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Abstract 

In this work, a new free-energy-based and interfacially consistent phase-field model for solid-

state sintering has been proposed. A phase-field model is considered interfacially consistent if it 

does not generate any spurious voids at the junctions of grain boundaries in fully dense powder 

compacts during sintering. A mathematical analysis of Model I, a well-known and widely 

employed free-energy-based phase-field model, found that it may produce a spurious driving 

force at the junctions of grain boundaries, which could impede the kinetic pathway of grain 

growth. The locally generated non-physical porosity is significantly affected by the ratio of 

specific grain boundary energy to specific surface energy. Building on Model I, a novel free-

energy-based phase-field model, termed Model II, has been proposed to protect interfacial 

consistency by decoupling the respective surface energy and grain boundary energy 

contributions to the overall free energy of the system. The theoretical analysis of both models has 

been numerically confirmed. Finally, Model II has been validated by comparing the phase-field 

dihedral angles and dynamic neck growth with those obtained from analytical models and 

experiments. Given the freedom in formulating free energies as a function of phase-field 

variables, interfacial consistency could serve as a criterion for constructing phase-field models 

free from artificial phase generation. 

Keywords: Phase-Field modeling; Interfacial consistency; Artificial void generation; 

Microstructural evolution; Solid-state sintering 
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1. Introduction 

As one of the most dominant materials processing techniques, sintering is the thermal 

consolidation of discrete powder ensembles to build a coherent compact component at elevated 

temperature (but below the melting point) [1-3]. As a major technological process with a long 

historical development, sintering has continually found new applications [4, 5]. For example, 

sintering is the crucial step in fabricating ceramic-based solid-state electrolytes for new batteries 

with better energy efficiency and safety [6, 7] and in the production of thermal interface 

materials in electronic devices with improved thermal performance [8, 9]. Other examples 

include the fabrication of ceramic and metal-based bioimplants from additive manufacturing [10], 

to name a few.  

 

To develop new and improved materials with tailored microstructures and thus pre-defined 

properties, it is highly desirable to have a deep understanding of the sintering mechanisms and 

the accompanying microstructure evolution. Thermodynamically, the driving force for sintering 

is to reduce the surface energy of powder particle ensembles. Kinetically, surface energy 

reduction is achieved by the transport of materials to extend the contact area between particles 

and grains under appropriate conditions of temperature, pressure, and environment. In solid-state 

sintering, materials transport is generally achieved by cooperative surface diffusion, grain 

boundary diffusion, volume diffusion, rigid body motion, and vapor transport (evaporation-

condensation) [11-14]. Due to the complex materials transport mechanisms, the dramatic and 

evolving geometry change, and the interplay with process parameters, it is challenging to predict 

the microstructure evolution during sintering with experiments[11, 15, 16] and analytical models 

[17-19] employing simplified geometries alone, calling for numerical modeling approaches[20]. 

 

Among the developed modeling schemes for solid-state sintering [21-46], the phase-field 

approach distinguishes itself from others by the appealing feature that the various materials 

diffusion mechanism involved in sintering can be naturally captured by introducing phase-field 

variables to define the corresponding diffusion path without explicitly tracking the evolving 

microstructure features, such as surfaces and grain boundaries [13, 47-70]. And the existing 

solid-state sintering models based on the phase-field approach may be classified into two 
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categories: the free-energy-based group [47] and the grand-potential-based group recently 

proposed in [55, 65, 71].  

In the free-energy-based group, the energy of the discrete powder ensemble consists of surface 

energy and grain boundary energy. A conserved phase-field variable is employed to differentiate 

the powder grain phase and the surrounding vapor phase, and a set of non-conserved phase-field 

variables is used to differentiate powder grains with different crystal orientations. The key idea 

generally consists of two steps: (I) Thermodynamically, the free energy of the discrete powder 

ensemble is depicted as a function of the introduced phase-field variables; (II) Kinetically, the 

different material transport mechanisms and the accompanying microstructure changes are 

captured by the temporal and spatial evolutions of the introduced phase-filed variables governed 

by the respective Cahn-Hillard and Allen-Chan equations with the driving forces coming from 

reducing the defined free energy. One of the pioneering works in this group was originally 

proposed in [47] and is widely employed to study sintering under different conditions [48-54, 56-

61, 66, 67].  

 

In the recently proposed grand-potential-based category, instead of employing a free energy 

functional, the energy of the discrete powder ensemble consists of surface energy, grain 

boundary energy, and grand potential contributions from the respective solid and vapor phases. 

A non-conserved phase-field variable is employed to differentiate the powder phase and the 

surrounding vapor phase and a set of non-conserved phase-field variables is used to differentiate 

different grains. The mass conservation is achieved through the diffusion equation of phase 

concentrations and the Allen-Chan equations are employed to describe the evolution of the 

introduced phase-field variables. The key features of models in this group are that the interfacial 

properties are decoupled from the grand-chemical-potential contribution and that instead of 

solving for concentration, the evolution of the chemical potential is solved directly. Two 

representative models in this category have been proposed and they differ from each other 

through the employment of different formulations of the interfacial energies, with one using the 

obstacle-type potential energy term [55] and the other employing the multiwell-type energy 

contribution proposed in [65]. 
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From the introduction of the respective category, it is seen that the two groups differ from each 

other in the following three aspects: (I) the free-energy-based approach does not introduce 

chemical energy contributions from the respective solid and vapor phases and considers only the 

interfacial energies; (II) the free-energy-based group employs a conserved order parameter to 

differentiate solid powder phase from the surrounding vapor phase while the grand-potential-

based category uses a non-conserved phase-field variable; (III) the free-energy-based approach 

directly solves the Cahn-Hilliard equation for the conserved phase-field variable while the grand-

potential-based group directly solve for the chemical potentials. 

 

In this manuscript, we will focus on analyzing the free-energy-based approach. As a pioneering 

and representative example, the model proposed in [47] will be analyzed and is termed Model I 

in this work. Model I has been widely employed and extended to investigate the underlying 

physical mechanisms and microstructure evolutions under different processing conditions in 

sintering [48-54, 56-61, 66, 67]. For example, Model I was utilized to explore the condition 

under which grain growth is sensitive to the level of porosity [48]; the sintering of silver 

nanoparticles was investigated by Model I for applications as thermal interface materials [49]; 

the microstructure evolution in direct ink write (DIW) additive manufacturing was examined 

using Model I to explore the phase space of DIW process parameters with the target to find the 

ones that lead to optimal microstructures[60]. In addition, Model I has also been extended to 

incorporate the effects of non-isothermal conditions [51, 54, 61], elasticity[58], anisotropy of 

grain boundary[53], and external pressure[52] on the microstructure evolution under sintering. 

 

However, there is a lack of mathematical and interfacial analysis of Model I. Specifically, the 

following key question has not been analyzed: is the phase-field free energy of the discrete 

powder particles under sintering interfacially consistent? Since free energy is the source to offer 

driving forces for microstructure evolution in sintering, it is highly worth analyzing. In this work, 

we provide a condition for interfacial consistency, which is stated as follows: phase-field free 

energy is termed interfacially consistent if it introduces no driving forces for an artificial void 

generation at the junctions of grain boundaries when the polycrystalline powder compact is fully 

consolidated. Physically, it means that if there is an absence of pores in the system, a void should 
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not be generated. It is worth noting that the interfacial consistency defined in this work is similar 

to the dynamical consistency mathematically defined in [72, 73]. 

