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ourier-Space Image
Reconstruction

Using Microwave
Measurements

Reza K. Amineh® and Natalia K. Nikoloova®

he use of electromagnetic waves at micro-
wave and millimeter-wave (mm-wave)
frequencies in imaging has been growing
rapidly in the last two decades with appli-
cations in security screening, biomedical
imaging, nondestructive testing, and the inspection
of goods and packages. The nonionizing nature of the
radiation renders microwave and mm-wave imaging
(MMI) safe for humans and, thus, attractive, especially
for frequent imaging of living tissue and humans. At
the same time, the radiation penetrates many materi-
als, which are optically opaque: e.g., fog and foliage,
soil and living tissue, brick and drywall, wood, fabrics,
and plastics. Importantly, modern MMI systems offer
compact and relatively low-cost hardware due to ad-
vancements in high-frequency microelectronics.
Several categories of image reconstruction meth-
ods have been developed so far for the MMI systems,
mainly including optimization-based techniques, time-
domain synthetic aperture radar, and back-projection
techniques, as well as frequency-domain holographic
techniques. Compared to the optimization-based techniques,

holographic techniques offer much higher image recon-
struction speed and robustness to noise and interfer-
ence. While originally holographic imaging was only
capable of providing fast qualitative images, like time-
domain radar-based imaging, recently this shortcom-
ing has been addressed by fast quantitative holographic
imaging techniques. Currently, holographic techniques
can provide qualitative or quantitative images of large
objects (e.g., a person) within seconds using regular
computers. The processing involves Fourier transform
(FT) and inverse FT, which are implemented efficiently
by fast FT (FFT) algorithms. The speed and resilience to
noise and measurement uncertainty have made micro-
wave holography the preferred image-reconstruction
method in commercial whole-body imagers (found in
major airports worldwide) and, more recently, in bio-
medical and nondestructive-testing imaging.

In the early stages, when intensity (or power) mea-
surements only were available, microwave holography
closely resembled optical holography. Later, synthetic
aperture radar (SAR) processing techniques were
employed to take advantage of the availability of
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complex-valued (magnitude and phase) microwave
data. With measurements over rectangular or cylin-
drical apertures, 3D image reconstruction became
possible. To this day, FFT-based image reconstruction
remains the most computationally efficient option
for reconstructing 3D images with millions of voxels
within seconds.

Traditional SAR-based inversion strategies employ
far-field approximations and point-wise antenna as-
sumptions. Thus, when applied with extreme near-
field measurements, such as those used in biomedical
imaging and nondestructive testing, the images are
often erroneous. To address this problem, near-field
holographic MMI methods have been developed
that are capable of processing even evanescent-field
data resulting in high-resolution images. Further
advancements include image reconstruction with
bistatic measurements, both back-scattered and for-
ward-scattered fields, as well as with multiple-input,
multiple-output (MIMO) measurements. Common
holographic methods work with stepped-frequency
continuous wave (SFCW) data but they have also
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been extended to work with linear frequency modu-
lation (LFM) radars.

Due to the rapid growth in the research and de-
velopment of radar imaging technology, the litera-
ture abounds with articles about SAR-based imaging
methods and the closely related methods of micro-
wave holography. Yet, the subject is scattered across
many disciplines and the commonality of principles
is often lost, hampering understanding and apprecia-
tion of the methods’ differences and their limitations.
In this article, we aim to provide a streamlined over-
view of the Fourier-based methods for microwave
and mm-wave image reconstruction, a discussion
of their limitations, and some illustrative examples
of recent applications. This review is far from being
comprehensive or complete, as the subject is develop-
ing at a very fast pace: Since 2022, more than 5,600
articles about SAR imaging have been published on
the IEEEXplore® platform alone. We hope that this
article will benefit both experts and novices in the
field of radar imaging. We have endeavored to make
it not just a review but also a tutorial, providing a
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common framework to compare and contrast the
mathematical and implementational aspects of the
modern MMI systems.

Early Developments

The origins of holographic imaging are attributed to
Gabor [1], whose work (dating back to the late 1940s)
aimed at improving electron microscopy by employ-
ing a clever two-step measurement procedure. In the
first recording step, the object is illuminated with a
focused electron beam. The resulting scattered wave
is allowed to interfere with a copy of the illuminat-
ing beam (the reference wave) and the diffraction
pattern resulting from this interference is recorded
on a photographic plate. Gabor named this record-
ing the hologram. The photographic hologram is then
processed and scaled up to optical wavelengths. In a
second reconstruction step, an optical illumination
system is employed, which is a scaled-up copy of the
electron-beam illumination system. Now the object is
absent, but the processed hologram (a photograph) is
placed in the same (but scaled) position relative to the
wave source (now monochromatic light). Upon optical
illumination, the wave emerging from the hologram is
focused by a lens to produce a high-resolution optical
replica of the object originally scanned by the electron
beam. Further improvements to Gabor’s setup were
brought forward by Leith and Upatnieks [2], in which
the availability of lasers led to a new generation of 3D
imaging optical systems. A review of optical hologra-
phy is available in [3].

