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Abstract

In this work, a new free-energy-based and interfacially consistent phase-field model for solid-
state sintering has been proposed. A phase-field model is considered interfacially consistent if it
does not generate any spurious voids at the junctions of grain boundaries in fully dense powder
compacts during sintering. A mathematical analysis of Model I, a well-known and widely
employed free-energy-based phase-field model, found that it may produce a spurious driving
force at the junctions of grain boundaries, which could impede the kinetic pathway of grain
growth. The locally generated non-physical porosity is significantly affected by the ratio of
specific grain boundary energy to specific surface energy. Building on Model I, a novel free-
energy-based phase-field model, termed Model II, has been proposed to protect interfacial
consistency by decoupling the respective surface energy and grain boundary energy
contributions to the overall free energy of the system. The theoretical analysis of both models has
been numerically confirmed. Finally, Model II has been validated by comparing the phase-field
dihedral angles and dynamic neck growth with those obtained from analytical models and
experiments. Given the freedom in formulating free energies as a function of phase-field
variables, interfacial consistency could serve as a criterion for constructing phase-field models
free from artificial phase generation.

Keywords: Phase-Field modeling; Interfacial consistency; Artificial void generation;

Microstructural evolution; Solid-state sintering



1. Introduction

As one of the most dominant materials processing techniques, sintering is the thermal
consolidation of discrete powder ensembles to build a coherent compact component at elevated
temperature (but below the melting point) [1-3]. As a major technological process with a long
historical development, sintering has continually found new applications [4, 5]. For example,
sintering is the crucial step in fabricating ceramic-based solid-state electrolytes for new batteries
with better energy efficiency and safety [6, 7] and in the production of thermal interface
materials in electronic devices with improved thermal performance [8, 9]. Other examples
include the fabrication of ceramic and metal-based bioimplants from additive manufacturing [10],

to name a few.

To develop new and improved materials with tailored microstructures and thus pre-defined
properties, it is highly desirable to have a deep understanding of the sintering mechanisms and
the accompanying microstructure evolution. Thermodynamically, the driving force for sintering
is to reduce the surface energy of powder particle ensembles. Kinetically, surface energy
reduction is achieved by the transport of materials to extend the contact area between particles
and grains under appropriate conditions of temperature, pressure, and environment. In solid-state
sintering, materials transport is generally achieved by cooperative surface diffusion, grain
boundary diffusion, volume diffusion, rigid body motion, and vapor transport (evaporation-
condensation) [11-14]. Due to the complex materials transport mechanisms, the dramatic and
evolving geometry change, and the interplay with process parameters, it is challenging to predict
the microstructure evolution during sintering with experiments[11, 15, 16] and analytical models

[17-19] employing simplified geometries alone, calling for numerical modeling approaches[20].

Among the developed modeling schemes for solid-state sintering [21-46], the phase-field
approach distinguishes itself from others by the appealing feature that the various materials
diffusion mechanism involved in sintering can be naturally captured by introducing phase-field
variables to define the corresponding diffusion path without explicitly tracking the evolving
microstructure features, such as surfaces and grain boundaries [13, 47-70]. And the existing

solid-state sintering models based on the phase-field approach may be classified into two



categories: the free-energy-based group [47] and the grand-potential-based group recently
proposed in [55, 65, 71].

In the free-energy-based group, the energy of the discrete powder ensemble consists of surface
energy and grain boundary energy. A conserved phase-field variable is employed to differentiate
the powder grain phase and the surrounding vapor phase, and a set of non-conserved phase-field
variables is used to differentiate powder grains with different crystal orientations. The key idea
generally consists of two steps: (I) Thermodynamically, the free energy of the discrete powder
ensemble is depicted as a function of the introduced phase-field variables; (II) Kinetically, the
different material transport mechanisms and the accompanying microstructure changes are
captured by the temporal and spatial evolutions of the introduced phase-filed variables governed
by the respective Cahn-Hillard and Allen-Chan equations with the driving forces coming from
reducing the defined free energy. One of the pioneering works in this group was originally
proposed in [47] and is widely employed to study sintering under different conditions [48-54, 56-
61, 66, 67].

In the recently proposed grand-potential-based category, instead of employing a free energy
functional, the energy of the discrete powder ensemble consists of surface energy, grain
boundary energy, and grand potential contributions from the respective solid and vapor phases.
A non-conserved phase-field variable is employed to differentiate the powder phase and the
surrounding vapor phase and a set of non-conserved phase-field variables is used to differentiate
different grains. The mass conservation is achieved through the diffusion equation of phase
concentrations and the Allen-Chan equations are employed to describe the evolution of the
introduced phase-field variables. The key features of models in this group are that the interfacial
properties are decoupled from the grand-chemical-potential contribution and that instead of
solving for concentration, the evolution of the chemical potential is solved directly. Two
representative models in this category have been proposed and they differ from each other
through the employment of different formulations of the interfacial energies, with one using the
obstacle-type potential energy term [55] and the other employing the multiwell-type energy

contribution proposed in [65].



From the introduction of the respective category, it is seen that the two groups differ from each
other in the following three aspects: (I) the free-energy-based approach does not introduce
chemical energy contributions from the respective solid and vapor phases and considers only the
interfacial energies; (II) the free-energy-based group employs a conserved order parameter to
differentiate solid powder phase from the surrounding vapor phase while the grand-potential-
based category uses a non-conserved phase-field variable; (III) the free-energy-based approach
directly solves the Cahn-Hilliard equation for the conserved phase-field variable while the grand-

potential-based group directly solve for the chemical potentials.

In this manuscript, we will focus on analyzing the free-energy-based approach. As a pioneering
and representative example, the model proposed in [47] will be analyzed and is termed Model I
in this work. Model I has been widely employed and extended to investigate the underlying
physical mechanisms and microstructure evolutions under different processing conditions in
sintering [48-54, 56-61, 66, 67]. For example, Model I was utilized to explore the condition
under which grain growth is sensitive to the level of porosity [48]; the sintering of silver
nanoparticles was investigated by Model I for applications as thermal interface materials [49];
the microstructure evolution in direct ink write (DIW) additive manufacturing was examined
using Model I to explore the phase space of DIW process parameters with the target to find the
ones that lead to optimal microstructures[60]. In addition, Model I has also been extended to
incorporate the effects of non-isothermal conditions [51, 54, 61], elasticity[58], anisotropy of

grain boundary[53], and external pressure[52] on the microstructure evolution under sintering.

