



# Tansley insight

# Understanding the chemical language mediating maize immunity and environmental adaptation

Author for correspondence: Philipp Zerbe

Email: pzerbe@ucdavis.edu

Received: 3 May 2024 Accepted: 10 July 2024 Farida Yasmin\* (D), Anna E. Cowie\* (D) and Philipp Zerbe (D)

Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA

### **Contents**

|      | Summary                                                                                            | 1 | IV. | Conclusions      | 7 |
|------|----------------------------------------------------------------------------------------------------|---|-----|------------------|---|
| I.   | Introduction                                                                                       | 1 |     | Acknowledgements | 7 |
| II.  | Maize specialized metabolites play multifaceted roles in plant defense, signaling, and development | 3 |     | References       | 7 |
| III. | Modular metabolic networks drive the evolution of complex maize chemical defenses                  | 5 |     |                  |   |

# New Phytologist (2024) doi: 10.1111/nph.20000

Key words: benzoxazinoids, phytoalexins, plant immunity, plant specialized metabolism, plant-environment interactions, terpenoids, Zea mays.

# Summary

Diverse networks of specialized metabolites promote plant fitness by mediating beneficial and antagonistic environmental interactions. In maize (Zea mays), constitutive and dynamically formed cocktails of terpenoids, benzoxazinoids, oxylipins, and phenylpropanoids contribute to plant defense and ecological adaptation. Recent research has highlighted the multifunctional nature of many specialized metabolites, serving not only as elaborate chemical defenses that safeguard against biotic and abiotic stress but also as regulators in adaptive developmental processes and microbiome interactions. Great strides have also been made in identifying the modular pathway networks that drive maize chemical diversity. Translating this knowledge into strategies for enhancing stress resilience traits has the potential to address climate-driven yield losses in one of the world's major food, feed, and bioenergy crops.

## I. Introduction

Predicted maize (Zea mays) harvest losses nearing 30–40% annually underscore the severe impact of increasing pest, disease, and climate pressures on agricultural productivity (Bailey-Serres et al., 2019; Savary et al., 2019; Yactayo-Chang & Block, 2023). As a major staple food, animal feed, and bioenergy crop, reduced maize production directly impacts global food and energy security,

disproportionately affecting densely populated and food-deficient regions (Wani et al., 2023). Considering these multifactorial environmental stressors, understanding the molecular mechanisms that govern maize innate immunity and stress resilience is imperative to enable breeding and engineering strategies.

Analogous to a language, plants employ a myriad small molecule specialized metabolites to communicate with their environment. These compounds are often of narrow taxonomic distribution, underly tight spatiotemporal and environmental regulation, and have critical functions in environmental interactions that enable

<sup>\*</sup>These authors contributed equally to this work.

14698137, 0, Downloaded from https://nph. onlinelibrary.wiley.com/doi/10.1111/nph.20000, Wiley Online Library on [09/08/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons and the articles are governed by the applicable Creative Commons and the articles are governed by the applicable Creative Commons are governed by the applicable Creati

plants to thrive under changing ecological conditions (Gershenzon & Dudareva, 2007). Maize specialized metabolites that serve as core components mediating environmental interactions include terpenoids, benzoxazinoids, oxylipins, and phenylpropanoids

(Christensen *et al.*, 2015; Zhou *et al.*, 2018; Block *et al.*, 2019; Fig. 1a,b). In addition to well-studied phytoalexin functions in pest and pathogen defense, recent studies suggest roles of maize specialized metabolism in abiotic stress responses and cooperative

interorganismal interactions (Schmelz et al., 2014; Yactayo-Chang & Block, 2023). Fueled by advanced multi-omics, genetics, and synthetic biology technologies, the past decade of research has transformed our understanding of the diversity, biosynthesis, and function of maize specialized metabolites. Collectively, these efforts illustrate that genome evolution through repeated gene duplication and functional divergence has given rise to enzyme families composed of mechanistically related yet functionally distinct members (Fig. 2a,b; Zi et al., 2014; Ding et al., 2019, 2020). By integrating these enzyme modules into dynamic pathway networks, plants produce diverse, stress-responsive metabolite blends (Zerbe & Bohlmann, 2015; Lacchini & Goossens, 2020). This review highlights recent progress in our understanding of the modular biosynthesis and function of specialized metabolites that govern maize environmental interactions.

# II. Maize specialized metabolites play multifaceted roles in plant defense, signaling, and development

Maize is impacted by various environmental factors, with insect pests, pathogens, drought, heat, and poor soil quality being major causes of reduced yield (Savary *et al.*, 2019; Yang *et al.*, 2023). As new metabolic pathways are being discovered, a functional landscape of interconnected long-distance and local defensive and cooperative interactions and other regulatory mechanisms emerges.

