

1 **Trans-species mobility of RNA interference between plants and associated organisms**
2

3
4 Ya-Chi Nien^{1,2}, Allison Vanek^{1,3}, and Michael J. Axtell^{2,3,4,5}
5

6
7 ¹ Co-first authors

8 ² Plant Biology Intercollege Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State
9 University, University Park, PA 16802 USA

10 ³ Bioinformatics and Genomics Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania
11 State University, University Park, PA 16802 USA

12 ⁴ Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA

13 ⁵ Corresponding author: mja18@psu.edu

14
15 **ORCIDs:**

16 YN: 0009-0009-5846-8750

17 AV: 0009-0004-7522-9878

18 MJA: 0000-0001-8951-7361

19
20 **Keywords:** small RNA, *trans*-species RNA interference, RNA interference, Host-induced gene silencing

21

22

23

24 **Abstract**
2526 *Trans*-species RNA interference occurs naturally when small RNAs (sRNA) silence genes in species
27 different from their origin. This phenomenon has been observed between plants and various organisms
28 including fungi, animals, and other plant species. Understanding the mechanisms used in natural cases of
29 *trans*-species RNAi, such as sRNA processing and movement, will enable more effective development of
30 crop protection methods using host-induced gene silencing (HIGS). Recent progress has been made in
31 understanding the mechanisms of cell-to-cell and long-distance movement of sRNAs within individual
32 plants. This increased understanding of endogenous plant sRNA movement may be translatable to *trans*-
33 species sRNA movement. Here, we review diverse cases of natural *trans*-species RNAi focusing on
34 current theories regarding intercellular and long-distance sRNA movement. We also touch on *trans*-
35 species sRNA evolution, highlighting its research potential and its role in improving the efficacy of HIGS.
36
37

38 **Introduction**
 39 Small non-coding RNAs (sRNAs) are critical in regulating numerous plant biological processes. One
 40 process in which they do so is RNA interference (RNAi), a gene silencing pathway that utilizes sRNAs to
 41 guide transcriptional gene silencing (TGS) and/or post-transcriptional gene silencing (PTGS). Within
 42 RNAi, sRNAs act as sequence-specificity determinants for RNA-induced silencing complexes (RISC)
 43 which initiate TGS or PTGS (Guo et al., 2016). Two major classes of sRNAs trigger RNAi in plants:
 44 microRNAs (miRNAs) and short interfering RNAs (siRNAs). Most genes that encode miRNAs (*MiRNA*
 45 genes) are transcribed by DNA-dependent RNA polymerase II to create primary transcripts that have an
 46 imperfect hairpin RNA secondary structure. This hairpin is recognized by a family of endonucleases called
 47 DICER-LIKE (DCL) proteins and, with the help of accessory proteins, is processed into a miRNA/miRNA*
 48 duplex (Hudzik et al., 2020). siRNAs are derived from double-stranded RNA precursors (dsRNA) that are
 49 often synthesized from an initial single-stranded RNA by an RNA-dependent RNA polymerase (RDR).
 50 siRNA precursors can be processed by one or more DCL proteins to create siRNA duplexes. siRNAs can
 51 be classified into subclasses according to their length, processing DCL proteins, and downstream function
 52 (Sanan-Mishra et al., 2021). siRNAs processed by DCL2 and DCL4 are 22 and 21 nucleotides,
 53 respectively, and are well characterized for their role in antiviral defense and PTGS. 24 nucleotide siRNAs
 54 primarily guide TGS via RNA-directed DNA methylation (RdDM) and are mostly processed by DCL3 (Jin
 55 et al., 2022).
 56
 57 Following DCL processing, one strand of a miRNA or siRNA duplex binds to an ARGONAUTE (AGO)
 58 protein and is incorporated into RISC. Subsequently, the AGO-bound sRNA guides RISC to the target
 59 region in a sequence-specific manner, initiating the silencing process. Plant AGO proteins primarily
 60 function as endonucleases. AGO endonuclease activity is crucial for initiating PTGS or TGS through the
 61 targeted cleavage of RNA molecules (Guo et al., 2016; Jin et al., 2022; Wang et al., 2023). In certain
 62 cases, when a mRNA is cleaved by a 22-nucleotide miRNA or siRNA, the resulting cleaved fragments can
 63 form dsRNAs, which are then processed by DCL proteins into functional sRNAs known as secondary
 64 siRNAs or phased siRNAs (Chen et al., 2010; Wu et al., 2020). The initiation of secondary siRNA
 65 biogenesis involves recruiting RDR6 to the 3' end of the cleaved transcript, which serves as a template for
 66 dsRNA synthesis. DCL2 and/or DCL4 process the newly synthesized dsRNA into secondary siRNAs,
 67 guiding the additional silencing of transcripts from which they originated. This production of secondary
 68 siRNAs by siRNAs- and miRNA-induced cleavage is referred to as transitivity and has been shown to
 69 promote the movement of siRNAs between cells and as a feed-forward loop for PTGS (de Felippes and
 70 Waterhouse, 2020).
 71
 72 Beyond its role in regulating essential plant functions, the RNAi pathway serves as an innate defense
 73 response against endogenous elements like transposable elements and exogenous RNAs from viral (Jin
 74 et al., 2022), parasitic nematode (Banerjee et al., 2017), and fungal pathogens (Zhang et al., 2016). This
 75 inter-species gene suppression has been termed *trans*-species RNAi or cross-kingdom RNAi. It is a
 76 naturally occurring process characterized by the transfer of small regulatory RNAs between different
 77 species. (We use the term *trans*-species RNAi because some cases of transfer between organisms are
 78 plant-to-plant, within the same kingdom). *Trans*-species sRNAs can function either in host defense or for
 79 the benefit of invading species, silencing genes associated with the immune response (Johnson et al.,
 80 2019), development (Zhang et al., 2022), or sRNA movement (Garnelo Gómez et al., 2021). This process
 81 plays an important role in disease and pathogen resistance in plants. RNAi presents an exciting
 82 alternative to pest and pathogen control in agriculture, with the potential to be both a sustainable and
 83 robust solution (Cai et al., 2018a).
 84
 85 There are several techniques for leveraging RNAi mechanisms to enhance plant resistance. In virus-
 86 induced gene silencing (VIGS), target gene fragments integrate into the host genome using viral vectors,
 87 triggering siRNA production. Successful VIGS requires intercellular and systemic spread of these virus-
 88 derived siRNAs (Rössner et al., 2022; Zulfiqar et al., 2023). However, in some instances, viral siRNAs
 89 spread ahead of full viruses, breaching meristem areas (Baulcombe, 2022; Bradamante et al., 2021;
 90 Incarbone et al., 2023). This primes antiviral defense, impeding VIGS in meristem tissues. Thus,
 91 understanding sRNA movement and tailoring strategies for each host tissue and target gene is crucial.
 92 Another technique is spray-induced gene silencing (SIGS). SIGS involves spraying or topically delivering
 93 dsRNAs onto the plants to silence pathogen or insect genes. The on-field application of SIGS faces

94 challenges due to the instability of naked dsRNA. Inspired by the role of extracellular vesicles (EVs) in
 95 natural *trans*-species RNA transport seen in *Botrytis cinerea* and *Arabidopsis* (Cai et al., 2018b; He et al.,
 96 2021; Wang et al., 2016), artificial nanovesicles resembling EVs have been used to improve RNA stability
 97 and internalization in SIGS (Chen et al., 2023; Qiao et al., 2023). Collectively, understanding natural
 98 intercellular and *trans*-species gene silencing can help improve existing methods and develop new tools
 99 in artificial RNAi. Host-induced gene silencing (HIGS), introduced by (Nowara et al., 2010), utilizes a
 100 transgenic host continuously producing and delivering dsRNAs, hairpin RNA, or sRNAs to pests or
 101 pathogens, specifically targeting virulence genes (Koch and Wassenegger, 2021). HIGS has
 102 demonstrated effectiveness in various organisms, including the parasitic plant *Cuscuta pentagona*
 103 (Alakonya et al., 2012). When cultivated on transgenic tobacco expressing hairpin RNA against the *Shoot*
 104 *Meristemless-like* (*STM*) gene, *C. pentagona* exhibited reduced *STM* expression and poor growth
 105 (Alakonya et al., 2012). This successful application of HIGS laid the foundation for the subsequent
 106 discovery of the natural exchange of sRNAs between plants and *Cuscuta* species (Shahid et al., 2018;
 107 Johnson et al., 2019). A recent method for conferring artificial RNAi is microbe-induced gene silencing
 108 (MIGS) (Wen et al., 2023). In MIGS, a modified beneficial fungus induced gene silencing in nearby
 109 pathogenic fungi, protecting cotton and rice plants (Wen et al., 2023). The success of MIGS reveals the
 110 possibility of natural *trans*-species RNAi between rhizospheric microorganisms. Advances in artificial
 111 RNAi, including HIGS, SIGS, VIGS, and MIGS, unveil more naturally occurring *trans*-species cases.
 112 These advancements underscore the versatile use of RNAi to manipulate gene expression not only within
 113 an organism but also across different species. The knowledge about how gene silencing naturally occurs
 114 across species provides a foundation for developing innovative tools in artificial RNAi. This could involve
 115 designing more targeted and efficient delivery systems, optimizing the stability of RNA molecules, and
 116 exploring novel strategies to enhance the specificity and potency of gene silencing.
 117

118 In this minireview, we highlight recent studies of the roles of mobile sRNAs within the organism and *trans*-
 119 species scale. We delve into key mechanisms of naturally occurring *trans*-species RNAi with a particular
 120 focus on how movement across the species barrier may occur. We also talked about various evolutionary
 121 strategies employed by organisms to target multiple transcripts across diverse host species, even in the
 122 face of selective natural pressures.
 123