 

In light of the absence of phase-field free energy analysis for sintering and upon the defined 

interfacial consistency, we perform a mathematical analysis of Model I and find that artificial 

voids may be generated locally at the junctions of grain boundaries in fully dense powder 

ensembles. Factors such as the ratio of specific grain boundary energy to specific surface energy 

significantly affect the amount of non-physical pore production in addition to their effect on pore 

and junction stabilities [74-76], which is also confirmed numerically. Furthermore, the 

relationship between materials properties and phase-field parameters in Model I may not be 

consistent in the sense that material grain boundary width is constrained to be equal to the 

surface thickness. 

 

Motivated by these findings, we propose a novel phase-field model within the free-energy-based 

category, termed Model II in this work, to protect the defined interfacial consistency. The main 

idea is to decouple the respective surface energy and grain boundary energy contributions to the 

total phase-field free energy to ensure that the interfacial consistency in Model II is satisfied and 

that the map between materials properties and phase-field parameters is consistent without 

introducing constraints on the independent materials properties. Model II is also validated by 

comparing the results from both analytical models and experiments. 

 

The rest of the manuscript is organized as follows. Section 2 first performs a theoretical analysis 

of the termed Model I to point out the source rooting for the interfacial inconsistency, and then 

proposes the named Mode II and shows its insurance of interfacial consistency. A comparison 

between grand-potential-based models and the free-energy-based Model II is also given in 

Section 2; Section 3 numerically confirms the theoretical findings analyzed in Section 2 by 

designing appropriate examples. Section 4 discusses the validity of the proposed Model II by 

comparing its dihedral angles and dynamic neck growth with that from analytical models and 

experiments. Section 5 concludes with closing remarks on the performance of the proposed 

phase-field model, and discusses the future research directions. 
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2. Theoretical analysis 

This section introduces Model I which has been widely employed to describe the microstructure 

evolution in solid-state sintering. Then the interfacial consistency of Mode I is analyzed 

mathematically, where it is shown that artificial void generation may occur. Subsequently, a 

novel phase-field free energy of Model II is proposed and inspected to ensure interfacial 

consistency.  

 

2.1 Model I 

2.1.1 Model introduction 

As mentioned in [47], both conserved and non-conserved phase fields are introduced to fully 

characterize the microstructure features involved in solid-state sintering, as shown in Fig. 1. The 

conserved phase-field C is introduced to differentiate the powder compact from the surrounding 

vapor phase and is defined as follows: 

  = 


, 0 ≤  ≤    (1) 

where  is the density of the vapor-powder mixture,  is the density of powder particles, and the 

density of the vapor phase is ignored. As such, C takes the value of 1 inside the powder compact, 

0 in the vapor phase, and varies smoothly but sharply across the surface (vapor-particle interface). 

The non-conserved phase-field  is introduced to differentiate crystallographic orientations of 

powder particles and takes the value of 1 inside the ith particle, 0 elsewhere, and changes 

continuously but rapidly across the grain boundaries.  
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Fig. 1: Schematic illustration of different diffusion mechanisms and the profile of the introduced 

phase-fields C and  along the green line connecting the centers of the two grains. 

After the introduction of phase-field variables to depict the microstructure features, the next step 

in phase-field formalism is to express the free energy ℱ of the system of interest in terms of the 

defined phase fields. In general, the free energy ℱ may be expressed as follows [47, 77]: 

 ℱ =  ,  + 


∥∇∥ + 


∑ ∥∥∇∥∥

   dΩ"    (2) 

and ,  is given as [47]: 

,  = #1 −  + & ' + 61 −  ∑ 


 − 42 −  ∑ 
+

 + 3 -∑ 


 .


/  (3) 

Physically, ℱ consists of surface and grain boundary energies. In Eq. (2), ,  is the bulk free 

energy density, # and & are model constants, 01 and 02  are the respective gradient coefficients 

for the conserved phase-field C and non-conserved phase-field , and 34 is the total number of 

grains with different crystallographic orientations. 

 

Then the driving forces for the evolution of the employed phase fields can be obtained through 

the variation of the free energy ℱ  to the corresponding phase field variable, i.e., 
5ℱ
51  (Strictly 

speaking, 5ℱ
51

 are the chemical potential of phase-field C and the gradient of 
5ℱ
51

 gives the driving 

1. Surface Diffusion 

2. Grain Boundary Diffusion 

3. Volume Diffusion (Matter from Bulk) 

4. Volume Diffusion (Matter from Bulk) 

5. Volume Diffusion (Matter from Surface) 

6. Evaporation-Condensation (Matter 

from Surface) 

Grain 1 Grain 2 
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force) and 
5ℱ
527

, and their evolutions are governed through the modified Cahn-Hilliard and Allen-

Cahn equations, respectively [47]: 

 
81
89 = ∇ ∙ -;∇ 5ℱ

51. + ∇ ∙ J1 + =1  (4) 

 
827
89 = −> 5ℱ

527
+ ∇ ∙ J2 + =2  (5) 

where M is the atomic mobility, L denotes the Allen-Cahn mobility, J1 and J2 are the respective 

flux contributions coming from rigid body motion, =1  and =2  are the Langevin noises. 

Theoretically, M is a second-order tensor. Since M is considered to be isotropic in this work, M is 

taken as a scalar. M describes the rate at which the measurable quantity defined by the phase-

field C changes and may be related to the diffusion coefficient as follows to recover Fick’s law 

[78]: 

 ; = ?@AA -8Bℱ
81B |1.

D
  (6) 

where ?@AA is the effective diffusivity and is defined as: 

 ?@AA = ?EFGH + ?IA1 −  + 2?JK ∑ ∑ L

LM


   (7) 

where ?IA, ?JK, and ?EFG are the respective surface, grain boundary, and volume diffusivities, 

H is an interpolation function given as H = +10 − 15 + 6. L describes the rate at 

which the structure of the atoms defined by the phase-field  changes with time, and may be 

estimated as [79]: 

 > = OPQRPQ


  (8) 

where SJK is the grain boundary mobility and TJK is the specific grain boundary energy. As the 

phase fields  and  are introduced to depict microstructure features and the evolution of both 

phase fields through Eqs. (4) and (5) pictures the microstructure changes during solid-state 

sintering and guarantee that the microstructure is evolving in a direction that decreases the free 

energy ℱ [80]. 
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2.1.2 Analysis of the phase-field free energy 

The phase-field free energy ℱ in Section 2.1.1 has been widely employed in the community to 

predict microstructure evolution in solid-state sintering. This section analyses the interfacial 

consistency of ℱ: will artificial voids be generated at the junctions of grain boundaries in fully 

dense particle compacts? 

