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common framework to compare and contrast the 

mathematical and implementational aspects of the 

modern MMI systems.

Early Developments
The origins of holographic imaging are attributed to 

Gabor [1], whose work (dating back to the late 1940s) 

aimed at improving electron microscopy by employ-

ing a clever two-step measurement procedure. In the 

first recording step, the object is illuminated with a 

focused electron beam. The resulting scattered wave 

is allowed to interfere with a copy of the illuminat-

ing beam (the reference wave) and the diffraction 

pattern resulting from this interference is recorded 

on a photographic plate. Gabor named this record-

ing the hologram. The photographic hologram is then 

processed and scaled up to optical wavelengths. In a 

second reconstruction step, an optical illumination 

system is employed, which is a scaled-up copy of the 

electron-beam illumination system. Now the object is 

absent, but the processed hologram (a photograph) is 

placed in the same (but scaled) position relative to the 

wave source (now monochromatic light). Upon optical 

illumination, the wave emerging from the hologram is 

focused by a lens to produce a high-resolution optical 

replica of the object originally scanned by the electron 

beam. Further improvements to Gabor’s setup were 

brought forward by Leith and Upatnieks [2], in which 

the availability of lasers led to a new generation of 3D 

imaging optical systems. A review of optical hologra-

phy is available in [3].

The term holography has Greek origins, with the 

meaning of holos for “whole” and graphe for “writing.” 

In instrumentation, holography is defined as an inter-

ferometric technique for recording the amplitude and 

the phase of monochromatic waves [4]. In imaging, 

holography refers to a class of image-reconstruction 

methods, which process complex-valued (amplitude 

and phase) data using 2D and/or 3D direct and inverse 

FTs. The direct FT maps the data dependence on the re-

al-space variables (x, y, z) onto the wavenumber space, 

( , , ),k k kx y z  or k-space, where the target reflectivity is 

computed. The inverse FT maps the reconstructed re-

flectivity from k-space back to real space.

Soon after the discovery of optical holography, its 

principles were translated to acoustics [5] for imag-

ing objects hidden inside optically opaque media. 

Concurrently (in the mid-1960s), holography with mi-

crowaves emerged [6], which, too, aimed at imaging 

optically obscured objects. In those early stages, mi-

crowave holography was similar to its optical coun-

terpart in its two-step procedure [7]. In a recording 

step, an intensity pattern (the hologram of the inter-

fering scattered and reference waves) is measured by 

scanning an antenna equipped with a simple diode 

detector over the acquisition plane [8]. The microwave 

hologram is then scaled to optical frequencies and il-

lumination by light reveals the microwave image of 

the object.

The later developments of holographic MMI, now 

widely employed in practice and in research, can be di-

vided into four separate paths: 1) indirect holography 

for 2D image reconstruction (IH2D), 2) direct hologra-

phy for 3D image reconstruction (DH3D) with far-field 

data, 3) direct holography for slice-by-slice 3D image 

reconstruction (DH3D-S) with far-field data, and 4) 

direct holography for 3D image reconstruction with 

near-field data (DH3D-N). While there are significant 

algorithmic differences between these categories, they 

share a few common features.

 • They exploit the magnitude and the phase of the 

scattered waves.

 • They provide images with enhanced resolution 

compared to the images obtained from raw mea-

surements. As an example, Figure  1 shows the 

improvement achieved when imaging small metal-

lic objects hidden inside wood. The objects’ pres-

ence or location cannot be deduced from the raw 

magnitude and phase data plotted in Figure  1(a) 

and (b). But the processing with a holographic 

imaging algorithm provides the high-quality 

images in Figure 1(c) and 1(d).

 • They employ a linearized model of electromag-

netic scattering. This means that the interactions, 

such as mutual coupling and multiple scattering 

among the scatterers in the scene, are neglected. 

The object is viewed simply as a collection of inde-

pendent point scatterers. This is the well-known 

Born approximation in imaging [9].

 • They reconstruct the object in the wavenumber 

space (the k-space) with remarkable speed due to 

very low computational complexity compared to 

the real-space solutions of the inverse scattering 

problems [3].

IH2D
Indirect holography is a modern interferometric tech-

nique to extract the magnitude and phase of scattered-

field data from intensity (scalar) measurements. Thus, 

as a data acquisition technique, it resembles optical 

holography. The intensity of the sum of the reference 

and scattered signals (both at a single frequency) is 

measured over an acquisition plane, providing a 2D 

dataset (a function of x and y), i.e., a hologram. Unlike 

optical holography, however, the reference signal is 

submitted to the receiver through a waveguide or 

a transmission line. Also, the image is obtained by 

processing the hologram data on a computer, unlike 

Gabor’s reconstruction, which employs an optical 

reconstruction-step measurement with the hologram.
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Figure 2 illustrates the modern indirect holography 

system employed in microwave imaging [10]. The im-

aged object is illuminated by a transmitting (TX) an-

tenna. The scattered field due to the object ( , )E x ysc  is 

captured by a receiving (RX) antenna over a rectangu-

lar aperture at .zr  The received signal, along with the 

phase-coherent reference signal Eref  (x, y) (from a signal 

generator), are applied to the input ports of a hybrid tee. 

One of the outputs of the hybrid tee provides the sum 

of the two inputs, which is measured by a power meter 

(e.g., a diode detector). The other output port providing 

the difference of ( , )E x ysc  and ( , )E x yref  is often termi-

nated by a matched load, but it may also be recorded 

and employed to enhance the hologram processing [10].
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Figure 1. Measured backscattered responses at 7 GHz over a 2D aperture obtained with metallic objects hidden inside wood 
and placed at 14 mm (two side-by-side objects) and 42 mm (single object) from the measured aperture: (a) magnitude and 
(b) phase (in radians). Holographic images using wideband data (2.8 to 11 GHz) of the objects at imaged planes located at two 
range distances: (c) 14 mm and (d) 42 mm. The red dashed lines show the actual position of the objects.

Imaged

Object

RX Antenna

TX Antenna

Signal

Generator

Directional

Coupler

Variable

Attenuator
Phase Shifter

Power Meter

Sum Port

Difference

Port

Hybrid Tee

y x

z

Figure 2. Block diagram of an IH2D measurement system (modified from [10]). RX: receiving; TX: transmitting.
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The reference signal ( , )E x yref  has a uniform ampli-

tude ,E0  but its phase is controlled by a phase shifter 

so that it decreases linearly along the scanned direc-

tion. For example, for a scan along x, an effective wave-

number k kr x=  is selected, and for every sampling step 

,xT  the reference-signal phase delay is incremented by 

.k xxT Tz =  For a 2D scan along x and y, the reference 

signal is synthesized as ( , ) ,E x y E e k x k y
0

ref i ix y
=

- -  where 

E0  is a constant magnitude. Thus, the reference signal 

emulates a plane wave of wavenumber k k kr x y
2 2

= +  

with the wavenumbers along x and y being kx  and 

,ky  respectively.

The intensity pattern I(x, y) recorded by the power me-

ter at the sum port of the hybrid tee is expressed as [10]:

 
( , ) ( , ) ( , )

( , ) ( , ) .Re

I x y E x y E x y

E x y E E E x y e2 k x k y

2

2
0
2

0

sc ref

sc sc i ix y

= +

= + +
+" ,  

(1)

Further, the 2D FT of I(x, y) is obtained:
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where F2D $" , denotes the 2D FT. The first two terms 

in (2) are centered at the origin of k-space spanned by 

the variables kx  and .ky  On the other hand, the third 

term is the spectrum of the scattered field ( , )E k kx y
scu  

shifted away from the origin by .k k kr x y
2 2

= +  With 

far-field reflection measurements, the spectrum of 

the scattered field contains only propagating modes 

and is thus limited within the maximum wavenum-

ber ,k k2max .  where k is the wavenumber of the radia-

tion in the background medium (e.g., air) [3]. As long 

as kr  is chosen large enough to satisfy ,k k3 maxr 2  the 

spectral content of the third term in (2) can be sepa-

rated by high-pass filtering. Figure  3 illustrates the 

separation of the first two terms in (2) from the third 

term through a cut along the kx  axis. After separating 

the desired scattered-field spectrum using high-pass 

filtering, the result is synthetically shifted to the center 

of k-space by removing the known wavenumber shift 

( , ).k kx y  Applying inverse FT to the result retrieves the 

complex-valued scattered field ( , ),E x ysc  which is then 

processed with any available reconstruction algo-

rithm to produce a 2D image of the object. In [10], a 

back-propagation algorithm (BPA) is used.