Identified in maize and other monocot and dicot plants in the 1950s, the functions of indole-derived benzoxazinoids in allelopathic interactions and in countering pests and microbial diseases are well-defined (Zhou et al., 2018; Erb & Kliebenstein, 2020; Florean et al., 2023; Fig. 1a,b). Recent studies demonstrated broader benzoxazinoid functions in mediating the uptake and chelation of heavy metals, directly affecting crop nutrition (Hu et al., 2018; Caggia et al., 2024). Furthermore, signaling functions of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in pathogen- and insect-elicited callose deposition have been shown (Yang et al., 2023). Maize benzoxazinoids also influence developmental processes, including root/shoot growth and root architecture, via modulating hormonal signaling pathways and rootmicrobiome interactions (Kudjordjie et al., 2019; Erb & Kliebenstein, 2020; Cadot et al., 2021; Thoenen et al., 2023). Notably, variable levels of benzoxazinoid exudation across maize lines impact the rhizosphere and endosphere microbiome (Wang et al., 2022). Recent field studies of benzoxazinoid-deficient maize lines showed that root-exuded benzoxazinoids reduce adverse plant-soil feedback, leading to yield increases in wheat and possibly other crops (Gfeller et al., 2024).

Although clear overlap exists, benzoxazinoids serve as primary chemical defenses in maize seedlings, while other metabolite groups dominate at later developmental stages. Particularly, a diverse array of specialized terpenoids are key components of maize immunity and stress resilience (Fig. 1a,b). Emission of volatile terpenoid blends, including linalool, 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), and  $\beta$ -caryophyllene, mediates indirect herbivory defenses by attracting parasitoids or predators of invading insect pests (Yactayo-Chang & Block, 2023). Such tritrophic interactions

are not limited to airborne metabolites. For instance, β--caryophyllene released from roots aids in recruiting predatory nematodes in response to Western corn rootworm (Diabrotica virgifera) infestation (Degenhardt et al., 2009). Additionally,  $\alpha/\beta$ -costic acids, a group of sesquiterpenoid acids first identified in Eupatorium capillifolium (Rao & Alvarez, 1981), have been demonstrated to confer pathogen and insect pest resistance in maize stems and roots (Christensen et al., 2016; Ding et al., 2017). Beyond these metabolites also occurring in other species, maize produces several groups of species-specific terpenoids, which act as direct pathogen and pest defenses at the site of attack (Schmelz et al., 2014). Kauralexin diterpenoid acids serve as feeding deterrents to impede insect pests such as the European corn borer (Ostrinia nubilalis) and function as potent antibiotics against major pathogens, including species of Fusarium, Cochliobolus, Rhizopus, Colletotrichum, and Aspergillus (Schmelz et al., 2011; Ding et al., 2019). Likewise, maize-specific sesquiterpenoid acids, termed zealexins, confer quantitative resistance to several maize pathogens in stems and roots (Huffaker et al., 2011; Ding et al., 2020). Notably, the antibiotic potency against different pathosystems differs across structurally distinct terpenoids. For example, the pathogen-induced accumulation and antibiotic efficacy of A- and B-series kauralexins varies in the interaction with different pathogens (Schmelz et al., 2011). Likewise, zealexins A1, 3, and 4 exhibit antibiotic activity, whereas zealexin A2 (which solely differs in the position of the hydroxy group) is inactive (Huffaker et al., 2011; Ding et al., 2020). Similarly, dolabralexin diterpenoids show pathogen-elicited root accumulation and exudation in select maize lines, and the dolabralexins, epoxydolabranol, and trihydroxydolabrene exhibit strong antifungal activity in vitro (Mafu et al., 2018). However, a dolabralexin-deficient mutant (Zmksl4) showed no pathogen-susceptible phenotype yet featured an altered root-to-shoot ratio and root architecture, suggesting that not only benzoxazinoids but also terpenoids contribute to root-microbe interactions (Huang & Osbourn, 2019; Murphy et al., 2021, 2023). Two observations support this hypothesis. First, the diterpenoid-deficient anther ear 2 (Zman2) mutant shows an altered rhizosphere microbiome in field studies (Murphy et al., 2021). Second, dolabralexins accumulate in plants grown in field soil but are largely absent in potting soil, pointing toward the presence of the microbiome or soil pathogens as a factor in diterpenoid accumulation (Murphy et al., 2023). It then appears plausible that the drought-induced accumulation of root terpenoids is associated with terpenoid-mediated root-microbe interactions (Vaughan et al., 2015; Mafu et al., 2018). Zealexin production in response to elevated atmospheric carbon dioxide (CO<sub>2</sub>) levels further highlights the multifaceted defensive roles of maize terpenoids (Vaughan et al., 2015).