However, there is a lack of mathematical and interfacial analysis of Model 1. Specifically, the
following key question has not been analyzed: is the phase-field free energy of the discrete
powder particles under sintering interfacially consistent? Since free energy is the source to offer
driving forces for microstructure evolution in sintering, it is highly worth analyzing. In this work,
we provide a condition for interfacial consistency, which is stated as follows: phase-field free
energy is termed interfacially consistent if it introduces no driving forces for an artificial void
generation at the junctions of grain boundaries when the polycrystalline powder compact is fully

consolidated. Physically, it means that if there is an absence of pores in the system, a void should



not be generated. It is worth noting that the interfacial consistency defined in this work is similar

to the dynamical consistency mathematically defined in [72, 73].

In light of the absence of phase-field free energy analysis for sintering and upon the defined
interfacial consistency, we perform a mathematical analysis of Model I and find that artificial
voids may be generated locally at the junctions of grain boundaries in fully dense powder
ensembles. Factors such as the ratio of specific grain boundary energy to specific surface energy
significantly affect the amount of non-physical pore production in addition to their effect on pore
and junction stabilities [74-76], which is also confirmed numerically. Furthermore, the
relationship between materials properties and phase-field parameters in Model I may not be
consistent in the sense that material grain boundary width is constrained to be equal to the

surface thickness.

Motivated by these findings, we propose a novel phase-field model within the free-energy-based
category, termed Model II in this work, to protect the defined interfacial consistency. The main
idea is to decouple the respective surface energy and grain boundary energy contributions to the
total phase-field free energy to ensure that the interfacial consistency in Model II is satisfied and
that the map between materials properties and phase-field parameters is consistent without
introducing constraints on the independent materials properties. Model II is also validated by

comparing the results from both analytical models and experiments.

The rest of the manuscript is organized as follows. Section 2 first performs a theoretical analysis
of the termed Model I to point out the source rooting for the interfacial inconsistency, and then
proposes the named Mode II and shows its insurance of interfacial consistency. A comparison
between grand-potential-based models and the free-energy-based Model II is also given in
Section 2; Section 3 numerically confirms the theoretical findings analyzed in Section 2 by
designing appropriate examples. Section 4 discusses the validity of the proposed Model II by
comparing its dihedral angles and dynamic neck growth with that from analytical models and
experiments. Section 5 concludes with closing remarks on the performance of the proposed

phase-field model, and discusses the future research directions.



2. Theoretical analysis

This section introduces Model I which has been widely employed to describe the microstructure
evolution in solid-state sintering. Then the interfacial consistency of Mode I is analyzed
mathematically, where it is shown that artificial void generation may occur. Subsequently, a
novel phase-field free energy of Model II is proposed and inspected to ensure interfacial

consistency.

2.1 Model 1
2.1.1 Model introduction

As mentioned in [47], both conserved and non-conserved phase fields are introduced to fully
characterize the microstructure features involved in solid-state sintering, as shown in Fig. 1. The
conserved phase-field C is introduced to differentiate the powder compact from the surrounding

vapor phase and is defined as follows:

c=£,0<p<p, (1)

where p is the density of the vapor-powder mixture, p, is the density of powder particles, and the
density of the vapor phase is ignored. As such, C takes the value of 1 inside the powder compact,
0 in the vapor phase, and varies smoothly but sharply across the surface (vapor-particle interface).
The non-conserved phase-field n; is introduced to differentiate crystallographic orientations of
powder particles and takes the value of 1 inside the ith particle, O elsewhere, and changes

continuously but rapidly across the grain boundaries.



0.5 — 1. Surface Diffusion

2. Grain Boundary Diffusion

" 3. Volume Diffusion (Matter from Bulk)
4. Volume Diffusion (Matter from Bulk)

5. Volume Diffusion (Matter from Surface)

6. Evaporation-Condensation (Matter
from Surface)

Fig. 1: Schematic illustration of different diffusion mechanisms and the profile of the introduced

phase-fields C and n; along the green line connecting the centers of the two grains.

After the introduction of phase-field variables to depict the microstructure features, the next step
in phase-field formalism is to express the free energy F of the system of interest in terms of the

defined phase fields. In general, the free energy F may be expressed as follows [47, 77]:
N
F = [L{fCn) +Z0vei? + 25, 1vn 7} do 2

and f(C,n;) is given as [47]:
FCm) =ac®(1 -0 +B[c2 4601 - OTE P 42 - O T f +3(Zn?) | @

Physically, F consists of surface and grain boundary energies. In Eq. (2), f(C,n;) is the bulk free
energy density, @ and 8 are model constants, k¢ and k, are the respective gradient coefficients
for the conserved phase-field C and non-conserved phase-field n;, and N,, is the total number of

grains with different crystallographic orientations.

Then the driving forces for the evolution of the employed phase fields can be obtained through

the variation of the free energy F to the corresponding phase field variable, i.e., i—i (Strictly

speaking, i—i are the chemical potential of phase-field C and the gradient of (;—g; gives the driving



force) and ;—:_, and their evolutions are governed through the modified Cahn-Hilliard and Allen-
Cahn equations, respectively [47]:

ac _

E=V- (MYE)+V I+ )

omi _ _ 5 L y.
at Lsm+v Jn + & &)

where M is the atomic mobility, L denotes the Allen-Cahn mobility, ] and ], are the respective
flux contributions coming from rigid body motion, ¢ and ¢, are the Langevin noises.
Theoretically, M is a second-order tensor. Since M is considered to be isotropic in this work, M is
taken as a scalar. M describes the rate at which the measurable quantity defined by the phase-
field C changes and may be related to the diffusion coefficient as follows to recover Fick’s law

[78]:

-1

M= (27).,) (©)

where D¢/ is the effective diffusivity and is defined as:
DEIS = DYl (C) + DS C2(1 = €)2 + 2D9* ;P 2 mim @)

where D/, D9P and DV°! are the respective surface, grain boundary, and volume diffusivities,
¢(C) is an interpolation function given as ¢p(C) = C3(10 — 15C + 6C?). L describes the rate at
which the structure of the atoms defined by the phase-field n changes with time, and may be
estimated as [79]:
_ Ogb¥gp

L= (8)
where ¥y, is the grain boundary mobility and yy,, is the specific grain boundary energy. As the
phase fields C and n; are introduced to depict microstructure features and the evolution of both
phase fields through Eqgs. (4) and (5) pictures the microstructure changes during solid-state

sintering and guarantee that the microstructure is evolving in a direction that decreases the free

energy F [80].



2.1.2 Analysis of the phase-field free energy

The phase-field free energy F in Section 2.1.1 has been widely employed in the community to
predict microstructure evolution in solid-state sintering. This section analyses the interfacial
consistency of F: will artificial voids be generated at the junctions of grain boundaries in fully

dense particle compacts?