The IH2D imaging method has been employed to 

perform preliminary experiments for breast-cancer 

imaging [11] and the imaging of metallic objects [12]. 

Despite offering simple and low-cost data acquisition 

(due to scalar measurements only), a major limitation 

is that the data acquisition employs single-frequency 

radiation, which is not sufficient for 3D imaging. This 

is the likely reason for the method not being as widely 

deployed in imaging as the 3D direct microwave ho-

lography techniques discussed next.

DH3D With Far-Field Measurements
The direct holographic MMI methods use more com-

plicated measurement hardware (e.g., vector network 

analyzers) to obtain the magnitude and phase of the 

scattered responses. Both SFCW and LFM measure-

ments can be processed by DH3D. If wideband time-

domain measurements are used, they are converted 

to frequency-dependent signals via FT before they are 

processed by DH3D.

Similar to IH2D, the measurements are performed 

over an aperture of canonical shape (e.g., rectangular 

or cylindrical). DH3D has been inspired by the early 

2D SAR imaging approaches and, on a fundamental 

level, it can be viewed as their extension to 3D imaging. 

SAR utilizes wideband radar data acquired over a line 

[13]. The data span 2D space (the position x along the 

line and time t, or frequency ).~  The image reconstruc-

tion maps the data onto a 2D reflectivity image of the 

target along the cross-range x and range z. In contrast, 

DH3D takes wideband data on a 2D surface. Now the 

data span a 3D space (the position coordinates x and y, 

–kx +kx

kmax 4kmax 2kmax
kr

High-Pass Filter

F2DE(E
sc(x, y))∗F F2DEE

sc(x, y)FF2DEEsc(x, y )2F + F2DEE ref(x, y )2F

Figure 3. The cross-section (along the kx axis) of the spatial-frequency spectrum of the intensity pattern recorded at the sum 
port of the hybrid tee in the IH2D acquisition method (modified from [10]).
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and time t, or frequency ).~  This enables the 3D image 

reconstruction in x, y, and z.

The first attempts to extend 2D SAR to 3D imag-

ing date back to the 1990s [14], [15], [16]. The method 

proposed in [16] extends the projection (also known 

as back-propagation) image-reconstruction algorithm, 

common in SAR, to 3D imaging by the use of the range 

migration algorithm (RMA), which provides the link 

between the frequency ( )~  dependence of the data and 

the range (or depth) dependence of the image. The re-

sulting 3D image reconstruction method is known as 

k~-  SAR [17]. Only a few years earlier, the team at the 

Pacific Northwest National Laboratory pioneered a ro-

bust method for security screening [14], [15], exploiting 

a range-migration principle, which is mathematically 

equivalent to the RMA. They refer to their method as 

wideband microwave holography in recognition of the fact 

that it can be viewed as an extension of the early single-

frequency 2D microwave-holography imaging to wide-

band operation with 3D imaging output.

Most applications envision monostatic measure-

ments of objects residing in the far zone of the TX/RX 

antennas. In such measurements, the TX and RX anten-

nas occupy the same position. Figure 4 illustrates the 

monostatic arrangement with a planar scan, where the 

acquisition plane is at z z= r , the measurements’ coordi-

nates are ( , , ),r x y z= r  and the coordinates in the imaged 

volume are ( , , ).r x y z=l l l l  We use this relatively simple 

scenario to explain the principle of DH3D imaging.

DH3D employs analytical models of the scattered 

field due to a point scatterer in a homogeneous back-

ground. The central role in the model is played by the 

function ( , ),r rH ~- l  which is referred to as the system 

(or data) point-spread function (PSF). It predicts what the 

scanning system would measure at r when the scatter-

ing originates from a point at .rl  The term PSF is at-

tributed to the fact that while the scattering source is 

a point, its scattered field, when measured at the aper-

ture, is spread over a substantial area. Mathematically, 

( , )r rH ~- l  can also be viewed as the system spatial 

impulse response. It is the assumption of a homoge-

neous background that allows the PSF dependence on 

r and rl to appear as ( ).r r- l  This dependence is critical 

for the ability to carry out the image reconstruction ef-

ficiently in k-space.

Imaging with planar scans employs a Cartesian  

coordinate system, where the PSF is written as 

( , , , ).H x x y y z z ~- - -l l lr  Table 1 summarizes the ana-

lytical PSFs used by all far-field image-reconstruction 

methods, DH3D included, for the case of monostatic 

measurements. Note that the functions in the first col-

umn of Table 1 are given in a form, which assumes that 

the scattering point is at the origin, ,x y z 0= = =l l l  

whereas the measurement point is at (x, y, z). If the scat-

tering point is not at the origin, a simple coordinate 

shift in the form of ( , , , ),H x x y y z z ~- - -l l lr  models 

properly the PSF observed at (x, y, z), provided the 

background is homogeneous. The respective 2D FTs 

are listed in the second column of Table 1, since they 

are used in the fast 3D image reconstruction in k-space. 

The 2D FT is applied to the lateral (cross-range) coordi-

nates (x, y) producing ( , , , ),H k k zx y ~u  where kx  and ky  

are the Fourier variables.

We notice that all three PSFs in Table 1 account for 

the phase delay associated with the signal path length 

from the TX antenna to the point scatterer and back 

to the RX antenna. On the other hand, not all three 

PSFs represent the spherical-spread loss (i.e., the free-

space path loss) of the incident and scattered waves. 

The PSF in the first row in Table 1 ignores the waves’ 
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Figure 4. Illustration of the DH3D monostatic system. 
Measurements of the wideband back-scattered waves are 
performed over the rectangular aperture at z z= r  and 
3D images of the object can be reconstructed practically 
instantaneously using the technique in [15].

TABLE 1. Analytical system PSFs used in far-field 

imaging with monostatic radar and their 2D Fourier 

transforms.
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free-space path loss altogether. The second-row PSF 

accounts for the spherical spread of the scattered 

wave only, whereas the PSF in the third row accounts 

for the spherical spread of both waves, incident and 

reflected. We note that the amplitude variation of the 

monostatic-radar waves ( / )r1 2+  over the aperture 

is not negligible when the measurements are taken 

with wide-beam antennas and at close range. The 

close-range scenario occurs when the target range 

(the depth distance from the acquisition aperture) is 

comparable to or smaller than the aperture’s extent 

(see Figure 4). We briefly comment that in radar im-

aging, the close-range scenario is often referred to as 

near-field imaging since the measurements are taken in 

the near zone of the imaged object. To avoid confusion 

with the near-field zone of antennas, here, we prefer 

the term close-range imaging. Finally, we note that the 

choice of PSF from Table 1 has no impact on the speed 

of the image reconstruction.

Once the PSF ( , )rH ~  is chosen and its 2D FT is 

known, formulating the image-reconstruction for-

mula of DH3D is straightforward. Since DH3D views 

the imaged object as a collection of uncoupled point 

scatterers, it models the received scattered signal as a 

superposition of the contributions from all points mak-

ing up the object in the imaged volume Vl:

 
( , , , )

( , , ) ( , , , ) .