Lipid-derived metabolites form a third major chemical defense layer in maize (Fig. 1a,b). This includes green leaf volatiles, such as the widely distributed (*Z*)-3-hexenal, which are derived from membrane lipids and function alongside volatile terpenoids and phenolics in mediating long-distance insect herbivory defenses (Christensen *et al.*, 2013; Yactayo-Chang *et al.*, 2022; Yuan *et al.*, 2023). In addition, formed from the same lipid precursors, cyclopente(a) none oxylipins, termed maize death acids, and other

14698137, 0, Downloaded from https://nph. onlinelibrary.wiley.com/doi/10.1111/nph.20000, Wiley Online Library on [09/08/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

oxylipins, such as 9-hydroxy-10-oxo-12,15-octadecadienoic acid, accumulate locally in response to tissue wounding caused by pest and pathogen attack and serve as potent phytoalexins, impeding the

growth of herbivores such as *Helicoverpa zea* and fungal pathogens including major *Aspergillus* and *Fusarium* maize pathogens (Christensen *et al.*, 2015, 2016; Huang *et al.*, 2023). Notably,

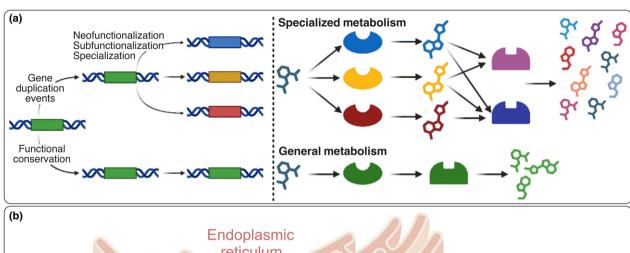





Fig. 2 Evolution and biosynthesis of maize specialized metabolites. (a) Genome evolution via repeated gene duplication events and subsequent gene functional divergence has given rise to large, functionally diverse gene families of specialized metabolism (left). Interaction of these enzymes as part of modular pathway networks drives the chemical diversity of specialized metabolism (right). (b) The biosynthesis of major maize specialized metabolites from common precursors of general metabolism required modular pathway networks that can span several cellular compartments. 4CL, 4-cinnamate ligase; AOC, allene oxide cyclase; AOS, allene oxide synthase; BX, benzoxazinoid; C4H, cinnamate-4-hydroxylase; CHI, chalcone isomerase; CHS, chalcone synthase; CYP, cytochrome P450 monooxygenase; FOMT, flavonoid O-methyl transferase; FPP, farnesyl diphosphate; GGPP, geranylgeranyl diphosphate; GPP, geranyl diphosphate; HPL, hydroperoxide lyase; HPOD, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid; HPOT, 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid; IGP, imidazoleglycerol phosphate; KR, kauralexin reductase; LOX, lipoxygenase; MEP, methyl erythritol phosphate; MVA, mevalonate; OPR, oxo-phytodienoate reductase; PAL, phenylalanine ammonium lyase; TMTT, (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene; TPS, terpene synthase.

cyclopente(a) none oxylipins also occur in other crop species, inlcuding potato and sunflower, where they have predicted below-ground defensive functions (Hamberg, 2000; Grechkin *et al.*, 2007).

Recent discoveries also have expanded the diversity of phenolic compounds involved in maize—environmental interactions. This includes *O*-methylated flavonoids such as xilonenin, and more common flavonoids such as apigenin feature antifungal bioactivities and C-glycosyl flavones (maysins) and coumarates act as herbivory defenses (Casas *et al.*, 2016; Block *et al.*, 2020; Förster *et al.*, 2022b). Moreover, multi-omics and quantitative trait loci studies identified previously unrecognized acetylated diferuloylsu-crose metabolites, termed smiglasides, with probable antifungal activity against *F. graminearum* and other pathogens (Zhou *et al.*, 2019).

# III. Modular metabolic networks drive the evolution of complex maize chemical defenses

The divergence of maize specialized metabolism through continuous genome evolution is evident in large, functionally diverse enzyme families catalyzing various scaffold-forming and modifying reactions that generate chemical diversity (Fig. 2a). For instance, the expansion of the terpene synthase (TPS) and cytochrome P450 monooxygenase (P450) gene families has given rise to the diversity of specialized terpenoid metabolites (Chen et al., 2011; Murphy & Zerbe, 2020; Jia et al., 2022; Fig. 2a,b). Derived from duplication and subfunctionalization of ancestral bifunctional diterpene synthases (diTPSs), monofunctional class II and class I diTPSs, producing conserved gibberellin (GA) phytohormones and various specialized diterpenoids, will have served as a genetic reservoir for the expansion of the TPS family (Jia et al., 2022). This continued gene duplication paired with rapid neofunctionalization, and often, high substrate- and/or product specificity of these enzyme families lead to diverse TPS-catalyzed mono-, sesqui-, and diterpene scaffolds that can undergo numerous functional modifications facilitated by P450s and other modifying enzymes (Fig. 2b). Maize research in the past few years has highlighted an intricate terpenoid-metabolic network that provides catalytic redundancies at key pathway nodes to safeguard against deleterious mutations, while utilizing enzyme promiscuity of downstream reactions to increase product diversity (Ding et al., 2020). As one example, the entry point to major diterpenoid pathways is controlled by two catalytically redundant class II diterpene synthases (diTPS), ZmTPS37/CPS1/AN1 and ZmTPS38/

