon ([31]), which states that two words with the canonical factorization
(2.7) are in the relative order > if the largest Lyndon words in their canonical factor-
izations are in the relative order >, implies that ¢ > ww’, as we needed to show. In the
latter case (v = w = f;1), we have two more possible situations:

o if ¢4 > mj, then e,e,, = e,,» and we are done since vv’ > ww' (as v > w, v > W’
and the loop words v, w are of the same length)

o if mj > £y >mj,, forsomei € {1,...,t'} (where £; > mj,_, is vacuous), then (4.78)
implies that:

B o L )
Cv€y’ = € - Eqyr = A linear combination of e;’s

where t = mf ...m[,mi ,...m} satisfies m{ > --- >mf, >mj, ; >--- >mj and
mY > ¢1. Thus, the aforementioned result of Melancon implies that ¢t > ww’. O
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4.43.  The results of the present Section amount to the proof of Theorem 1.5.

Proof of Theorem 1.5. The statement about the homomorphism ®% is proved in Sub-
section 4.27. The classification of standard Lyndon loop words is accomplished in (2.35).
The construction of the root vectors (1.14) is done in Definition 4.24. Finally, the PBW
statement (1.15) is precisely the subject of Theorem 4.25. O

Computer experiments (in all types, but for a particular order of the simple roots)
suggest that the generalization of Lemma 4.17 to the loop case holds.

Conjecture 4.44. For any (a,d) € AY X Z, the leading word of ®X(ey(q,a)) is ((c, d).
Moreover, the word £(«,d) is the smallest good loop word of degree (c,d).

5. Shuffle algebras of Feigin-Odesskii and Enriquez

In the present Section, we will connect the loop shuffle algebra F* with the trigono-
metric degeneration of the Feigin-Odesskii shuffle algebra associated with g, with the
goal of establishing Theorem 1.7.

5.1. We now recall the trigonometric degeneration ([9]) of the Feigin-Odesskii shuffle
algebra ([13]) of type g. Consider the vector space of color-symmetric rational functions:

V= P QQ) (- Zity ooy Zity - )T (5.1)

k:ZiGI kio€Qt

The index ¢ € I will be called the color of the variables zi,...,zy,. The term
color-symmetric (as well as the superscript “Sym” in the formula above) refers to ratio-
nal functions which are symmetric in the variables of each color separately. We make the
vector space V into a Q(g)-algebra via the following shuffle product:

1
F(...,Zil,...,Zik“...)*G(...,Zil,...,zil“...):m' (52)

2
Sym F(...72’2*1,...,2%‘;9“...)G(...,Zi’ki+1,...,Zi,kiJrli,...) H H Cij (%)

P Zj
i,J€I a<k;,b>k;

In (5.2), Sym denotes symmetrization with respect to the:

(k+1)! o= (ki +1)! (5.3)

icl

permutations that permute the variables z;1, ..., 2; i, 4+, for each ¢ independently.
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Definition 5.2. ([9], inspired by [13]) The positive shuffle algebra A™ is the subspace of
V consisting of rational functions of the form:

) r(...,zﬂ,...,ziki,...)

R(...,zil,...,ziki,... = unordered 1<a'<k, (54)
H{i;&i'}cl ngagki (2ia — Zira’)
where r is a symmetric Laurent polynomial that satisfies the wheel conditions:
(s Ziay e r) =0 (5.5)

—2a;; —a
2,4 ij ij
(Zil7zi27z1?37~~72i,1—aij )= (w,wq? ,wai ..., wg; ), zj1—wy;

for any distinct ¢,j € I.
Remark 5.3. Because of (5.5), any r as in (5.4) is actually divisible by:
unordered 1<y <k,
H H (zib — ziny)
{i#i'}CL:a;,=0 1<b<k;

Therefore, rational functions R satisfying (5.4), (5.5) can only have simple poles on the
diagonals z;, = 2, with adjacent 4,4 € I, that is, such that a;; < 0.

The following is elementary, and we leave it to the interested reader.

Proposition 5.4. A is closed under the product (5.2), and is thus an algebra.