Note that rigid body motion contributions (i.e. J¢ and J;)) and Langevin noise terms (i.e. {¢ and

¢y) in Egs. (4) and (5) are not considered when the following analysis is performed. This is based

on the following reasons: (I) the driving force (i.e. (;—Z) for artificial void generation (as will be

shown in this section) comes solely from the proposed phase-field free energy F, and is

independent of the kinetic rigid body motion and Langevin noise, as seen in Eq. (4); (II)

considering rigid-body motion and Langevin noise will make the voids purely generated from g—i

less clear, as observed in Eq. (4); (II) for the numerical examples employed in this work, the
kinetical mass transport path through rigid-body motion may be limited in already-dense particle
compact (as will be shown in Section 3) and the focus here is on interfacial consistency, i.e., the
phase-field free energy F. As such, possible rigid-body motion is not considered in this work and

will be employed in future extensions as suggested in [13, 14, 47].
According to Eq. (4), the driving force solely coming from the free energy F for the phase-field
C is given as:

5F N N

= =2aC(1-C)(1-20) +§ (zc — 6N NP+ A%, n?) — K V2C 9)

When the polycrystalline powder compact is fully consolidated and the vapor phase disappears,

i.e., C =1 across the powder aggregates, we have:

§F

= s, (10)

where parameter f is a positive constant as will be given in section 2.1.3, and S, is given as:

N. N
Sp= (2632 n? +43"n}) (11)

10



At the grain boundary between grains i and j, generally S, # 0. For example, at the junction
where three gains meet as shown in Fig. 2, supposing; =1, =1, = % (as Y3 mi = 1), we

have S, = 0.44, and when four grains meet, S, = 0.75.

Quadruple ;. e | S Triple
— ' junctions

Fig. 2: Scanning electron microscope image of yttrium aluminum garnet after sintering for 3 min

at 1400°C [81].

Generally, since f > 0 and S, # 0 at the junctions where grain boundaries meet, it is seen from
Eq. (10) that the driving force for the phase-field C is not zero. As such, this spurious driving
force may generate non-physical pores inside the fully solid powder compact. Note that: (I) if
external pressure is applied to accelerate sintering (as is often employed in pressure-assisted
sintering), the artificial voids will lead to local stress concentration and may serve as sources to
initiate fictitious cracks; (II) if the predicted microstructure is employed to perform
micromechanical analysis to obtain effective material properties of sintered products, the non-
physical void generation will pollute the accuracy. Therefore, it may be important to ensure the

interfacial consistency defined in this work.

When the phase-field model tends to generate voids, it creates more surfaces. Since the phase-
field free energy F consists of surface energy and grain boundary energy, and the microstructure

is evolving in a direction to reduce the total free energy, then the competition between specific

b

: gb . sf .y
grain boundary energy y9” and specific surface energy y*/, i.e., the ratio T must have a

significant effect on non-physical pore production. In Section 3.2, we will justify the

aforementioned reasonings both mathematically and numerically.

11



2.1.3 Analysis of the phase-field parameters
Through a quantitative analysis procedure employed in [48, 79], the relationship between
parameters @, 8, k¢ and k,, in the phase-field free energy F and material properties in Model I is

derived and given as follows [48, 49, 79]:

sf b
g2 a=12L 72
Y =?‘/KC+K7P/C¥+7[3 chSf 89
gb — 2 p=Ls
YU =5 Bry or 1 5;”’ 5 (12)
sov — [ ke =5y 8 =Gy oha
3p ey = %ygbé*gb

where 69?2 and 6%/ are the respective grain boundary width and surface thickness. Note that in
Model I, the phase-field parameters «, [, k. and Ky are constrained as follows[48, 49]:

88 _ atb

K77 Kc

(13)

As such, there are essentially 3 independent phase-field parameters. Since we have four material
properties, i.e., y9P, ysf , 895 and §5, which, in general, are independent of each other, then
there exists an inconsistency in the map between phase-field parameters and material properties,
and there must be a hidden constraint on the material properties. Through a detailed analysis

given in Appendix A, it is found that the constrain on the material properties is given as:
5s) = §9b (14)

Since surface thickness 6%/ may be different from the grain boundary width §9%physically [34-

36], Eq. (14) may introduce unnecessary constraints.

2.2 The proposed Model II
2.2.1 The novel phase-field free energy F*
Inspired by Model I and the analysis in Section 2.1, we propose a novel phase-field free energy

F* to assure interfacial consistency, and F* is proposed as follows:

Fr= [ {F€on) +Z0ven? + 2N ) 271901 da (15)

12



and f*(C,n;) is given as:

F(Cm) = @' C? (A = O + BN [1 - 42 n? + 3 (z:2) n?)z] (16)
N(C)=C?*[1+2(1-C)+e(1—-0C)?*],e>3 (17)

where the starred symbols in Egs. (15)-(17) are the counterparts of the quantities defined in
Section 2.1, N(C) is the employed interpolation function, and € is a constant. To better discuss

the structure and property of the proposed free energy F*, Eq. (15) is reorganized as follows:

F*=Fyp +Flp (18)
For = Jp (a'C? = 0)? + £ qvc1?) da (19)

. . N N 2 5 <N
Fop = IN© (B [1 - 22 m2 +3 (20 n2) |+ 2E20wnd?)da o)

where F*consists of surface energy F¢r and grain boundary energy Fgz),. The interpolation

function N (C) is carefully designed to decouple Fgr and Fg;, and is plotted in Fig.3.

1 T T
0.8 =
__06} -
o
z
0.4} -
0.2 .
0 | 1 1 1 i 1
0 0.2 0.4 0.6 0.8 1
Phase field C

Fig. 3: The profile of the introduced interpolation function N(C)
As seen in Fig. 3, N(C)|¢c=¢o = 0, N(C)|c=1 = 1.The parameter € is required to be larger than 3
to ensure that N(C) has a convex shape in the vicinity of C =1, and is taken to be 3.1 in this
work. Then the equilibrium value of phase-field C is reached at (C,n) = (1,1) or (0,1), and the

equilibrium value of non-conserved phase-field 7; is reached at (C,7;) = (1,1) with n;,; = 0.

13



Note that in defining the novel free energy F*, the ith grain is represented by the product Cn;.as

oppose to 1; in Model L.

As in [47], the evolution equations of introduced phase fields C and 7; are given as:

oc o
E—V-(MVSC) 1)
ong _ _pe 0%
ac L 5n; (22)

92F*
ac?

-1
c=1 and L* = 1991’#. The proposed model is termed Model II in this
dL -
n

with M* = peff (

work. Note that the rigid body motion and Langevin noises are not included in Model II in this

work for the same reasons as discussed in Section 2.1.2.