E x y z

f x y z H x x y y z z dx dy dz
V

sc ~

~= - - -l l l l l l l l l

l

r

r###
 

(3)

Here, ( , , )f x y zl l l  represents the object’s reflectivity 

distribution, whereas ( , , , )E x y zsc ~r  represents the mea-

sured scattered wave over the 2D aperture at z z= r  and 

at the angular frequency .~  Recognizing the convolu-

tion in (x, y) and taking the 2D FT of both sides of (3), 

leads to

 
( , , , ) ( , , , )

( , , ) ( , , , )

E x y z E k k z

f k k z H k k z z dz

F x y

x y x y
z

2D
sc sc/~ ~

~= -l l l
l

r u r

u u r

" ,
#

 
(4)

where ( , , ) { ( , , )}f k k z f x y zFx y 2D=l l l lu  and ( , , , )H k k z zx y ~- lu r   

( , , , ) .H x y z zF2D ~= - lr" ,  It is now clear that the 2D FT 

of the PSF, ( , , , )H k k z zx y ~- lu r  (see the second column of 

Table 1) is critically important for the image reconstruc-

tion. All three analytical FTs in Table 1 are in the form 

( , , , ) ( , ) .H k k z z h k k e ( )| |
x y x y

k z zi z~- =
~- -l
lu r u r  This al lows 

for the transformation of (4) into a 3D k-space relation 

between the unknown target reflectivity ( , , )f x y zl l l  

and the data ( , , , ).E x y zsc ~r  Specifically, assuming that 

,z z2l r  (4) is written as

 ( , , , ) ( , ) ( , , ) .E k k z h k k e f k k z e dz( ) ( )
x y x y

k z
x y

k z

z

sc i iz z~ = ~ ~-l l
l

l

u r u ur #
 (5)

Since the integral in (5) is a FT with respect to ,zl  (5) 

is cast in the 3D space of ( , , )k k kx y z  as

 ( , , , ) ( , ) ( , , )E k k z h k k e f x y zF
( )

x y x y
k z1

3
sc i

D
z~ =
~- -u r u r6 @ " , (6)

where F3D $" , denotes the 3D FT. Note that we have 

dropped the primed coordinates for the reflectivity 

function f(x, y, z) since the coordinate system is com-

mon for the measurement and imaged points. Finally, 

the DH3D reconstruction formula is stated as

 ( , , ) ( , , , ) ( , )f x y z E x y z h k k eF F
( )

x y
k z

3
1

2
1

D D
sc i z~=

~- - -
r u r6 @$ " , .

 (7)

where F3
1

D $
- " , is the 3D inverse FT operating on 

( , , ).k k kx y z

For example, in [15] and [21], the PSF in the 2D Fou-

rier space assumes the form e ( )| |k zi z ~-  (see the first row 

in Table 1). Thus, ( , )h k k 1x y =
u , and the reconstruction 

formula (7) becomes

 ( , , ) ( , , , ) .f x y z E x y z eF F ( )
( )

k
k z

3
1

2D D
sc i

z
z~=
~- -

r
r" " , ,  (8)

There is one important detail in the implementa-

tion of (7) or (8). The 2D FT of the data, ( , , , )E k k zx y
sc /~u r  

( , , , ) ,E x y zF ( )k2D
sc

z~r" ,  is not an explicit function of ;kz  

it is a function of ~  where the measurements are usu-

ally taken at uniform intervals within the frequency 

bandwidth of the system. In turn, ~  is a function of 

kz  through the dispersion relation in the last row of  

Table 1. In fact, kz  is not even an independent variable; it 

is a function of , ,k kx y  and / .k c~=  Thus, the kz  depen-

dence of the data, ( , , , ),E k k zx y
sc ~u r  is implicit through 

the frequency .~  DH3D deals with this problem by 

interpolating ( , , , )E k k zx y
sc ~u r  from the nonuniform 

( , , ( ))k k kx y z ~  grid onto a uniform ( , , )k k kx y z  grid, which 

allows for the use of FFT algorithms. This operation 

is called Stolt interpolation or Stolt mapping [22], and its 

computational toll is quite significant.

Despite the computational complexity of the Stolt 

mapping, the DH3D image reconstruction is fast. 

Figure 5 shows a sample DH3D image of a concealed 

handgun under clothing. Notice that the image is 

2D despite the fact that the reconstruction formula 

(8) is 3D. The 2D imaging output is common in such 

systems since it offers faster interpretation, whereas 

the depth information is not critical for uncover-

ing objects hidden under the clothing. The 2D im-

age is a projection of the 3D object reflectivity onto 

a single image I(x, y) that depends on x and y only. 

One possible projection scheme utilizes the expres-

sion ( , ) ( , , )maxI x y f x y zz=  [23]. The DH3D imaging 

systems for personnel inspection are now commer-

cially available and widely used in airports for the 

security screening of passengers. The images become 
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available to the security personnel within a second 

once the measurement is completed.

As mentioned before, the Stolt mapping impacts the 

speed and accuracy of the DH3D method negatively. 

This has been the motive behind the development of 

alternative 3D holographic reconstruction algorithms 

(discussed in the next section). However, there is an 

approach that can be still categorized as DH3D but it 

avoids the Stolt mapping [24]. Therein, the 3D inverse 

FFT algorithm, which implements the F3
1

D $
- " , opera-

tor in (8), is replaced with a sequential application of: 1) 

nonuniform 1D inverse FFT ( )NUFFT1
1
D
-  operating on 

( ),kz ~  and 2) uniform 2D inverse FFT ( )FFT2
1
D
-  operat-

ing on kx  and ,ky  i.e.,

 ( , , ) ( , , , ) .f x y z E k k z eFFT NUFFT ( )x y k
k z

2
1

1
1

D D
sc i

z
z~=

- - -u r
r" " ,,

 (9)

The principles of microwave holography are appli-

cable to cylindrical acquisition surfaces as well (e.g., 

see [21], [25], [26], [27], [28], and [29]). In particular, the 

implementation of DH3D for cylindrical whole-body 

scanners is described in detail in [21].

Spatial Resolution and Sampling 
Requirements in Imaging With  
Far-Field Measurements
Far-field measurements provide scattered signals con-

taining only propagating modes since evanescent 

modes are too weak to be detected. The propagat-

ing modes correspond to the real positive kz  values 

only, as determined from the eigenvalue equation in 

the last row of Table 1. Figure 6 illustrates the cover-

age of these modes in the 3D spatial frequency space 

of , ,k kx y  and kz  when using monostatic radar. This 

coverage is limited to the k 0z $  half-space. Addition-

ally, from the eigenvalue relation ( ) ,k k k k2x y z
2 2 2 2
+ + =  it 

is clear that the coverage is confined within a hemi-

spherical shell. The shell is limited by a hemisphere of 

radius k2 min  from below and a hemisphere of radius 

k2 max  from above, where kmin  and kmax  are the wave-

numbers at the lowest and the highest frequency of 

operation, respectively. These limits are illustrated in 

Figure 6(a) and (b), which show cuts in the k 0y =  and 

k 0z =  planes, respectively. Figure 6(c) shows a cut in 

the plane ,k k2z c=  where kc  is the wavenumber at the 

center frequency.

(a) (b)

Figure 5. (a) Optical image and (b) mm-wave image of a 
clothed mannequin with a concealed Glock-17 handgun. To 
obtain the mm-wave image, DH3D is used in processing the 
data in the 100- to 112-GHz frequency band [15].

kz ky ky

kx kx kx

2kmin 2kmax2kc

2

(a) (b) (c)

ky = 0 kz = 0 kz = 2kc

2kmin 2kmax2kc 2kmin 2kmax2kc

kmax – kc
2 2

Figure 6. Illustration of the region spanned by the Fourier variable values (shaded in blue) in the 3D spatial frequency space 
(kx, ky, kz) when using far-field measurements with a monostatic radar. For simplicity, the illustration does not account for 
limits imposed by a system’s maximum viewing angle .90°max1a  (a) A cut in the ky = 0 plane, where the kx and kz variables 
span one-half of a circular band with an inner radius of 2kmin and an outer radius of 2kmax. Here, kmin and kmax denote the 
wavenumbers at the minimum and maximum frequency of operation, respectively. The wavenumber corresponding to the 
center frequency is kc. (b) A cut in the kz = 0 plane, where the kx and ky variables span a circular band of inner radius 2kmin  
and outer radius 2kmax. (c) A cut in the kz =2kc plane, where the kx and ky variables span a circle of radius .k k2 c

2 2
max -
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The extent of the spectral region of the propagating 

modes is fundamental in understanding the spatial 

resolution limits of images obtained from far-field mea-

surements. The image spatial resolution ,dp  , , ,x y z/p  

along the three principal real-space axes, is estimated 

from the average (over all angles of incidence) span Kp  

along the respective principal Fourier-space axis Kp  

as /K2.d rp p  [3]. Since kx  and ky  span a range from 

k2 c-  to k2 c  (on average), the cross-range resolution is 

estimated as

 
k4

2
4,

c

c
x y .d

r m
=  (10)

where cm  is the wavelength at the center frequency of the 

band. On the other hand, kz  spans a range from k2 min  to 

,k2 max  leading to an estimated range resolution of

 
( )k k B

c
2

2
2max min

z .d
r
-

=  (11)

where B is the frequency bandwidth of the system.