5.5.  The algebra A% is graded by k = ", kia; € Q7 that encodes the number of
variables of each color, and by the total homogeneous degree d € Z. We write:

deg R = (k,d)
and say that AT is Q1 x Z-graded. We will denote the graded pieces by:

AT = @ Ay and Ay = @Ak’d

ket deZ

We define the negative shuffle algebra as A~ = (AT)°". Tt is graded by Q= x Z, where
a rational function in k variables of homogeneous degree d is assigned degree (—k,d),

when viewed as an element of A4~. We will denote the graded pieces by:

A" = @ A_x and A_kZ@A—k,d
—-ke@Q— deZ

Proposition 5.6. ([9]) There exist unique algebra homomorphisms:

U (Int) 25 AT and Uy(Ln™) - A~ (5.6)
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determined by Y(e;q) = 2% € Aa,.a and Y(fiq) = 28 € A_a, a, respectively.
Proposition 5.7. The maps T of (5.6) are injective.

Proof. We will prove the required statement for U,(Ln*), as taking the opposite of
both algebras yields the statement for U,(Ln~). Let us consider the ring A = Q[[A]], its
fraction field F = Q((h)), and define:

UA (L‘ﬂ+) and U]F (L‘ﬂ+)

by replacing Q(g) in Definition 4.19 with A and F, respectively. Similarly, let us define
.AX and Af{ by replacing Q(q) with A and F in the definition of A™, respectively (more
precisely, by requiring 7 of (5.4) to have coefficients in A or F, respectively). Then we
have a commutative diagram:

Up(Lnt) —2 A}

g !

Up(Ln*) —E Af

where the horizontal maps are defined by analogy with T (just over different coefficient
rings). Note that the right-most map is injective, but the left-most map is not necessarily
so, due to the fact that Up (Ln™) might have A-torsion.

Claim 5.8. The map Yy is injective.

Let us first show how Claim 5.8 allows us to complete the proof of the Proposition. The
assignment ¢ = e’ gives us vertical maps which make the following diagram commute:

Uy (Int) —— A+

l l

Up(Lnt) —5y Af

We need to show that the top map is injective. Since the claim tells us that the bottom
map is injective, then it suffices to show that the left-most map is injective. The latter
claim follows from the fact that U,(Ln™") (respectively Ug(Ln™)) is a free Q(q) (respec-
tively F) module with a basis given by ordered products of the root vectors {E’(a’d)}flfGZAJr
from Remark 4.26. In the case of U,(Ln™), this is precisely (4.44), while in the case of
Ur(Ln™) one simply does the same proof, replacing the field Q(q) by F everywhere.

Let us now prove Claim 5.8. Consider any x € Up(Ln™) such that Tp(z) = 0, and
our goal is to prove that x = 0. We may write:
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for some k € N and y € Uy (Ln™), and assume for the purpose of contradiction that
(y) # 0. The fact that Yr(z) = 0 and the injectivity of the map A} — A implies that
Ta(y) = 0. By [10, Corollary 1.4], this implies that:

ye () h"- Ua(Ln®)

n=0

Thus, for all n > 0, there exists y,, € Up (In™) such that y = h™y,,. Passing this equality
through the map j, we have for all n > 0:

) = 1" 3(yn) (5.7)

However, because y and y,’s lie in Uy (Ln™), their images under j will lie in the free
A-submodule of Up (Ln™") spanned by ordered products of the root vectors E(q,q) (this
statement uses the fact that the generators e; 4 of Us(Ln") are among the Ea,a)’s
together with the fact that the structure constants of arbitrary products of E(, 4)’s lie in
Z[q,q~ '] C A, as follows from [14]). Therefore, there exist uniquely determined constants
cdidh e A such that:
keN
I(y) = > i Blagdy) -+ Blay.di)
(a1,d1) < <(ag,dy)

But if in (5.7) we take n larger than the leading power of & in all the Cgﬁ’[.’.’.’fé’} which

appear as coefficients of j(y), we obtain a contradiction. 0O

Remark 5.9. In type A,_; (and its affine version corresponding to quantum toroidal
algebras of sl,,), a proof of Proposition 5.7 was provided in [33, Theorem 1.1]. In simply
laced finite types (as well as simply laced affine types), a proof of injectivity follows
from [43, Theorem 2.3.2(b) combined with formula (2.50)], using the framework of K-
theoretic Hall algebras of quivers, see [41]. In contrast, our proof of Proposition 5.7 for
all finite types is based on [10] and the PBW bases of Section 4.