CPS2/AN2, that form the common precursor ent-copalyl diphosphate (ent-CPP) (Murphy & Zerbe, 2020). Although some crosstalk may occur, differential expression ensures that ZmTPS37/CPS1/AN1 supplies GA metabolism, whereas ZmTPS38/CPS2/AN2 feeds stress-inducible kauralexin and dolabralexin biosynthesis (Fig. 2b). Subsequent branching of the kauralexin and dolabralexin pathways is achieved through two additional class I diTPSs, ZmTPS43/KSL2 and ZmTPS45/KSL4, which form the committed ent-iso-kaurene and dolabradiene precursors of kauralexins and dolabralexins, respectively (Mafu et al., 2018; Ding et al., 2019). Downstream of these pathway partitions, a group of functionally promiscuous P450s, including CYP701A43, CYP71Z16, and CYP71Z18, substrate-dependent oxygenations to yield the range of bioactive kauralexins and dolabralexins (Mafu et al., 2018; Ding et al., 2019). Such combined metabolic control through biochemical pathway separation and differences in spatiotemporal and stress-elicited expression minimizes the dysregulation of GA and derived specialized defense pathways and coordinate growth and defense processes (Ding et al., 2019). Notably, the catalytic promiscuity of CYP71Z16 and CYP71Z18 goes beyond diterpenoid metabolism as both enzymes, alongside recently identified P450s of the CYP81A family, bring about the oxygenation and desaturation of β-macrocarpene in zealexin biosynthesis (Ding et al., 2020). Costic acids are formed via α/β-selinene as sesquiterpenoid scaffold with the involved P450s yet to be elucidated (Ding et al., 2017). Contrasting these multi-enzyme pathways, maize contains at least 35 TPSs that directly convert the common geranyl diphosphate (GPP) or farnesyl diphosphate (FPP) precursors into a diverse bouquet of volatile mono- and sesqui-terpenoids such as linalool and β-caryophyllene involved in above-ground and volatile defenses. Despite the rapid advances in pathway discovery, it stands to reason that our map of the maize terpenoid network remains incomplete. The identification of ZmTPS39/CPS3 and ZmTPS40/CPS4 as diTPSs producing (+)-CPP and the double isomer 8,13-CPP as alternate diterpenoid precursors and the presence of yet uncharacterized TPSs suggest that additional pathways with predictable defensive functions exist in maize (Murphy et al., 2018).

Similar to the evolution of specialized terpenoids from GA metabolism, death acids have likely evolved from ancestral phytohormone metabolism, in this case (JA) biosynthesis (Christensen *et al.*, 2015, 2016). Although the precise pathways en route to death acids remain elusive, their cyclopente(a)none oxylipin scaffold suggests a biosynthetic origin from linoleic acid and

linolenic acid via lipase-catalyzed cleavage from plastidial membranes (Fig. 2b). In contrast to JA metabolism that proceeds via regio-specific dioxygenation at C-13 of linolenic acid by 13-lipoxygenases (LOX) and downstream-acting C-13-specific allene oxide synthase (AOS), allene oxide cyclase (AOC), and 12oxo-phytodienoic acid reductase (OPR) enzymes, death acid biosynthesis requires fatty acid dioxygenation at C-9. Indeed, such LOX enzymes (ZmLOX3-5) producing 9-hydroperoxides have been identified (Christensen et al., 2015, 2016). Moreover, recent studies of a lox10opr2 maize mutant showed reduced JA-mediated defenses but increased death acid accumulation, suggesting regulatory crosstalk in addition to biochemical pathway separation to fine-tune JA- and death acid-mediated defense mechanisms (Huang et al., 2023). Other LOX enzymes, including ZmLOX10 and ZmLOX5, have been shown to function in producing green leaf volatiles and the 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic (9,10-KODA), respectively, thus marking branch points in the biosynthesis of volatile and local lipid-derived chemical defenses (Christensen et al., 2013; Yuan et al., 2023).