 

Note that rigid body motion contributions (i.e. J1 and J2) and Langevin noise terms (i.e. =1 and 

=2) in Eqs. (4) and (5) are not considered when the following analysis is performed. This is based 

on the following reasons: (I) the driving force (i.e. 
5ℱ
51

) for artificial void generation (as will be 

shown in this section) comes solely from the proposed phase-field free energy ℱ , and is 

independent of the kinetic rigid body motion and Langevin noise, as seen in Eq. (4); (II) 

considering rigid-body motion and Langevin noise will make the voids purely generated from 
5ℱ
51

 

less clear, as observed in Eq. (4); (III) for the numerical examples employed in this work, the 

kinetical mass transport path through rigid-body motion may be limited in already-dense particle 

compact (as will be shown in Section 3) and the focus here is on interfacial consistency, i.e., the 

phase-field free energy ℱ. As such, possible rigid-body motion is not considered in this work and 

will be employed in future extensions as suggested in [13, 14, 47]. 

 

According to Eq. (4), the driving force solely coming from the free energy ℱ for the phase-field 

C is given as: 

 
5ℱ
51

= 2#1 − 1 − 2 + & -2 − 6 ∑ 


 + 4 ∑ 
+

 . − 01∇  (9) 

When the polycrystalline powder compact is fully consolidated and the vapor phase disappears, 

i.e., C =1 across the powder aggregates, we have: 

 
5ℱ
51

= &U2   (10) 

where parameter & is a positive constant as will be given in section 2.1.3, and U2 is given as: 

 U2 = -2 − 6 ∑ 


 + 4 ∑ 
+

 .  (11) 



11 
 

At the grain boundary between grains V and W, generally U2 ≠ 0. For example, at the junction 

where three gains meet as shown in Fig. 2, supposing  =  =  = 
+
 (as ∑ 

+
 = 1), we 

have U2 = 0.44, and when four grains meet, U2 = 0.75. 

 

Fig.  2: Scanning electron microscope image of yttrium aluminum garnet after sintering for 3 min 

at 1400℃ [81]. 

Generally, since & > 0 and U2 ≠ 0 at the junctions where grain boundaries meet, it is seen from 

Eq. (10) that the driving force for the phase-field C is not zero. As such, this spurious driving 

force may generate non-physical pores inside the fully solid powder compact. Note that: (I) if 

external pressure is applied to accelerate sintering (as is often employed in pressure-assisted 

sintering), the artificial voids will lead to local stress concentration and may serve as sources to 

initiate fictitious cracks; (II) if the predicted microstructure is employed to perform 

micromechanical analysis to obtain effective material properties of sintered products, the non-

physical void generation will pollute the accuracy. Therefore, it may be important to ensure the 

interfacial consistency defined in this work. 

 

When the phase-field model tends to generate voids, it creates more surfaces. Since the phase-

field free energy ℱ consists of surface energy and grain boundary energy, and the microstructure 

is evolving in a direction to reduce the total free energy, then the competition between specific 

grain boundary energy TJK  and specific surface energy TIA , i.e., the ratio  
RPQ

R\] , must have a 

significant effect on non-physical pore production. In Section 3.2, we will justify the 

aforementioned reasonings both mathematically and numerically. 

Quadruple 

junctions 
Triple 

junctions 
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2.1.3 Analysis of the phase-field parameters 

Through a quantitative analysis procedure employed in [48, 79], the relationship between 

parameters #, &, 01  and 02  in the phase-field free energy ℱ and material properties in Model I is 

derived and given as follows [48, 49, 79]: 

 

^
_
`

_
aTIA = √

c d01 + 02d# + 7&

TJK = 
√+ d&02

eJK = fg
+h

 or  

^
__
`

__
a# = 12 R\]

5\] − 7 RPQ

5PQ

& = RPQ

5PQ

01 = +
 TIAeIA − +

g TJKeJK

02 = +
g TJKeJK

  (12) 

where eJK and eIA are the respective grain boundary width and surface thickness. Note that in 

Model I, the phase-field parameters #, &, 01  and 02  are constrained as follows[48, 49]: 

 
ch


= ijh


  (13) 

As such, there are essentially 3 independent phase-field parameters. Since we have four material 

properties, i.e., TJK, TIA, eJK, and eIA, which, in general, are independent of each other, then 

there exists an inconsistency in the map between phase-field parameters and material properties, 

and there must be a hidden constraint on the material properties. Through a detailed analysis 

given in Appendix A, it is found that the constrain on the material properties is given as: 

 eIA = eJK  (14) 

Since surface thickness eIAmay be different from the grain boundary width eJKphysically [34-

36], Eq. (14) may introduce unnecessary constraints. 

 

2.2 The proposed Model II 

2.2.1 The novel phase-field free energy ℱ∗ 

Inspired by Model I and the analysis in Section 2.1, we propose a novel phase-field free energy 

ℱ∗ to assure interfacial consistency, and ℱ∗ is proposed as follows: 

 ℱ∗ =  ∗,  + 
∗


∥∇∥ + ∗


3 ∑ ∥∥∇∥∥

   dΩ"   (15) 
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and ∗,  is given as: 

 ∗,  = #∗1 −  + &∗3 l1 − 4 ∑ 
+

 + 3 -∑ 


 .


m  (16) 

 3 = n1 + 21 −  + o1 − p, o > 3  (17) 

where the starred symbols in Eqs. (15)-(17) are the counterparts of the quantities defined in 

Section 2.1, 3 is the employed interpolation function, and o is a constant. To better discuss 

the structure and property of the proposed free energy ℱ∗, Eq. (15) is reorganized as follows: 

 ℱ∗ = ℱIA
∗ + ℱJK

∗   (18) 

 ℱIA
∗ =  -#∗1 −  + 

∗


∥∇∥. dΩ 

"   (19) 

 ℱJK
∗ =  3 q&∗ l1 − 4 ∑ 

+
 + 3 -∑ 


 .


m + ∗


∑ ∥∥∇∥∥

 r dΩ 
"   (20) 

where ℱ∗ consists of surface energy ℱIA
∗  and grain boundary energy ℱJK

∗ . The interpolation 

function 3 is carefully designed to decouple ℱIA
∗  and ℱJK

∗ , and is plotted in Fig.3. 

 

 

Fig. 3: The profile of the introduced interpolation function N(C) 

As seen in Fig. 3, 3|1 = 0, 3|1 = 1.The parameter o is required to be larger than 3 

to ensure that 3 has a convex shape in the vicinity of  =1, and is taken to be 3.1 in this 

work. Then the equilibrium value of phase-field C is reached at ,  = 1,1 or 0,1, and the 

equilibrium value of non-conserved phase-field   is reached at ,  = 1,1 with LM = 0. 
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Note that in defining the novel free energy ℱ∗, the Vth grain is represented by the product  .as 

oppose to  in Model I.  

 

As in [47], the evolution equations of introduced phase fields  and  are given as:  

 
81
89

= ∇ ∙ -;∗∇ 5ℱ∗

51
.  (21) 

 
827
89

= −>∗ 5ℱ∗

527
  (22) 

with ;∗ = ?@AA -8Bℱ∗

81B |1.
D

 and >∗ = OPQRPQ


∗ . The proposed model is termed Model II in this 

work. Note that the rigid body motion and Langevin noises are not included in Model II in this 

work for the same reasons as discussed in Section 2.1.2. 