5.10. Define the extended shuffle algebras as:

-AZ :A+®Q(Q) [(@Io)i17¢:17@127---]i61 (58)

AS=A"® Q(q) [(‘Pi_,o)ila Yi1Piar- ']iel (5.9)

with pairwise commuting ¢’s, where the multiplication is governed by the rule:
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ij[(w)*Ri(...,zm,...):Ri(...,zim.. )*apj HHCW (w/21)* (5.10)

i€l a=1 Zm/w)

for any R* € Ay, where the (-factors are expanded as power series in non-negative
Yy P p
powers of wT!. Above, as before, we encode all (’s into the generating series:

oo sO:I:d
i(w) =) =3 (5.11)

d=0

Our reason for defining the extended shuffle algebras is that they admit coproducts.

Proposition 5.11. ([10], see also [32,33]) There exist bialgebra structures on AZ and A=<,
with coproduct determined by:

Api (2) = oi (2) @ 9 (2) (5.12)

and the following assignments for all R* € Ayy:

[Hfgzl ©; (Zia)] * R (2i.a<t; ® Zia>1,)

A(RT) = > e (5.13)
1= lici€QF, i<k, Hi,i/GI Ha§>l1?1’ Cili(zi,a//zm)
R (21,051 @ ziast,) * | TS 7 (2ia)
A(R) = 3 [ < ] (5.14)

>l
1=5 0 i €Q+, 1;<k; Hi,i’e] HZgzi " Giir (2ia/Zirar)

Remark 5.12. To think of (5.13) as a well-defined tensor, we expand the right-hand side
in non-negative powers of z;,/2;q for a < I; and o’ > l;/, thus obtaining an infinite sum
of monomials. In each of these monomials, we put the symbols <p:d to the very left of
the expression, then all powers of z;, with a < ;, then the ® sign, and finally all powers
of z;, with a > [;. The resulting expression will be a power series, and therefore lies in a
completion of AZ ® AT. The same argument applies to (5.14), still using non-negative
powers of z;,/2irq for a <1; and a’ > l;/, and keeping all the ®;.q to the very right.

The following is straightforward.

Proposition 5.13. The maps (5.6) extend to bialgebra homomorphisms:

U (Lbt) 5 A% and U (Lb™) -5 AS (5.15)

by sending gofd € U,(Lb™),Uy(Lb™) to the same-named @fd € A=, A=,
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5.14. There exists a bialgebra pairing between A~ and A=. As a first step toward
defining it, we start with the following result. Let Dz = 5

2miz "

Proposition 5.15. There exists a unique bialgebra pairing:
() AZ@ U (Lb™) — Q(q) (5.16)
satisfying (4.39) as well as:

k —dy —d, k

<R7fi1,fd1 -~-fik,fdk> _ H(q;l—qia)_l / R(z1, ..., 20)20 o 2, HDza

H1§a<b§k Ciaib(za/zb) i

a=l1 21| < | 2|

(5.17)
forany k € Nyiy, ... iy € I di,....dy € Z, R € Ao, +tay, dittdy (all pairings
between elements of non-opposite degrees are set to be 0). In the right-hand side of (5.17),
we plug each variable z, into an argument of color i, of the function R; since the latter
is color-symmetric, the result is independent of any choices made.

Proof. This Proposition is a slight variant of the analogous result from [10, §3.2] (in
that the wheel conditions (5.5) play a crucial role in our formulation, while in [10] only
ImY C A" is considered; by Theorem 1.7, the two settings are a posteriori equivalent),
so we will only sketch the proof.

First of all, we need to show that the formula (5.17) gives rise to a well-defined pairing
AT @U,(Ln~) = Q(g). To do this, we need to acknowledge the fact that relations (4.28)
and (4.29) (or more precisely, the opposite of these relations, since we are using f’s
instead of e’s) imply linear relations between the various f;, —q, - - fi,,—d,, and we need
to check that these relations also hold in the right-hand side of (5.17). Explicitly, the
equalities in question read:

fimri1 fi—s0™ — fimrfjmsor = Fjimsfimrr1 — fi—se1fi—rq® (5.18)
forall ¢,57 € I and all r, s € Z, and:

1—a;;
> D (=Dt (1 ka”) iy - Fimrag Fims i - firaaay, =0
ceS(1—a;j) k=0 ?