In practice, the far-field 3D Fourier region is further 

limited by the maximum viewing angle maxa  of the mea-

surement system. This angle equals either one-half of the 

antenna beamwidth or one-half of the angle defined by 

the center of the imaged domain and the extremities of 

the scanned aperture, whichever is smaller. A limited 

viewing angle ( )°90max 1a  does not allow for measuring 

scattered-wave signals arriving at the acquisition aper-

ture at grazing angles, effectively limiting the minimum 

value of ( )k kz  to about .cosk k2,min maxz . a  This result for 

k ,minz  is a consequence of approximating the scattered 

wave of wavenumber k0  as a plane wave ( ),exp k r2i 0 $+ -  

where ( , , )k k k kx y z0 0 0 0=  is the wave vector of magnitude 

| | /k k c0 0 0~= =  and r is the vector from the point 

of scattering to the measurement point. The 3D FT of 

this plane wave is a function-d  that peaks at the point 

( , , )k k k2 2 2x y z0 0 0  in Fourier space, i.e., the Fourier variables 

( , , )k k kx y z0 0 0  are simply the projections of the wave vector 

k0  onto the x, y, and z axes. Thus, a scattered wave of 

wavenumber k, which arrives at the aperture at an angle 

of incidence ,a  features a Fourier variable .cosk k2z . a  

With °,90max 1a  cosk k2,min maxz . a  cannot attain a value 

of zero, i.e., the measurement of grazing waves is impos-

sible. This in turn sets the upper bound for the Fourier 

variables kx  and ky  to ( ) ( ) .sink k k2max maxx y
2 2 2a+ =  Thus, 

the expression for the cross-range resolution (10) must be 

corrected as

 .
sin4,

max
x y

c.d
a
m  (12)

We note that a limited viewing angle has negligible 

impact on the range resolution .zd

The sampling requirements are fundamental in 

the design of an imaging system, and they stem from 

understanding its limitations. The spatial sampling 

steps along the acquisition aperture, xT  and ,yT  along 

with the frequency sampling step fT  employed by all 

far-field imaging systems, are determined from the 

Nyquist sampling criterion [3], [15]. Considering the 

upper bound k2 max  for kx  and ky  as discussed above, 

the spatial sampling requirement is , / ,x y 4minT T # m  

where minm  is the shortest wavelength of the radia-

tion. In practice, oversampling with a step smaller than 

/4minm  is often detrimental to far-field image recon-

struction. This is because the 2D FTs of oversampled 

scattered signals extend beyond the k2 max  limit of the 

propagating modes and into the evanescent-wave spec-

trum, where noise prevails. Furthermore, if °,90max 1a  

the recommended sampling step is corrected to 

, /( ).sinx y 4min maxT T . m a

On the other hand, the frequency sampling require-

ment for monostatic measurements is /( ),f c R4 maxT #  

where Rmax  is the maximum range to target. The maxi-

mum range of an imaging radar depends on its trans-

mitted power and its receiver sensitivity. Choosing a 

sufficiently small fT  prevents range aliasing, i.e., the 

spurious assignment of the scattering from distant tar-

gets to that from closer targets. Similar to spatial sam-

pling, frequency oversampling with fT  much smaller 

than /( )c R4 max  may be detrimental in image recon-

struction because it associates with scattering beyond 

,Rmax  where noise and radar clutter prevail.

DH3D-S
As discussed in the previous section, Stolt mapping 

has a negative impact on the speed and accuracy of 

the DH3D reconstruction. Here, we describe a category 

of techniques that avoid Stolt mapping and share one 

common major characteristic. They all reconstruct 

the 3D image slice by slice: i.e., the 2D images at each 

desired range (z) position are reconstructed indepen-

dently. Like DH3D, they use the far-field PSFs listed 

in Table  1. We refer to this category of techniques as 

DH3D-S. The main advantage of the DH3D-S methods 

over DH3D is the improved computational speed.

One DH3D-S approach avoids the Stolt interpola-

tion by using the phase-shift migration (PSM), origi-

nally proposed in seismology. In [31], this approach 

has been applied in the terahertz regime. It employs 

the PSF shown in the first line in Table  1 along with 

the plane-wave spectrum range dependence, which 

predicts that if the scattered field is known at ,z z= r  

then its 2D FT can be analytically migrated (or back-

propagated) along the z-axis and toward the origin of 

scattering by the phase shift operation

 ( , , , ) ( , , , ) .E k k z E k k z e ( )
x y x y

k z zsc sc i z~ ~=
-l
lu u r
r  (13)

In [31] monostatic measurements are considered, 

where the effective wavenumber is 2k since the wave 
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traverses the distance from the aperture to the target 

twice. Thus, kz  in (13) is the same as that defined in 

the last row of Table 1. Note that the range dependence 

e k zi z-  (in the forward direction) is observed in all PSFs 

listed in Table 1. Thus, the back-propagation factor e k zi z  

holds for the field scattered from a point. Since the scat-

tered response ( , , , )E x y zsc ~r  can be viewed as a super-

position of the scattering emanating from all points 

building the imaged volume, the assumption in (13) 

that its 2D spectrum ( , , , )E k k zx y
sc ~u r  has the same range 

dependence is admissible.

The back-propagated 2D spectrum ( , , , )E k k zx y
sc ~lu  

is the k-space 2D map of ( , , , )E x y zsc ~l l l  at the desired 

range slice .zl  The intensity of this map is a represen-

tation of the strength of the target’s reflectivity dis-

tribution at zl because the field strength peaks at the 

location of its source. This is the well-known principle 

of the classic back-propagation SAR reconstruction ap-

proach. In a mathematical sense, the back-propagation 

scheme is a projection (or inner product) of the mea-

sured responses onto the functional space defined by 

the system PSFs. In [6] it is shown that such reconstruc-

tion minimizes the 2,  norm of the error between the 

measured data and the prediction of the linearized 

model of scattering.

Since ( , , , )E x y zsc ~l l l  is the 2D inverse FT of 

( , , , ),E k k zx y
sc ~lu  the relation between the two is

 ( , , , ) ( , , , ) .E x y z E k k z e dk dk( )
x y

k x k y

k k
x y

sc sc i x y

y x

~ ~=
+l l l l
l lu##

 (14)

Substituting (13) into (14) leads to

 
( , , , )

( , , , ) .

E x y z

E k k z e e dk dk( ) ( )
x y

k z z k x k y
x y

k k

sc

sc i iz x y

y x

~

~==
- +

l l l

l l lu r
r##  

(15)

Finally, averaging (or summation) over all frequen-

cies is employed, resulting in

( , , )

( , , , ) .

E x y z

E k k z e e dk dk d( ) ( )
x y

k z z k x k y
x y

k k

sc

sc i iz x y

y x

~ ~=
~

- +

l l l

lu r
r###  

(16)

The image at each z slice is ( , , ) .E x y zsc; ;  Thus, the 

slice-by-slice PSM reconstruction formula can be stated as

 
( , , ) ( , , )

.( , , , )

f x y z E x y z

E x y z e dF F
( )k z z

2
1

2

sc

D D
sc i z

+

~ ~=
~

- -
r

r$ " , .#  
(17)

As in (7), here we have dropped the primed coordi-

nates since the position in the imaged volume uses the 

same coordinate system as that for the measurements. It 

is clear from (17) that an image slice at z = const. can be 

efficiently obtained through the use of direct and inverse 

2D FFT algorithms as long as the data ( , , , )E x y zsc ~r  is on 

a uniform (x, y) grid. Note that the frequency sampling 

need not be uniform. The Fourier variable kz  is not sub-

ject to the inverse FT and it is computed with the disper-

sion relation in the last row of Table 1.

Figure 7 shows the optical and reconstructed images 

of a mannequin with a plastic cap gun hidden beneath 

a T-shirt using a 0.2-THz monostatic heterodyne trans-

ceiver with 15-GHz bandwidth and applying the PSM 

method [31]. The experiments presented in [31] dem-

onstrate ~2-mm cross-range resolution and ~8.8-mm 

range resolution. This is an excellent spatial-resolution 

performance as it comes close to the limits mentioned 

in the “Spatial Resolution and Sampling Requirements 

in Imaging With Far-Field Measurements” section.