124 **Trans-species RNAi natural mechanisms**

125 In recent decades, *trans*-species RNAi has become a useful tool for developing crop varieties with
 126 enhanced resistance to a range of pests and pathogens, as well as for conducting functional and
 127 metabolic studies. One technique often leveraged for this purpose, HIGS, involves engineering hosts to
 128 produce sRNAs or sRNA precursors designed to target pathogen/parasite mRNAs. Successful application
 129 of HIGS (as well as other RNAi techniques) against pests requires a deep understanding of pest and host
 130 interactions. This includes characterization of interspecies effectors, delivery methods, and the movement
 131 of sRNAs between organisms. There are several examples of naturally occurring *trans*-species RNAi that
 132 have been described from diverse plant-pest and plant-pathogen interactions. These natural examples
 133 may serve to inform more effective HIGS strategies.
 134

135 *Fungi*

136 Since its discovery, *trans*-species RNAi has been a focus for developing fungal-resistant crops. For
 137 example, *Verticillium dahliae*, a pathogenic fungus responsible for wilt disease in various crops, poses a
 138 significant agricultural threat, necessitating a sustainable and robust control method (Dubrovina et al.,
 139 2019). In *V. dahliae*, naturally occurring *trans*-species RNAi has been observed. A 24 nucleotide *V.*
 140 *dahliae*-derived sRNA (Vd-sRNA) was found to target *Arabidopsis* miR157d, a critical regulator of
 141 *Squamosa-Promoter Binding Like* (*SPL*) genes (Zhang et al., 2022). Expression levels of two *SPL* genes
 142 (*SPL13A/B*) were reduced in hosts as a result of *V. dahliae* infection, leading to delayed floral transition
 143 for *Arabidopsis*, presumably to aid in further infection (Zhang et al., 2022). Vd-sRNAs between 20 and 24
 144 nucleotides immunoprecipitated with host AGO1, suggesting that *V. dahliae* sRNAs associate with host
 145 RNAi machinery to silence host transcripts (Zhang et al., 2022). These results provided evidence of *trans*-
 146 species RNAi between a fungal species and host plant, along with the resulting phenotypic effects on the
 147 host.
 148

149 Plants have been shown to transfer sRNAs to fungal pathogens for RNAi defense as well. Cotton plants
 150 infected with *V. dahliae* expressed miR159 and miR166 at higher levels than uninfected plants (Zhang et
 151 al., 2016). These miRNAs were determined to target two *V. dahliae* mRNAs, *Ca²⁺ dependent cysteine*
 152 *protease calpain (Clp-1)* and *isotrichodermin C-15 hydroxylase (HiC-15)*. *Clp-1* is required for alkaline
 153 stress tolerance in fungi, while *HiC-15* is involved in the production of trichothecene metabolites (Zhang et
 154 al., 2016). These genes were independently knocked out in *V. dahliae*, with unique phenotypes upon
 155 colonization. However, while neither exhibited significant loss in biomass, both knockout mutants had
 156 reduced virulence in cotton plants and no longer caused wilt symptoms. These results provide evidence
 157 of host-derived regulation of fungal virulence (Zhang et al., 2016).

158
 159 *Trans-species RNAi* was found to play a crucial role in the pathogenicity of another necrotrophic fungal
 160 species, *Botrytis cinerea*, on hosts *Arabidopsis* and tomato. Upon inoculation, the fungus exports a
 161 myriad of sRNAs into the hosts (Weiberg et al., 2013) (Fig. 1A). These *B. cinerea* sRNAs (Bc-sRNAs)
 162 were shown to functionally silence important defense-related genes in both hosts including *Mitogen-*
 163 *Activated Protein Kinases (MAPK)*, which regulate jasmonic acid and ethylene levels for plant defense
 164 (Weiberg et al., 2013). Many of the Bc-sRNAs were 20 to 22 nucleotides long, with 5' terminal U, making
 165 them quite similar to plant miRNAs. Results suggest Bc-sRNAs are processed by *B. cinerea* DCL1 and
 166 DCL2 (Bc-DCL1 and Bc-DCL2), then upon exportation into hosts, are bound to host AGO1 to silence host
 167 genes (Weiberg et al., 2013) (Fig. 1A). The movement of sRNAs between *B. cinerea* and host plants is
 168 bi-directional (Cai et al., 2018b) (Fig. 1A). In response to the infection, *A. thaliana* sends defensive
 169 sRNAs into *B. cinerea* (Cai et al., 2018b) (Fig. 1A). When impairing the biogenesis of these host-derived
 170 sRNAs by mutations in *DCL* or *RDR* genes, *A. thaliana* had higher susceptibility to *B. cinerea* (Cai et al.,
 171 2018b). This suggests that *A. thaliana* delivers host sRNAs into fungal cells to silence virulence-related
 172 genes. The two-way motion of *trans-species* sRNAs is further illustrated through artificial RNAi. Hairpin
 173 RNAs targeting *Bc-DCL1* and *Bc-DCL2* were stably expressed in transgenic *A. thaliana* and transiently
 174 expressed in tomato plants. Following infection in these transgenic hosts, there was a significant
 175 reduction in the expression of *Bc-DCL1* and *Bc-DCL2*. This indicates that artificial hairpin RNA or its
 176 derivative sRNAs traversed from the host to the parasite, leading to the silencing of specific *B. cinerea*
 177 targets (Wang et al., 2016).

178
 179 In addition to defensive and pathogenic functions, *trans-species RNAi* has been proposed as a beneficial
 180 mechanism between symbiotic microorganisms and plants, such as with *Rhizophagus irregularis*, an
 181 arbuscular mycorrhizal fungus, and its host *Medicago truncatula* (Silvestri et al., 2019). Populations of
 182 sRNAs in *R. irregularis* were characterized and several fungal sRNAs were predicted to target *M.*
 183 *truncatula* transcripts (Silvestri et al., 2019). Some of these putative target genes, such as
 184 *Developmentally Regulated Plasma Membrane Polypeptide (MtDREPP)* and *Responsive to Dehydration*
 185 22 (RD22), were shown to be downregulated in host roots colonized with mycorrhizal compared to non-
 186 mycorrhizal roots (Silvestri et al., 2019). MtDREPP is thought to play a role in plasma membrane
 187 remodeling, and its modulation may be required for the colonization of arbuscular mycorrhizal fungus.
 188 RD22 is an abscisic acid-responsive gene involved in pathogen susceptibility, which may be regulated to
 189 promote *R. irregularis* colonization (Silvestri et al., 2019). The finding suggests that *trans-species RNAi*
 190 occurs not only as a pathogenic mechanism, but also in mutualistic symbiosis. Indeed, further support of
 191 *trans-species RNAi* mechanisms between a beneficial fungal species and plant was seen in *Fusarium*
 192 *solani*. Artificial RNAi in *F. solani* strain K (FsK), a beneficial fungus, was found to be capable of silencing
 193 and directing DNA methylation of a host reporter gene (GFP) in *Nicotiana benthamiana* (Dalakouras et
 194 al., 2023) Although this case is not a naturally occurring instance of RNAi, it does support a mechanism
 195 for *trans-species RNAi* between beneficial fungi and host plants.

196
 197 These studies provide evidence of *trans-species* sRNAs function, but one consideration is how these
 198 *trans-species* RNAs can move between fungi and host plants. Within fungi, sRNAs can move through
 199 septal pores (a plasmodesmata-like structure) or extracellular vesicles (EVs), allowing intercellular
 200 transport (Wang and Dean, 2020). It has been suggested that *trans-species* RNA movement between
 201 fungal pathogens and host plants is carried out by deployment of vesicle-contained sRNAs (Wang and
 202 Dean, 2020). The transport of RNAs via extracellular EVs is a well-characterized process in fungal
 203 species (Kwon et al., 2020). However, the involvement of EVs in *trans-species* sRNA exchange between
 204 plants and fungal pathogens remains an active area of research. Recent studies, such as the one

205 conducted by (He et al., 2021) investigated EVs within *Arabidopsis* and the role of RNA-binding proteins
 206 (RBPs) in sRNA movement. The study found that certain RBPs such as AGO1 and RNA helicases (RH11,
 207 and RH37) were selectively bound to EV-enriched sRNAs in *Arabidopsis* (**Fig. 1A**). Additional evidence
 208 indicated that hosts deficient in these RBPs were not only more susceptible to *B. cinerea* infection, but
 209 the fungal target genes were no longer suppressed. This supports the notion that sRNAs can be
 210 transferred from plants to fungi through EVs, and likely involve RBP binding (**Fig. 1A**).
 211

212 *Animals*

213 HIGS has been successful against diverse organisms within the animal kingdom, including various
 214 pathogenic nematode species (Zhuo et al., 2017; Blyuss et al., 2019; Iqbal et al., 2021) and insects
 215 (Eakteiman et al., 2018; Fishilevich et al., 2019; Sun et al., 2019). Successful HIGS experiments suggest
 216 that sRNA precursors are likely taken up by parasitic nematodes and other animals when consuming host
 217 material containing double-stranded RNA (Dutta et al., 2015). One species of parasitic nematode of
 218 interest is *Meloidogyne incognita*, a parasitic root-knot nematode that causes extensive damage to host
 219 plants including wilting, stunted growth, and impaired immunity to disease (Blyuss et al., 2019). *M.*
 220 *incognita* lays eggs on the roots of host plants, which hatch and burrow into host roots. This process
 221 triggers gall formation and the feeding of host material. There have been several attempts at using
 222 engineered RNAi methods against *M. incognita* with varied success (Dutta et al., 2015; Hada et al., 2021;
 223 Iqbal et al., 2021), which suggests delivery of sRNA or sRNA precursors to the parasite is possible. These
 224 results show that while some parasite genes are recalcitrant to RNAi for unknown reasons, others are
 225 more susceptible to knockdown and have a significant impact on parasite development (Iqbal et al.,
 226 2021). This includes PTGS of parasite RNAi machinery such as *M. incognita* DICER (*Midcr-1.1*). Iqbal et
 227 al. (2021) tested several dsRNA constructs that targeted regions of *Midcr-1.1*, resulting in a successful
 228 knockdown, impaired pathogenicity of *M. incognita*, and evidence of RNAi susceptibility. One instance of
 229 naturally occurring *trans*-species RNAi was observed in a honeybee-plant interaction (Zhu et al., 2017). It
 230 was observed that bee bread produced from pollen, a diet eaten by worker bee larvae, contained sRNAs
 231 derived from *Brassica campestris*. These sRNAs were determined to have targets within honeybees. One
 232 miRNA in particular, miR162a, was found to target the *Target Of Rapamycin* (*amTOR*), a gene
 233 responsible for caste development in bees (Zhu et al., 2017). The implications of developmental RNAi in
 234 honeybees derived from pollen-based food sources still require further investigation, but these results
 235 suggest a potential naturally occurring gene regulatory mechanism from dietary sources in honeybees.
 236