The term holography has Greek origins, with the
meaning of holos for “whole” and graphe for “writing.”
In instrumentation, holography is defined as an inter-
ferometric technique for recording the amplitude and
the phase of monochromatic waves [4]. In imaging,
holography refers to a class of image-reconstruction
methods, which process complex-valued (amplitude
and phase) data using 2D and/or 3D direct and inverse
FTs. The direct FT maps the data dependence on the re-
al-space variables (x, y, z) onto the wavenumber space,
(kx, ky, kz), or k-space, where the target reflectivity is
computed. The inverse FT maps the reconstructed re-
flectivity from k-space back to real space.

Soon after the discovery of optical holography, its
principles were translated to acoustics [5] for imag-
ing objects hidden inside optically opaque media.
Concurrently (in the mid-1960s), holography with mi-
crowaves emerged [6], which, too, aimed at imaging
optically obscured objects. In those early stages, mi-
crowave holography was similar to its optical coun-
terpart in its two-step procedure [7]. In a recording
step, an intensity pattern (the hologram of the inter-
fering scattered and reference waves) is measured by
scanning an antenna equipped with a simple diode
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detector over the acquisition plane [8]. The microwave
hologram is then scaled to optical frequencies and il-
lumination by light reveals the microwave image of
the object.

The later developments of holographic MMI, now
widely employed in practice and in research, can be di-
vided into four separate paths: 1) indirect holography
for 2D image reconstruction (IH2D), 2) direct hologra-
phy for 3D image reconstruction (DH3D) with far-field
data, 3) direct holography for slice-by-slice 3D image
reconstruction (DH3D-S) with far-field data, and 4)
direct holography for 3D image reconstruction with
near-field data (DH3D-N). While there are significant
algorithmic differences between these categories, they
share a few common features.

e They exploit the magnitude and the phase of the
scattered waves.

They provide images with enhanced resolution
compared to the images obtained from raw mea-
surements. As an example, Figure 1 shows the
improvement achieved when imaging small metal-
lic objects hidden inside wood. The objects’ pres-
ence or location cannot be deduced from the raw
magnitude and phase data plotted in Figure 1(a)
and (b). But the processing with a holographic
imaging algorithm provides the high-quality
images in Figure 1(c) and 1(d).

They employ a linearized model of electromag-
netic scattering. This means that the interactions,
such as mutual coupling and multiple scattering
among the scatterers in the scene, are neglected.
The object is viewed simply as a collection of inde-
pendent point scatterers. This is the well-known
Born approximation in imaging [9].

They reconstruct the object in the wavenumber
space (the k-space) with remarkable speed due to
very low computational complexity compared to
the real-space solutions of the inverse scattering
problems [3].

IH2D

Indirect holography is a modern interferometric tech-
nique to extract the magnitude and phase of scattered-
field data from intensity (scalar) measurements. Thus,
as a data acquisition technique, it resembles optical
holography. The intensity of the sum of the reference
and scattered signals (both at a single frequency) is
measured over an acquisition plane, providing a 2D
dataset (a function of x and y), i.e., a hologram. Unlike
optical holography, however, the reference signal is
submitted to the receiver through a waveguide or
a transmission line. Also, the image is obtained by
processing the hologram data on a computer, unlike
Gabor’s reconstruction, which employs an optical
reconstruction-step measurement with the hologram.
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Figure 2 illustrates the modern indirect holography
system employed in microwave imaging [10]. The im-
aged object is illuminated by a transmitting (TX) an-
tenna. The scattered field due to the object E*(x, y) is
captured by a receiving (RX) antenna over a rectangu-
lar aperture at z. The received signal, along with the
phase-coherent reference signal E™' (x, y) (from a signal
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generator), are applied to the input ports of a hybrid tee.
One of the outputs of the hybrid tee provides the sum
of the two inputs, which is measured by a power meter
(e.g., a diode detector). The other output port providing
the difference of E*(x, y) and E™(x, y) is often termi-
nated by a matched load, but it may also be recorded
and employed to enhance the hologram processing [10].
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X (mm)
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Figure 1. Measured backscattered responses at 7 GHz over a 2D aperture obtained with metallic objects hidden inside wood
and placed at 14 mm (two side-by-side objects) and 42 mm (single object) from the measured aperture: (a) magnitude and

(b) phase (in radians). Holographic images using wideband data (2.8 to 11 GHz) of the objects at imaged planes located at two
range distances: (c) 14 mm and (d) 42 mm. The red dashed lines show the actual position of the objects.