2.2.2 Interfacial consistency analysis
The driving force coming from the phase-field free energy F* in Model II for evolving the

phase-field C is given as:

2 =g @ +N'(©) (B'S* () + L5 v 1?) (23)

where g*(C), S*(n;) , and N'(C) are given as:

g*(€) = 2a"C(1 = C)(1 = 2C) — KLVAC (24)
2

@) = [1- 45708 +3(52,n2) | (25)

N'(C)=2C(1-0)[3+ e(1—-20)] (26)

To estimate the interfacial consistency of Model 1I, when the powder aggregates are fully solid,

i.e., C=1 inside the powder phase, we have:

6F*
é6C

=0 27)

Eq. (27) holds due to the property that g*(C)|c=1 = 0 and N'(C)|c=1 = 0. As such, there is no

artificial driving force for void generation in a fully dense region. Thus, Model II protects

14



interfacial consistency. In Section 3, we will numerically test the interfacial consistency of

Model 1I.

2.2.3 The map between phase-field parameters and material properties
In this section, the relationship between the phase-field parameters a*, 8*, k., and K;; in the
proposed free energy F* of Model II and material properties are derived through the quantitative

analysis procedure in [48, 49, 79].

§9P
1 —
nj=1 ni=1
0.8F .
06 J
=
0.4r 1
0.2r J
n; = nj=0
0
-00 £=0 400

Fig. 4: The profile of the introduced phase-field 7; across a flat and diffuse grain boundary with
a width §9%.

Assuming a flat grain boundary between two semi-infinite grains with the respective orientations
i and j, the profile of n; and n; across the grain boundary along the x-direction perpendicular to
the grain boundary may be shown as in Fig. 4 with a width of §9°. Then the specific grain

boundary energy 92 may be defined as:
ab_ [ fe i ((dn\ %, (dnp)?
v = | (re=tmn)+ 7{(@) +(3) }) dx (28)
and f™ is given as:

(€= 1mom) =B [1 = 40} +n}) + 3(n7 + )] )
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According to the Euler-Lagrangian equation, 7; and 7; satisfy the following equations as a

stationary point of y9°:

orr(e=1mny) _ . dni_ g
an; M dx?

af*(c=1m;m;) i d?n; -0
an;j M dx2

For boundary conditions, we have:
n; =1andn; =0 forx — +o
nj=1landn; =0forx —» —oo

. dn;
%:ﬂZOforxH 40
dx dx -

Since Eq. (28) is symmetric to the profiles of ; and n; at x = 0, as shown in Fig. 4, we have:

which gives: 1; + n; = const. From the boundary condition given by Eq. (32), we have:

nit+ni=1

Based on Beltrami identity, we get:

(¢ =1m,n;) —sz (%)2 + (%)2] -0

According to Eq. (35) and (37), the following holds:

dni _ /f*(C=1:TIi'TIj)
dx K;‘,

dnj fr(c=1nn;)
dx K;‘,

Substituting Eq. (37) into Eq. (28) gives,

Y9l = fj: 2f*(C = 1,m;,m;)dx

16

(30)

€29

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)



And the bulk free energy is obtained by substituting Eq. (36) into Eq. (29):

f(€=1myn;=1-n;) =120 (1 —n)? (41)

Based on Eqgs. (38) and (41), Eq. (40) can be rewritten as:

1
1 1
* d * K* * * 2 * *
yI = 2[ f d—,fdm = 2f fr7dn = 2[ JlZB i (1= n)*iqdn; == \/B i (42)
0 L 0
0

As shown in Fig. 4, the grain boundary width §9° may be approximated as:

1 _ (dn\  _ [F@=05) _ [36°
@_(dx)xﬂ)_ K _,/4;4;, “3)

As such, the grain boundary thickness §9° may be estimated as:

b _ [¥
590 = /3[3* (44)

55f
—
1 C=1
0.8F
06
C
04+F
0.2
C =0
0 (0e]
- x=0 +00

Fig. 5: A schematic of the introduced phase-field C across a flat and diffuse surface with a width
557,

Next, we will derive the relationship between phase-field parameter a*, k- and materials
properties Y/, §5/. Assuming a flat surface between a semi-infinite solid grain and semi-infinite

vapor phase, the profile of C along the x-direction perpendicular to the surface may be shown in

17



Fig. 5 with a surface thickness of §/. The specific surface energy ¥/ may be evaluated as

follows:
oo ki (dc\2
_ * — C
ysf_f_oo (Fren=n+%(5) )ax (45)

Note that in Eq. (45), Cn is employed to represent the grain phase in the proposed model to
decouple the non-conserved phase-field 7 from estimating ¥/ Then the bulk free energy density

f*(C,n = 1) is given as:
frCn= 1) = a*C?(1 — C)? (46)

Following the same procedure employed above, we have:

6f*(cz77=1) — * dZ_C —_—
ac Kc (dxz) =0 (47)
“(Com = 1) — k€ (9€)* =
fren=0-%(%) =0 (48)

dc _ fzf*(C.n=1)
dx Ke (49)
Substituting Eq. (48) into Eq. (45), we have:

© 2K a*
vy = [22f*(Con = Ddx = [ 2f*(C.n = D EdC =Y

(50)

From the profile of C(x) at equilibrium, the surface thickness may be estimated as:

1 d_C __[2f*(C=05n=1) _ ar
&5 (dx)x=0 o \’ KG o »\’8K(*: D

As such, the surface thickness 6%/ may be given as:

f — |[8%c
55 = /a* (52)

The map between the phase-field parameters a”, B*, k¢, and k" defined in Model II and

material properties y92, 597 y$/ §5/ are summarized as follows:

18



(,,9b _i ¥ gk
)4 _\/5 ﬁ KT] e sf
at =122
y 2K ngf
,yS = * __ Y'g
P .
3 e or <'B ggb (53)
gb _— n * _ 2 SfSsf
6 38" Ke =37V 5
x _ 3 gbsgb
sof = [exc Uep = 377767
\ a*

Since four independent model parameters a*, B*, k¢ , k; and four independent material
properties Y92, S/, §9% and 8%/ are employed in Eq.(53), the map may fix the inconsistency
between phase-field parameters and material properties in Mode I as introduced in Section 2.1

and does not constrain the relationship between 6%/ and §9°.
2.3 Comparison of grand-potential-based and free-energy-based sintering models

The grand-potential-based sintering models separate interfacial properties from extensive
variables, such as the concentration field, which would otherwise contribute to the driving force
for non-conserved phase-field variables. This separation is achieved by using the grand potential
as a function of the intensive variable, i.e., the chemical potential, instead of using the free
energy as a function of the concentration field [55, 65]. The proposed Model II uses a free-
energy-based framework, but it still decouples the defined concentration, or conserved phase-

field variable C, from grain boundary properties, as shown in Eq. (53).