237 *Plants*

238 Plants have several documented cases of exogenous sRNA transfer within and between species.
 239 *Arabidopsis* has been reported to take up and use exogenously supplied miRNAs, triggering gene
 240 silencing in the recipient plant through hydroponic solutions (Betti et al., 2021). This suggests that *A.*
 241 *thaliana* is capable of both releasing and absorbing sRNAs from its environment, leading to intra-species
 242 gene silencing. Additionally, plant-to-plant sRNA-mediated silencing has been observed to transcend
 243 species boundaries. Heterografting experiments showed that transgene-derived sRNAs moved from
 244 potato rootstock to suppress target genes in tobacco scion (Kasai et al., 2016). Other studies have
 245 documented the exchange of endogenous sRNAs between various species of grapevines and sweet
 246 cherry trees (Zhao et al., 2020; Rubio et al., 2022). These collective findings underscore the remarkable
 247 capacity of sRNAs, whether originating internally or externally, to move between distinct species, likely
 248 facilitated by continuous vascular connections.
 249

250 The *trans*-species movement of sRNAs is illustrated in parasitic plants through HIGS. Parasitic plants
 251 connect with hosts through vascular links, akin to “natural grafting.” In HIGS, transgenic host plants
 252 express siRNAs, which enter parasites to silence corresponding virulence genes and boost host plant
 253 tolerance. For example, in the case of the obligate parasitic plant *Cuscuta*, host-derived sRNAs targeting
 254 genes involved in haustorium organogenesis impede parasite growth (Alakonya et al., 2012; Jhu et al.,
 255 2022, 2021). The success of HIGS approaches in *Cuscuta* hinted at the potential for the natural exchange
 256 of sRNAs between *Cuscuta* and host species, later proven true. When parasitizing *Arabidopsis* and
 257 tobacco, *Cuscuta* synthesizes novel miRNAs, mostly 21 and 22 nucleotides in length, at the haustorial
 258 interface (Shahid et al., 2018; Johnson et al., 2019; Hudzik et al., 2023) (**Fig. 1B**). These miRNAs, termed
 259 interface-Induced miRNAs (IIMs), began to accumulate two days after *Cuscuta* has successfully wrapped
 260 around a host and can be consistently detected until day 14 (**Fig. 1B**). These findings indicate that

261 *Cuscuta*-derived IIMs emerge in the early stages of haustorium development, preceding any penetration
 262 of the host tissue. Several *Cuscuta* IIMs have been confirmed to exhibit *trans*-species activity by targeting
 263 host mRNAs (Shahid et al., 2018). They can utilize the host plants' silencing machinery to initiate the
 264 generation of secondary siRNAs. The incoming miRNAs, perhaps with assistance from secondary
 265 siRNAs, lead to the degradation of host mRNAs (Shahid et al., 2018) (Fig. 1B). In a study conducted by
 266 (Subhankar et al., 2021), it was revealed that sRNAs originating from *C. campestris* could traverse
 267 considerable distances within recipient plants, including reaching distal organs such as the apical
 268 meristem. However, the specific features that distinguish these interface-induced miRNAs from canonical
 269 miRNAs and enable them to undergo *trans*-species movement are still under investigation. In the study
 270 by (Hudzik et al., 2023), *Cuscuta* IIM genes were found to possess U6-like small nuclear RNA (snRNA)
 271 promoters with a characteristic upstream sequence element (USE) (Fig. 1B). Notably, the primary
 272 transcript of these IIMs suggests their synthesis by RNA polymerase III, distinguishing them from other
 273 canonical sRNAs in plants (Hudzik et al., 2023) (Fig. 1B). These distinctive features may enhance their
 274 export to host plants, and potentially shed light on the long-standing mystery of *trans*-species sRNAs
 275 export between plants.
 276

277 **Movement of sRNAs in plants and associated organisms**

278 Strategies that suppress genes required for *trans*-species sRNA biogenesis, such as DCL proteins, have
 279 proven effective in protecting host plants (Wang et al., 2016; Werner et al., 2020). Alternatively, a potential
 280 strategy for safeguarding host plants involves disrupting sRNA transmission from parasites to hosts. Yet,
 281 our understanding of how sRNA-mediated silencing spreads across species remains limited. Insights from
 282 the transport mechanisms of within-organism plant sRNAs may offer valuable information about *trans*-
 283 species sRNA movement. Short-distance, cell-to-cell movement of canonical sRNAs likely occurs via
 284 plasmodesmata (Voinnet et al., 1998; Long et al., 2021; Schröder et al., 2023). Evidence supporting this
 285 is the absence of silencing occurred in the symplastically isolated stomatal guard cells after the
 286 agroinfiltration (Voinnet et al., 1998). However, once the silencing signal had reached the apical region,
 287 the guard cells on the newly formed leaf were steadily silenced (Voinnet et al., 1998). This is because the
 288 signal enters the leaf before guard cells close plasmodesmata with the remainder of the leaf cells
 289 (Voinnet et al., 1998). A prevailing hypothesis for long-distance movement of regular sRNAs involves
 290 production within source cells, followed by diffusion into companion cells and subsequently into sieve tube
 291 elements, rendering them phloem-mobile (Ham and Lucas, 2017, 2014; Subramanian, 2019; Yan, 2022).
 292 These phloem-mobile sRNAs are released from the phloem at sink tissues and diffuse between cells to
 293 reach their destination.
 294

295 The exact nature of the mobile entities in plant RNAi has long been discussed. The mobile molecules
 296 could theoretically be single-stranded mature sRNAs, duplexes, single- or double-stranded precursors,
 297 AGO-bound sRNAs, or some combination thereof. An *Arabidopsis dcl2/dcl3/dcl4* triple mutant where most
 298 siRNAs are absent was grafted with wild-type plants expressing a GFP-derived hairpin RNA (Molnar et
 299 al., 2010). GFP-specific siRNAs from the scion were detected in the triple mutant root (Molnar et al.,
 300 2010). This demonstrated that precursor movement cannot entirely explain the long-distance appearance
 301 of siRNAs. Further support for the mobility of siRNAs, rather than their precursors, was found in another
 302 grafting experiment (Brioudes et al., 2021). siRNA duplexes are stabilized through 2'-O-methylation of the
 303 3'-most nucleotide. This methylation is catalyzed by Hua Enhancer 1 (HEN1) in the nucleus. To enable
 304 siRNA precursors to functionally transmit through grafting, they would require HEN1 activity in the
 305 recipient cells. However, following grafting, the levels of processed siRNAs were equal in *hen1* rootstocks
 306 in comparison to wild-type rootstocks (Brioudes et al., 2021). This is inconsistent with the notion of mobile
 307 siRNA precursors. This inconsistency prompts a reconsideration of the mobile agent's identity. One model
 308 is that the mobile agent is not a siRNA precursor, thus narrowing possibilities to non-AGO-loaded siRNA
 309 (single-stranded or duplexes) or AGO-bound siRNA. The viral silencing suppressor P19 exclusively binds
 310 to sRNA duplexes of 21 or 22 nucleotide (Skopelitis et al., 2018; Garnelo Gómez et al., 2021). Through
 311 P19 immunoprecipitation, siRNA duplexes sourced from phloem were recovered in root epidermal cells
 312 (Devers et al., 2020). This suggests that sRNA duplexes are mobile. Additionally, following the transient
 313 expression of artificial miRNA constructs, the miRNA:miRNA* ratio approximates one in non-infiltrated
 314 upper leaves that experience mobile miRNA activity (Cisneros et al., 2022). These findings underscore
 315 the mobility of siRNA and miRNA duplexes.
 316

317 While existing evidence suggests that sRNA duplexes are likely the mobile agents within-organism, the
 318 nature of *trans*-species sRNA is still under investigation. The pathogenicity of *Botrytis cinerea* *dcl1dcl2*
 319 double mutant is diminished, and the mutant also lost the ability to produce *trans*-species Bc-sRNAs
 320 (Wang et al., 2016; Weiberg et al., 2013). The result suggests that the dicing of the Bc-sRNAs precursor
 321 occurs in the pathogen, and either the duplex or single-stranded sRNA is subsequently transported into
 322 the host. Similarly, when disrupting RNA biogenesis, *dcl2/3/4* *Arabidopsis* is incapable of producing *trans*-
 323 species sRNA to inhibit *B. cinerea* virulence (Cai et al., 2018b). This, again, reaffirms that it is the incipient
 324 organism that completes the dicing of *trans*-species sRNAs. The evidence of sRNA duplexes or single-
 325 stranded sRNAs being the form sent into the recipient organism is also demonstrated in *Cuscuta*
 326 *campestris*. The detection of *trans*-species miRNAs in artificial haustoria of *C. campestris* serves as direct
 327 evidence that the processing of *trans*-species miRNA precursors takes place within *C. campestris* cells
 328 (Hudzik et al., 2023) (Fig. 1B). Consequently, it is plausible that the exported molecule could be either the
 329 mature miRNA or the miRNA/miRNA* duplex. This potential export might involve novel interactors, such
 330 as RNA binding protein and extracellular vesicles in the *B. cinerea* case, that play a role in safeguarding
 331 and facilitating transportation to host tissues.