(5.19)
for all distinct 4,5 € I and all ry,...,71_4,,,s € Z. If we multiply the above formulas
both on the left and the right with arbitrary products of f’s, then we obtain various linear
relations between products f;, —4, ... fi,,—a,. The issue as to why these linear relations
hold in the right-hand side of (5.17) is an interesting, but straightforward, exercise that
we leave to the interested reader: in the case of (5.18) it is because any rational function
R € AT can be written as in (5.4) with r a Laurent polynomial, while in the case of (5.19)
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it is because this r satisfies the wheel conditions (5.5). Details can be found in [9, §2-3]
and [7], cf. our proof of Proposition 5.23.

Showing that one can upgrade the pairing of vector spaces (5.17) to a bialgebra pairing
as in (5.16) involves a straightforward check of properties (4.6) and (4.7). The interested
reader can find the details in the final aryiv version of the present paper. O

5.16.  We note the following immediate consequence of formula (5.17).
Proposition 5.17. The pairing (5.16) is non-degenerate in the first arqgument:
<R, —> —0 = R=0
for any R € AZ.
Proof. Because of (5.8), elements of A= are linear combinations of R - ¢*, where:

Re AT and ot €Q(q) [((p;‘:o)il, <p1'1, <p;f2, .. .]iel

As a consequence of the bialgebra pairing properties (4.6)—(4.7), it is easy to see that:

(et oem) = (Rox) - ()

for any x € Uy(Ln~) and ¢~ a product of ¢, 4's- Thus the non-degeneracy of the pair-
ing (5.16) is a consequence of the non-degeneracy of its restriction:

() AT @ U (In™) — Q(g) (5.20)

(indeed, the pairing between ¢’s is easily seen to be non-degenerate, due to the explicit
formula (4.39)). However, the non-degeneracy of (5.20) in the first argument is an imme-
diate consequence of formula (5.17): if R is a non-zero rational function, then we simply
choose an arbitrary order of its variables |z1] < -+ < |zi|, and consider the leading
order term of R when expanded as a power series in this particular order. On one hand,
the coefficient of this leading order term must be non-zero, but on the other hand, it is
of the form in the right-hand side of (5.17). O

We note that the pairings (4.37) and (5.16) are compatible, in the sense that:
<J;,y> = <T(a:),y> (5.21)

for all z € U,(Lb") and y € U,(Lb™). Indeed, both sides of (5.21) define bialgebra
pairings:

Uyg(Lb) @ Ug(Lb™) — Q(q)
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which coincide on the generators, thus must be equal as a consequence of (4.6)—(4.7).

Combining (5.21) with Propositions 5.7, 5.17, we thus obtain the non-degeneracy
statement of Proposition 4.22 (strictly speaking, we obtain the aforementioned non-
degeneracy statement only in the first argument, but the case of the second argument is
treated by simply switching the roles of + and — everywhere).

5.18.  Once Theorem 1.7 will be proved, Proposition 5.15 can be construed as the
existence of a bialgebra pairing (which is non-degenerate by Proposition 4.22):

<'a > AZ ® AS — Q(Q)
Hence, we may construct the Drinfeld double:
A= AZRA%(ply®@pi,—1®1) (5.22)

Since all the structures (product, coproduct, and pairing) are preserved by Y, we conclude
that Proposition 5.13 and Theorem 1.7 imply the following result.

Theorem 5.19. There exists a bialgebra isomorphism:
U,(Lg) = A (5.23)
which maps
eiars 2l €AT) fiam 24 € A7, gof,, — cpitr
5.20. Let us consider the linear map:
AT L FE (5.24)
given by the following formula:

k
B - Y [mqi; )

i1yine€l La=1
dy,...,dp€Z

<R, Fir—a, ...fz-,w,dk_> : [iﬁdl) . i,(j’“)] (5.25)

for all R € Ay, where k = |k|. Because of (5.17), we have the explicit formula:

—dy —dy, k

(R = Y [igdl).”i;dk)}. / R(z1,...,2,)7; ..Zk) CL[[IDZ“ (5.26)

H1§a<b§k Giais (Za/2b

|21 |- 2k |

where all sequences i1, ...,i; € I that appear in the formula above satisfy:
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ail—l—n-—i—aik:k

and each variable z, is plugged into an argument of color 4, of the function R (since the
latter is color-symmetric, the result is independent of any choices made). It is easy to
see that «(R) indeed lands in the completion (4.55)—(4.56).