As for artificial void generation, the grand-potential-based model in [65] does not introduce
spurious voids thanks to the employment of the interpolation function proposed in [82] and the
multiwell function proposed in [79, 82], which has been analyzed in [83]. Another grand-
potential-based model in [55] employs third-order terms of non-conserved phase-field variables
in the obstacle-type potential energy to suppress artificial phase generation at grain boundaries,
which requires careful selection of the coefficient corresponding to the third-order term [84, 85].
The free-energy-based Model II proposed in this work also does not introduce artificial voids, as

analyzed in Section 2.2.2.

As for model complexity, grand-potential-based models require more material parameters than
free-energy-based Model II due to the introduction of grand potential contributions from the

respective solid and vapor phases [55, 65]. In addition, since voids do not have measurable
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energy, the parameters required to build up the grand potential may not be easily obtained. In
contrast, the free-energy-based Model II proposed in this work does not involve grand potentials,
so it only requires a considerably smaller subset of the material parameters needed in grand-
potential-based models. Therefore, compared to grand-potential-based models, Model II 1is

simpler to implement while sharing its advantages.

3. Numerical test

In this section, the interfacial consistency analyzed for both Model I and Model II in Section 2 is
tested numerically. The factors that may affect the artificial void generation phenomenon are also

investigated by numerical examples.

3.1 Numerical implementation

The Cahn-Hillard and Allen-Cahn equations in both Model I and Model II are solved by
employing the central finite difference scheme in spatial discretization and a forward Euler
method in the temporal domain. An intermediate variable u*, i.e., the chemical potential of
phase-field C, is introduced to split the fourth-order Cahn-Hillard equation in Model II into two

second-order equations as follows:
=V v (54)

* SF* * * ! * O* 7 I M
== 2a"C(1— 01— 20) = KGVEC + N'(O) (B°S* () + T2 1Vmili*) - (59)

Then the central finite difference approach is employed to approximate the spatial derivatives in

Egs. (54) and (55). The same numerical scheme is also applied to Model 1.

3.2 Artificial void generation

3.2.1 Triple junction case

Fig. 6a shows the microstructure consisting of three grains with grain boundaries represented by
the yellow lines. Note that no vapor phase is surrounded initially to mode the locally dense
regions of sintered product. The simulation domain is set to be Q = (0,14m)? and is spatially

discretized by a 128x128 grid. The employed model parameters for Model I and Model I in this
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setting are shown in Table 1. Since the map between phase-field parameters and materials
properties in Model II is different from that in Model I, as shown in Egs. (12) and (53), the
employed phase-field parameters for Model II are also different from their counterparts

employed in Model I to assure that both Model I and Model II have the same y9” and y*/ .

Table 1 The normalized model parameters that were employed for Models I and II in the
simulation. The diffusivities D and the mobility L were fixed to DSf =960.0, DI? = 96.0,

DV°! = 9.6 and L = 1, respectively.

Parameters .
alla®  BUB* Kclkg Kylley — ydb ysr o y9yst
Model
Model 1 16.00 16.00 4.05 12.00 16.00 10.67 1.50
Model I 128.00 16.00 16.00 12.00 16.00 10.67 1.50

In Fig. 6b and 6c, the microstructures are depicted through the phase-field C, represented by
“CON” in the work unless otherwise mentioned, to better visualize if there is any void
production. As such, grain boundaries are not shown in Figs. 6b and 6¢c. As defined in Section 2,
C =1 represents the solid grain phase, C = 0 denotes the vapor phase, and any value in between
represents a mixture of vapor and solid particle phases. Then the local porosity ¢ can be defined
as: ¢ =1 — C. Figures 6b and 6c select the respective transient microstructures from Models I
and II when the largest local porosity ¢, 1s observed. The lower bound of the respective color
bar is set to be 1-¢,,4, to better picture the produced void if any. As shown in Fig. 6b, Model I
could open up a local porosity ¢ = 9.4% at the junction of grain boundaries, as observed from
the color bar. In contrast, Model II introduces almost no local porosity. Since no vapor phase is
present in the initial microstructure, the produced local porosity is non-physical. As such, the

numerical results are consistent with the theoretical analysis in Section 2.
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Fig. 6 : Microstructure morphologies from Model I and Model II: (a) initial grain structures for
both Models I and II with solid yellow lines representing grain boundaries; (b) the selected
microstructure corresponding to the transient local porosity @4, = 9.4% observed from Model
I; (c¢) the microstructure from Model II without producing local porosity. “CON” represents the
phase-field C; To better visualize the produced voids, grain boundaries are not shown in (b) and

(c). This coloring scheme is employed throughout this work unless otherwise mentioned.

3.2.2 Quadruple junction case

The quadruple junction is unstable and will split into two triple junctions [75, 76]. The purpose
of employing a quadruple junction is to check if both models can capture the junction splitting
process and the effects of non-physical voids on the kinetic splitting. The employed model

parameters are shown in Table 2 for the quadruple junction case.

Table 2 The normalized model parameters that were employed for Models I and II in quadruple
junction simulation. The diffusivities D and the mobility L were fixed to D/ = 960.0, D90 =

96.0, D¥°! = 9.6 and L = 1, respectively.

Parameters .
alla®  BUB wellkg wmyglwy — y9® oy gy
Model
Model I 16.00 10.59 3.32 7.94 10.59 7.51 1.41
Model 11 90.12 10.59 11.27 7.94 10.59 7.51 1.41

Fig. 7a shows the initial quadruple junction of four equally sized grains for both Model I and

Model II. From Figs. 7 and 8, it is observed that: (I) both Model I and Model II can capture the
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quadruple-to-triple junction splitting instability, as shown in Figs. 8b and 8d; (II) Artificial voids
have already been generated before the splitting process happens in Model I, as seen in Fig. 7b
where a local porosity @p,qx = 20.09% is produced; (III) Non-physical void generation may
delay the microstructure evolution. Figs. 8b and 8d select the respective microstructures from
Model T and Model II when the respective triple junctions reach the same spatial point (61, 6T),
and it takes 15 seconds for Model I and 14.1 seconds for Model II to reach the selected location.
This is due to that Model I initially decreases its free energy by producing artificial voids but
without microstructure evolution, and has less energy left to drive grain boundary evolution
thereafter; (IV) the non-physical and transient voids still exist after the splitting is finished in
Model I, as shown in Fig. 8a; In contrast, almost no porosity is produced in Model II, as
observed in Fig. 8c. Note that all the figures corresponding to the locally produced porosity in
this work only select the microstructures when the transient porosity is observed and is not the

final stable one.

| ~ CON | CON
Pmax=20.09% ~ 100 1.00

Artificial Void [§0.950 No Artificial Void § 1.00

\ 0.900 1.00
o ]