Numerous biochemical and genetic studies have generated a comprehensive characterization of benzoxazinoid metabolism (Zhou et al., 2018). Although the benzoxazinoid pathway appears not to

result from a direct duplication of ancestral phytohormone metabolism as shown or predicted for terpenoids and death acids, its root in the shikimate pathway and use of indole as a core intermediate overlap with the formation of tryptophan and downstream auxin biosynthesis (Fig. 2b). Indole formation represents the branchpoint toward benzoxazinoid biosynthesis, with indole-3glycerol phosphate lyase (benzoxazinless 1, BX1) as a primary catalyst (Zhou et al., 2018). While two alternate enzymes, indole-3-glycerol phosphate lyase1 (IGL1) and tryptophan synthase a-subunit (TSA1), may provide some genetic redundancy, no primary function in benzoxazinoid metabolism is known (Frey et al., 2000; Wisecaver et al., 2017). Downstream of indole, a network of functional modifications catalyzed by the P450s of the CYP71C subfamily (BX2-5), dioxygenases (BX6, BX13), UDP-glucosyltransferases (BX8-9), and O-methyltransferases (BX7, BX10-12, BX14), then completes the biosynthesis of known benzoxazinoids (Zhou et al., 2018). Interestingly, recent studies suggest that, rather than deriving from general metabolism, some maize BX-metabolic Omethyltransferases evolved from related O-methyltransferases involved in flavonoid metabolism (Förster et al., 2022a). The identification of O-methyltransferases (ZmFOMT2-5) with roles in producing antifungal O-methyl flavonoids such as xilonenin further supports this hypothesis (Förster et al., 2022a,b).

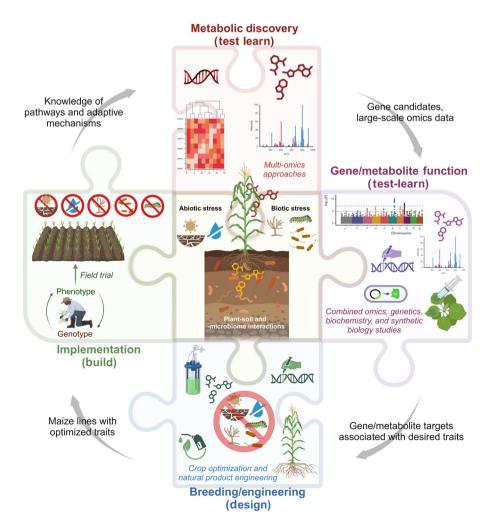



Fig. 3 Integrating today's multi-omics, genetics, biochemistry, and synthetic biology technologies offers unprecedented opportunities to solve the puzzle underlying the diversity, biosynthesis, regulation, and function of specialized metabolites in maize immunity and environmental adaptation. Leveraging this knowledge through precision breeding and crop engineering can generate crops with enhanced yield and climate resilience. Likewise, synthetic biology and metabolic engineering advances enable the production of natural and new-tonature metabolites for use as biocides, biofuels, and other high-value chemicals. Effective translation of such integrative approaches into agricultural applications requires the collaborative efforts of plant biologists, agronomists, bioengineers, breeders, and farmers. The illustration was created with BioRender.com.

# loaded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.20000, Wiley Online Library on [99/08/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licesea and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licesea.

## IV. Conclusions

The above examples highlight the chemical ingenuity of plants in using dynamic metabolic networks to adapt to their ecological niche. Genome evolution of ancestral general metabolism (often phytohormone) pathways has provided the required genetic reservoir for the evolution of common and species-specific, multifunctional metabolites, enabling plants to respond to various environmental conditions and metabolic needs (Erb & Kliebenstein, 2020). Despite much progress in decoding maize specialized metabolism, many open questions remain. What are the mechanisms-of-action underlying metabolite bioactivities? How are different chemical defense layers regulated in response to combined biotic and abiotic stressors? What drives chemical diversity across maize genotypes? Ultimately, how can this knowledge be translated into strategies for developing maize varieties with improved yield-defining and resilience traits? Applying modern omics approaches to explore the remarkable genetic and phenotypic plasticity inherent in maize cultivars is likely to uncover more bioactive metabolites and their biosynthetic and gene regulatory networks that can support breeding efforts (Fig. 3; Christensen et al., 2018; Medeiros et al., 2021; Murphy et al., 2023; Mishra et al., 2024). Advances in maize genetic transformation paired with the establishment of genetically diverse maize collections, including isogenic lines deficient in specific metabolites, will accelerate the elucidation of biosynthetic pathways and the largely unknown regulatory networks that govern maize chemical defenses. The modular pathway architecture underlying maize specialized metabolism can further be leveraged through synthetic biology and genome editing technologies. For instance, reconstituting different pathway modules in microbial or plant host systems facilitates the engineering of various natural and new-to-nature metabolites (Owen et al., 2017; Calgaro-Kozina et al., 2020). These approaches can be employed to assess the structure-activity relationships of natural defense compounds and the engineering of compounds with new or enhanced bioactivities. Although the impact of modifying defense pathways in planta on maize resilience is yet to be explored, applying this strategy via genome editing has the potential to generate more resistant varieties as exemplified by the overexpression of the maize P450 CYP71Z18 in rice, which resulted in the accumulation of new terpenoids and increased pathogen resistance (Shen et al., 2019). Increased crop yields through benzoxazinoid-mediated reduction in adverse plant-soil feedback further shows applications beyond enhancing direct stress defenses (Gfeller et al., 2024). Integrating these transformative approaches offers new avenues to accelerate the development of crop varieties that can withstand current and future climate pressures while reducing agricultural footprint. Critically, to realize this vision, we need to close the gap between research outcomes and sustainable and economically viable agricultural solutions, which will require interdisciplinary efforts with stakeholders, including agronomists, bioengineers, breeders, and farmers.