RX Antenna
N Sum Port
Imaged =]
Object Hybrid Tee Power Meter
Difference
TX Antenna Port
X 3
Signal Directional Variable .
Mv 4 Generator Coupler Attenuator FrRES Sl o7

Figure 2. Block diagram of an IH2D measurement system (modified from [10]). RX: receiving; TX: transmitting.
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The reference signal E™ (x, y) has a uniform ampli-
tude Eo, but its phase is controlled by a phase shifter
so that it decreases linearly along the scanned direc-
tion. For example, for a scan along x, an effective wave-
number k; = k. is selected, and for every sampling step
Ax, the reference-signal phase delay is incremented by
A¢ = k:Ax. For a 2D scan along x and y, the reference
signal is synthesized as E f(x, y) = Eoe ™ % where
Eo is a constant magnitude. Thus, the reference signal
emulates a plane wave of wavenumber k, = k3 +kj
with the wavenumbers along x and y being k. and
ky, respectively.

The intensity pattern I(x, y) recorded by the power me-
ter at the sum port of the hybrid tee is expressed as [10]:

16 y) = [E<Ce )+ E* (v, )
=|E*(x, y) P+ E§ + 2EoRe{E* (x,y) e "} (1)

Further, the 2D FT of I(x, y) is obtained:

Fao{l(x, y)} = Faol|E*(x, y) P} + E36 ks, k)
+ 2EO~7——2D {Re[Esc (X, y) eikxx+ikyy]} (2)

where Fop{ -} denotes the 2D FT. The first two terms
in (2) are centered at the origin of k-space spanned by
the variables kx and k,. On the other hand, the third
term is the spectrum of the scattered field E*(k, ky)
shifted away from the origin by k.= y/ki+k;. With
far-field reflection measurements, the spectrum of
the scattered field contains only propagating modes
and is thus limited within the maximum wavenum-
ber kmax = 2k, where k is the wavenumber of the radia-
tion in the background medium (e.g., air) [3]. As long
as k; is chosen large enough to satisfy k; > 3kmax, the
spectral content of the third term in (2) can be sepa-
rated by high-pass filtering. Figure 3 illustrates the
separation of the first two terms in (2) from the third
term through a cut along the k. axis. After separating
the desired scattered-field spectrum using high-pass

Fon{(E(x, y))*}
A A

Fao{[E¥(x, )7} + Foo{ [E™(x, y)[?}

filtering, the resultis synthetically shifted to the center
of k-space by removing the known wavenumber shift
(kx, ky). Applying inverse FT to the result retrieves the
complex-valued scattered field E*(x, y), which is then
processed with any available reconstruction algo-
rithm to produce a 2D image of the object. In [10], a
back-propagation algorithm (BPA) is used.

The IH2D imaging method has been employed to
perform preliminary experiments for breast-cancer
imaging [11] and the imaging of metallic objects [12].
Despite offering simple and low-cost data acquisition
(due to scalar measurements only), a major limitation
is that the data acquisition employs single-frequency
radiation, which is not sufficient for 3D imaging. This
is the likely reason for the method not being as widely
deployed in imaging as the 3D direct microwave ho-
lography techniques discussed next.

DH3D With Far-Field Measurements

The direct holographic MMI methods use more com-
plicated measurement hardware (e.g., vector network
analyzers) to obtain the magnitude and phase of the
scattered responses. Both SFCW and LFM measure-
ments can be processed by DH3D. If wideband time-
domain measurements are used, they are converted
to frequency-dependent signals via FT before they are
processed by DH3D.

Similar to IH2D, the measurements are performed
over an aperture of canonical shape (e.g., rectangular
or cylindrical). DH3D has been inspired by the early
2D SAR imaging approaches and, on a fundamental
level, it can be viewed as their extension to 3D imaging.
SAR utilizes wideband radar data acquired over a line
[13]. The data span 2D space (the position x along the
line and time f, or frequency ). The image reconstruc-
tion maps the data onto a 2D reflectivity image of the
target along the cross-range x and range z. In contrast,
DH3D takes wideband data on a 2D surface. Now the
data span a 3D space (the position coordinates x and y,

FonlE*(x, y)}
A
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Figure 3. The cross-section (along the k, axis) of the spatial-frequency spectrum of the intensity pattern recorded at the sum
port of the hybrid tee in the IH2D acquisition method (modified from [10]).
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and time ¢, or frequency w). This enables the 3D image
reconstruction in x, y, and z.