In [32] the DH3D-S technique has been extended to 

the case of multistatic radar in a fully parallelizable re-

construction algorithm. There, for each range position z, 

the back-propagated waves received by all of the receiv-

ers on a 2D aperture for each transmitter and at each fre-

quency are first computed in 2D ( , )k kx y  space. Similar 

to (17), the results are summed together, this time over 

all of the frequencies and all of the transmitters to gen-

erate a 2D image at the desired range position z. Since 

the process for each transmitter and each frequency can 

be implemented independently, parallel processing is 

used to expedite the image reconstruction. It has been 

shown that 256 times improvement in the reconstruc-

tion time can be achieved with this technique compared 

to the conventional backpropagation SAR-based meth-

ods, which operate in real (x, y, z) space, while achieving 

similar image quality.

Range stacking is another DH3D-S imaging al-

gorithm that avoids the Stolt interpolation through a 

rigorous mathematical transformation of the Fourier 

variable kz  onto the wavenumber variable /k c~=  [33]. 

It has been extended to 3D imaging in [34] and [35]. In 

range stacking, the DH3D reconstruction formula in (7) 

is modified by a change of variable from kz  to k. It fol-

lows from the dispersion relation ( )k k k k2z x y
2 2 2

= - -  

(see the last row in Table  1) that ( / ) .dk k k dk4z z=  The 

(a) (b)

Figure 7. (a) Optical image of a mannequin with a plastic 
cap gun beneath a T-shirt. (b) Reconstructed image using 
the PSM method [31].
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3D inverse FT in (7) can be explicitly stated as a triple 

integral over ,kx  ,ky  and :kz

 
( , , ) ( , , , ) ( , )
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(18)

The change of variable transforms (18) into
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(19)

Note that we have replaced the variable ~  with k in 

( , , , )E x y z ksc
r  since the simple relation kc~ =  allows for 

switching between the two. Finally, the reconstruction 

formula of the range-stacking algorithm can be stated as

( , , )

( , , , )
( , ) ( )

.

f x y z

E x y z k
h k k k k k

ke dk
2

4
F F

( ) ( )

x y x y

k k k z z

k

2
1

2 2 2 2

2

D D
sc

i x y
2 2 2

=

- -

-
- - -

r
u

r) " , 3#
 

(20)

The formula in (20) allows for finding the image at 

each desired range position z = const. independently. In 

[35] the reconstruction formula (20) is employed with 

the PSF in the second row of Table 1. It is referred to as 

the accelerated holographic imaging with LFM (AHI-LFM) 

since it is applied in an LFM imaging-radar system for 

whole-body scanning. There, it has been demonstrat-

ed that the AHI-LFM algorithm accelerates the image 

reconstruction by at least an order of magnitude as 

compared with the DH3D algorithm used previously 

[23], while preserving the same image quality. Figure 8  

shows a volunteer with various hidden items and the 

reconstructed images using the DH3D and the range-

stacking DH3D-S algorithms, confirming similar im-

aging quality.

In [36] the DH3D-S range-stacking technique has 

been equipped with compressive-sensing (CS) capabili-

ty to realize another efficient LFM imaging radar system 

for whole-body scanning. The reconstruction formula is 

the same as in (20), where the PSF in the first row of Ta-

ble 1 is used. Also, the 2D inverse FT is carried out before 

the integration over k, which is admissible since , ,k kx y  

and k are independent variables. The CS algorithm re-

ported in [36] succeeds in producing high-fidelity imag-

es with randomly sampled sparse datasets amounting 

to just 30% of the full datasets, which comply with the 

Nyquist spatial-sampling recommendation.

DH3D-N
In [37], [38], and [39], direct 3D microwave holography has 

been extended to near-field imaging where the analytical 

approximations of the PSF, such as those in Table 1, are 

inadequate. Instead, simulations are employed to obtain 

the incident field and Green’s function, from which the 

PSF is then computed. Such PSFs represent better the 

specific antennas and acquisition setup.
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Figure 8. (a) Optical image of a volunteer with various items hidden under the clothing. Reconstructed images using:  
(b) DH3D, (c) DH3D-S [35]. While the images are of similar quality, the DH3D-S algorithm is much faster.
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To further improve the near-field imaging output, 

in [40] a method has been proposed to acquire the PSF 

function ( , )rH ~  in (3) via measurements with a cali-

bration object (CO). The CO consists of a very small ob-

ject (scattering probe) in the background medium, thus 

emulating a point scatterer, which provides an impulse 

input to the imaging system. Figure 9 shows an illus-

tration of the DH3D-N measurement procedure [40] for 

imaging at Nz  depths. To simplify the notations, we as-

sume that the measurement aperture is at .z 0=r  First, 

measurements of the scattered signals over the aper-

ture are acquired when the probe is placed at the center 

of each desired range slice ( , , ),z0 0 i  , , ,i N1 zf=  one at 

a time. These measurements, denoted by ( , , , ),H x y zi ~  

provide the PSFs of the imaging system at each depth 

.z zi=  Then, similar to the DH3D techniques, the lin-

earized model of scattering in (3) and (4) is employed to 

recover the object’s reflectivity ( , , ),f x y z  which again 

is assumed to be nondispersive, i.e., independent of .~  

However, the integral along z is now discretized into 

a summation over discrete imaged planes at ,z zi=  

, , .i N1 zf=  This allows for writing (4) as

 ( , , , ) ( , , , ) ( , , ).E k k H k k z f k k z0x y x y i x y i

i

N

1

sc
z

~ ~=

=

u u u/  (21)

Note that (21) is a linear equation, which is writ-

ten at each spatial-frequency point ( , ).k k kx y=  Such 

equation can be written for each frequency ~  and 

for each response (e.g., a reflection or transmission 

measurement). The coefficients ( , , , )H k k zx y i ~u  are 

known by measuring the PSFs a priori and then tak-

ing their 2D FTs. The data (or measured responses) 

( , , , )E k k 0x y
sc ~u  are also known. The unknowns in (21) 

are the reflectivity values ( , , )f k k zx y i
u  corresponding to 

the Nz  depths. Thus, at least Nz  equations are needed 

to solve (21) as a square or overdetermined linear sys-

tem of equations at ( , ).k k kx y=  Multiple equations are 

indeed available from measurements at multiple ( )N~  

frequencies and/or with various ( )Na  pairs of TX/

RX antennas that move together to scan the aperture. 

When data at multiple frequencies and multiple chan-

nels are collected, the resulting equations in the form 

of (21) are stacked in a system of equations solved at 

each ( , ):k k kx y=

 ( ) ( ) ( ).H k f k d k=  (22)

The data vector is composed as: [ ( )] [ ( ), ,d k d kT T
1 f=   

( )],d kN
T
~  where ( ) [ ( , , , ,), , ( )],d k kk EE 0 0n N nn

T
1
sc sc

af~ ~= u u  

, , .n N1 f= ~  The vector of unknowns is composed as: 

( ) [ ( , ,), , ( )] .f k kk z f zf N
T

1 zf=
u u  Accordingly, the system 

matrix H(k) contains the values of the Fourier- transformed 

PSFs arranged as

( )

( )

( )

,

( )

( , , )

( , , )

( , , )

( , , )

, , , .

H

H

H k

H k

H k

H k

k

k

k

k

n N

z

z

H z

H z

1

N

n

n

N n

N n

N N n

1

1 1

1

1 z

za a

h

h

g

j

g

h f

~

~

~

~

=

= = ~

~

u

u

u

u
>
> H

H 

(23)

The size of ( )H k  is ( ) .N N Nza #~  Thus, (22) is a rela-

tively small linear system of equations since N~  is on 

the order of 10 to 100, Na  is on the order of 1 to 4, and 

Nz  is typically 3 to 10.

The solutions of all systems of equations, i.e., for all 

( , ),k k kx y=  provide the FT of the images ( , , )f k k zx y i
u  at 

each range position .z zi=  Two-dimensional inverse 

FTs applied to each ( , , )f k k zx y i
u  generate the slice-by-

slice image ( , , ),f x y zi  , , .i N1 zf=
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Figure 9. Illustration of the DH3D-N setup when the aperture is at z 0=r  [40]. The PSFs are measured with the scattering 
probe (CO) placed at the origin of: (a) first imaged plane at z = z1, providing H(x, y, zi, ~), (b) second imaged plane at z = z2, 
providing H(x, y, zi, ~), and (c) Nz-th imaged plane at z = zN, providing H(x, y, zi, ~). (d) Measurement of the scattered field 
due to objects at all imaged depths , .., .z z zN1 z=
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The DH3D-N methods employing measured PSFs 

offer several advantages over the DH3D and DH3D-S 

techniques.