332 It has been shown that AGO1, the major plant AGO for miRNAs and 21 nucleotide siRNAs, is cell-
 333 autonomous (Brosnan et al., 2019; Fan et al., 2022). Thus it is unlikely that AGO-bound sRNAs are the
 334 mobile version of the silencing agent in cell-to-cell movement within a plant. In fact, AGO loading has
 335 been demonstrated to limit the extracellular movement of siRNA duplexes (Devers et al., 2020). The
 336 majority of phloem-derived siRNAs that reached the root epidermis after grafting lacked 5' U, a
 337 characteristic feature of the AGO1 association (Mi et al., 2008). This observation suggests that AGO1 is
 338 the gatekeeper limiting the travel distance of these extracellular siRNAs by progressively sieving them out
 339 (Voinnet, 2022; Devers et al., 2023) (Fig. 1C). In the case of sRNAs serving as non-cell autonomous
 340 mobile signals, there might be a mechanism facilitating their production at a rate exceeding their
 341 consumption by AGOs, thus the surplus sRNAs can travel extracellularly. Consistent with this idea,
 342 miR165 and miR166 require KATANIN1 (KTN1), a microtubule-severing enzyme component for
 343 movement (Fan et al., 2022). KTN1 functions within endodermis cells to inhibit miR165/6 loading onto
 344 cytoplasmic AGO1. This inhibition promotes the cell-to-cell movement of miR165/6 into protoxylem and
 345 creates a gradient expression of their target *PHABULOSA*. Consequently, this gradient expression
 346 patterns the xylem cell fate in *Arabidopsis* roots (Fan et al., 2022) (Fig. 1D). Moreover, KTN1's role
 347 extends to the movement of exogenous miRNAs. Disrupting KTN1 limited the artificial miRNA (amiR)-
 348 mediated silencing of *SULFUR*, a key gene in chlorophyll synthesis, resulting in diminished leaf chlorosis
 349 (Fig. 1D). KTN1 also impacts the long-distance movement of artificial miRNA. In micrografts with *ktn1*
 350 rootstock and amiR scion, a significant amount of amiR-SUL was observed, indicating successful
 351 movement from shoot to root (Fig. 1D). Conversely, when *ktn1* served as a scion, the amiR-SUL level
 352 was markedly lower (Fig. 1D). These findings highlight the crucial role of microtubules in source tissues
 353 for the movement of sRNAs, both within cells and over long distances. This remains consistent regardless
 354 of the origin of the sRNAs, whether endogenous or exogenous, primarily by impeding their loading into
 355 cytoplasmic AGO1 (Fan et al., 2022). A preprint (Herridge et al., 2023) showed that specific plant siRNAs
 356 and miRNAs have significant amounts of pseudouridine (Ψ). Ψ is an isomer of U that is a common post-
 357 transcriptional modification of RNAs, perhaps most prominently appearing in the TΨC loop of transfer
 358 RNAs. (Herridge et al., 2023) reported that Ψ-enriched miRNAs and siRNAs are more likely to be mobile
 359 in both plants and animals. The mechanism by which Ψ enhances sRNA movement is not known. One
 360 possibility is that heavy Ψ modification of sRNAs somehow reduces AGO binding, thus allowing for
 361 movement. The simplest hypothesis is that the same rules of sRNA mobility apply to the movement of
 362 sRNA between pests and plants. Therefore, future investigations that examine avoidance of AGO-loading
 363 in source organisms and the presence of Ψ in *trans*-species sRNAs may be fruitful.

364
 365
 366 *Trans*-species sRNAs likely face demanding biological circumstances as they navigate between two
 367 organisms with differing internal conditions. Moreover, they confront potential perils such as exposure to
 368 RNases, phagocytosis, and extreme pH levels during their voyage. To prevent degradation, extracellular
 369 RNAs may either form close connections with RNA-binding proteins (RBPs) or become enclosed within
 370 extracellular vesicles (EVs). EVs shield their cargo from breakdown by external enzymes, a critical
 371 safeguard for RNA transport. Out of the 42 plant sRNAs transferred to the fungal pathogen *Botrytis*

372 *cinerea*, 31 were detected in EVs (Cai et al., 2018b). This observation indicates a potential role for EVs in
 373 facilitating the transport of sRNAs from plant cells to fungal pathogens.

374
 375 Conversely, fungal pathogens also encase their sRNAs within EVs, which are then internalized by plant
 376 cells through clathrin-mediated endocytosis (He et al., 2023) (Fig. 1A). This highlights the potential of EVs
 377 in facilitating the bidirectional transport of sRNAs between distinct species. Notably, when facing *B.*
 378 *cinerea* infection, the host prioritizes the transfer of a particular set of sRNAs (Cai et al., 2018b). This
 379 selectivity is evident as the expression profiles of EV-enriched sRNAs and total sRNAs from the same
 380 tissue differ significantly (Cai et al., 2018b). Furthermore, the size distribution of sRNAs differs from those
 381 found in isolated EVs and apoplastic fluid (Baldrich et al., 2019). Taken together, these discoveries imply
 382 that the movement of *trans*-species sRNAs isn't exclusively propelled by passive diffusion driven by
 383 concentration gradients. Instead, it potentially entails a more precise mechanism that selectively loads
 384 *trans*-species sRNAs into EVs (Cai et al., 2021; He et al., 2021).

385
 386 RBPs are central for loading and stabilizing *trans*-species sRNAs in EVs. Specific RBPs, like AGO1 and
 387 RNA helicases (RH11 and RH37), bind exclusively to EV-sRNAs, and Annexins 1 (ANN1) and ANN2
 388 enhance sRNA stability within EVs (He et al., 2021) (Fig. 1A). Disrupting these RBPs significantly
 389 reduces sRNA secretion into EVs, suggesting their importance in sorting and stabilizing *trans*-species
 390 sRNAs (He et al., 2021). This finding highlights the versatility of AGO1, which is considered cell-
 391 autonomous within a single organism, revealing its capacity to travel as EV cargo at the *trans*-species
 392 level. However, debate persists regarding the location of the sRNA-RBP complexes. Some studies (Cai et
 393 al., 2018b; He et al., 2021) indicate the presence of these complexes within EVs, while others (Baldrich et
 394 al., 2019; Zand Karimi et al., 2022) suggest that sRNA-RBP complexes exist outside EVs or closely
 395 associated with EV outer surface. Additionally, some EVs contain tiny RNAs ranging from 10 to 17
 396 nucleotides, adding another layer of complexity to the scenario (Baldrich et al., 2019). To date, there is no
 397 evidence that tiny RNAs are components of RISC complexes. The differences in these findings are likely
 398 influenced by various factors, including the plant's specific growth conditions and methodological
 399 differences for EV purification. The profile of sRNA secreted during the healthy and infected stages can
 400 be disparate. For instance, *C. campestris* produces *trans*-species miRNA exclusively during parasitism;
 401 the miRNAs do not accumulate outside of tissues specialized for host contact (Shahid et al., 2018; Hudzik
 402 et al., 2023). The result of (Cai et al., 2018b; He et al., 2021) is based on infected hosts, while (Baldrich et
 403 al., 2019; Zand Karimi et al., 2022) used healthy plants. Further experiments treating infected host EVs
 404 with protease plus RNase may pinpoint the exact location of *trans*-species sRNA-RBP complexes.
 405 Several studies clarified that *trans*-species sRNAs might be associated with RBPs, traveling within,
 406 adjacent to, or outside of EVs (Cai et al., 2018b; Baldrich et al., 2019; He et al., 2021; Zand Karimi et al.,
 407 2022). Upon reaching the recipient organism, the mechanism by which *trans*-species sRNAs disassociate
 408 from RBPs and re-bind with AGO1 presents an intriguing challenge (Fig. 1A).

409 410 **Evolution of *trans*-species sRNAs**

411 Several instances of *trans*-species sRNAs in plants are believed to benefit only one of the interacting
 412 organisms (the pathogen or parasite). Presumably, the recipient organism would benefit from the
 413 avoidance of targeting in most cases. This raises the question of whether, and how, *trans*-species sRNAs
 414 maintain sequence complementarity to recipient organism mRNAs. Two paradigms have been described:
 415 the "shotgun" strategy, where incipient organisms produce an assorted set of sRNAs that target recipient
 416 organisms randomly. For instance, most *trans*-species siRNAs in *B. cinerea* originate from the
 417 retrotransposons (Porquier et al., 2021). These transposons exhibit significant sequence variability,
 418 offering an advantageous landscape for targeting various mRNAs across different host species. Similarly,
 419 when infected by the oomycete *Phytophthora*, *Arabidopsis* produces a diverse pool of secondary siRNAs
 420 to target multiple *Phytophthora* transcripts (Hou et al., 2019). Inhibition of this secondary siRNA
 421 production, as seen in *rdr6* and *sgs3* mutants, heightens host susceptibility, leading to severe disease
 422 symptoms (Hou et al., 2019). Both examples exemplify the 'shotgun' strategy, enhancing the likelihood of
 423 targeting multiple transcripts in diverse host species.