Grain 1 Grain 2

L0999

0.849 E
: =0.999

Grain 3 Grain 4

“0.799

Model 1 Model II

(@) (b) (©

Fig. 7: Microstructure morphologies from Model I and Model II: (a) initial grain structures for
both Models I and II with solid lines representing grain boundaries; (b) the selected
microstructure corresponding to the transient local porosity@,,., = 20.09% observed before the
splitting in Model I; (c) the microstructure from Model II without producing local porosity.
“CON” represents the phase-field C throughout this work unless otherwise mentioned. To better

visualize the produced voids, grain boundaries are not shown in (b) and (c).
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Fig. 8: Microstructure morphologies after the quadruple junction splitting into triple junctions
from the respective Model 1 (a-b) when ¢ = 15s and Model II (c-d) when ¢ = 14.1s; the
microstructure is pictured by respectively employing the phase-field C (“Con” in plots a and c)
to view the particle compact as a whole and using the summation of (Cn;)? + (€C1,)? (“ORP” in

plots b and d) to view individual grains.

3.3 Effect of rigid body motion

We note that the presence of non-physical pores may induce rigid body motion and potentially
may lead to pore closure. To investigate the effect of rigid body motion on artificial pore
generation, the advection term originally proposed in [47] is combined with Model I. The
parameters employed in the advection term are also taken from [47] for the quadruple junction
case. Figure 9 compares the cases with and without the inclusion of the advection term in Model
I. Numerical results show that considering the advection term to account for rigid-body motion
yields similar results as the one where the advection term is neglected. This observation may be
attributed to the driving force behind artificial pore generation, which arises solely from the free

energy and thus remains independent of kinetically mass transportation paths, as analyzed in
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Section 2.1.2. Additionally, since pore generation primarily occurs within the junctions, it causes

minimal rigid body motion within the dense grain systems.

Artificial Void

\

o

Prmax=20.09%

Artificial Void

\

o]

Prmax=20.09%

Model I only

Model I +Rigid Body Motion
(a) (b)

Fig. 9: Artificial pore generation for Model I with (a) and without (b) rigid body motion,

showcasing the transient local porosity@,,q, of 20.09%.
b
3.4 Effect of the ratio %

Since the microstructure in sintering tends to evolve in a direction to decrease the total free

energy F* consisting of grain boundary energyF,,, and surface energy Fg¢, as shown in Eq. (18),

and that the void production phenomenon creates surfaces by replacing grain boundaries, then

gb
the ratio ]]//Tf may have significant effect on artificial pore generation. To numerically test how

gb gb
the ratio }),,Tf affects the void production in Model I, four different ratios of Y are employed, and

ysf
the model parameters corresponding to each ratio are given in Table 3. Note that the phase-field
gb
parameters are adjusted to reach the specified ratio of ))/,Tf according to their map with material

properties as shown in Eq. (12).
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Table 3 The normalized parameters employed in Model I. The diffusivities D and the mobility L
were fixed to DS/ = 960.0, D97 = 96.0, DV°! = 9.6 and L = 1, respectively.

Parameters
Cases a B Ke Ky v v vy | fmax
I 16.00 1.00 2.13 0.75 1.00 1.92 0.52 1.44%
II 16.00 3.20 2.40 2.40 3.20 3.20 1.00 4.89%
I 16.00 10.59 3.32 7.94 10.59 7.51 1.41 20.09%
v 16.00 16.00 4.05 12.00 16.00  10.67 1.50 86.00%

All the test cases have the same initial microstructure as shown in Fig. 7a. Figure 10 selects the

microstructure morphologies when the local and largest transient porosities ¢, q,1s reached for
gb
the respective setting of ]}/,Tf The difference (1- @,q4,) 1s employed as the lower bound of the

color bars for the respective ratios, and @, is listed in Table 3 for each case. It is seen that the

. oy9b . . . . .
ratio ]]/,Tf significantly influences the local porosity generated at the grain boundary junctions.

y9b

The locally introduced @, 4, increases as the ratio 57

rises. Physically, this is due to the fact that

generating more voids (thus more surfaces are replacing grain boundaries) at grain boundary

gb

junctions helps decrease the total free energy of the system as ]]/,Tf increases. Mathematically,

b
according to Egs. (12) and (13), the ratio % in Model I can be expressed as:

ygb 12
szg—w,a>0,ﬁ>0 (56)
LS
. gb . . .
For a fixed parameter «a, ]]/,Tf rises when parameter 8 increases, as is employed in Table 3. From

Eq. (10), the driving force for artificial void generation also becomes larger when f goes up for a
fixed initial microstructure (and thus fixed S, in Eq. (10)). As such, the driving force for
... . . . . y9b . .

fictitious pore productions is proportional to the ratio o and the transient porosity @pqx

gb

increases due to the locally enlarged driving force as the ratio ]]/,Tf increases. Note that Model 11
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gb
produces similar microstructures as shown in Fig. 7¢ for all the employed ratios of }},,Tf in Table 3,

and almost no local porosity is observed. As such, the microstructures from Model II are not

shown for simplicity.

o]

/

Artificial Void

CON
Pmax—=36.00% !0
£0.785

0.570

CON
Prmax=20.09% 100
£0.950

0.900

2 Roasss

/ 0140
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{0.849

“0.799
Artificial Void

Fig. 10: Artificial void productions in Model I when the local and largest transient porosity
Omax i reached for different ratios of y92/yS/: (a) y92 /ySF = 0.52, (b) y92 /¥ = 1.00, (c)
v9P /yST = 1.41, and (d) y9? /y$/ = 1.50.

To better visualize the regions that could be affected by artificial void production, a threshold of
¢ = 5% is employed, i.e., the lower bound of the color bar is set to be 0.95. Figures 11a and 11b
re-depict the voids corresponding to the transient porosity ¢,,q, when y92/yS/ = 1.41 and
y9? /y$f = 1.50, respectively. The domain with dark blue color represents the locations where at

least a local porosity of ¢ = 5% has been produced.
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Fig. 11: Microstructure morphologies with dark blue regions representing the locations where at

least a local porosity of ¢ = 5% is produced: (a) y9° /yS/ = 1.41, (b) y9? /¥ = 1.50.

3.5 Discussion

b
Note that the ratio % is related to pore stability as analyzed in [74]. As shown in Fig. 10, the

gb
ratio ))/,Tf also significantly affect the generation of the transient porosity ¢, It is worth noting

that their effect on ;4 is in addition to that on pore and junction stabilities in the sense that the
transient porosity @, does not exist within the initial microstructure and is instead generated
artificially due to the interfacial inconsistency defined in this work. When external stress is
applied to assist sintering, as in pressure-assisted sintering, @,,., Will introduce local stress
concentrations and may offer spurious sites to initiate defects, such as cracks, and may change
the kinetic evolution path. As such, even though ¢,,,, may be transient, it may be necessary to

remove the non-physical porosity ¢, if @ more accurate kinetic process is wanted.