 • Measured PSFs account for the near-field dis-

tribution of the antennas used in the particular 

imaging setup.

 • Measured PSFs provide actual responses, such as 

S-parameters or voltages, unlike analytical PSFs, 

which assume that a scalar far-field value is mea-

sured at a point. Even if the scattered signal ema-

nates from the far-field region of the RX antenna, 

the response at its terminals is not proportional 

to a single vector-field component at the center of 

its aperture. Antennas respond to the vector-field 

distribution in their vicinity, not just the aperture 

center. This “integrating” property of the antenna 

is ever so important in near-field measurements. 

Moreover, the way antennas respond to the field 

depends on frequency.

 • Measured PSFs account for the exact properties 

of the background medium (instead of assuming 

certain background wavenumber, as is done in 

the DH3D and DH3D-S techniques). The specific 

measurement environment is also accounted for, 

which includes not only the background medium 

but the components of the imaging setup, such as 

the antennas, positioner, chamber, etc.

 • Measured PSFs capture quantitatively the system 

sensitivity to the contrast of a point scatterer since 

the scattering probe in the CO measurement is 

usually of known material properties and size. 

This allows for quantitative imaging, briefly dis-

cussed later in this section.

 • The DH3D-N system of equations solved at each 

spectral point ( , )k k kx y=  has much smaller dimen-

sions and is less ill-conditioned compared with 

the systems of equations constructed in the opti-

mization-based quantitative microwave imaging 

techniques. DH3D-N is not only computationally 

efficient, but it is also naturally suited for parallel 

computations because the linear systems of (22) are 

solved independently at each ( , ).k k kx y=

 • The interpolation of the data in k-space (Stolt 

interpolation) is not necessary in DH3D-N.

 • The assumption that ,kx  ,ky  and kz  are indepen-

dent variables, which leads to errors in the DH3D 

image reconstruction, is also unnecessary.

 • The data collected by multiple antennas, such as 

forward-scattered and back-scattered signals, can 

be easily combined in a single linear system of 

equations to improve the image spatial resolution 

and to suppress image artifacts.

 • Unlike DH3D, but similarly to DH3D-S, DH3D-N 

reconstructs the 3D image as a stack of slice images 

at desired range positions. Unlike DH3D-S, how-

ever, all slices are extracted simultaneously lead-

ing to faster computations.

 • The DH3D-N algorithm can operate with a small 

number of frequency samples, especially when mul-

tiple TX/RX channels are available. This is in con-

trast to DH3D, where the 3D inverse FT demands 

dense sampling along ,kz  which in turn requires a 

large number of frequency samples [see (8)].

A comprehensive review of the major developments 

in DH3D-N can be found in [41]. Here, we only men-

tion that initially, the range resolution of the DH3D-N 

techniques has been guaranteed by wideband frequen-

cy data [37], [38], [39],–[40], similar to the DH3D and 

DH3D-S techniques. However, it has been shown that a 

single-frequency multistatic configuration with one TX 

antenna and an array of RX antennas, both scanning 

the aperture together, provides sufficient information 

to achieve range resolution [42]. This offers further ad-

vantages, including:

 • A single-frequency or narrowband measurement 

system is more cost-effective, compact and easier 

to design.

 • Resonant antennas can be employed that, in addi-

tion to the previous advantage, offer higher sen-

sitivity compared to wideband antennas. This 

enhance the dynamic range of the imaging system.

 • Compact low-cost data-acquisition techniques, such 

as the modulated scatterer technique [43], can be 

employed. This allows for using fast electronic scan-

ning instead of the slow mechanical scanning of the 

sensors over the 2D aperture, paving the way toward 

real-time imaging applications.

 • Although a DH3D-N method has been proposed 

to take into account the dispersive properties of 

the object’s reflectivity [37], this issue has not been 

considered widely in direct holography tech-

niques. Neglecting the dispersive material prop-

erties can cause additional errors in wideband 

imaging. This issue is nonexistent in single-fre-

quency systems, and it is negligible in narrow-

band imaging systems.

 • Measurement time is shorter for a single-fre-

quency or narrowband frequency-sweep system. 

This is important in many applications, such as 

object tracking or medical imaging, where patient 

movement during a scan may generate artifacts.

In the far-field systems employing DH3D or DH3D-

S, it is assumed that the wavenumber of the background 

medium is known. In many applications, however, such 

as nondestructive testing or biomedical imaging, the 

background wavenumber is not exactly known, which 

leads to imaging errors. In [44] an algorithm has been 

presented to estimate the properties of the background 

medium based on DH3D-N image reconstruction with 

wideband data. For this purpose, the collected data 
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(from measuring both the object under test and the 

system PSF) at multiple frequencies are divided into 

two sets corresponding to frequencies with even and 

odd indices. Then, each set is used with several plau-

sible background wavenumbers for image reconstruc-

tion. Finally, a cost function, which is the -norm2,  of 

the difference between the images reconstructed from 

the two sets for each background wavenumber, is com-

puted. It is shown that the cost function attains a mini-

mum only for the true background medium. In the last 

step, the data at all frequencies are employed simulta-

neously with the so obtained background wavenum-

ber to reconstruct the final image.

Recently, in a major step toward fast quantitative 

microwave imaging suited for biomedical applications, 

quantitative DH3D-N methods have been presented in 

[45] and [46]. This is accomplished by measuring the 

PSF with a scattering probe of known size and permit-

tivity, e.g., a small cylinder (size is less than quarter-

wavelength) made of microwave ceramics. According 

to the linearized scattering model, the measured PSFs, 

( , , , ),H x y zr i ~  , , ,r N1 af=  , , ,i N1 zf=  , , ,n N1 f= ~  

are proportional to the probe’s volume spX  and relative-

permittivity contrast .,r spTf  This allows for extracting 

the object’s contrast rTf  quantitatively by scaling prop-

erly the k-space DH3D-N (21) as [45]:
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Here, ( , , )S k kr x y n
sc ~u  is the 2D FT of the scattered-field 

response (e.g., S-parameter or voltage) acquired with the 

rth antenna pair at the nth frequency, ( , , , )H k k zr x y i n~u  is 

the 2D FT of the PSF measured with the scattering probe 

of volume spX  and relative-permittivity contrast r,spTf  

positioned at the center of the zi  slice, ( , , )k k zx y irTf  is 

the 2D FT of the object’s contrast at the zi  slice, and vX  

is the volume of a voxel in the 3D image.

Quantitative DH3D-N methods have the potential 

to make real-time biomedical imaging systems a real-

ity. They offer reconstruction speed that is far superior 

to the speed of optimization-based quantitative MMI 

techniques [3], while at the same time achieving com-

parable image quality. As an example, consider the im-

aging of a 55-mm-thick compressed breast phantom, 

which is based on transmission (bistatic) S-parameter 

measurement [46] with two boresight aligned anten-

nas scanning two parallel planes. The boresight trans-

mission measurement has the advantage of maximum 

scattered-field strength due to the shortest possible 

path through the highly dissipative breast-tissue me-

dium. The disadvantage is that the planar boresight 

arrangement leads to loss of range resolution and the 

images are only 2D, similar to X-ray mammography. 

Figure  10 shows the constructed phantom using five 

11-mm-thick custom-made carbon-rubber slabs. The 

custom complex permittivity of these slabs is tailored 

to match the average permittivity of Breast Imaging 

Reporting and Data System type 2 breast tissue, which 

has scattered fibroglandular content of less than 50% 

of the overall breast-tissue mass. Inside two of the five 

slabs (slabs 2 and 4), sections are hollowed out and tis-

sue simulants are inserted (see Figure  10(a) and  (b). 

The cancerous tissue simulants are dark in color (cir-

cled in blue). The white-colored simulant represents 

healthy fibroglandular tissue. The brown-colored sim-

ulant is that of scattered fibro-glandular tissue and it 

has permittivity that matches approximately that of 

the carbon-rubber slabs. All five carbon-rubber slabs 

are stacked to form the completed phantom [see Fig-

ure 10(c)], wherein layers 1, 3, and 5 are homogeneous. 