 

2.2.2 Interfacial consistency analysis 

The driving force coming from the phase-field free energy ℱ∗  in Model II for evolving the 

phase-field C is given as: 

 
5ℱ∗

51
= s∗ + 3t -&∗U∗ + ∗


∑ ∥∥∇∥∥

 .  (23) 

where s∗, U∗ , and 3t are given as: 

 s∗ = 2#∗1 − 1 − 2 − 01
∗ ∇  (24) 

 U∗ = l1 − 4 ∑ 
+

 + 3 -∑ 


 .


m  (25) 

 3t = 21 − n3 +  o1 − 2p  (26) 

To estimate the interfacial consistency of Model II, when the powder aggregates are fully solid, 

i.e., C=1 inside the powder phase, we have: 

 
5ℱ∗

51 = 0  (27) 

Eq. (27) holds due to the property that s∗|1 = 0 and 3t|1 = 0. As such, there is no 

artificial driving force for void generation in a fully dense region. Thus, Model II protects 
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interfacial consistency. In Section 3, we will numerically test the interfacial consistency of 

Model II.  

 

2.2.3 The map between phase-field parameters and material properties 

In this section, the relationship between the phase-field parameters #∗ , &∗ , 01
∗ , and 02

∗  in the 

proposed free energy ℱ∗ of Model II and material properties are derived through the quantitative 

analysis procedure in [48, 49, 79]. 

 

Fig.  4: The profile of the introduced phase-field    across a flat and diffuse grain boundary with 

a width eJK. 

Assuming a flat grain boundary between two semi-infinite grains with the respective orientations 

i and j, the profile of  and L across the grain boundary along the x-direction perpendicular to 

the grain boundary may be shown as in Fig. 4 with a width of eJK . Then the specific grain 

boundary energy TJK may be defined as: 

 TJK = u q∗v = 1, , Lw + ∗


x-y27

yz .


+ -y2{
yz .


|r d}

j~

D~
  (28) 

and ∗ is given as: 

 ∗v = 1, , Lw = &∗ l1 − 4v
+ + L

+w + 3v
 + L

wm  (29) 

x=0 

eJK

+∞ -∞ 

 = 1 

 =0 

L = 1 

L = 0 
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According to the Euler-Lagrangian equation,   and L  satisfy the following equations as a 

stationary point of TJK: 

 
8A∗v1,27,2{w

827
− 02

∗ yB27
yzB = 0  (30) 

 
8A∗v1,27,2{w

82{
− 02

∗ yB2{
yzB = 0  (31) 

For boundary conditions, we have: 

  = 1 and L = 0 for } ⟶ +∞  (32) 

 L = 1 and  = 0 for } ⟶  −∞  (33) 

 
y27
yz

= y2{
yz

= 0 for } ⟶  ±∞  (34) 

Since Eq. (28) is symmetric to the profiles of  and L at x = 0, as shown in Fig. 4, we have:  

 
y2{
yz

= − y27
yz

  (35) 

which gives:  + L = áàâäã. From the boundary condition given by Eq. (32), we have: 

  + L = 1  (36) 

Based on Beltrami identity, we get:  

 ∗v = 1, , Lw − ∗


'-y27

yz
.


+ -y2{

yz
.


/ = 0  (37) 

According to Eq. (35) and (37), the following holds: 

 
y27
yz

= fA∗v1,27,2{w


∗   (38) 

 
y2{
yz

= −fA∗v1,27,2{w


∗   (39) 

Substituting Eq. (37) into Eq. (28) gives, 

 TJK = å 2∗v = 1, , Lwd}
j~

D~
  (40) 
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And the bulk free energy is obtained by substituting Eq. (36) into Eq. (29): 

 ∗v = 1, , L = 1 − w = 12&∗
1 −   (41) 

Based on Eqs. (38) and (41), Eq. (40) can be rewritten as: 

 TJK = 2 u ∗ yz
y27

d




= 2 ç ∗f

∗

A∗ d





= 2 u f12&∗
1 − 02

∗d =





√+ d&∗02

∗   (42) 

As shown in Fig. 4, the grain boundary width eJK may be approximated as: 

 


5PQ = -y27
yz

.
z

= fA∗27.é


∗ = f+h∗

g
∗   (43) 

As such, the grain boundary thickness eJK may be estimated as: 

 eJK = fg
∗

+h∗  (44) 

 

Fig.  5: A schematic of the introduced phase-field  across a flat and diffuse surface with a width 

eIA. 

Next, we will derive the relationship between phase-field parameter #∗ , 01
∗  and materials 

properties TIA, eIA. Assuming a flat surface between a semi-infinite solid grain and semi-infinite 

vapor phase, the profile of C along the x-direction perpendicular to the surface may be shown in 

x=0 +∞ -∞ 

 = 1 

 =0 

C 

eIA 
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Fig. 5 with a surface thickness of eIA . The specific surface energy TIA
 may be evaluated as 

follows:  

 TIA = u q∗,  = 1 + 
∗


-y1

yz
.


r d}

j~

D~
  (45) 

Note that in Eq. (45),  is employed to represent the grain phase in the proposed model to 

decouple the non-conserved phase-field  from estimating TIA
. Then the bulk free energy density 

∗,  = 1 is given as: 

 ∗,  = 1 = #∗1 −   (46) 

Following the same procedure employed above, we have: 

 
8A∗1,2

81
− 01

∗ -yB1
yzB. = 0  (47) 

 ∗,  = 1 − 
∗


-y1

yz
.


= 0  (48) 

 
y1
yz

= fA∗1,2


∗   (49) 

Substituting Eq. (48) into Eq. (45), we have: 

 TIA =  2∗,  = 1d}j~
D~ =  2∗,  = 1


yz
y1 d =

f
∗ i∗

c   (50) 

From the profile of } at equilibrium, the surface thickness may be estimated as: 

 


5\] = -y1
yz

.
z

= fA∗1.é,2


∗ = f i∗

è
∗   (51) 

As such, the surface thickness eIA may be given as: 

 eIA = fè
∗

i∗   (52) 

The map between the phase-field parameters #∗ , &∗ , 01
∗ , and 02

∗  defined in Model II and 

material properties  TJK, eJK TIA, eIA are summarized as follows: 
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^
__
_
`

__
_
aTJK = 

√+ d&∗02∗

TIA =
f

∗ i∗

c

eJK = fg
∗

+h∗

eIA = fè
∗

i∗

  or  

^
__
`

__
a#∗ = 12 R\]

5\]

&∗ = RPQ

5PQ

01
∗ = +


TIAeIA

02
∗ = +

g
TJKeJK

  (53) 

Since four independent model parameters #∗ , &∗ , 01
∗  , 02

∗  and four independent material 

properties TJK, TIA, eJK, and eIA are employed in Eq.(53), the map may fix the  inconsistency 

between phase-field parameters and material properties in Mode I as introduced in Section 2.1 

and does not constrain the relationship between eIA and eJK.  

2.3 Comparison of grand-potential-based and free-energy-based sintering models 

The grand-potential-based sintering models separate interfacial properties from extensive 

variables, such as the concentration field, which would otherwise contribute to the driving force 

for non-conserved phase-field variables. This separation is achieved by using the grand potential 

as a function of the intensive variable, i.e., the chemical potential, instead of using the free 

energy as a function of the concentration field [55, 65]. The proposed Model II uses a free-

energy-based framework, but it still decouples the defined concentration, or conserved phase-

field variable C, from grain boundary properties, as shown in Eq. (53). 