The first attempts to extend 2D SAR to 3D imag-
ing date back to the 1990s [14], [15], [16]. The method
proposed in [16] extends the projection (also known
as back-propagation) image-reconstruction algorithm,
common in SAR, to 3D imaging by the use of the range
migration algorithm (RMA), which provides the link
between the frequency (@) dependence of the data and
the range (or depth) dependence of the image. The re-
sulting 3D image reconstruction method is known as
o—k SAR [17]. Only a few years earlier, the team at the
Pacific Northwest National Laboratory pioneered a ro-
bust method for security screening [14], [15], exploiting
a range-migration principle, which is mathematically
equivalent to the RMA. They refer to their method as
wideband microwave holography in recognition of the fact
that it can be viewed as an extension of the early single-
frequency 2D microwave-holography imaging to wide-
band operation with 3D imaging output.

Most applications envision monostatic measure-
ments of objects residing in the far zone of the TX/RX
antennas. In such measurements, the TX and RX anten-
nas occupy the same position. Figure 4 illustrates the
monostatic arrangement with a planar scan, where the
acquisition plane is at z = z, the measurements’ coordi-
nates are r = (x, y, z), and the coordinates in the imaged
volume are " = (x’, ¥, z'). We use this relatively simple
scenario to explain the principle of DH3D imaging.

DH3D employs analytical models of the scattered
field due to a point scatterer in a homogeneous back-
ground. The central role in the model is played by the
function H(r— ', ), which is referred to as the system
(or data) point-spread function (PSF). It predicts what the
scanning system would measure at » when the scatter-
ing originates from a point at #’. The term PSF is at-
tributed to the fact that while the scattering source is
a point, its scattered field, when measured at the aper-
ture, is spread over a substantial area. Mathematically,
H(r—1', w) can also be viewed as the system spatial
impulse response. It is the assumption of a homoge-
neous background that allows the PSF dependence on
rand ¢’ to appear as (r — r’). This dependence is critical
for the ability to carry out the image reconstruction ef-
ficiently in k-space.

Imaging with planar scans employs a Cartesian
coordinate system, where the PSF is written as
Hx—x",y—y,z—2,w). Table 1 summarizes the ana-
lytical PSFs used by all far-field image-reconstruction
methods, DH3D included, for the case of monostatic
measurements. Note that the functions in the first col-
umn of Table 1 are given in a form, which assumes that
the scattering point is at the origin, ' =y =z' =0,
whereas the measurement point is at (x, y, z). If the scat-
tering point is not at the origin, a simple coordinate
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shift in the form of H(x —x', y—y’,z—z', w), models
properly the PSF observed at (x, y, z), provided the
background is homogeneous. The respective 2D FTs
are listed in the second column of Table 1, since they
are used in the fast 3D image reconstruction in k-space.
The 2D FT is applied to the lateral (cross-range) coordi-
nates (x, y) producing H (kx, ky, z, ®), where k. and ky,
are the Fourier variables.

We notice that all three PSFs in Table 1 account for
the phase delay associated with the signal path length
from the TX antenna to the point scatterer and back
to the RX antenna. On the other hand, not all three
PSFs represent the spherical-spread loss (i.e., the free-
space path loss) of the incident and scattered waves.
The PSF in the first row in Table 1 ignores the waves’

T,V
r7(x ¥ 2)
TX/R”

Antenna .. X

Object

J =Xy, 2)

\z

Aperture Plane
atz=2

Figure 4. [llustration of the DH3D monostatic system.
Measurements of the wideband back-scattered waves are
performed over the rectangular aperture at z =z and
3D images of the object can be reconstructed practically
instantaneously using the technique in [15].

TABLE 1. Analytical system PSFs used in far-field

imaging with monostatic radar and their 2D Fourier
transforms.