# Acknowledgements

The corresponding author receives financial support provided by the National Science Foundation TRTech-PGR program 'Establishing a one-stop-shop for plant metabolism annotations and launching a plant enzyme function consortium' (award no. 2312181). We apologize to those authors whose research could not be cited owing to space limitations.

# **Competing interests**

None declared.

## **Author contributions**

PZ conceived of the study. PZ, AEC and FY jointly wrote the manuscript. FY and AEC contributed equally to this work.

# **ORCID**

Anna E. Cowie https://orcid.org/0000-0003-4333-5719
Farida Yasmin https://orcid.org/0000-0002-4621-7796
Philipp Zerbe https://orcid.org/0000-0001-5163-9523

# References

- Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. 2019. Genetic strategies for improving crop yields. *Nature* 575: 109–118.
- Block AK, Hunter CT, Sattler SE, Rering C, McDonald S, Basset GJ, Christensen SA. 2020. Fighting on two fronts: elevated insect resistance in flooded maize. Plant, Cell & Environment 43: 223–234.
- Block AK, Vaughan MM, Schmelz EA, Christensen SA. 2019. Biosynthesis and function of terpenoid defense compounds in maize (*Zea mays*). *Planta* 249: 21– 30.
- Cadot S, Guan H, Bigalke M, Walser J-C, Jander G, Erb M, van der Heijden MGA, Schlaeppi K. 2021. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. *Microbiome* 9: 103.
- Caggia V, Wälchli J, Deslandes-Hérold G, Mateo P, Robert CAM, Guan H, Bigalke M, Spielvogel S, Mestrot A, Schlaeppi K et al. 2024. Root-exuded specialized metabolites reduce arsenic toxicity in maize. Proceedings of the National Academy of Sciences, USA 121: e2314261121.
- Calgaro-Kozina A, Vuu KM, Keasling JD, Loqué D, Sattely ES, Shih PM. 2020. Engineering plant synthetic pathways for the biosynthesis of novel antifungals. ACS Central Science 6: 1394–1400.
- Casas MI, Falcone-Ferreyra ML, Jiang N, Mejía-Guerra MK, Rodríguez E, Wilson T, Engelmeier J, Casati P, Grotewold E. 2016. Identification and characterization of maize salmon silks genes involved in insecticidal Maysin biosynthesis. *Plant Cell* 28: 1297–1309.
- Chen F, Tholl D, Bohlmann J, Pichersky E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. *The Plant Journal* 66: 212–229.
- Christensen SA, Huffaker A, Hunter CT, Alborn HT, Schmelz EA. 2016. A maize death acid, 10-oxo-11-phytoenoic acid, is the predominant cyclopentenone signal present during multiple stress and developmental conditions. *Plant Signaling & Behavior* 11: e1120395.
- Christensen SA, Huffaker A, Kaplan F, Sims J, Ziemann S, Doehlemann G, Ji L, Schmitz RJ, Kolomiets MV, Alborn HT et al. 2015. Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proceedings of the National Academy of Sciences, USA 112: 11407–11412.
- Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CAM, Vaughn KA *et al.* 2013. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. *The Plant Journal* 74: 59–73.
- Christensen SA, Sims J, Vaughan MM, Hunter C, Block A, Willett D, Alborn HT, Huffaker A, Schmelz EA. 2018. Commercial hybrids and mutant genotypes reveal complex protective roles for inducible terpenoid defenses in maize. *Journal of Experimental Botany* 69: 1693–1705.