As for artificial void generation, the grand-potential-based model in [65] does not introduce 

spurious voids thanks to the employment of the interpolation function proposed in [82] and the 

multiwell function proposed in [79, 82], which has been analyzed in [83]. Another grand-

potential-based model in [55] employs third-order terms of non-conserved phase-field variables 

in the obstacle-type potential energy to suppress artificial phase generation at grain boundaries, 

which requires careful selection of the coefficient corresponding to the third-order term [84, 85]. 

The free-energy-based Model II proposed in this work also does not introduce artificial voids, as 

analyzed in Section 2.2.2. 

As for model complexity, grand-potential-based models require more material parameters than 

free-energy-based Model II due to the introduction of grand potential contributions from the 

respective solid and vapor phases [55, 65]. In addition, since voids do not have measurable 
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energy, the parameters required to build up the grand potential may not be easily obtained. In 

contrast, the free-energy-based Model II proposed in this work does not involve grand potentials, 

so it only requires a considerably smaller subset of the material parameters needed in grand-

potential-based models. Therefore, compared to grand-potential-based models, Model II is 

simpler to implement while sharing its advantages. 

 

3. Numerical test 

In this section, the interfacial consistency analyzed for both Model I and Model II in Section 2 is 

tested numerically. The factors that may affect the artificial void generation phenomenon are also 

investigated by numerical examples. 

 

3.1 Numerical implementation 

The Cahn-Hillard and Allen-Cahn equations in both Model I and Model II are solved by 

employing the central finite difference scheme in spatial discretization and a forward Euler 

method in the temporal domain. An intermediate variable ê∗ , i.e., the chemical potential of 

phase-field C, is introduced to split the fourth-order Cahn-Hillard equation in Model II into two 

second-order equations as follows: 

 
81
89

= ∇ ∙ ;∗∇ê∗  (54) 

 ê∗ = 5ℱ∗

51
= 2#∗1 − 1 − 2 − 01

∗ ∇ + 3t -&∗U∗ + ∗


∑ ∥∥∇∥∥

 .  (55) 

Then the central finite difference approach is employed to approximate the spatial derivatives in 

Eqs. (54) and (55). The same numerical scheme is also applied to Model I. 

 

3.2 Artificial void generation 

3.2.1 Triple junction case 

Fig. 6a shows the microstructure consisting of three grains with grain boundaries represented by 

the yellow lines. Note that no vapor phase is surrounded initially to mode the locally dense 

regions of sintered product. The simulation domain is set to be Ω = 0,14π and is spatially 

discretized by a 128×128 grid. The employed model parameters for Model I and Model II in this 
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setting are shown in Table 1. Since the map between phase-field parameters and materials 

properties in Model II is different from that in Model I, as shown in Eqs. (12) and (53), the 

employed phase-field parameters for Model II are also different from their counterparts 

employed in Model I to assure that both Model I and Model II have the same TJK and TIA. 

 

Table 1  The normalized model parameters that were employed for Models I and II in the 

simulation. The diffusivities ?  and the mobility L were fixed to ?IA = 960.0 , ?JK = 96.0 , 

?EFG = 9.6 and > = 1, respectively.  

Parameters 

Model 
# ∥ #∗ & ∥ &∗ 01 ∥ 01

∗  02 ∥ 02
∗  TJK TIA TJK/TIA  

Model I 16.00 16.00 4.05 12.00 16.00 10.67 1.50 

Model II 128.00 16.00 16.00 12.00 16.00 10.67 1.50 

 

In Fig. 6b and 6c, the microstructures are depicted through the phase-field C, represented by 

“CON” in the work unless otherwise mentioned, to better visualize if there is any void 

production. As such, grain boundaries are not shown in Figs. 6b and 6c.  As defined in Section 2, 

C =1 represents the solid grain phase, C = 0 denotes the vapor phase, and any value in between 

represents a mixture of vapor and solid particle phases. Then the local porosity î can be defined 

as: î = 1 − . Figures 6b and 6c select the respective transient microstructures from Models I 

and II when the largest local porosity îïñz is observed. The lower bound of the respective color 

bar is set to be 1-îïñz to better picture the produced void if any. As shown in Fig. 6b, Model I 

could open up a local porosity î = 9.4% at the junction of grain boundaries, as observed from 

the color bar. In contrast, Model II introduces almost no local porosity. Since no vapor phase is 

present in the initial microstructure, the produced local porosity is non-physical. As such, the 

numerical results are consistent with the theoretical analysis in Section 2. 
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Fig.  6 : Microstructure morphologies from Model I and Model II: (a) initial grain structures for 

both Models I and II with solid yellow lines representing grain boundaries; (b) the selected 

microstructure corresponding to the transient local porosity îïñz = 9.4% observed from Model 

I; (c) the microstructure from Model II without producing local porosity. “CON” represents the 

phase-field C; To better visualize the produced voids, grain boundaries are not shown in (b) and 

(c). This coloring scheme is employed throughout this work unless otherwise mentioned. 

 

3.2.2 Quadruple junction case 

The quadruple junction is unstable and will split into two triple junctions [75, 76]. The purpose 

of employing a quadruple junction is to check if both models can capture the junction splitting 

process and the effects of non-physical voids on the kinetic splitting. The employed model 

parameters are shown in Table 2 for the quadruple junction case. 

 

Table 2  The normalized model parameters that were employed for Models I and II in quadruple 

junction simulation. The diffusivities ? and the mobility L were fixed to ?IA = 960.0, ?JK =

96.0, ?EFG = 9.6 and > = 1, respectively.  

Parameters 

Model 
# ∥ #∗ & ∥ &∗ 01 ∥ 01

∗  02 ∥ 02
∗  TJK TIA TJK/TIA  

Model I 16.00 10.59 3.32 7.94 10.59 7.51 1.41 

Model II 90.12 10.59 11.27 7.94 10.59 7.51 1.41 

 

Fig. 7a shows the initial quadruple junction of four equally sized grains for both Model I and 

Model II. From Figs. 7 and 8, it is observed that: (I) both Model I and Model II can capture the 

(a) (b) (c) 

îïñz=9.4% 

Artificial Void 

Model I Model II 

No Artificial Void 
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quadruple-to-triple junction splitting instability, as shown in Figs. 8b and 8d; (II) Artificial voids 

have already been generated before the splitting process happens in Model I, as seen in Fig. 7b 

where a local porosity îïñz = 20.09% is produced; (III) Non-physical void generation may 

delay the microstructure evolution. Figs. 8b and 8d select the respective microstructures from 

Model I and Model II when the respective triple junctions reach the same spatial point 6π, 6π, 

and it takes 15 seconds for Model I and 14.1 seconds for Model II to reach the selected location. 

This is due to that Model I initially decreases its free energy by producing artificial voids but 

without microstructure evolution, and has less energy left to drive grain boundary evolution 

thereafter; (IV) the non-physical and transient voids still exist after the splitting is finished in 

Model I, as shown in Fig. 8a; In contrast, almost no porosity is produced in Model II, as 

observed in Fig. 8c. Note that all the figures corresponding to the locally produced porosity in 

this work only select the microstructures when the transient porosity is observed and is not the 

final stable one. 

 

 

Fig. 7： Microstructure morphologies from Model I and Model II: (a) initial grain structures for 

both Models I and II with solid lines representing grain boundaries; (b) the selected 

microstructure corresponding to the transient local porosityîïñz = 20.09% observed before the 

splitting in Model I; (c) the microstructure from Model II without producing local porosity. 