As a consequence of the non-degeneracy of the pairing (5.20) in the first argument, we
conclude that ¢ is injective. Comparing (5.10) with (4.58), we can further extend (5.24)
to an algebra homomorphism:

AZ Ly Floext (5.27)
sending cpr — ap;fr.
Proposition 5.21. The map ¢ of (5.27) is a bialgebra homomorphism.

Proof. The first thing we need to prove is that ¢ is an algebra homomorphism. Since
the multiplicative relations involving the goifr’s are the same for the domain and target
of (5.27) (this is so by design), then it suffices to show that the map (5.24) is an algebra
homomorphism. In other words, we must show that ¢ intertwines the product (5.2) on
A% with the product (4.50) on F%. To this end, consider any F € Ay, G € A; and let
k = |k|, I = |1|. According to (5.26), ¢(F * G) equals:

—te41 k41

Z [sgtl)... s(tk+l)] / (F* G) (21,5 21) 21 Za/szk+l HDza

ot H1<a<b<k+l Csaso (

81,81 E€T

|21 | < 2h 4t |
tly---7tk+L€Z

where we implicitly assume that si,...,sgy; € I are acceptable in the sense that:
g+ tag,, =k+1

According to the definition of the shuffle product in (5.2), we have:

acceptable partitions
Zq
(FrG)ran = > FladedGlishen) T G (%)

AUB={1,...,k+1} a€AbEB

where a partition AU B = {1,...,k 4 [} is called acceptable if the number of variables
of each color in the set A (resp. B) is equal to the number of variables of that color of
the rational function F (resp. G). With this in mind, we conclude:

acceptable partitions

(F*G) = Z [sgtl) . s,itjf’)} Z

S1,..,8k41€1 AUB:{I,...

ket [21]< ] 2|
t1,... k1 €EZ



A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482 61

(5.28)

F ({zataca) [laeaza' G ({z}ven) Ioep 2 11 Gsasy (22) ﬁDz
Ha<a/€A CS“S“/ (Za/za/) Hb<b/€B Csbsb’ (zb/zb') A3a>beB Csysq (z_@) '

For various a € A and b € B, the expression above has poles involving z, and z, only
if a > b. This implies that the value of the integral above is unchanged if we move the
variables in such a way that all the z,’s with a € A are much greater than all the z’s
with b € B. In other words we may replace:

by

[z1] < <] 24 | |21 <L [ <KLy [ < <Ly |

where z1,...,2; (resp. y1,...,yx) are simply relabellings of the variables {z,}pep in
the increasing order of b (resp. {z,}aca in the increasing order of a). Moreover, let
W1yeeeyipydy,. .. di (vesp. ji,...,Ji,€1,...,e;) refer to those of the elements s. € T and
te € Z for ¢ € A (resp. ¢ € B), as in formula (4.51). It is straightforward to see that
applying the shuffle product (4.50) to ¢(F) and ¢(G) gives us precisely (5.28). Therefore,
W(F *G) = u(F) % (G), as claimed.

The second thing we need to prove is that the map ¢ is a coalgebra homomorphism,
i.e. that it intertwines the coproduct (5.13) on A2 with the coproduct (4.59) on FE-ext,
To this end, consider any R € Ay and note that (5.13) reads:

1<k L L
[Lic @i, * R(ziast, ® ziasi) icr 7
AR) = > D] T
1= lici €QT mia 20 Hi,i'EI Haﬁli Ci’i(zi/a’/zia)

. . . li<a<k;
where the second sum is over all collections of non-negative integers {m-a}iéla* . Ap-

plying the map ¢ ® ¢ to the above expression, we obtain by (5.26):

(L®)(A(R)) =
0<i<k
+ + -(dy) HC) (di41) (dy)
Z Pirgr,mpr = Pigme [@1 ' i } ® {Zl+ll+1 ey
i1, i €1
dy,...,dp €L
Ti41,5e, Tk >0
k L~ TTF
R(z1, -y 20) [amig Za a=1"%a 4Dz,
H1§a<b§l Cigip (Za/zb) Hl<a<b§k Giaip (za/zb) Ha§l<b Ciyia (Zb/za)

|z1]| < | 2 |

If we substitute d, — d, — 7, for a € {{+1,...,k} in the above relation, and use (4.58)

(d1) '(dl)]

to commute the product of ¢’s to the right of the word [i;""/ ... ¢;""], then we obtain

precisely formula (4.59) for A(:(R)), as required. O
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5.22.  As:
WX (i) = [19] = @ (er0)
for any ¢ € I and d € Z, the composition of the maps (5.6) and (5.24) recovers (4.53):
L U, (Lnt) 2 AT s FL (5.29)
The main result of this Section, Theorem 1.7, states that the map Y is an isomorphism,
so it would naturally imply that the image of ®* is equal to the image of . Therefore,

let us characterize the latter, by analogy with (4.24)—(4.25).