424
 425 Conversely, a different paradigm is present in *Cuscuta*, where miRNAs are strategically employed to
 426 target host genes. Unlike siRNAs and secondary siRNAs, miRNAs are precisely excised from their
 427 precursors, yielding a singular functional product. *Cuscuta*-derived *trans*-species miRNAs target highly

428 conserved regions in host mRNAs. *Cuscuta* miRNAs also possess polymorphic sites that correspond
 429 precisely to synonymous sites in host target mRNAs. The combination of targeting highly conserved sites
 430 with synonymous-site polymorphisms likely prevents the host mRNAs from escaping the parasite miRNAs
 431 (Johnson et al., 2019; Hudzik et al., 2020). In both paradigms, sequence variations in host targets, aimed
 432 at evading silencing, are met with corresponding adjustments in the pathogen's sRNA sequences. This
 433 raises a question: Do these two paradigms extend to all instances of natural *trans*-species RNAi? To
 434 address this, studying more cases of *trans*-species sRNA-mediated silencing will be crucial. For instance,
 435 there are about 4,500 species of parasitic plants and the parasitic plant lifestyle has independently arisen
 436 multiple times (Nickrent, 2020; Ibiapino et al., 2022; Zangishei et al., 2022). Many thousands of diverse
 437 plant pathogens are also known. Mutualistic interactions, as observed in ectomycorrhizal fungi and host
 438 plants, also involve *trans*-species sRNAs (Wong-Bajracharya et al., 2022). Mutual relationships can turn
 439 neutral or parasitic under different conditions (Nakazawa and Katayama, 2020; Drew et al., 2021;
 440 Harrower and Gilbert, 2021), making it intriguing to investigate sRNA profiles during such shifts. Future
 441 work directed at systematically examining natural cases of *trans*-species RNAi will enhance the
 442 understanding of how RNAi can move between plants and their associated organisms. The study of *trans*-
 443 species sRNAs would involve extending the research to organisms that have evolved across varying
 444 timeframes, adopted different lifestyles, and engaged in diverse symbiotic interactions.
 445

446 **Conclusions and Perspective**

447 *Trans*-species RNAi is a natural phenomenon observed in a variety of plant-pathogen, plant-parasite, and
 448 plant-symbiote interactions that has expanded the understanding of sRNA function in plants. The
 449 elucidation of mechanisms governing the biogenesis, transport, and subsequent silencing mediated by
 450 *trans*-species sRNAs has paved the way for the development of effective *trans*-species RNAi methods in
 451 plants. This includes introducing new potential methods of pest and pathogen control. One of the key
 452 unanswered questions is the mechanism of sRNA movement within and between species. Evidence
 453 within plants suggests that extracellular movement is directed by phloem-mobile sRNA duplexes (Devers
 454 et al., 2020; Cisneros et al., 2022). It is hypothesized that two mechanisms may be at work to limit
 455 transfer via the sieve tube elements. AGO1 may act as a gatekeeper, limiting which sRNAs are mobile
 456 between plant cells by inhibiting travel distance (Voinnet, 2022; Fan et al., 2022; Devers et al., 2023).
 457 Alternative hypotheses propose that modifications to sRNAs might contribute to their mobility. Ψ -enriched
 458 sRNAs exhibit enhanced mobility in plants and animals (Herridge et al., 2023). Specific RNAi machinery
 459 and transport mechanisms involved in *trans*-species RNAi require a careful evaluation of individual
 460 interactions between plants and interacting organisms. For instance, debates persist regarding the role of
 461 EVs and RBPs in the selective transport of sRNAs within and between plants and fungi (Baldrich et al.,
 462 2019; He et al., 2021). Another intriguing avenue still to be explored is the evolution of *trans*-species
 463 sRNAs. *B. cinerea* and *Cuscuta* spp. illustrate two distinct strategies for stabilizing sRNA-target
 464 relationships: either by enhancing sequence variability in the produced sRNAs or by targeting the highly
 465 conserved regions of the target. Exploring the evolution of *trans*-species RNAs in various organisms
 466 could provide insight into how different species employ *trans*-species RNAi over time. While more
 467 research is necessary to delve into the specific mechanisms and functionalities of *trans*-species sRNAs,
 468 the current progress lays the foundational cornerstone for understanding sRNA-mediated silencing across
 469 organisms from diverse species and kingdoms.
 470

471 **Acknowledgments**

472 Research on *trans*-species RNAi in the Axtell group is supported by awards from the US National Science
 473 Foundation (award # 2003315), the US Department of Agriculture's National Institute of Food and
 474 Agriculture (award # 2018-67013-285), The Huck Institutes of the Life Sciences at Penn State, and The
 475 Louis & Hedwig Sternberg Chair in Plant Biology at Penn State.
 476

477 **Author Contributions**

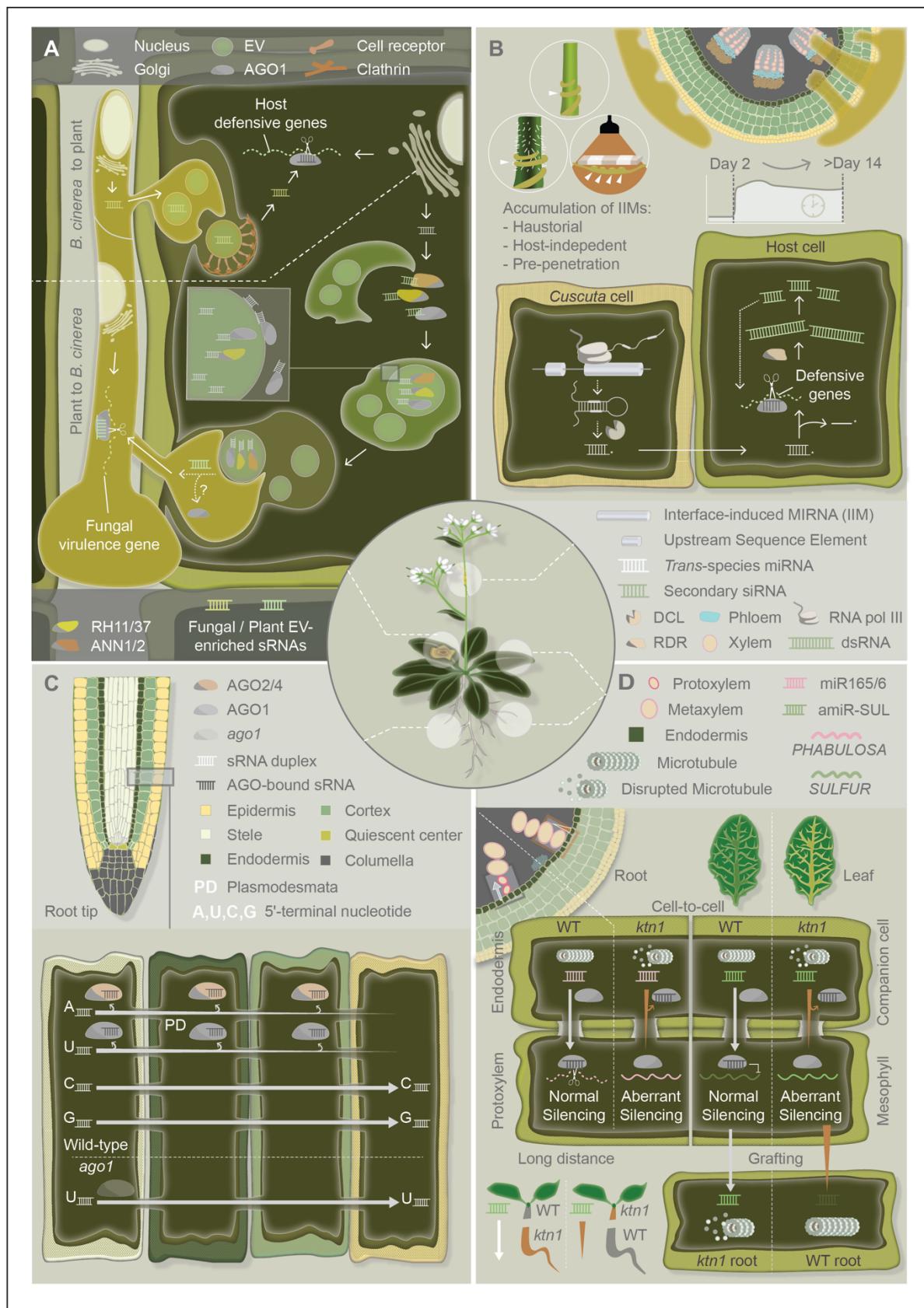
478 AZ and YN contributed equally to the research and writing of this manuscript. YN prepared the figure.
 479 MJA edited and provided overall guidance to the writing.
 480