- Degenhardt J, Hiltpold I, Köllner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ. 2009. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. *Proceedings of the National Academy of Sciences, USA* 106: 13213–13218.
- Ding Y, Huffaker A, Köllner TG, Weckwerth P, Robert CAM, Spencer JL, Lipka AE, Schmelz EA. 2017. Selinene volatiles are essential precursors for maize defense promoting fungal pathogen resistance. *Plant Physiology* 175: 1455–1468.
- Ding Y, Murphy KM, Poretsky E, Mafu S, Yang B, Char SN, Christensen SA, Saldivar E, Wu M, Wang Q *et al.* 2019. Multiple genes recruited from hormone pathways partition maize diterpenoid defences. *Nature Plants* 5: 1043–1056.
- Ding Y, Weckwerth PR, Poretsky E, Murphy KM, Sims J, Saldivar E, Christensen SA, Char SN, Yang B, Tong A-D et al. 2020. Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nature Plants 6: 1375–1388.
- Erb M, Kliebenstein DJ. 2020. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. *Plant Physiology* 184: 39–52.
- Florean M, Luck K, Hong B, Nakamura Y, O'Connor SE, Köllner TG. 2023. Reinventing metabolic pathways: independent evolution of benzoxazinoids in flowering plants. *Proceedings of the National Academy of Sciences, USA* 120: e2307981120.
- Förster C, Gershenzon J, Köllner TG. 2022a. Evolution of DIMBOA-Glc-Methyltransferases from flavonoid-methyltransferases in the grasses. *Molecules* 27: 1007
- Förster C, Handrick V, Ding Y, Nakamura Y, Paetz C, Schneider B, Castro-Falcón G, Hughes CC, Luck K, Poosapati S et al. 2022b. Biosynthesis and antifungal activity of fungus-induced O-methylated flavonoids in maize. Plant Physiology 188: 167–190.
- Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A. 2000. An herbivore elicitor activates the gene for indole emission in maize. *Proceedings of the National Academy of Sciences, USA* 97: 14801–14806.
- Gershenzon J, Dudareva N. 2007. The function of terpene natural products in the natural world. *Nature Chemical Biology* 3: 408–414.
- Gfeller V, Thoenen L, Erb M. 2024. Root-exuded benzoxazinoids can alleviate negative plant-soil feedbacks. New Phytologist 241: 2575–2588.
- Grechkin AN, Ogorodnikova AV, Gnezdilov OI, Mukhtarova LS. 2007. Detection of a pathway from linoleate to a novel cyclopentenone: *cis*-12-oxo-10-phytoenoic acid in sunflower roots. *Chembiochem* 8: 2275–2280.
- Hamberg M. 2000. New cyclopentenone fatty acids formed from linoleic and linolenic acids in potato. *Lipids* 35: 353–363.
- Hu L, Mateo P, Ye M, Zhang X, Berset JD, Handrick V, Radisch D, Grabe V, Köllner TG, Gershenzon J et al. 2018. Plant iron acquisition strategy exploited by an insect herbivore. Science 361: 694–697.
- Huang AC, Osbourn A. 2019. Plant terpenes that mediate below-ground interactions: prospects for bioengineering terpenoids for plant protection. *Pest Management Science* 75: 2368–2377.
- Huang P-C, Grunseich JM, Berg-Falloure KM, Tolley JP, Koiwa H, Bernal JS, Kolomiets MV. 2023. Maize OPR2 and LOX10 mediate defense against fall armyworm and western corn rootworm by tissue-specific regulation of jasmonic acid and ketol metabolism. *Genes* 14: 1732.
- Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PE, Schmelz EA. 2011. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. *Plant Physiology* 156: 2082– 2097.
- Jia Q, Brown R, Köllner TG, Fu J, Chen X, Wong GK-S, Gershenzon J, Peters RJ, Chen F. 2022. Origin and early evolution of the plant terpene synthase family. Proceedings of the National Academy of Sciences, USA 119: e2100361119.
- Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. 2019.
  Maize synthesized benzoxazinoids affect the host associated microbiome.
  Microbiome 7: 59.
- Lacchini E, Goossens A. 2020. Combinatorial control of plant specialized metabolism: mechanisms, functions, and consequences. *Annual Review of Cell and Developmental Biology* 36: 291–313.
- Mafu S, Ding Y, Murphy KM, Yaacoobi O, Addison JB, Wang Q, Shen Z, Briggs SP, Bohlmann J, Castro-Falcon G et al. 2018. Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiology 176: 2677–2690.