Plastic wrap is used to secure the inclusions in layers 

2 and 4 as well as to hold together the whole phantom.

First, PSF measurements are performed using a small 

dielectric cylinder of relative permittivity .50 0 05ir,spf = -  

(microwave ceramics), of radius 5 mm and height 10 mm 

as the scattering probe. The scattering probe is embedded 

(a) (b) (c)

Figure 10. Photographs of the compressed breast phantom. (a) Layer 2, containing two tumor simulants (circled with solid blue 
line) in the embedding (brown) medium emulating scattered fibroglandular tissue. (b) Layer 4, containing two tumor simulants 
(circled with solid blue line) within the fibroglandular simulant (white) in the embedding medium, and (c) assembled phantom [46].
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in the center of a 55-mm-thick stack of five 11-mm-thick 

uncut homogeneous carbon-rubber slabs.

Solving quantitative (24) provides the images of the 

real and imaginary parts of the breast phantom shown 

in Figure  11(a). Due to the lack of range resolution, 

these are 2D images, which are effectively displaying 

the object’s relative complex-permittivity averaged 

over the depth of the breast phantom (z-axis). To vali-

date the quantitative accuracy of the reconstruction,  

Figure  11(b) shows the actual 2D distribution of the  

averaged real and imaginary relative permittivity.

In [47] the DH3D-N technique of [40] has been ex-

tended to cylindrical setups targeting applications in 

nondestructive testing. The method employs convolu-

tion and its efficient computation in k-space, similarly 

to the rectangular-aperture case. Another similarity is 

the use of multiple frequencies and/or multiple TX/

RX channels to improve the range (radial) resolution. 

However, there is a difference in processing the data 

along the azimuthal direction z  in a cylindrical setup 

compared to a rectangular setup, because all of the 

functions (responses and the contrast function) are 

periodic along .z  As explained in [47], the discrete 

FT (DFT) accommodates the data periodicity along ,z  

whereas the discrete-time FT (DTFT) is suitable for the 

data dependence on the vertical (z) position. For the 

difference between the DFT and DTFT, as well as their 

implementation, refer to [48]. Similarly to the planar 

case, a system of equations is constructed and solved 

for the unknown object reflectivity at each Fourier 

variable pair ( , ),k kzz  where kz  and kz  correspond to 

the spatial variables z  and z, respectively.

An important advantage of the cylindrical setups is 

that radial resolution can be obtained with narrowband 

data provided an array of RX antennas is employed 

to receive the scattered signals due to one or more TX 

antennas. In [49] one TX antenna and an array of eight 

RX antennas move together to scan a cylindrical ap-

erture with radius of 60 mm and height of 160 mm,  

where the envisioned application is biomedical imaging. 

Due to the narrowband operation, a custom cost-effec-

tive data acquisition system for vector measurements is 

constructed, thus replacing the costly and bulky general-

purpose instruments such as vector network analyzers.

In [50] and [51] the cylindrical DH3D-N technique is 

applied to the nondestructive testing of multiple concen-

tric nonmetallic pipes through imaging of their defects. 

In [50], wideband data (8 to 12 GHz) are collected to im-

age double concentric pipes. The solution of the system 

of equations at each spectral point ( , )k kzz  is then aug-

mented using beam-space transformation, which focus-

es the image on the surface of each pipe and improves 

the image quality for the pipes that are farther away 

from the antennas. In contrast, in [51], narrow-band data 

(or even single-frequency measurement at 10 GHz) are 

collected by an array of RX antennas distributed along 

the azimuthal direction on both sides of a TX antenna. 

The system achieves drastically improved radial resolu-

tion compared to the wideband system in [50]. With a 

similar number of antennas, the method in [51] can im-

age concentric pipes with only 1-mm gap between their 

walls whereas the method in [50] requires at least an 18-

mm gap. Figure 12 shows the nondestructive testing tool 

reported in [51] along with sample images produced for 

defects on double concentric polyvinyl chloride pipes 

using the 10-GHz data only. Figure 13 shows the 1D im-

age cuts through the defects on the double concentric 

pipes (two defects on the outer pipe and one defect on 

the inner pipe) for a small gap of only 1 mm between the 

pipes, demonstrating the striking radial (range) resolu-

tion even when using single frequency data at 10 GHz. 

Achieving high radial resolution in [51] inspired further 

work, which led to a method to estimate the thickness of 

defected regions in thick pipes [52].

For DH3D-N techniques, the sampling steps should 

be smaller than the recommendations discussed in 

the “Spatial Resolution and Sampling Requirements 

in Imaging With Far-Field Measurements” section. 

This is due to the fact that in the near-field measure-

ments, parts of the evanescent wave spectrum can be 
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Figure 11. (a) Two-dimensional quantitative images of the 55-mm  compressed breast phantom shown in Figure 10 showing 
the real and the imaginary parts of the relative permittivity averaged over the phantom’s depth. (b) Actual distributions of the 
real and imaginary relative permittivity when averaged over the depth of the phantom. (From [46].)

Authorized licensed use limited to: New York Institute of Technology. Downloaded on August 09,2024 at 13:10:25 UTC from IEEE Xplore.  Restrictions apply. 



August 2024   51

measured over the scanned aperture. This spectrum 

contains spatial frequency values that lie beyond the 

k2 max  limit as a result of the near-field variations in the 

spatial (x and y) domain, which are faster than those of 

the far field. Measurement of these components pro-

vides information for larger kx  and ky  values leading 

to better cross-range resolutions. However, analytical 

estimates of the maximum limits of kx  and ky  when us-

ing near-field measurements do not exist. Thus, these 

limits must be determined carefully for the DH3D-N 

techniques. These limits are used to set the width of 

low-pass filters applied to the reconstructed reflectiv-

ity in k-space (before applying inverse FT) in order to 

suppress erroneous output resulting from excessive 

noise at the high spatial frequencies [20], [45]. Choos-

ing too large limits may lead to the processing and 

amplification of high-frequency noise in the images. 

Furthermore, discontinuities of the responses at the 

edges of the measurement aperture lead to Gibb’s arti-

facts (“ringing”) in the spectral domain, which in turn, 

causes artifacts in the reconstructed images. This prob-

lem is alleviated using apodization filters that damp 

down the sharp response discontinuities at the edges 

of the measurement aperture [45].

Progress Toward Real-Time Imaging: 
Expediting the Recording Step
The holographic imaging techniques discussed earlier 

in this article are fast. They can provide 3D images of 

electrically very large scenes within seconds. The com-

putational efficiency benefits from the use of FFT and 

inverse FFT to implement the direct and inverse FTs. 

Further acceleration is achieved by parallelizing the 

computations. For example, in the DH3D-N methods, 

the systems of equations constructed at each Fourier 

variable ( , )k kpair— x y  in the rectangular setups or 

( , )k kzz  in the cylindrical setups—are independent; 

thus, they can be solved in parallel, leading to drastic 

reduction of the running time.

Unfortunately, while holographic image recon-

struction techniques are very fast, currently, the data 

acquisition through 2D scanning on rectangular or 

cylindrical apertures is slow, hindering the real-time 

imaging of moving objects. Here, we briefly review 

the recent advances to address this bottleneck via the 

use of: 1) the electronic scanning of a 1D antenna array 
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Figure 13. One-dimensional cuts (along z) of the images of 
defects on double concentric pipes (two defects on the outer pipe 
and one defect on the inner pipe) for a gap of 1 mm between 
the pipe walls [51], where single-frequency measurement at 
10 GHz is employed. The DH3D-N systems of equations in 
k-space are solved with two methods: standardized minimum 
norm (SMN) and minimum norm (MN), showing reduced 
artifacts when using the SMN approach.
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and mechanical scanning of the array along a direction 

perpendicular to the array axis, 2) the electronic scan-

ning of 2D antenna arrays, 3) sparse arrays of TX and 

RX antennas and collecting data corresponding to the 

midpoint of the phase centers of each TX/RX pair, 4) 

stationary MIMO antenna configurations, 5) frequen-

cy-modulated continuous wave (FMCW) radar-based 

data collection, and 6) analytical refocusing of a PSF 

measured at a certain range position to other range po-

sitions when using DH3D-N methods. 