Real Space: 2D Fourier Space:

H(x,y, z, w) H(k,, k,, z, ®) Source
g k@r el _ 127K (@) oy [19] 116

~e |~ ———e
kz (w)
e 12k@)r 27 _ o-ik(@)el [18], [19]
r k2 (@)
—i2k(w)r 7 —ikz(@))z| [20]

€ k(@) z]°

r

r=yxX*+y*+z>  k,=yQk)’—ki—k; =0,

kx,ky,kzeR,k=%
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free-space path loss altogether. The second-row PSF
accounts for the spherical spread of the scattered
wave only, whereas the PSF in the third row accounts
for the spherical spread of both waves, incident and
reflected. We note that the amplitude variation of the
monostatic-radar waves (~1/1?) over the aperture
is not negligible when the measurements are taken
with wide-beam antennas and at close range. The
close-range scenario occurs when the target range
(the depth distance from the acquisition aperture) is
comparable to or smaller than the aperture’s extent
(see Figure 4). We briefly comment that in radar im-
aging, the close-range scenario is often referred to as
near-field imaging since the measurements are taken in
the near zone of the imaged object. To avoid confusion
with the near-field zone of antennas, here, we prefer
the term close-range imaging. Finally, we note that the
choice of PSF from Table 1 has no impact on the speed
of the image reconstruction.

Once the PSF H(r, ) is chosen and its 2D FT is
known, formulating the image-reconstruction for-
mula of DH3D is straightforward. Since DH3D views
the imaged object as a collection of uncoupled point
scatterers, it models the received scattered signal as a
superposition of the contributions from all points mak-
ing up the object in the imaged volume V":

E<(x,y, %, )
= f/]f(x,, y’, Z’)H(x_x,,y_y’, Z_Z,, a))dx/dy’dzl.
v ®

Here, f(x',y’, z') represents the object’s reflectivity
distribution, whereas E*(x, y, z, ®) represents the mea-
sured scattered wave over the 2D aperture at z =z and
at the angular frequency w. Recognizing the convolu-
tion in (x, y) and taking the 2D FT of both sides of (3),
leads to

F{E*(x,y, 2, @)} = E¥(ks, ky, 2, ®)
= [ Flko ko, 2)H (ke ki, 2~ 2, @)z
@

where ]‘(kx, ky,z")=F{f(x,y',z")} and H(kyky,z— 7', 0)
=Fw{H(x,y,z—2,w)}. It is now clear that the 2D FT
of the PSE, H(k., k,, 2 — z’, ®) (see the second column of
Table 1) is critically important for the image reconstruc-
tion. All three analytical FTs in Table 1 are in the form
Hky, kyz2—2, 0) = I (ks kye ™=@ ==21 " This allows
for the transformation of (4) into a 3D k-space relation
between the unknown target reflectivity f(x,y’,z’)
and the data E*(x, y, z, w). Specifically, assuming that
z' >z, (4) is written as

E*(ky, Ky 2, 0) = hi(ks, k)™ [ Flly, Ky, 2)e @ a2
: ®)
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Since the integral in (5) is a FT with respect to z’, (5)
is cast in the 3D space of (ky, ky, k) as

E*(ks, ky, 2, @)t (ks, k) €@ = Fan { f(x, v, 2)} (6)

where Fip{-} denotes the 3D FT. Note that we have
dropped the primed coordinates for the reflectivity
function f(x, y, z) since the coordinate system is com-
mon for the measurement and imaged points. Finally,
the DH3D reconstruction formula is stated as

£y, 2) = F { Fao (B 1, 2, @) ks, )] e}
@

where Fin{-} is the 3D inverse FT operating on
(kx, ky, k).

For example, in [15] and [21], the PSF in the 2D Fou-
rier space assumes the form e ®@Iz1 (see the first row
in Table 1). Thus, /i(ks, ky) = 1, and the reconstruction
formula (7) becomes

e, y,2) = Fao {F{E*(x, y, 2, o) e @7} (8)

There is one important detail in the implementa-
tion of (7) or (8). The 2D FT of the data, E*(ky, ky, Z, ®) =
Fao{E*(x, ¥, Z, @)}, is not an explicit function of k.;
it is a function of @ where the measurements are usu-
ally taken at uniform intervals within the frequency
bandwidth of the system. In turn, @ is a function of
k. through the dispersion relation in the last row of
Table 1. In fact, k. is not even an independent variable; it
is a function of ky, ky, and k = w/c. Thus, the k. depen-
dence of the data, E*(k,, ky, z, ), is implicit through
the frequency . DH3D deals with this problem by
interpolating E*(ky, ky, z, w) from the nonuniform
(kx, ky, k=(w)) grid onto a uniform (ky, ky, kz) grid, which
allows for the use of FFT algorithms. This operation
is called Stolt interpolation or Stolt mapping [22], and its
computational toll is quite significant.