481 **Disclosures**

482 The authors declare no conflict of interest.
 483

484

485 **References**


- 486 Alakonya, A., Kumar, R., Koenig, D., Kimura, S., Townsley, B., Runo, S., Garces, H.M., Kang, J., Yanez, A., David-Schwartz, R., Machuka, J., Sinha, N., 2012. Interspecific RNA Interference of *SHOOT MERISTEMLESS-Like* Disrupts *Cuscuta pentagona* Plant Parasitism. *Plant Cell* 24, 3153–3166. <https://doi.org/10.1105/tpc.112.099994>
- 487 Baldrich, P., Rutter, B.D., Karimi, H.Z., Podicheti, R., Meyers, B.C., Innes, R.W., 2019. Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10- to 17-Nucleotide “Tiny” RNAs. *Plant Cell* 31, 315–324. <https://doi.org/10.1105/tpc.18.00872>
- 488 Banerjee, S., Banerjee, A., Gill, S.S., Gupta, O.P., Dahuja, A., Jain, P.K., Sirohi, A., 2017. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes. *Front. Plant Sci.* 8, 834. <https://doi.org/10.3389/fpls.2017.00834>
- 489 Baulcombe, D.C., 2022. The Role of Viruses in Identifying and Analyzing RNA Silencing. *Annu. Rev. Virol.* 9, 353–373. <https://doi.org/10.1146/annurev-virology-091919-064218>
- 490 Betti, F., Ladera-Carmona, M.J., Weits, D.A., Ferri, G., Iacopino, S., Novi, G., Svezia, B., Kunkowska, A.B., Santaniello, A., Piaggesi, A., Loreti, E., Perata, P., 2021. Exogenous miRNAs induce post-transcriptional gene silencing in plants. *Nat. Plants* 7, 1379–1388. <https://doi.org/10.1038/s41477-021-01005-w>
- 491 Blyuss, K.B., Fatehi, F., Tsygankova, V.A., Biliavská, L.O., Iutynska, G.O., Yemets, A.I., Blume, Y.B., 2019. RNAi-Based Biocontrol of Wheat Nematodes Using Natural Poly-Component Biostimulants. *Front. Plant Sci.* 10, 483. <https://doi.org/10.3389/fpls.2019.00483>
- 492 Bradamante, G., Mittelsten Scheid, O., Incarbone, M., 2021. Under siege: virus control in plant meristems and progeny. *The Plant Cell* 33, 2523–2537. <https://doi.org/10.1093/plcell/koab140>
- 493 Brioudes, F., Jay, F., Sarazin, A., Grentzinger, T., Devers, E.A., Voinnet, O., 2021. HASTY, the *Arabidopsis EXPORTIN5* ortholog, regulates cell-to-cell and vascular microRNA movement. *EMBO J* 40, e107455. <https://doi.org/10.15252/embj.2020107455>
- 494 Brosnan, C.A., Sarazin, A., Lim, P., Bologna, N.G., Hirsch-Hoffmann, M., Voinnet, O., 2019. Genome-scale, single-cell-type resolution of microRNA activities within a whole plant organ. *EMBO J* 38, e100754. <https://doi.org/10.15252/embj.2018100754>
- 495 Cai, Q., He, B., Kogel, K.-H., Jin, H., 2018a. Cross-kingdom RNA trafficking and environmental RNAi — nature’s blueprint for modern crop protection strategies. *Current Opinion in Microbiology* 46, 58–64. <https://doi.org/10.1016/j.mib.2018.02.003>
- 496 Cai, Q., He, B., Wang, S., Fletcher, S., Niu, D., Mitter, N., Birch, P.R.J., Jin, H., 2021. Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. *Annu Rev Plant Biol* 72, 497–524. <https://doi.org/10.1146/annurev-arplant-081720-010616>
- 497 Cai, Q., Qiao, L., Wang, M., He, B., Lin, F.-M., Palmquist, J., Huang, S.-D., Jin, H., 2018b. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. *Science* 360, 1126–1129. <https://doi.org/10.1126/science.aar4142>
- 498 Chen, A., Halilovic, L., Shay, J.-H., Koch, A., Mitter, N., Jin, H., 2023. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking. *Current Opinion in Plant Biology* 76, 102441. <https://doi.org/10.1016/j.pbi.2023.102441>
- 499 Chen, H.-M., Chen, L.-T., Patel, K., Li, Y.-H., Baulcombe, D.C., Wu, S.-H., 2010. 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. *Proc. Natl. Acad. Sci. U.S.A.* 107, 15269–15274. <https://doi.org/10.1073/pnas.1001738107>
- 500 Cisneros, A.E., Torre-Montaña, A., Carbonell, A., 2022. Systemic silencing of an endogenous plant gene by two classes of mobile 21-NUCLEOTIDE artificial small RNAs. *The Plant Journal* 110, 1166–1181. <https://doi.org/10.1111/tpj.15730>
- 501 Dalakouras, A., Katsaouni, A., Avramidou, M., Dadami, E., Tsiori, O., Vasileiadis, S., Makris, A., Georgopoulou, M.E., Papadopoulou, K.K., 2023. A beneficial fungal root endophyte triggers systemic RNA silencing and DNA methylation of a host reporter gene. *RNA Biology* 20, 20–30. <https://doi.org/10.1080/15476286.2022.2159158>
- 502 de Felipes, F.F., Waterhouse, P.M., 2020. The Whys and Wherewhores of Transitivity in Plants. *Front Plant Sci* 11, 579376. <https://doi.org/10.3389/fpls.2020.579376>
- 503 Devers, E.A., Brosnan, C.A., Sarazin, A., Albertini, D., Amsler, A.C., Brioudes, F., Jullien, P.E., Lim, P., Schott, G., Voinnet, O., 2020. Movement and differential consumption of short interfering RNA

- 540 duplexes underlie mobile RNA interference. *Nat Plants* 6, 789–799.
 541 <https://doi.org/10.1038/s41477-020-0687-2>
- 542 Devers, E.A., Brosnan, C.A., Sarazin, A., Schott, G., Lim, P., Lehesranta, S., Helariutta, Y., Voinnet, O.,
 543 2023. *In planta* dynamics, transport biases, and endogenous functions of mobile siRNAs in
 544 *Arabidopsis*. *The Plant Journal* tpj.16327. <https://doi.org/10.1111/tpj.16327>
- 545 Drew, G.C., Stevens, E.J., King, K.C., 2021. Microbial evolution and transitions along the parasite–
 546 mutualist continuum. *Nat Rev Microbiol* 19, 623–638. <https://doi.org/10.1038/s41579-021-00550-7>
- 547 Duanis-Assaf, D., Galsurker, O., Davydov, O., Maurer, D., Feygenberg, O., Sagi, M., Poverenov, E., Fluhr,
 548 R., Alkan, N., 2022. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway
 549 controls *Botrytis cinerea* and postharvest grey mould. *Plant Biotechnology Journal* 20, 226–237.
 550 <https://doi.org/10.1111/pbi.13708>
- 551 Dubrovina, A., Aleynova, O., Kalachev, A., Suprun, A., Ogneva, Z., Kiselev, K., 2019. Induction of
 552 Transgene Suppression in Plants via External Application of Synthetic dsRNA. *IJMS* 20, 1585.
 553 <https://doi.org/10.3390/ijms20071585>
- 554 Dutta, T.K., Papolu, P.K., Banakar, P., Choudhary, D., Sirohi, A., Rao, U., 2015. Tomato transgenic plants
 555 expressing hairpin construct of a nematode protease gene conferred enhanced resistance to
 556 root-knot nematodes. *Front. Microbiol.* 6. <https://doi.org/10.3389/fmicb.2015.00260>
- 557 Eakteiman, G., Moses-Koch, R., Moshitzky, P., Mestre-Rincon, N., Vassão, D.G., Luck, K., Sertchook, R.,
 558 Malka, O., Morin, S., 2018. Targeting detoxification genes by phloem-mediated RNAi: A new
 559 approach for controlling phloem-feeding insect pests. *Insect Biochemistry and Molecular Biology*
 560 100, 10–21. <https://doi.org/10.1016/j.ibmb.2018.05.008>
- 561 Fan, L., Zhang, C., Gao, B., Zhang, Y., Stewart, E., Jez, J., Nakajima, K., Chen, X., 2022. Microtubules
 562 promote the non-cell autonomous action of microRNAs by inhibiting their cytoplasmic loading
 563 onto ARGONAUTE1 in *Arabidopsis*. *Developmental Cell* 57, 995–1008.e5.
 564 <https://doi.org/10.1016/j.devcel.2022.03.015>
- 565 Fishilevich, E., Bowling, A.J., Frey, M.L.F., Wang, P.-H., Lo, W., Rangasamy, M., Worden, S.E., Pence,
 566 H.E., Gandra, P., Whitlock, S.L., Schulenberg, G., Knorr, E., Tenbusch, L., Lutz, J.R., Novak, S.,
 567 Hamm, R.L., Schnelle, K.D., Vilcinskas, A., Narva, K.E., 2019. RNAi targeting of rootworm
 568 Troponin I transcripts confers root protection in maize. *Insect Biochemistry and Molecular Biology*
 569 104, 20–29. <https://doi.org/10.1016/j.ibmb.2018.09.006>
- 570 Garnelo Gómez, B., Rosas-Díaz, T., Shi, C., Fan, P., Zhang, D., Rufián, J.S., Lozano-Durán, R., 2021.
 571 The viral silencing suppressor P19 interacts with the receptor-like kinases BAM1 and BAM2 and
 572 suppresses the cell-to-cell movement of RNA silencing independently of its ability to bind srRNA.
 573 *New Phytol* 229, 1840–1843. <https://doi.org/10.1111/nph.16981>
- 574 Guo, Q., Liu, Q., A. Smith, N., Liang, G., Wang, M.-B., 2016. RNA Silencing in Plants: Mechanisms,
 575 Technologies and Applications in Horticultural Crops. *CG* 17, 476–489.
 576 <https://doi.org/10.2174/1389202917666160520103117>
- 577 Hada, A., Singh, D., Papolu, P.K., Banakar, P., Raj, A., Rao, U., 2021. Host-mediated RNAi for
 578 simultaneous silencing of different functional groups of genes in *Meloidogyne incognita* using
 579 fusion cassettes in *Nicotiana tabacum*. *Plant Cell Rep* 40, 2287–2302.
 580 <https://doi.org/10.1007/s00299-021-02767-5>
- 581 Haile, Z.M., Gebremichael, D.E., Capriotti, L., Molesini, B., Negrini, F., Collina, M., Sabbadini, S.,
 582 Mezzetti, B., Baraldi, E., 2021. Double-Stranded RNA Targeting Dicer-Like Genes Compromises
 583 the Pathogenicity of *Plasmopara viticola* on Grapevine. *Front Plant Sci* 12, 667539.
 584 <https://doi.org/10.3389/fpls.2021.667539>
- 585 Ham, B.-K., Lucas, W.J., 2017. Phloem-Mobile RNAs as Systemic Signaling Agents. *Annu. Rev. Plant*
 586 Biol.
- 587 68, 173–195. <https://doi.org/10.1146/annurev-arpplant-042916-041139>
- 588 Ham, B.-K., Lucas, W.J., 2014. The angiosperm phloem sieve tube system: a role in mediating traits
 589 important to modern agriculture. *Journal of Experimental Botany* 65, 1799–1816.
 590 <https://doi.org/10.1093/jxb/ert417>
- 591 Harrower, J.T., Gilbert, G.S., 2021. Parasitism to mutualism continuum for Joshua trees inoculated with
 592 different communities of arbuscular mycorrhizal fungi from a desert elevation gradient. *PLoS ONE*
 593 16, e0256068. <https://doi.org/10.1371/journal.pone.0256068>