Proposition 5.23. We have:

kEN . .
i1 ... 1 (d1 (d
Im¢. = Z 'y<d11 d’;)[zg )...z,i’“)] (5.30)
i1 yeeyin €1
di,...,dx€Z
where the scalars ~y <211 Z;Z) € Q(q) vanish for all but finitely many values of

(k,d) = (s, + -+ iy, di + - +di) € QT X Z and satisfy equations (5.31)—(5.34):

EIMS.‘L.’)/((Z;1 2’;) =0ifdi+---+dy, <M for some 1 <a<k (5.31)

w i g owy\ _(w i j w'\ _a, _
7()( r—1 s X’) v(x r s—1 X’>q -
woJ 7 wy\ g, (w j i w
’Y<X s r—1 X,)q ’Y(X s—1 r X’) (5.32)
foralli,j €I and r,s € Z. Moreover:

17(1”‘

>y <—1>’“(1 ‘k““)i-

o€S(1—as;) k=0
w ) o 7 J 7 .. q w' B
! <X Po(t) -+ Po(k) t Po(k+t1) - Po(l-ay) X/> =0 (5.33)

for all distincti,j € I and p1,...,p1—a,;,t € Z. In the formulas above, w, w’ denote arbi-
trary finite words and x, x' denote arbitrary collections of integers, so that (w, x), (w', x’)
encode a pair of arbitrary loop words. Finally, we require:



A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482 63
Eab= 1

DR IECVRES

eab€{0,1}, a<b
V1<a<b<k

V<::: du— #{b > alews = 0} — #{b < ales = 1} ZI:)—O (5.34)

for all but finitely many (du, ..., ds) € Z* (note that there are only finitely many choices
of i1,..., ik € I in formula (5.34), because I is a finite set).

Proof. Consider any R € Ay 4 and set k = |k|. Since ¢ is injective, ¢(R) is completely

determined by the collection of v(...) € Q(g) that appear in (5.30), which can be thought
of as a function:

v {(Z . Z’“) S Z%ﬁkvzda:d}—@(q) (5.35)

subject to the constraint (5.31).
For any 1 < a < b < k, consider the following operator on the set of such functions:

Tab(V)(... dy ... dl;, >:

U SR A R T TS W
7( dy—1 ... dy )_7< dy ... dy—1 )q ’

It is easy to see that the various operators 7,;, commute with each other. This notion is

(5.36)

motivated by the obvious observation that if a function v encodes the coefficients of +(R):

g R(z1,. . zk)zy ™oz % b
11 1k _ 1, k)*1
<d1 dk) = / U Dz, (5.37)

H1<a<b<k Giais Za/zb
21| < < 2|

Tc,chl(/Y) ( . di dccill .. > -
_ 4, k
R(z1y. -y 21)(2c — Zet1) 2y dv
ITicachn @msiectn Giain(za/20) 3

L ze| Kzt 1K

Similarly, (5.37) implies:

dc+1 dc

oo e e ...
—Tc,c+1(7) < 1 ) =
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R(z1y. oy 2k)(2e — Zeg1)2] _dk ﬁ Dz (5.39)
a
H1<a<b<k (a,b)#£(c,c+1) Czan(za/zb

L zep1 |z KL

The right-hand sides of (5.38) and (5.39) have the same integrand. Moreover, because
elements R € A* only have poles as prescribed in (5.4), the integrand in question has
no poles involving z. and z.4+1. Therefore, one may change the order of variables in the
integral from |z.| < |zcq1] 10 |2et1| < |ze| without changing the value of the integral,
which implies that the right-hand sides of (5.38) and (5.39) are equal. Hence, we conclude
that if a function v as in (5.35) encodes the coefficients of +(R) for some R € A*, then:

e (G g ) s (0 G ) )

for all ¢, which is precisely the linear constraint (5.32).
Going further, one may iterate the process of going from (5.37) to (5.38) a number of

k(k—1)