Despite the computational complexity of the Stolt
mapping, the DH3D image reconstruction is fast.
Figure 5 shows a sample DH3D image of a concealed
handgun under clothing. Notice that the image is
2D despite the fact that the reconstruction formula
(8) is 3D. The 2D imaging output is common in such
systems since it offers faster interpretation, whereas
the depth information is not critical for uncover-
ing objects hidden under the clothing. The 2D im-
age is a projection of the 3D object reflectivity onto
a single image I(x, y) that depends on x and y only.
One possible projection scheme utilizes the expres-
sion I(x, y) = max.f(x, v, z) [23]. The DH3D imaging
systems for personnel inspection are now commer-
cially available and widely used in airports for the
security screening of passengers. The images become
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available to the security personnel within a second
once the measurement is completed.

As mentioned before, the Stolt mapping impacts the
speed and accuracy of the DH3D method negatively.
This has been the motive behind the development of
alternative 3D holographic reconstruction algorithms
(discussed in the next section). However, there is an
approach that can be still categorized as DH3D but it
avoids the Stolt mapping [24]. Therein, the 3D inverse
FFT algorithm, which implements the - i} opera-
tor in (8), is replaced with a sequential application of: 1)
nonuniform 1D inverse FFT (NUFFT ) operating on
k:(w), and 2) uniform 2D inverse FFT (FFT:b) operat-
ing on ky and ky, ie.,

f(x, y, 2) = FFT2d {NUFFT{E* (ks ky, 2, w) e *}}.
©)

The principles of microwave holography are appli-
cable to cylindrical acquisition surfaces as well (e.g,
see [21], [25], [26], [27], [28], and [29]). In particular, the
implementation of DH3D for cylindrical whole-body
scanners is described in detail in [21].

Spatial Resolution and Sampling
Requirements in Imaging With

Far-Field Measurements

Far-field measurements provide scattered signals con-
taining only propagating modes since evanescent
modes are too weak to be detected. The propagat-
ing modes correspond to the real positive k. values
only, as determined from the eigenvalue equation in

A Ky A Ky

(b)

Figure 5. (a) Optical image and (b) mm-wave image of a
clothed mannequin with a concealed Glock-17 handgun. To
obtain the mm-wave image, DH3D is used in processing the
data in the 100- to 112-GHz frequency band [15].

the last row of Table 1. Figure 6 illustrates the cover-
age of these modes in the 3D spatial frequency space
of ki ky, and k: when using monostatic radar. This
coverage is limited to the k: > 0 half-space. Addition-
ally, from the eigenvalue relation ki +kj + k% = (2k)?, it
is clear that the coverage is confined within a hemi-
spherical shell. The shell is limited by a hemisphere of
radius 2kmin from below and a hemisphere of radius
2kmax from above, where kmin and kmax are the wave-
numbers at the lowest and the highest frequency of
operation, respectively. These limits are illustrated in
Figure 6(a) and (b), which show cuts in the k, = 0 and
k. =0 planes, respectively. Figure 6(c) shows a cut in
the plane k. = 2k, where k. is the wavenumber at the
center frequency:.

2 2
2 kmax - kc

2k, in 2kc kmax

VA,
v

(a) (b)

()

Figure 6. Illustration of the region spanned by the Fourier variable values (shaded in blue) in the 3D spatial frequency space
(ky, ky, k.) when using far-field measurements with a monostatic radar. For simplicity, the illustration does not account for
limits imposed by a system’s maximum viewing angle omax < 90°. (a) A cut in the k, = 0 plane, where the k, and k. variables
span one-half of a circular band with an inner radius of 2k, and an outer radius of 2k,,,,. Here, ky;, and k.., denote the
wavenumbers at the minimum and maximum frequency of operation, respectively. The wavenumber corresponding to the
center frequency is k.. (b) A cut in the k, = 0 plane, where the k, and k, variables span a circular band of inner radius 2k ;,

y

and outer radius 2K,,. (c) A cut in the k, =2k_ plane, where the k, and k, variables span a circle of radius 2 Kax — k2.
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The extent of the spectral region of the propagating
modes is fundamental in understanding the spatial
resolution limits of images obtained from far-field mea-
surements. The image spatial resolution &¢, £ =x, y, z,
along the three principal real-space axes, is estimated
from the average (over all angles of incidence) span K¢
along the respective principal Fourier-space axis K¢
as 8¢ = 2n/Ke [3]. Since ky and k, span a range from
—2k. to 2k (on average), the cross-range resolution is
estimated as

2 )-/C
Suwm g = (10)
where A. is the wavelength at the center frequency of the
band. On the other hand, k: spans a range from 2kmin to
2kmax, leading to an estimated range resolution of

2

~— e _ C
62 - z(kmax - kmin) 2B

(11)
where B is the frequency bandwidth of the system.