- Medeiros DB, Brotman Y, Fernie AR. 2021. The utility of metabolomics as a tool to inform maize biology. *Plant Communications* 2: 100187.
- Mishra S, Srivastava AK, Khan AW, Tran L-SP, Nguyen HT. 2024. The era of panomics-driven gene discovery in plants. *Trends in Plant Science*. doi: 10.1016/j. tplants.2024.03.007.
- Murphy KM, Dowd T, Khalil A, Char SN, Yang B, Endelman BJ, Shih PM, Topp C, Schmelz EA, Zerbe P. 2023. A dolabralexin-deficient mutant provides insight into specialized diterpenoid metabolism in maize. *Plant Physiology* 192: 1338–1358.
- Murphy KM, Edwards J, Louie KB, Bowen BP, Sundaresan V, Northen TR, Zerbe P. 2021. Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (*Zea mays*). *Scientific Reports* 11: 333.
- Murphy KM, Ma LT, Ding Y, Schmelz EA, Zerbe P. 2018. Functional characterization of two class II diterpene synthases indicates additional specialized diterpenoid pathways in maize (*Zea mays*). Frontiers in Plant Science 9: 1542.
- Murphy KM, Zerbe P. 2020. Specialized diterpenoid metabolism in monocot crops: biosynthesis and chemical diversity. *Phytochemistry* 172: 112289.
- Owen C, Patron NJ, Huang A, Osbourn A. 2017. Harnessing plant metabolic diversity. Current Opinion in Chemical Biology 40: 24–30.
- Rao KV, Alvarez FM. 1981. Antibiotic principle of Eupatorium capillifolium. Journal of Natural Products 44: 252–256.
- Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. 2019.
  The global burden of pathogens and pests on major food crops. *Nature Ecology & Evolution* 3: 430–439.
- Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ. 2014. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. *The Plant Journal* 79: 659–678.
- Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM, Ni X, Rocca JR, Alborn HT, Teal PE. 2011. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. *Proceedings of the National Academy of Sciences*, USA 108: 5455–5460.
- Shen Q, Pu Q, Liang J, Mao H, Liu J, Wang Q. 2019. CYP71Z18 overexpression confers elevated blast resistance in transgenic rice. *Plant Molecular Biology* 100: 579–589.
- Thoenen L, Giroud C, Kreuzer M, Waelchli J, Gfeller V, Deslandes-Hérold G, Mateo P, Robert CAM, Ahrens CH, Rubio-Somoza I et al. 2023. Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome. Proceedings of the National Academy of Sciences, USA 120: e2310134120.
- Vaughan MM, Christensen S, Schmelz EA, Huffaker A, McAuslane HJ, Alborn HT, Romero M, Allen LH, Teal PE. 2015. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. *Plant, Cell & Environment* 38: 2195–2207.
- Wang P, Lopes LD, Lopez-Guerrero MG, van Dijk K, Alvarez S, Riethoven J-J, Schachtman DP. 2022. Natural variation in root exudation of GABA and DIMBOA impacts the maize root endosphere and rhizosphere microbiomes. *Journal of Experimental Botany* 73: 5052–5066.
- Wani SH, Dar ZA, Singh GP. 2023. Maize improvement: current advances in yield, quality, and stress tolerance under changing climatic scenarios. Cham, Switzerland: Springer Nature Switzerland AG. doi: 10.1007/978-3-031-21640-4.
- Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A. 2017. A global coexpression network approach for connecting genes to specialized metabolic pathways in plants. *Plant Cell* 29: 944–959.
- Yactayo-Chang JP, Block AK. 2023. The impact of climate change on maize chemical defenses. *Biochemical Journal* 480: 1285–1298.
- Yactayo-Chang JP, Hunter CT, Alborn HT, Christensen SA, Block AK. 2022.
  Production of the green leaf volatile (Z)-3-hexenal by a hydroperoxide lyase.
  Plants 11: 2201.
- Yang Z, Cao Y, Shi Y, Qin F, Jiang C, Yang S. 2023. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. *Molecular Plant* 16: 1496–1517.
- Yuan P, Borrego E, Park Y-S, Gorman Z, Huang P-C, Tolley J, Christensen SA, Blanford J, Kilaru A, Meeley R *et al.* 2023. 9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory. *Molecular Plant* 16: 1283–1303.
- Zerbe P, Bohlmann J. 2015. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering. *Trends in Biotechnology* 33: 419–428.

Zhou S, Richter A, Jander G. 2018. Beyond defense: multiple functions of benzoxazinoids in maize metabolism. Plant & Cell Physiology 59: 1528–1537. Zhou S, Zhang YK, Kremling KA, Ding Y, Bennett JS, Bae JS, Kim DK, Ackerman HH, Kolomiets MV, Schmelz EA et al. 2019. Ethylene signaling regulates natural

variation in the abundance of antifungal acetylated diferuloylsucroses and

- Fusarium graminearum resistance in maize seedling roots. New Phytologist 221: 2096-2111.
- Zi J, Mafu S, Peters RJ. 2014. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annual Review of Plant Biology 65: 259-286.