- 594 He, B., Cai, Q., Qiao, L., Huang, C.-Y., Wang, S., Miao, W., Ha, T., Wang, Y., Jin, H., 2021. RNA-binding
 595 proteins contribute to small RNA loading in plant extracellular vesicles. *Nat Plants* 7, 342–352.
 596 <https://doi.org/10.1038/s41477-021-00863-8>
- 597 He, B., Wang, H., Liu, G., Chen, A., Calvo, A., Cai, Q., Jin, H., 2023. Fungal small RNAs ride in
 598 extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. *Nat Commun* 14,
 599 4383. <https://doi.org/10.1038/s41467-023-40093-4>
- 600 Herridge, R.P., Dolata, J., Migliori, V., De Santis Alves, C., Borges, F., Van Ex, F., Lin, A., Bajczyk, M.,
 601 Leonardi, T., Hendrick, A., Schorn, A.J., Kouzarides, T., Martienssen, R.A., 2023. Pseudouridine
 602 guides germline small RNA transport and epigenetic inheritance (preprint). *Genetics*.
 603 <https://doi.org/10.1101/2023.05.27.542553>
- 604 Hou, Y., Zhai, Y., Feng, L., Karimi, H.Z., Rutter, B.D., Zeng, L., Choi, D.S., Zhang, B., Gu, W., Chen, X.,
 605 Ye, W., Innes, R.W., Zhai, J., Ma, W., 2019. A Phytophthora Effector Suppresses Trans-Kingdom
 606 RNAi to Promote Disease Susceptibility. *Cell Host Microbe* 25, 153–165.e5.
 607 <https://doi.org/10.1016/j.chom.2018.11.007>
- 608 Hudzik, C., Hou, Y., Ma, W., Axtell, M.J., 2020. Exchange of Small Regulatory RNAs between Plants and
 609 Their Pests. *Plant Physiol.* 182, 51–62. <https://doi.org/10.1104/pp.19.00931>
- 610 Hudzik, C., Maguire, S., Guan, S., Held, J., Axtell, M.J., 2023. *Trans- species* microRNA loci in the
 611 parasitic plant *Cuscuta campestris* have a U6-like snRNA promoter. *The Plant Cell* 35, 1834–
 612 1847. <https://doi.org/10.1093/plcell/koad076>
- 613 Ibiapino, A., García, M.A., Amorim, B., Baez, M., Costea, M., Stefanović, S., Pedrosa-Harand, A., 2022.
 614 The Evolution of Cytogenetic Traits in *Cuscuta* (Convolvulaceae), the Genus With the Most
 615 Diverse Chromosomes in Angiosperms. *Front. Plant Sci.* 13, 842260.
 616 <https://doi.org/10.3389/fpls.2022.842260>
- 617 Incarbone, M., Bradamante, G., Pruckner, F., Wegscheider, T., Rozhon, W., Nguyen, V., Gutzat, R., Mérai,
 618 Z., Lendl, T., MacFarlane, S., Nodine, M., Scheid, O.M., 2023. Salicylic acid and RNA interference
 619 mediate antiviral immunity of plant stem cells. *Proc. Natl. Acad. Sci. U.S.A.* 120, e2302069120.
 620 <https://doi.org/10.1073/pnas.2302069120>
- 621 Iqbal, S., Jones, M.G.K., Fosu-Nyarko, J., 2021. RNA interference of an orthologue of Dicer of
 622 *Meloidogyne incognita* alludes to the gene's importance in nematode development. *Sci Rep* 11,
 623 11156. <https://doi.org/10.1038/s41598-021-90363-8>
- 624 Jhu, M.-Y., Farhi, M., Wang, L., Zumstein, K., Sinha, N.R., 2022. Investigating Host and Parasitic Plant
 625 Interaction by Tissue-Specific Gene Analyses on Tomato and *Cuscuta campestris* Interface at
 626 Three Haustorial Developmental Stages. *Front. Plant Sci.* 12, 764843.
 627 <https://doi.org/10.3389/fpls.2021.764843>
- 628 Jhu, M.-Y., Ichihashi, Y., Farhi, M., Wong, C., Sinha, N.R., 2021. *LATERAL ORGAN BOUNDARIES*
 629 *DOMAIN* 25 functions as a key regulator of haustorium development in dodders. *Plant Physiology*
 630 186, 2093–2110. <https://doi.org/10.1093/plphys/kiab231>
- 631 Jin, L., Chen, M., Xiang, M., Guo, Z., 2022. RNAi-Based Antiviral Innate Immunity in Plants. *Viruses* 14,
 632 432. <https://doi.org/10.3390/v14020432>
- 633 Johnson, N.R., dePamphilis, C.W., Axtell, M.J., 2019. Compensatory sequence variation between trans-
 634 species small RNAs and their target sites. *eLife* 8, e49750. <https://doi.org/10.7554/eLife.49750>
- 635 Kasai, A., Bai, S., Hojo, H., Harada, T., 2016. Epigenome Editing of Potato by Grafting Using Transgenic
 636 Tobacco as siRNA Donor. *PLoS ONE* 11, e0161729.
 637 <https://doi.org/10.1371/journal.pone.0161729>
- 638 Koch, A., Wassenegger, M., 2021. Host-induced gene silencing – mechanisms and applications. *New
 639 Phytologist* 231, 54–59. <https://doi.org/10.1111/nph.17364>
- 640 Kwon, S., Tisserant, C., Tulinski, M., Weiberg, A., Feldbrügge, M., 2020. Inside-out: from endosomes to
 641 extracellular vesicles in fungal RNA transport. *Fungal Biology Reviews* 34, 89–99.
 642 <https://doi.org/10.1016/j.fbr.2020.01.001>
- 643 Long, J., Walker, J., She, W., Aldridge, B., Gao, H., Deans, S., Vickers, M., Feng, X., 2021. Nurse cell–
 644 derived small RNAs define paternal epigenetic inheritance in *Arabidopsis*. *Science* 373,
 645 eabh0556. <https://doi.org/10.1126/science.abh0556>
- 646 Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon,
 647 G.J., Qi, Y., 2008. Sorting of Small RNAs into *Arabidopsis* Argonaute Complexes Is Directed by
 648 the 5' Terminal Nucleotide. *Cell* 133, 116 – 127. <https://doi.org/10.1016/j.cell.2008.02.034>

- 649 Molnar, A., Melnyk, C.W., Bassett, A., Hardcastle, T.J., Dunn, R., Baulcombe, D.C., 2010. Small Silencing
 650 RNAs in Plants Are Mobile and Direct Epigenetic Modification in Recipient Cells. *Science* 328,
 651 872–875. <https://doi.org/10.1126/science.1187959>
- 652 Nakazawa, T., Katayama, N., 2020. Stage-Specific Parasitism by a Mutualistic Partner Can Increase the
 653 Host Abundance. *Front. Ecol. Evol.* 8, 602675. <https://doi.org/10.3389/fevo.2020.602675>
- 654 Nickrent, D.L., 2020. Parasitic angiosperms: How often and how many? *TAXON* 69, 5–27.
 655 <https://doi.org/10.1002/tax.12195>
- 656 Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J.,
 657 Schweizer, P., 2010. HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal
 658 Pathogen *Blumeria graminis*. *The Plant Cell* 22, 3130–3141.
 659 <https://doi.org/10.1105/tpc.110.077040>
- 660 Porquier, A., Tisserant, C., Salinas, F., Glassl, C., Wange, L., Enard, W., Hauser, A., Hahn, M., Weiberg,
 661 A., 2021. Retrotransposons as pathogenicity factors of the plant pathogenic fungus *Botrytis*
 662 *cinerea*. *Genome Biol* 22, 225. <https://doi.org/10.1186/s13059-021-02446-4>
- 663 Qiao, L., Niño-Sánchez, J., Hamby, R., Capriotti, L., Chen, A., Mezzetti, B., Jin, H., 2023. Artificial
 664 nanovesicles for dsRNA delivery in spray induced gene silencing for crop protection (preprint).
 665 *Plant Biology*. <https://doi.org/10.1101/2023.01.03.522662>
- 666 Rössner, C., Lotz, D., Becker, A., 2022. VIGS Goes Viral: How VIGS Transforms Our Understanding of
 667 Plant Science. *Annu. Rev. Plant Biol.* 73, 703–728. <https://doi.org/10.1146/annurev-arplant-102820-020542>
- 668 Rubio, B., Stammitti, L., Cookson, S.J., Teyssier, E., Gallusci, P., 2022. Small RNA populations reflect the
 669 complex dialogue established between heterograft partners in grapevine. *Horticulture Research*
 670 9, uhab067. <https://doi.org/10.1093/hr/uhab067>
- 671 Sanan-Mishra, N., Abdul Kader Jailani, A., Mandal, B., Mukherjee, S.K., 2021. Secondary siRNAs in
 672 Plants: Biosynthesis, Various Functions, and Applications in Virology. *Front. Plant Sci.* 12,
 673 610283. <https://doi.org/10.3389/fpls.2021.610283>
- 674 Schröder, J.A., Bonnet, D.M.V., Jullien, P.E., 2023. Non-cell-autonomous small RNA silencing in
 675 *Arabidopsis* female gametes. *Current Biology* 33, 183–188.e3.
 676 <https://doi.org/10.1016/j.cub.2022.11.044>
- 677 Shahid, S., Kim, G., Johnson, N.R., Wafula, E., Wang, F., Coruh, C., Bernal-Galeano, V., Phifer, T.,
 678 dePamphilis, C.W., Westwood, J.H., Axtell, M.J., 2018. MicroRNAs from the parasitic plant
 679 *Cuscuta campestris* target host messenger RNAs. *Nature* 553, 82–85.
 680 <https://doi.org/10.1038/nature25027>
- 681 Silvestri, A., Fiorilli, V., Miozzi, L., Accotto, G.P., Turina, M., Lanfranco, L., 2019. In silico analysis of fungal
 682 small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an
 683 arbuscular mycorrhizal fungus and its host plant. *BMC Genomics* 20, 169.
 684 <https://doi.org/10.1186/s12864-019-5561-0>
- 685 Skopelitis, D.S., Hill, K., Klesen, S., Marco, C.F., Von Born, P., Chitwood, D.H., Timmermans, M.C.P.,
 686 2018. Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional
 687 signals. *Nat Commun* 9, 3107. <https://doi.org/10.1038/s41467-018-05571-0>
- 688 Subhankar, B., Yamaguchi, K., Shigenobu, S., Aoki, K., 2021. *Trans*-species small RNAs move long
 689 distances in a parasitic plant complex. *Plant Biotechnology* 38, 187–196.
 690 <https://doi.org/10.5511/plantbiotechnology.21.0121a>
- 691 Subramanian, S., 2019. Little RNAs Go a Long Way: Long-Distance Signaling by MicroRNAs. *Molecular
 692 Plant* 12, 18–20. <https://doi.org/10.1016/j.molp.2018.12.001>
- 693 Sun, Y., Sparks, C., Jones, H., Riley, M., Francis, F., Du, W., Xia, L., 2019. Silencing an essential gene
 694 involved in infestation and digestion in grain aphid through plant-mediated RNA interference
 695 generates aphid-resistant wheat plants. *Plant Biotechnology Journal* 17, 852–854.
 696 <https://doi.org/10.1111/pbi.13067>
- 697 Voinnet, O., 2022. Revisiting small RNA movement in plants. *Nat Rev Mol Cell Biol* 23, 163–164.
 698 <https://doi.org/10.1038/s41580-022-00455-0>
- 699 Voinnet, O., Vain, P., Angell, S., Baulcombe, D.C., 1998. Systemic Spread of Sequence-Specific
 700 Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic
 701 Promoterless DNA. *Cell* 95, 177–187. [https://doi.org/10.1016/S0092-8674\(00\)81749-3](https://doi.org/10.1016/S0092-8674(00)81749-3)
- 702 Wang, F., Huang, H.-Y., Huang, J., Singh, J., Pikaard, C.S., 2023. Enzymatic reactions of AGO4 in RNA-
 703 directed DNA methylation: siRNA duplex loading, passenger strand elimination, target RNA
 704