5— times, obtaining:

[T o) (i i)

1<a<b<k

k
R(z,.. zk)zl_dl z,;d’“ H (za — 2b) H Dz,
a=1

21| < 2| 1<a<bsk
The product R(z1, . .., 2k) [ [ <4<p<i (20— 2) is a Laurent polynomial, due to (5.4), hence
the integral above vanishes for all but finitely many values of (di,...,dy):
H (S R Y . 3
Tab | () A ody ) T 0 for all but finitely many (dy,...,d;) € Z

1<a<b<k

(5.41)
Unpacking the definition of 7 in (5.36), we see that identity (5.41) is precisely equivalent
to the linear constraint (5.34).

Finally, let us consider the linear combination in the left-hand side of (5.33) (to keep
our notation simple, we will assume that the words w and w’ are vacuous, as this will
not interfere with our argument) and replace all the 4’s therein by the right-hand sides
of (5.37). We obtain the following equality:

17(117'

Sym (—1)F (1 _k‘”j>i .

k=0 |21 |z || g | € € 21—y
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—p1 TPimai;
R(z1,... 21 a,,w)z; 7' ... 2 _qy,; "W Dz ... D2, Dw

TToy G o/ Doy G w/2) T pcocs—a, Gi(n/20)

where Sym]...] denotes symmetrization with respect to the z-variables. In the formula
above, let us write the rational function R in terms of the Laurent polynomial r of (5.4):

170,1'3'

1—ay
Sym E ( i Y
— 3
h=0 N R N Y N T ey

—p1 “Pl-ay; g
T(2150 ey Zlmay, W)2 2 lq, W'Dz Dziq, Dw

k —aij 1—ay; —aij
[Ip=: (20 — wg; ¢ 7) Hb:Zh(w — 2v4; ‘ ?) H1gb<c§17a,;j Gii(2b/2c)

=0 (5.42)

We claim that formula (5.42) is equivalent to (5.5), due to the combinatorial identity
between power series expansions of rational functions and certain formal § functions
established in [9, Proposition 4] (proved in full generality in [7, Theorem 1.1]). Indeed,
the validity of (5.42) for all p1,...,p1—q,;,t € Z is equivalent to the equality:

0 = (215, 21—y, W) - (5.43)
l1—a;; 1 k 1 1—ay; 1
—a; Ze = %
DO G IR | P | i |
k=0 iop=1 i b=k+1 i 1<b<e<l—a;; € g

.
where all rational functions %_y above are expanded as formal series 7 —%r. Ac-

cording to [7, Theorem 1.1], where we set m = —a;; and ¢ = q{l, we have:

1—ayj; 1—a;;

1—ai;\ 1 1 1 .-
s 3 (1) Mg 1 s 1] -

2
— Ze — G2z
k=0 i Pyl 0T G pee e T 4%

quaiijm {5(107q;aijzﬁfs(zlaq;222)5(227quzs) . -'5(27(1“,(1;2217%)}
where the formal d-function §(x,y) is defined via:

y" 1 1

o(x,y) = i . + —
reZ ~— ,_./y \\y —

expanded in |z|>|y| expanded in |y|>|z|

Since r is a Laurent polynomial, the fundamental property of § implies that:

(21, 21—ay, w) - 6(w, q; 0 21)8(2, 4 22) ... (5(z,aij,q;221,ai].) =

i

—2a;; —a;; _ _ _
r(zl,q?zl, D anhqi “2) - o(w, q; “ 121)0(#1, ¢; 222) o 0(2ay, G 221_%)



66 A. Negut, A. Tsymbaliuk / Advances in Mathematics 439 (2024) 109482

Thus (5.43), and hence (5.42), is indeed equivalent to (5.5).
Conversely, suppose we have a function (5.35) satisfying properties (5.31)—(5.34). Our
goal is to construct a rational function R € Ay 4 such that (5.37) holds.