“CON” represents the phase-field C throughout this work unless otherwise mentioned. To better 

visualize the produced voids, grain boundaries are not shown in (b) and (c). 

  

(a) (b) (c) 

Grain 1 Grain 2 

Grain 3 Grain 4 

Artificial Void 

Model I Model II 

No Artificial Void 

îïñz=20.09% 
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Fig. 8: Microstructure morphologies after the quadruple junction splitting into triple junctions 

from the respective Model I (a-b) when t = 15s and Model II (c-d) when t = 14.1s; the 

microstructure is pictured by respectively employing the phase-field C (“Con” in plots a and c) 

to view the particle compact as a whole and using the summation of  +  (“ORP” in 

plots b and d) to view individual grains. 

 

3.3 Effect of rigid body motion 

We note that the presence of non-physical pores may induce rigid body motion and potentially 

may lead to pore closure. To investigate the effect of rigid body motion on artificial pore 

generation, the advection term originally proposed in [47] is combined with Model I. The 

parameters employed in the advection term are also taken from [47] for the quadruple junction 

case. Figure 9 compares the cases with and without the inclusion of the advection term in Model 

I. Numerical results show that considering the advection term to account for rigid-body motion 

yields similar results as the one where the advection term is neglected. This observation may be 

attributed to the driving force behind artificial pore generation, which arises solely from the free 

energy and thus remains independent of kinetically mass transportation paths, as analyzed in 

(a) (b) 

(c) (d) 

（6π，6π） 

（6π，6π） 

Model I Model I 

Model II Model II 

Artificial Void 

No Artificial Void 



25 
 

Section 2.1.2. Additionally, since pore generation primarily occurs within the junctions, it causes 

minimal rigid body motion within the dense grain systems. 

 

Fig. 9: Artificial pore generation for Model I with (a) and without (b) rigid body motion, 

showcasing the transient local porosityîïñz of 20.09%. 

3.4 Effect of the ratio 
RPQ

R\]  

Since the microstructure in sintering tends to evolve in a direction to decrease the total free 

energy ℱ∗ consisting of grain boundary energyℱJK
∗  and surface energy ℱIA

∗ , as shown in Eq. (18), 

and that the void production phenomenon creates surfaces by replacing grain boundaries, then 

the ratio 
RPQ

R\]  may have significant effect on artificial pore generation. To numerically test how 

the ratio 
RPQ

R\]  affects the void production in Model I, four different ratios of 
RPQ

R\]  are employed, and 

the model parameters corresponding to each ratio are given in Table 3. Note that the phase-field 

parameters are adjusted to reach the specified ratio of 
RPQ

R\]  according to their map with material 

properties as shown in Eq. (12). 

  

Artificial Void 

Model I +Rigid Body Motion 

îïñz=20.09% 

Artificial Void 

Model I only 

îïñz=20.09% 

(a) (b) 
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Table 3 The normalized parameters employed in Model I. The diffusivities ? and the mobility L 

were fixed to ?IA = 960.0, ?JK = 96.0, ?EFG = 9.6 and > = 1, respectively. 

Parameters 

Cases 
# & 01  02  TJK TIA TJK/TIA îïñz 

I 16.00 1.00 2.13 0.75 1.00 1.92 0.52 1.44% 

II 16.00 3.20 2.40 2.40 3.20 3.20 1.00 4.89% 

III 16.00 10.59 3.32 7.94 10.59 7.51 1.41 20.09% 

IV 16.00 16.00 4.05 12.00 16.00 10.67 1.50 86.00% 

 

All the test cases have the same initial microstructure as shown in Fig. 7a. Figure 10 selects the 

microstructure morphologies when the local and largest transient porosities îïñzis reached for 

the respective setting of  
RPQ

R\] . The difference (1- îïñz) is employed as the lower bound of the 

color bars for the respective ratios, and îïñz is listed in Table 3 for each case. It is seen that the 

ratio 
RPQ

R\]  significantly influences the local porosity generated at the grain boundary junctions. 

The locally introduced îïñz increases as the ratio 
RPQ

R\]  rises. Physically, this is due to the fact that 

generating more voids (thus more surfaces are replacing grain boundaries) at grain boundary 

junctions helps decrease the total free energy of the system as 
RPQ

R\]  increases. Mathematically, 

according to Eqs. (12) and (13), the ratio 
RPQ

R\]  in Model I can be expressed as: 

 
RPQ

R\] = 
ò
ôjö

, # > 0, & > 0  (56) 

For a fixed parameter #, 
RPQ

R\]  rises when parameter & increases, as is employed in Table 3. From 

Eq. (10), the driving force for artificial void generation also becomes larger when & goes up for a 

fixed initial microstructure (and thus fixed Sn in Eq. (10)). As such, the driving force for 

fictitious pore productions is proportional to the ratio 
RPQ

R\] , and the transient porosity îïñz 

increases due to the locally enlarged driving force as the ratio 
RPQ

R\]  increases. Note that Model II 
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produces similar microstructures as shown in Fig. 7c for all the employed ratios of 
RPQ

R\]  in Table 3, 

and almost no local porosity is observed. As such, the microstructures from Model II are not 

shown for simplicity. 

 

 

Fig. 10: Artificial void productions in Model I when the local and largest  transient porosity 

îïñz is reached for different ratios of TJK/TIA : (a) TJK/TIA = 0.52, (b) TJK/TIA = 1.00, (c) 

TJK/TIA = 1.41, and (d) TJK/TIA = 1.50. 

 

To better visualize the regions that could be affected by artificial void production, a threshold of 

î = 5% is employed, i.e., the lower bound of the color bar is set to be 0.95. Figures 11a and 11b 

re-depict the voids corresponding to the transient porosity îïñz  when TJK/TIA = 1.41  and 

TJK/TIA = 1.50, respectively. The domain with dark blue color represents the locations where at 

least a local porosity of î = 5% has been produced. 

(a) (b) 

(c) (d) 

îïñz=1.41% îïñz=4.89% 

îïñz=20.09% îïñz=86.00% 

Artificial Void Artificial Void 

Artificial Void Artificial Void 
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Fig. 11: Microstructure morphologies with dark blue regions representing the locations where at 

least a local porosity of î = 5% is produced: (a) TJK/TIA = 1.41, (b) TJK/TIA = 1.50. 

 

3.5 Discussion 

Note that the ratio 
RPQ

R\]  is related to pore stability as analyzed in [74]. As shown in Fig. 10, the 

ratio 
RPQ

R\]  also significantly affect the generation of the transient porosity îïñz. It is worth noting 

that their effect on îïñz is in addition to that on pore and junction stabilities in the sense that the 

transient porosity îïñz does not exist within the initial microstructure and is instead generated 

artificially due to the interfacial inconsistency defined in this work. When external stress is 

applied to assist sintering, as in pressure-assisted sintering, îïñz  will introduce local stress 

concentrations and may offer spurious sites to initiate defects, such as cracks, and may change 

the kinetic evolution path. As such, even though îïñz may be transient, it may be necessary to 

remove the non-physical porosity îïñz if a more accurate kinetic process is wanted. 