In practice, the far-field 3D Fourier region is further
limited by the maximum viewing angle omax of the mea-
surement system. This angle equals either one-half of the
antenna beamwidth or one-half of the angle defined by
the center of the imaged domain and the extremities of
the scanned aperture, whichever is smaller. A limited
viewing angle (amax < 90°) does not allow for measuring
scattered-wave signals arriving at the acquisition aper-
ture at grazing angles, effectively limiting the minimum
value of k: (k) to about k:min =~ 2k cOS @max. This result for
k:,min is a consequence of approximating the scattered
wave of wavenumber ko as a plane wave ~ exp (—i2ko - r),
where ko = (kxo, kyo, kz0) is the wave vector of magnitude
| ko | =ko=wo/c and r is the vector from the point
of scattering to the measurement point. The 3D FT of
this plane wave is a d-function that peaks at the point
(2kxo, 2kyo, 2k-0) in Fourier space, i.e., the Fourier variables
(kxo, kyo, k=0) are simply the projections of the wave vector
ko onto the x, y, and z axes. Thus, a scattered wave of
wavenumber k, which arrives at the aperture at an angle
of incidence «, features a Fourier variable k. ~ 2k cos .
With omax < 90°, kzmin =~ 2k cOS amax cannot attain a value
of zero, i.e, the measurement of grazing waves is impos-
sible. This in turn sets the upper bound for the Fourier
variables ky and ky to (k3 + k) max = (2k sin otmax) >. Thus,
the expression for the cross-range resolution (10) must be
corrected as

Br ™ i — r/}fxmx . (12)
We note that a limited viewing angle has negligible
impact on the range resolution §..
The sampling requirements are fundamental in
the design of an imaging system, and they stem from
understanding its limitations. The spatial sampling
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steps along the acquisition aperture, Ax and Ay, along
with the frequency sampling step Af employed by all
far-field imaging systems, are determined from the
Nyquist sampling criterion [3], [15]. Considering the
upper bound 2kmax for k» and ky as discussed above,
the spatial sampling requirement is Ax, Ay < Amin /4,
where Amin is the shortest wavelength of the radia-
tion. In practice, oversampling with a step smaller than
Amin/4 is often detrimental to far-field image recon-
struction. This is because the 2D FTs of oversampled
scattered signals extend beyond the 2kmax limit of the
propagating modes and into the evanescent-wave spec-
trum, where noise prevails. Furthermore, if amax < 90°,
the recommended sampling step is corrected to
AX, AY = Amin / (4SIN Amax)-

On the other hand, the frequency sampling require-
ment for monostatic measurements is Af < ¢/ (4Rmax),
where Rumax is the maximum range to target. The maxi-
mum range of an imaging radar depends on its trans-
mitted power and its receiver sensitivity. Choosing a
sufficiently small Af prevents range aliasing, i.e., the
spurious assignment of the scattering from distant tar-
gets to that from closer targets. Similar to spatial sam-
pling, frequency oversampling with Af much smaller
than c/(4Rmax) may be detrimental in image recon-
struction because it associates with scattering beyond
Rmax, where noise and radar clutter prevail.

DH3D-S

As discussed in the previous section, Stolt mapping
has a negative impact on the speed and accuracy of
the DH3D reconstruction. Here, we describe a category
of techniques that avoid Stolt mapping and share one
common major characteristic. They all reconstruct
the 3D image slice by slice: i.e., the 2D images at each
desired range (z) position are reconstructed indepen-
dently. Like DH3D, they use the far-field PSFs listed
in Table 1. We refer to this category of techniques as
DH3D-S. The main advantage of the DH3D-S methods
over DH3D is the improved computational speed.

One DH3D-S approach avoids the Stolt interpola-
tion by using the phase-shift migration (PSM), origi-
nally proposed in seismology. In [31], this approach
has been applied in the terahertz regime. It employs
the PSF shown in the first line in Table 1 along with
the plane-wave spectrum range dependence, which
predicts that if the scattered field is known at z =z,
then its 2D FT can be analytically migrated (or back-
propagated) along the z-axis and toward the origin of
scattering by the phase shift operation

E*(k, ky, Z', @) = E*(ky, ky, 2, @)e™E =2, (13)

In [31] monostatic measurements are considered,
where the effective wavenumber is 2k since the wave
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traverses the distance from the aperture to the target
twice. Thus, k. in (13) is the same as that defined in
the last row of Table 1. Note that the range dependence
e™% (in the forward direction) is observed in all PSFs
listed in Table 1. Thus, the back-propagation factor ==
holds for the field scattered from a point. Since the scat-
tered response E*(x, y, z, ) can be viewed as a super-
position of the scattering emanating from all points
building the imaged volume, the assumption in (13)
that its 2D spectrum E* (kx, ky, z, ) has the same range
dependence is admissible.