4. Validation and application of Model 11
The interfacial consistency of the proposed Model II has been theoretically protected in Section 2
and has also been numerically confirmed in Section 3. In this section, Model II will be validated

against both theoretical models and sintering experiments.
4.1 Dihedral angle

According to [1-3], the theoretical dihedral angle between two equally-sized particles at sintering

equilibrium is given as:
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y9? = 2y cos (g) (57)

b
where 0 is the dihedral angle shown in Fig. 12. By adjusting the ratio %, different dihedral

angles can be reached. In this study, the ratio is set to be 1.0 and 1.5, respectively, with 8 to be
120° and 83° accordingly. The corresponding phase-field simulations are performed with the
parameter settings in Table 4. The dihedral angles predicted from the respective phase-field

analysis are shown in Fig. 12, where a good agreement with Eq. (57) is achieved.

Table 4 . The employed phase-field parameters for the proposed Model II in the dihedral angle

b
study with DS/ = 2304.0, D9% = 230.4, D" =23.04, L =1 for Y = 1.00 and D =

ysf
b
7680.0, D9° = 768.0, DV°! = 76.8,L = 1 for% = 1.50.
a* B* K¢ Ky y9P ad Y9t Jyst
38.40 3.20 4.80 2.40 3.20 3.20 1.00
128.00 16.00 16.00 12.00 16.00 10.67 1.50

(@) (b)

Fig. 12: the phase-field dihedral angles from Model II with (a) y9° /y$/ = 1.0, 8 =120°, and (b)
y92/y*f = 1.5, 6 =83°.

4.2 Neck growth
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In this section, the same two-particle model as employed in Section 4.1 is also used to check the
validity of Model II by comparing the dynamic neck growth as a function of time from both

phase-field simulation and theoretical analysis.

The theoretical neck growth of the employed two-particle model may follow a power-law form
given by [19]:

(i)n = Bt (58)

Dp

where X is the neck length, D, is the particle diameter, ¢ is time, and B is a constant related to
geometrical assumptions and material properties. Note that the exponent n in Eq. (58) may be
different for different diffusion mechanisms, and may also differ among different theoretical
models employing different assumptions of geometrical simplifications [19]. For example, n

could take the value of 5, 6, or 7 for surface diffusion under different analytical models.

nin;
59b

In the phase-field simulation, the neck diameter X is normally evaluated as X = [ dA [49].

However, for the proposed Model II, it is found that the following evaluation of X matches the

actually neck diameter observed numerically, as mentioned in [57]:

X=6/ {M} dA (59)

59b

The validity of Eq. (§9) is given in Appendix B.

Table 5 Comparison of the phase-field exponents n with theoretical counterparts under different

diffusion mechanisms

Diffusion mechanism n(t<10) n (t <20) n(t <100) n (theoretical)
I: All diffusion mechanisms 6.25 6.47 6.64 6,7

II: Grain boundary diffusion 5.97 7.48 8.70 6

III: Surface diffusion 4.06 4.57 5.40 5,6,7

IV: Volume diffusion 3.42 4.30 5.58 4,5
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Thanks to the versatility of phase-field formalism, four different settings with the respective
diffusion mechanisms in Table 5 are considered to check the capability of the proposed Model 11

to capture different diffusion mechanisms against theoretical models. Since analytical models are

generally applicable when DL < 0.3 [19], the data of the phase-field neck length X is fitted
1]

against Eq. (58) for r < 10, r < 20, and ¢ < 100, respectively. The fitted exponent n for the
respective phase-field setting and the theoretical values are given in Table 5, and the fitted
power-law with all diffusion mechanisms activated is shown in Fig. 13. In general, the phase-
field exponent n is within the theoretical range, and the discrepancy may be attributed to the fact
that the geometry corresponding to the neck growth data employed in the phase-field fitting may
differ from the ones simplified in the analytical models and that the fitted exponent 7 is sensitive
to the data employed in the fitting process at different sintering stages (corresponding to different

geometries of the two-particle model).

~04F k = i
S
= —fitted to <100
2031 ; —fitted to t<=20,extrapolated to {>20| ]
1:) : fitted to t<=10,extrapolated to t>10
i * Neck length
@ 0.2/ 1
: |
® |
2
0.1 :
Q
I |

O L? 1 1 1 1 1 1 -

0 10 20 40 60 80 100

t
Fig. 13: Relative neck growth as a function of time #; scattered points are from phase-field
simulation and solid lines are the fitted power-law corresponding to data employed in the fitting

at different times.
4.3 Sintering experiment of silver nanoparticles
In this section, the proposed Model II is applied to the sintering process of silver nanoparticles

and is compared to the experiment in [86]. The material parameters involved in the developed
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phase-field framework are the grain boundary diffusion coefficient D9?, surface diffusion
coefficient D5/, volume diffusion coefficient D¥°!, grain boundary mobility 992, specific grain
boundary energy y97, and specific surface energy y/. The diffusion coefficient generally

follows the Arrhenius equation given as:

9

D = Dye kT (60)

where D, is a temperature-independent constant, @ is the activation energy, T is the temperature,
and kj, is the Boltzmann constant. The employed material properties are listed in Table 6. The
grain boundary diffusivity D9% is typically of the order between surface and volume diffusion

coefficients, and is assigned to be DI% = 0.1D5/, as suggested in [47, 49].

Table 6 The employed material parameters of silver nanoparticles

Property Value Units Reference
ys! 1.14 J m?2 [87]
y9P 0.79 J m? [88]
o/ 40x101 ] [89]
py 50 m’s’! [89]
gvol 32151010 ] [90]
Dy 0.67 x10*  m?s’! [90]
99b 10°1 m*J sl [91]

According to the map between materials properties and phase-field parameters defined in Eq.
(53), the values of the following model parameters are determined: a* = 6.84x10° Jm?, p* =
3.95%108 Jm?, k= 3.42x107 J/m, K,’; = 1.185%10™ J/m. Note that since the surface thickness
557 is not available, 8% is assumed to be equal to the grain boundary width §9?, and is set a
value of 2 nm. Then the employed phase-field parameters and diffusion coefficients are
normalized to make them numerically friendly. The normalized parameters and materials

properties are given in Table 7.
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Table 7 Normalized phase-field parameters and material properties employed in the simulation

of sintering of silver nanoparticles.