The first approach to expedite the data acquisition 

is electronic scanning with switched antenna arrays, 

where the antennas are distributed over the mea-

surement aperture. The most common approach is to 

employ electronic scanning along one direction and 

mechanical scanning along the other orthogonal di-

rection to cover a 2D aperture. This approach is em-

ployed in [15] and [53] for imaging setups paired with 

DH3D image reconstruction, as well as in [54] and [55] 

for cylindrical setups with DH3D-N reconstruction. In 

[56] and [57] a sparse multistatic linear antenna array 

has been proposed to improve the speed of the mea-

surement and to reduce the complexity of the system. 

There, the main concept is that a TX/RX antenna pair 

effectively samples the spatial point located halfway 

between the phase centers of the two antennas. Thus, 

using combinations of sparse arrays of TX antennas 

and RX antennas, dense uniform sampling of the field 

can be achieved, which emulates a dense virtual trans-

ceiver array. This technique substantially reduces the 

number of antennas and switches while it can result 

in good imaging performance using the DH3D tech-

niques [15], [21] described earlier.

In [58] the development of a microwave camera is 

described that operates in the 20- to 30-GHz frequency 

range. The camera utilizes a 2D array of 16 × 16 ele-

ments on a printed circuit board, each operating in a 

monostatic mode. Each array element consists of a 

larger tapered-slot TX antenna and two small bow-tie 

RX antennas located at the edges of the TX slot. The 

two bow-ties connect to their respective Schottky di-

odes. The transmitted signal is partially coupled to the 

two bow-tie antennas, providing the reference signal. 

The signals reflected by the object are picked by the RX 

antennas and are mixed with the reference signals by 

the Schottky diodes. The low-frequency voltages gen-

erated by the diodes of the array are multiplexed to two 

analog-to-digital convertors for sampling. The use of 

dual receivers provides nonuniform spatial sampling 

for nonuniform SAR processing, like the approach in 

[24], which has been discussed above. The camera pro-

duces 3D images at a video frame rate of 30 frames per 

second. Figure  14 shows the schematic of the micro-

wave camera in [58] along with the imaging results for 

objects hidden inside a laptop bag.

In [59] a fully electronic E-band imager has been 

presented for high-speed imaging with typical mea-

surement time of 20 ms. It is based on a stationary 

multistatic array architecture, which employs linear 

SFCW signal in the 70- to 80-GHz bandwidth. Figure 15 

shows the imaging system along with some sample 

images it produces of a person carrying a P99 pistol hid-

den underneath clothing. Note that these images are 

reconstructed with the BPA (see [60]). The BPA, which 

processes the data directly in real (x, y, z) space, is less 

computationally efficient than the Fourier-based (holo-

graphic) algorithms [60] described here. However, the 

uniformly sampled data provided by this system can 

be processed by holographic algorithms.

In [61] another microwave camera with dimensions 

of 280 mm × 225 mm × 140 mm is reported based on a 

2D array of 576 switchable slot antennas operating at 

24 GHz. The data collection employs the modulated 

scattering technique (MST) [43] and the processing is 

based on a DH3D technique. The use of the MST tech-

nique allows for dense sampling (every / )2m  of the 

scattered fields by a large number of sampling probes 

(planar array of 24 × 24 slot antennas). The probes are 

modulated with a frequency of 1 MHz. The modulated 

RF outputs of all sampling probes are collected by a 

network of rectangular waveguides, acting as the MST 

collector. A heterodyne receiver measures the collec-

tor output signals at a fixed intermediate frequency of  

10.7 MHz. Figure 16 shows the schematic of the imag-

ing system and an image of a balsa wood sample with 

a small rubber inclusion. This system provides images 

with a video frame rate of 22 frames per second. The 

microwave camera in [58], discussed earlier, offers 

higher imaging speed and simplicity of the microwave 

circuitry, compared to the one in [61]. This is due to the 

use of built-in dual receivers at radiating ends allow-

ing a low-frequency multiplexing network that leads 

to more compact, efficient, and cost-effective portable 

system, compared to the one in [61].

The other approach to expedite the data acquisi-

tion process is the use of stationary MIMO configura-

tions. In [19] a sparse planar MIMO imaging system 

has been proposed for fast data collection and the im-

aging technique belongs to the DH3D category. The 

array consists of 12 TX and 13 RX antennas arranged 

along two orthogonal axes, which collect data from 

3 to 19.5 GHz. Further, in [62] a highly efficient 

DH3D algorithm is proposed for MIMO arrays in a 

cylindrical configuration.

The advancements described so far are based on 

stepped-frequency measurements. Yet, such measure-

ments are lengthy and the associated hardware is rel-

atively expensive [63]. This is particularly true when 

enhanced range resolution is desired, which demands 

wideband data. The alternative offered by FMCW radars 
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is advantageous due to faster data acquisition while be-

ing more cost-effective. Most of the FMCW radar sys-

tems proposed so far are based on LFM radars.

In LFM radar, heterodyne mixing provides an inter-

mediate frequency version of the LFM signal. In [23] a 

rigorous mathematical model of the holography-based 

imaging with LFM radar is presented, in which system 

limitations in terms of the object extent and distance are 

derived and explicitly related to the frequency-modula-

tion slope. The imaging system in [23] is paired with the 

DH3D image reconstruction, whereas in [35] it employs 

the DH3D-S method for improved computational speed.

In [64] an LFM radar is paired with a virtual MIMO 

antenna array. The TX and RX antennas in a sparse 

MIMO configuration are paired to approximate a mo-

nostatic radar operation. In other words, assuming that 

the distances between the TX and RX antennas in the 

MIMO array are much smaller than the distance to 

the target, each TX/RX pair is assumed to represent a 

transceiver located at the midpoint between them. In 

[65] a W-band LFM MIMO system is proposed for far-

field 3D imaging with BPA-based image reconstruc-

tion. In [66] a generalized LFM-based SAR method is 

proposed, which uses a triangular frequency-modulat-

ed waveform to perform 2D imaging.

Finally, despite the advantages highlighted earlier 

in exploiting measured PSFs in the DH3D-N meth-

ods, when the number of imaged slices ( )Nz  is large, 
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the measurement of the PSFs with the scattering probe 

placed at each imaged slice becomes very time-con-

suming. To alleviate this practical issue, a method has 

been proposed in [20] to analytically refocus a mea-

sured monostatic PSF with a scattering probe at ,z z0=  

( , , , ),H x y zi ~  to any other range position .z z0 T+  The 

refocusing is done directly in k-space and it employs 

the range dependence of the PSF in the third line of Ta-

ble 1, leading to a simple range-migration expression: 

( , , , ) ( , , , ) /( ).H k k z z H k k z z e z zx y x y
k z

0 0 0 0
i z

T T~ ~+ = +
T-u u

1 m
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Figure 15. (a) Personnel imager proposed in [59] with dimensions of 2 m × 1 m, including 32 clusters, each with 94 TX 
and 94 RX antennas. The reconstructed image of a person concealing a P99 pistol is visualized as: (b) a reflectivity image in 
logarithmic scale and (c) a color-coded reflectivity image with depth.
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Outlook for Holographic MMI
It has been more than 70 years since the original holo-

graphic imaging concepts were proposed by Gabor. 

Since then, in the microwave and mm-wave regimes, 

major advancements have been made in data-acquisition 

schemes, hardware, and processing algorithms. Elec-

tronically switched antenna arrays and MIMO systems 

have opened the pathway toward fast real-time imaging 

systems capable of producing an image within a second, 

and often being able to capture objects in motion. With 

the advent of low-cost chip-scale systems implementing 

FMCW radars and software-defined radios, building 

fast microwave and mm-wave imagers is within reach. 

These technological developments and fast reconstruc-

tion algorithms will make microwave and mm-wave 

video cameras a reality. Deployment of such cameras on 

mobile platforms will give them a new unique sensing 

capability, complementing optical and infrared imag-

ery. With its unrivaled speed and resilience to noise 

and uncertainty, holographic image reconstruction has 

become the frontrunner toward achieving these goals. 

While holographic MMI is best known for the now 

ubiquitous security screening systems, many other 

applications are emerging in biomedical imaging and 

nondestructive testing as briefly discussed here. In 

such close-range and extreme near-field imaging sce-

narios, adaptations of microwave holography to near-

field applications such as DH3D-N and quantitative 

microwave holography have been proven to be critical.
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