For any ordered collection i = (iy,...,ix) € I¥ with a;, + -+ + a;, = k, define a
formal bi-infinite power series Fi(z1,...,2) € Q(q)[[z1,21 "y -, 21, 25, )] via:
. 11 ... I d d
Fi(z1,...,2k) = Z ’y<d1 dk)zll...zk’“ (5.44)
di,...,dp€Z

Here, we shall think of the variable z. being of color i, for all 1 < ¢ < k. However, due
to (5.31), we actually have

Fi(z, .5 21) € QM) ((z1) - - ((22))((21)) (5.45)

Similarly to (5.41), property (5.34) can be recast as:

k
Fi(z1,...,2) - H (zq — zbq_dia"b)zfdl .. .z,;d’“ H Dz, =0
a=1

21| <€ 2| 1<a<b<lk

for all but finitely many (dy,...,dx) € Z*, which is equivalent to:

ri(z1,. ..y 2k) = Fi(z1, ..., 25) - H (24 — 2pq~ Hiain) (5.46)
1<a<b<k

being a Laurent polynomial. Invoking (5.45), we conclude that:

ri(z1,. -, 2K)
Fi(z1,..0,2,) = —— (5.47)
H1§a<b§k(2a — Zpq dla’b)
with the right-hand side expanded in |z1| < -+ < |zg]|. If we let:
Ri(zla"'azk) = Ti(Zh”.’Zk) (548)
H1§a<b§k(za — 2)
then we obtain:
. . —d; —d, k
R 7% Ri(z1,...,21)21 ™ ... 2
v = / Dz (5.49)
(dl ey [i<aco<r Giain(2a/20) (11;[1 ¢
|z1]| < | 2 |
for all dy,...,dy € Z. Let us now prove that the rational functions R; actually do not

depend on i. To do so, note that property (5.40) allows us to recast (5.32) as:
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Ri(z1,. -y 21)(2e — zC_H)zfdl ...zk_d"

Ilicacoen, @bytiectn) Giain(Za/20) 1

Dz, =

L ze | Kzt 1 [ KL

Rgc(i)(zl,...,zk)(zc—zc+1)zfd1 2y HDZa
.~~<<‘Zc+1‘<<‘2c|<<u~ nga<b§k)(a)b)7é(6)c+l) CZQ“’ (Za/Zb) a=1
for all dy,...,dx € Z, where 0.(i) = (i1, -+, 0c—159ct1, bes tet2, - - -, ig ). As the integrands
above have no poles involving z. and 2,11, we conclude that R; = R, ;). Since this
holds for all ¢ € {1,...,k — 1}, we conclude that there exists a unique rational function
R = Ry, for all i. Moreover, this rational function R must be symmetric in the variables
of each color separately, since 7 of (5.35) is unchanged if we permute a and b such that
iq = ip and d, = dp. Because a rational function which is symmetric in variables z and
w cannot have a simple pole at z = w, we conclude that the rational function R thus
constructed is of the form (5.4).
Finally, the fact that the numerator r of R satisfies the wheel conditions (5.5) is
equivalent to (5.42), as we have already seen, which is in turn equivalent to (5.33).
Thus, we have constructed R € Ay 4 such that (5.37) holds, as needed. O

5.24.  We conclude the present Section with a proof of Theorem 1.7.

Proof of Theorem 1.7. According to Proposition 5.7, the map Y: U,(Lnt) — AT is
injective, hence it remains to prove that it is also surjective. To this end, recall the
filtration (4.67), and consider the following vector subspaces for any loop word w:

AL, c AT

consisting of rational functions R such that the leading order term of ((R) is < w. It is
clear, due to (5.29), that the map T restricts to an injection:

Ug(Ln®) <o — AL, (5.50)
Recall the vector subspace (4.66) and consider the restriction of the pairing (5.20):
AL, © Uy(In™)=" — Q(q) (5.51)

With Proposition 5.17 in mind, we claim that the pairing (5.51) is non-degenerate in the
first argument, cf. Proposition 4.39. This claim holds because elements:

Re AL,

pair trivially with the basis elements {,f}y>w of (4.69), due to (5.25), and hence also
with {f,}u>w of (4.42), due to (4.71). The non-degeneracy of (5.51) implies that:
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dim .AJSFU) < dim U, (In™)S* = #{standard loop words < w} (5.52)

(although the dimensions above are technically speaking infinite, they become finite
when we restrict to each QT x Z-graded component, see Corollary 2.32). However, the
domain of the map (5.50) has dimension equal to the number of standard loop words
< w, see Subsection 4.40, which together with (5.52) implies that the map (5.50) is an
isomorphism. As AT = UwAng, the surjectivity of T follows. O
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