at ﬁ* Kz‘ K';k’ DSf ng Dvol L

17.32 1.00 19.48 6.75 22.88 2.29 0.14 26.33

The simulation domain is set to be 128 nm x 64 nm and is spatially discretized by a 192x96 grid.
Figure 14 shows the microstructure evolution of two equally sized silver nanoparticles with a
diameter of 40 nm sintered at 400 °C at different times, and is compared with experimental
observations in [86]. A reasonable match is achieved between phase-field predictions and
experimental inspections in terms of microstructure morphologies. As reported in [86], the
presence of carbon on the particle surfaces introduces impurities and may change the surface
diffusion coefficient. As such, the uncertainties in the employed material properties and the
geometry difference between the phase-field powders and the actual particle shapes may account

for the observed discrepancy.
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(2) 0 min i | (k) 15 mins

Fig. 14: Microstructure evolution of silver nanoparticles sintered at 400 °C: (a-c) in situ TEM
observations, and phase-field predictions. The microstructure is pictured by respectively
employing the phase-field C (“Con” in plots d-f,) to view the particle compact as a whole, and

using the summation of (Cn;)? + (Cn,)? (“ORP” in the plots g-f) to view individual grains.

5. Summary and Conclusions

This work is aimed to propose a novel free-energy-based and interfacially consistent phase-field
model for solid-state sintering. In this work, the interfacial consistency is defined as follows: a
phase-field model is termed interfacially consistent if the phase-field free energy does not offer a
driving force for generating artificial voids at junctions of grain boundaries when the
polycrystalline powder compact is fully dense. Physically, interfacial consistency means that a

void should not be generated if it does not exist.
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Through a mathematical analysis of the well-known and widely employed phase-field model in
[47], which is termed Mode I in this work, it is found that artificial voids may be produced at the

junctions of grain boundaries and that the ratio of specific grain boundary energy to specific

y9P

surface energy 7 has a significant effect on this non-physical pore generation, which is in

addition to their effect on pore and junction stabilities as analyzed in [74-76]. Numerical tests
have been performed to confirm the mathematical analysis. In addition, the phase-field model
parameters in Model I may constrain the relationship between grain boundary width and surface
thickness, which may introduce an inconsistent map between model parameters and material

properties.

Inspired by Model I, a novel phase-field free energy, termed Model II in this work, is proposed
and analyzed mathematically. By carefully decoupling the surface energy and grain boundary
energy contributions to the total free energy, it is shown that the proposed free-energy-based
phase-field model protects interfacial consistency analytically, which is also confirmed
numerically under different settings. The phase-field parameters in Model II also free the
constraint on grain boundary width and surface thickness and have a consistent map with
material properties. In addition, Model II shares the advantages of the state-of-the-art phase-field
models of sintering, the recent grand-potential-based models, while requiring a considerably

smaller subset of the material parameters and being easier to implement.

The validity of Model II is tested by comparing the phase-field dihedral angles and dynamic
neck growth with that from theoretical models and experiments. It is shown that the phase-field
dihedral angles match well with the ones from theoretical predictions. The neck growth behavior
from phase-field simulations has a reasonable agreement with that of the analytical models. The
discrepancy may be due to the mismatch between the geometrical simplifications employed in
theoretical analysis and the phase-field microstructure shape utilized for comparison. The
microstructure evolution of silver nanoparticles from phase-field simulation also shows
acceptable accuracy compared to the counterparts from sintering experiments. And the impurity-

introduced uncertainty in the employed material parameters may account for the distinctions.
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In the future, the incorporation of the rigid-body motion effect, especially in pressure-assisted
sintering where external stress is applied to assist and accelerate sintering, will be pursued. The
extension to non-isothermal sintering and the inclusion of grain boundary anisotropy are
directions also worth pursuing.

Data Availability

Data will be made available on request.
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Appendix A

For a flat surface between a semi-infinite solid grain and a semi-infinite vapor phase, the specific

surface energy %/ of Model I may be defined as follows:

e [T 2

f(C,n) =aC?*(1 - C)* + BIC* + 6(1 — O)n?* —4(2 - O +n*]

(A.1)

(A.2)

with the x-direction perpendicular to the surface. According to the Euler-Lagrangian equation, C

and 7 satisfy the following equations as a stationary point of y/:

%f{n)_"n(%):o

with boundary conditions given as:
C=1landn=1forx — +o
C=0andn=0forx — —oo

Across the surface (vapor-particle interface), it may be reasonable to expect that:

dn dc
—_— 0( —_—
dx dx

And when boundary conditions are applied, we have:

C(x) =n(x)
dn _ de
dx ~ dx

Based on Beltrami identity, the following holds:
-2 2] o
G 2 \dx 2 \dx -

Substituting Eq. (A.9) to Eq. (A.10) and Eq. (A.8) into Eq. (A.2), we have:
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(A.5)

(A.6)

(A.7)

(A.8)

(A9)

(A.10)



dc _dn_ [ 2
dx  dx KC+K,7f(C’n)

f€n=0) = (@+7p)C*(1-C)?

The surface thickness 5%/ may be estimated as follows:

a+7B

1 dc 2

Then 6%/ is given as:

sz _ 8(;c5+;cn)
a+7B

. . 6
As in Eq. (13), parameters @, 8 , k. and k,, are constrained as K—ﬁ

n
% __a+t7p

Ky Kctiy

Plugging Eq. (A.15) into Eq. (A.14), we have:

sf — [*n
0% = Y:

From Eq. (12), §9° = ’% Thus, we get:
(sz — 6gb

Appendix B

a+ . .
= K—ﬁ which gives:
(o

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

In 2D, according to the equality of the grain boundary area, the following equation may hold:

A 591;
w 2 d é
<f_21f §gb7]i71j xdy) = Sgbl, ézib <y < %, —
7 —0 =X =

(B.1)

where w is a constant, &g, is the grain boundary width, and 4 is the neck length. Assuming a

linear profile of n; across the grain boundary, as employed in the evaluation of grain boundary

width, we may have:
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2
Sgb
1.1 .3 _
a)(4x 6gb2x>_sg_b— gb (B.5)
2
From Eq. (B.5), we have:
1
gw6gb = 5gb (B6)

As such, the constant w = 6 and the neck length A is evaluated as:

A=ow [Higs (B.7)

Sgb

Since the ith grain in the proposed Model II is represented by Cn;, the neck length is calculated

as:

a=6 {2 an (B.8)
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In fully dense power compact under sintering, existing Model I may produce artificial
voids and the proposed Model II avoids this issue. Artificial voids may delay
microstructure evolution. The figure shows microstructure morphologies when a triple
junction reaches the selected spatial point (6n, 6m) after the quadruple junction splits
into triple junctions from the respective Model I (a-b) when ¢ = 15s and Model II (c-d)
when ¢ = 14.1s.