 

4. Validation and application of Model II 

The interfacial consistency of the proposed Model II has been theoretically protected in Section 2 

and has also been numerically confirmed in Section 3. In this section, Model II will be validated 

against both theoretical models and sintering experiments.  

 

4.1 Dihedral angle 

According to [1-3], the theoretical dihedral angle between two equally-sized particles at sintering 

equilibrium is given as: 

(a) (b) 

Artificial Void Artificial Void 
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 TJK = 2TIA cos -ù


.  (57) 

where û is the dihedral angle shown in Fig. 12. By adjusting the ratio 
RPQ

R\] , different dihedral 

angles can be reached. In this study, the ratio is set to be 1.0 and 1.5, respectively, with û to be 

120° and 83° accordingly. The corresponding phase-field simulations are performed with the 

parameter settings in Table 4. The dihedral angles predicted from the respective phase-field 

analysis are shown in Fig. 12, where a good agreement with Eq. (57) is achieved.  

Table  4 . The employed phase-field parameters for the proposed Model II in the dihedral angle 

study with ?IA = 2304.0 , ?JK = 230.4 , ?EFG = 23.04 ,  > = 1  for 
RPQ

R\] = 1.00  and ?IA =

7680.0, ?JK = 768.0, ?EFG = 76.8, > = 1 for 
RPQ

R\] = 1.50. 

#∗ &∗ 01
∗  02

∗  TJK TIA TJK/TIA  

38.40 3.20 4.80 2.40 3.20 3.20 1.00 

128.00 16.00 16.00 12.00 16.00 10.67 1.50 

 

 

Fig.  12: the phase-field dihedral angles from Model II with (a) TJK/TIA = 1.0, û =120°, and (b) 

TJK/TIA = 1.5, û =83°. 

  

4.2 Neck growth 

120° 83° 

(a) (b) 
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In this section, the same two-particle model as employed in Section 4.1 is also used to check the 

validity of Model II by comparing the dynamic neck growth as a function of time from both 

phase-field simulation and theoretical analysis. 

 

The theoretical neck growth of the employed two-particle model may follow a power-law form 

given by [19]: 

 q †
°

r
¢

= £ã  (58) 

where X is the neck length, Dp is the particle diameter, t is time, and B is a constant related to 

geometrical assumptions and material properties. Note that the exponent n in Eq. (58) may be 

different for different diffusion mechanisms, and may also differ among different theoretical 

models employing different assumptions of geometrical simplifications [19]. For example, n 

could take the value of 5, 6, or 7 for surface diffusion under different analytical models.  

 

In the phase-field simulation, the neck diameter X is normally evaluated as § = 
272{
5PQ •¶ [49]. 

However, for the proposed Model II, it is found that the following evaluation of § matches the 

actually neck diameter observed numerically, as mentioned in [57]: 

 § = 6  x127v12{w
5PQ | •¶  (59) 

The validity of Eq. (59) is given in Appendix B.  

 

Table 5 Comparison of the phase-field exponents â with theoretical counterparts under different 

diffusion mechanisms 

Diffusion mechanism n (t < 10) n (t < 20) n (ã < 100) n (theoretical) 

I: All diffusion mechanisms 6.25 6.47 6.64 6,7 

II: Grain boundary diffusion 5.97 7.48 8.70 6 

III: Surface diffusion 4.06 4.57 5.40 5,6,7 

IV: Volume diffusion 3.42 4.30 5.58 4,5 
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Thanks to the versatility of phase-field formalism, four different settings with the respective 

diffusion mechanisms in Table 5 are considered to check the capability of the proposed Model II 

to capture different diffusion mechanisms against theoretical models. Since analytical models are 

generally applicable when 
†

°
< 0.3  [19], the data of the phase-field neck length X is fitted 

against Eq. (58) for t < 10, t < 20, and t < 100, respectively. The fitted exponent n for the 

respective phase-field setting and the theoretical values are given in Table 5, and the fitted 

power-law with all diffusion mechanisms activated is shown in Fig. 13. In general, the phase-

field exponent n is within the theoretical range, and the discrepancy may be attributed to the fact 

that the geometry corresponding to the neck growth data employed in the phase-field fitting may 

differ from the ones simplified in the analytical models and that the fitted exponent n is sensitive 

to the data employed in the fitting process at different sintering stages (corresponding to different 

geometries of the two-particle model). 

 

Fig. 13: Relative neck growth as a function of time t; scattered points are from phase-field 

simulation and solid lines are the fitted power-law corresponding to data employed in the fitting 

at different times. 

 

4.3 Sintering experiment of silver nanoparticles  

In this section, the proposed Model II is applied to the sintering process of silver nanoparticles 

and is compared to the experiment in [86]. The material parameters involved in the developed 



32 
 

phase-field framework are the grain boundary diffusion coefficient ?JK , surface diffusion 

coefficient ?IA, volume diffusion coefficient ?EFG, grain boundary mobility SJK, specific grain 

boundary energy TJK , and specific surface energy TIA . The diffusion coefficient generally 

follows the Arrhenius equation given as: 

 ? = ?®D ©
™Q´  (60) 

where ? is a temperature-independent constant, © is the activation energy, T is the temperature, 

and ¨K is the Boltzmann constant. The employed material properties are listed in Table 6. The 

grain boundary diffusivity ?JK is typically of the order between surface and volume diffusion 

coefficients, and is assigned to be ?JK = 0.1?IA, as suggested in [47, 49].  

 

Table 6  The employed material parameters of silver nanoparticles 

Property Value Units Reference 

TIA 1.14 J m-2 [87] 

TJK 0.79 J m-2 [88] 

©IA 4.0 ×10-19 J [89] 

?
IA

 50 m2s-1 [89] 

©EFG 3.215 ×10-19 J [90] 

?
EFG 0.67 ×10-4 m2s-1 [90] 

SJK 10-16 m4 J-1 s-1 [91] 

 

According to the map between materials properties and phase-field parameters defined in Eq. 

(53), the values of the following model parameters are determined: #∗ = 6.84×109 J/m3, &∗ =

3.95×108 J/m3, 01
∗ = 3.42×10-9 J/m, 02

∗ = 1.185×10-9 J/m. Note that since the surface thickness 

eIA is not available, eIA is assumed to be equal to the grain boundary width eJK, and is set a 

value of 2 nm. Then the employed phase-field parameters and diffusion coefficients are 

normalized to make them numerically friendly. The normalized parameters and materials 

properties are given in Table 7. 
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Table  7 Normalized phase-field parameters and material properties employed in the simulation 

of sintering of silver nanoparticles. 

#∗ &∗ 01
∗  02

∗  ?IA ?JK ?EFG > 

17.32 1.00 19.48 6.75 22.88 2.29 0.14 26.33 

 

The simulation domain is set to be 128 nm × 64 nm and is spatially discretized by a 192×96 grid. 

Figure 14 shows the microstructure evolution of two equally sized silver nanoparticles with a 

diameter of 40 nm sintered at 400 ℃ at different times, and is compared with experimental 

observations in [86]. A reasonable match is achieved between phase-field predictions and 

experimental inspections in terms of microstructure morphologies. As reported in [86], the 

presence of carbon on the particle surfaces introduces impurities and may change the surface 

diffusion coefficient. As such, the uncertainties in the employed material properties and the 

geometry difference between the phase-field powders and the actual particle shapes may account 

for the observed discrepancy. 
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Fig. 14: Microstructure evolution of silver nanoparticles sintered at 400 ℃: (a-c) in situ TEM 

observations, and phase-field predictions. The microstructure is pictured by respectively 

employing the phase-field C (“Con” in plots d-f,) to view the particle compact as a whole, and 

using the summation of  +  (“ORP” in the plots g-f) to view individual grains. 