- 705 slicing, and sliced target retention. *Genes Dev.* 37, 103–118.
 706 <https://doi.org/10.1101/gad.350240.122>
- 707 Wang, M., Dean, R.A., 2020. Movement of small RNAs in and between plants and fungi. *Molecular Plant*
 708 *Pathology* 21, 589–601. <https://doi.org/10.1111/mpp.12911>
- 709 Wang, M., Weiberg, A., Lin, F.-M., Thomma, B.P.H.J., Huang, H.-D., Jin, H., 2016. Bidirectional cross-
 710 kingdom RNAi and fungal uptake of external RNAs confer plant protection. *Nature Plants* 2,
 711 16151. <https://doi.org/10.1038/nplants.2016.151>
- 712 Weiberg, A., Wang, M., Lin, F.-M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.-D., Jin, H., 2013. Fungal
 713 Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. *Science*
 714 342, 118–123. <https://doi.org/10.1126/science.1239705>
- 715 Wen, H.-G., Zhao, J.-H., Zhang, B.-S., Gao, F., Wu, X.-M., Yan, Y.-S., Zhang, J., Guo, H.-S., 2023.
 716 Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. *Nat.*
 717 *Plants* 9, 1409–1418. <https://doi.org/10.1038/s41477-023-01507-9>
- 718 Werner, B.T., Gaffar, F.Y., Schuemann, J., Biedenkopf, D., Koch, A.M., 2020. RNA-Spray-Mediated
 719 Silencing of *Fusarium graminearum* AGO and DCL Genes Improve Barley Disease Resistance.
 720 *Front. Plant Sci.* 11, 476. <https://doi.org/10.3389/fpls.2020.00476>
- 721 Wu, H., Li, B., Iwakawa, H., Pan, Y., Tang, X., Ling-hu, Q., Liu, Y., Sheng, S., Feng, L., Zhang, H., Zhang,
 722 X., Tang, Z., Xia, X., Zhai, J., Guo, H., 2020. Plant 22-nt siRNAs mediate translational repression
 723 and stress adaptation. *Nature* 581, 89–93. <https://doi.org/10.1038/s41586-020-2231-y>
- 724 Yan, Y., 2022. Insights into Mobile Small-RNAs Mediated Signaling in Plants. *Plants* 11, 3155.
 725 <https://doi.org/10.3390/plants11223155>
- 726 Zand Karimi, H., Baldrich, P., Rutter, B.D., Borniego, L., Zait, K.K., Meyers, B.C., Innes, R.W., 2022.
 727 *Arabidopsis* apoplastic fluid contains sRNA- and circular RNA–protein complexes that are located
 728 outside extracellular vesicles. *The Plant Cell* 34, 1863–1881.
 729 <https://doi.org/10.1093/plcell/koac043>
- 730 Zangishei, Z., Annacondia, M.L., Gundlach, H., Didriksen, A., Bruckmüller, J., Salari, H., Krause, K.,
 731 Martinez, G., 2022. Parasitic plant small RNA analyses unveil parasite-specific signatures of
 732 microRNA retention, loss, and gain. *Plant Physiology* 190, 1242–1259.
 733 <https://doi.org/10.1093/plphys/kiac331>
- 734 Zhang, B.-S., Li, Y.-C., Guo, H.-S., Zhao, J.-H., 2022. *Verticillium dahliae* Secretes Small RNA to Target
 735 Host MIR157d and Retard Plant Floral Transition During Infection. *Front. Plant Sci.* 13, 847086.
 736 <https://doi.org/10.3389/fpls.2022.847086>
- 737 Zhang, T., Zhao, Y.-L., Zhao, J.-H., Wang, S., Jin, Y., Chen, Z.-Q., Fang, Y.-Y., Hua, C.-L., Ding, S.-W.,
 738 Guo, H.-S., 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal
 739 pathogen. *Nature Plants* 2, 16153. <https://doi.org/10.1038/nplants.2016.153>
- 740 Zhao, D., Zhong, G., Song, G., 2020. Transfer of endogenous small RNAs between branches of scions
 741 and rootstocks in grafted sweet cherry trees. *PLoS ONE* 15, e0236376.
 742 <https://doi.org/10.1371/journal.pone.0236376>
- 743 Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., Lin, Z., Luo, J., Zheng, H., Wan, P., Zhang, J., Zen,
 744 K., Chen, J., Hu, F., Zhang, C.-Y., Ren, J., Chen, X., 2017. Plant microRNAs in larval food
 745 regulate honeybee caste development. *PLoS Genet* 13, e1006946.
 746 <https://doi.org/10.1371/journal.pgen.1006946>
- 747 Zhuo, K., Chen, J., Lin, B., Wang, J., Sun, F., Hu, L., Liao, J., 2017. A novel *Meloidogyne enterolobii*
 748 effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants.
 749 *Molecular Plant Pathology* 18, 45–54. <https://doi.org/10.1111/mpp.12374>
- 750 Zulfiqar, S., Farooq, M.A., Zhao, T., Wang, P., Tabusam, J., Wang, Y., Xuan, S., Zhao, J., Chen, X., Shen,
 751 S., Gu, A., 2023. Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement
 752 and Its Advancement towards Epigenetics. *IJMS* 24, 5608. <https://doi.org/10.3390/ijms24065608>
- 753

755 **Figure Legends**

756 **Figure 1. Summary of key findings related to *trans*-species (A and B) and intercellular/within**
757 **species (C and D) movement of sRNA-mediated silencing. (A)** Bidirectional *trans*-species sRNA
758 between *Botrytis cinerea* and host plants (Cai et al., 2018b; He et al., 2021; He et al., 2023). EV:
759 Extracellular vesicle, AGO1: ARGONAUTE 1, RH: RNA helicases, ANN: ANNEXINS. Upon reaching the
760 recipient organism, the mechanism by which *trans*-species sRNAs disassociate from RNA-binding
761 proteins and re-bind with AGO1 is unknown ('?'). **(B)** Expression profile, biogenesis, and function of *C.*
762 *campestris*-derived interface-induced miRNAs (IIMs) (Shahid et al., 2018; Johnson et al., 2019; Hudzik et
763 al., 2023). White arrows indicate haustoria, DCL: DICER-LIKE protein, RDR: RNA-dependent RNA
764 polymerase, RNA Pol III: RNA polymerase III, dsRNA: double-stranded RNA. **(C)** Consumption of sRNAs
765 by AGO1 limits sRNA movement in the root tip, featuring a 5' terminal nucleotide discrepancy (Voinnet,
766 2022; Devers et al., 2023). *ago1*: ARGONAUTE 1 mutant. **(D)** Microtubules enhance the non-cell-
767 autonomous movement of both endogenous miRNAs and exogenous artificial miRNAs by preventing their
768 loading onto cytoplasmic AGO1 in the source tissues (Fan et al., 2022). amiR-SUL: artificial microRNA
769 targeting *SULFUR* transcript, WT: wild-type, *ktn1*: KATANIN 1 mutant.
770