 

5. Summary and Conclusions 

This work is aimed to propose a novel free-energy-based and interfacially consistent phase-field 

model for solid-state sintering. In this work, the interfacial consistency is defined as follows: a 

phase-field model is termed interfacially consistent if the phase-field free energy does not offer a 

driving force for generating artificial voids at junctions of grain boundaries when the 

polycrystalline powder compact is fully dense. Physically, interfacial consistency means that a 

void should not be generated if it does not exist. 

 

(d) 0 min (e) 3 mins (f) 15 mins 

(g) 0 min (h) 3 mins (k) 15 mins 

(a) (b) (c) 
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Through a mathematical analysis of the well-known and widely employed phase-field model in 

[47], which is termed Mode I in this work, it is found that artificial voids may be produced at the 

junctions of grain boundaries and that the ratio of specific grain boundary energy to specific 

surface energy 
RPQ

R\]  has a significant effect on this non-physical pore generation, which is in 

addition to their effect on pore and junction stabilities as analyzed in [74-76]. Numerical tests 

have been performed to confirm the mathematical analysis. In addition, the phase-field model 

parameters in Model I may constrain the relationship between grain boundary width and surface 

thickness, which may introduce an inconsistent map between model parameters and material 

properties. 

 

Inspired by Model I, a novel phase-field free energy, termed Model II in this work, is proposed 

and analyzed mathematically. By carefully decoupling the surface energy and grain boundary 

energy contributions to the total free energy, it is shown that the proposed free-energy-based 

phase-field model protects interfacial consistency analytically, which is also confirmed 

numerically under different settings. The phase-field parameters in Model II also free the 

constraint on grain boundary width and surface thickness and have a consistent map with 

material properties. In addition, Model II shares the advantages of the state-of-the-art phase-field 

models of sintering, the recent grand-potential-based models, while requiring a considerably 

smaller subset of the material parameters and being easier to implement. 

 

The validity of Model II is tested by comparing the phase-field dihedral angles and dynamic 

neck growth with that from theoretical models and experiments. It is shown that the phase-field 

dihedral angles match well with the ones from theoretical predictions. The neck growth behavior 

from phase-field simulations has a reasonable agreement with that of the analytical models. The 

discrepancy may be due to the mismatch between the geometrical simplifications employed in 

theoretical analysis and the phase-field microstructure shape utilized for comparison. The 

microstructure evolution of silver nanoparticles from phase-field simulation also shows 

acceptable accuracy compared to the counterparts from sintering experiments. And the impurity-

introduced uncertainty in the employed material parameters may account for the distinctions. 
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In the future, the incorporation of the rigid-body motion effect, especially in pressure-assisted 

sintering where external stress is applied to assist and accelerate sintering, will be pursued. The 

extension to non-isothermal sintering and the inclusion of grain boundary anisotropy are 

directions also worth pursuing. 

Data Availability 

Data will be made available on request. 
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Appendix A 

For a flat surface between a semi-infinite solid grain and a semi-infinite vapor phase, the specific 

surface energy TIA of Model I may be defined as follows: 

 TIA = u q,  + 


-y1
yz

.


+ 


-y2

yz
.


r •}

j~

D~
 (A.1) 

 ,  = #1 −  + &n + 61 −  − 42 − + + gp (A.2) 

with the x-direction perpendicular to the surface. According to the Euler-Lagrangian equation,  

and  satisfy the following equations as a stationary point of TIA: 

 
8A1,2

81 − 01 -yB1
yzB. = 0 (A.3) 

 
8A1,2

82
− 02 -yB2

yzB. = 0 (A.4) 

with boundary conditions given as: 

  = 1 and  = 1 for } ⟶ +∞ (A.5) 

  = 0 and  = 0 for } ⟶  −∞ (A.6) 

Across the surface (vapor-particle interface), it may be reasonable to expect that： 

 
y2
yz ∝ y1

yz (A.7) 

And when boundary conditions are applied, we have: 

 } = } (A.8) 

 
y2
yz

= y1
yz

 (A.9) 

Based on Beltrami identity, the following holds: 

 ,  − '


-y2

yz
.


+ 


-y1

yz
.


/ = 0 (A.10) 

Substituting Eq. (A.9) to Eq. (A.10) and Eq. (A.8) into Eq. (A.2), we have: 
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y1
yz

= y2
yz

= f


j
,  (A.11) 

 ,  =  = # + 7&1 −  (A.12) 

The surface thickness eIA may be estimated as follows: 

 


5\] = -Æ1
Æz

.
z

= f


j
, 12.é = f ijöh

èj
 (A.13) 

Then eIA is given as: 

 eIA = fèvØjw
ijöh

 (A.14) 

As in Eq. (13), parameters #, & , 0 and 02 are constrained as 
ch


= ijh


, which gives: 

 
ch


= ijöh
j

 (A.15) 

Plugging Eq. (A.15) into Eq. (A.14), we have: 

 eIA = fg
+h  (A.16) 

From Eq. (12), eJK = fg
+h . Thus, we get: 

 eIA = eJK (A.17) 

 

Appendix B 

In 2D, according to the equality of the grain boundary area, the following equation may hold: 

 ±   L•}
PQ

B

D
PQ

B

¥
B

D¥
B

•µ = eJK, − 5PQ


≤ } ≤ 5PQ


, − 


≤ µ ≤ 

 (B.1) 

where ± is a constant, eJK is the grain boundary width, and  is the neck length. Assuming a 

linear profile of  across the grain boundary, as employed in the evaluation of grain boundary 

width, we may have: 
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  = 
5PQ

} + 
 , − 5PQ

 ≤ } ≤ 5PQ
  (B.2) 

 L = − 
5PQ

} + 
 , − 5PQ

 ≤ } ≤ 5PQ
  (B.3) 

Substituting Eqs. (B.2) and (B.3) into Eq. (B.1), we get: 

 ±  q− 
5PQ

} + 
r q 

5PQ
} + 

r •}
PQ

B

D
PQ

B

 = eJK (B.4) 

 ± q
g } − 

5PQ
B }+r

D
PQ

B

PQ
B

= eJK (B.5) 

From Eq. (B.5), we have: 

 

c

±eJK = eJK (B.6) 

As such, the constant ± = 6 and the neck length  is evaluated as: 

  = ± 
272{
5PQ

•¶ (B.7) 

Since the ith grain in the proposed Model II is represented by , the neck length is calculated 

as: 

  = 6  x127v12{w
5PQ | •¶ (B.8) 
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In fully dense power compact under sintering, existing Model I may produce artificial 
voids and the proposed Model II avoids this issue. Artificial voids may delay 
microstructure evolution. The figure shows microstructure morphologies when a triple 
junction reaches the selected spatial point (6π，6π) after the quadruple junction splits 
into triple junctions from the respective Model I (a-b) when t = 15s and Model II (c-d) 
when t = 14.1s. 
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