The back-propagated 2D spectrum E*(ky, ky, z', )
is the k-space 2D map of E*(x’, y’, z', w) at the desired
range slice z'. The intensity of this map is a represen-
tation of the strength of the target’s reflectivity dis-
tribution at z' because the field strength peaks at the
location of its source. This is the well-known principle
of the classic back-propagation SAR reconstruction ap-
proach. In a mathematical sense, the back-propagation
scheme is a projection (or inner product) of the mea-
sured responses onto the functional space defined by
the system PSFs. In [6] it is shown that such reconstruc-
tion minimizes the ¢, norm of the error between the
measured data and the prediction of the linearized
model of scattering.

Since E*(x',y’,z’,w) is the 2D inverse FT of
E*(ks, ky, z’, ®), the relation between the two is

EX(x,y, 7, 0)= ffk . E<(ky, ky, 2, @) ® ) dk dk,.
(14)

Substituting (13) into (14) leads to

EX(,y, 7, )
== f/k‘ . E*(ks, ky, 2, w)e™ ~D &R0 gk dk,. (15)

Finally, averaging (or summation) over all frequen-
cies is employed, resulting in

Esc(x” y!’ ZI)
= ff . E'sc (kx, ky, Z, w)eikz(z'—2)ei(kxx+k(,y)dkxdkyda). (16)

The image at each z slice is |E*(x, y, z)|. Thus, the
slice-by-slice PSM reconstruction formula can be stated as

fx,y,2) ~E*(x,y,2)
= 75 { [ Fao(E(x .2, @)} Pda}. 17)

As in (7), here we have dropped the primed coordi-
nates since the position in the imaged volume uses the
same coordinate system as that for the measurements. It
is clear from (17) that an image slice at z = const. can be
efficiently obtained through the use of direct and inverse
2D FFT algorithms as long as the data E*(x, v, z, w) ison
a uniform (x, y) grid. Note that the frequency sampling
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need not be uniform. The Fourier variable k. is not sub-
ject to the inverse FT and it is computed with the disper-
sion relation in the last row of Table 1.

Figure 7 shows the optical and reconstructed images
of a mannequin with a plastic cap gun hidden beneath
a T-shirt using a 0.2-THz monostatic heterodyne trans-
ceiver with 15-GHz bandwidth and applying the PSM
method [31]. The experiments presented in [31] dem-
onstrate ~2-mm cross-range resolution and ~8.8-mm
range resolution. This is an excellent spatial-resolution
performance as it comes close to the limits mentioned
in the “Spatial Resolution and Sampling Requirements
in Imaging With Far-Field Measurements” section.

In [32] the DH3D-S technique has been extended to
the case of multistatic radar in a fully parallelizable re-
construction algorithm. There, for each range position z,
the back-propagated waves received by all of the receiv-
ers on a 2D aperture for each transmitter and at each fre-
quency are first computed in 2D (ky, ky) space. Similar
to (17), the results are summed together, this time over
all of the frequencies and all of the transmitters to gen-
erate a 2D image at the desired range position z. Since
the process for each transmitter and each frequency can
be implemented independently, parallel processing is
used to expedite the image reconstruction. It has been
shown that 256 times improvement in the reconstruc-
tion time can be achieved with this technique compared
to the conventional backpropagation SAR-based meth-
ods, which operate in real (x, y, z) space, while achieving
similar image quality.

Range stacking is another DH3D-S imaging al-
gorithm that avoids the Stolt interpolation through a
rigorous mathematical transformation of the Fourier
variable k. onto the wavenumber variable k = w/c [33].
It has been extended to 3D imaging in [34] and [35]. In
range stacking, the DH3D reconstruction formula in (7)
is modified by a change of variable from k. to k. It fol-

lows from the dispersion relation k. = y/(2k)> — k3 —kj
(see the last row in Table 1) that dk. = (4k/k.)dk. The

Figure 7. (a) Optical image of a mannequin with a plastic
cap gun beneath a T-shirt. (b) Reconstructed image using
the PSM method [31].
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3D inverse FT in (7) can be explicitly stated as a triple
integral over kx, ky, and k:

fev 2= [[[ | FolE@y,z o)}k, k)T
X ¢ 2 ik ki kD gk g dk.. (1)

The change of variable transforms (18) into

flx,y,2) = ffk . kﬁD{Esc(x, v,z k)}
ks
Ak el (k)2 K3 —k}(z—2)

~ iksx ko) g dle die..
Il k) /@R — K=K ;

19)

Note that we have replaced the variable o with k in
E*(x,y, z, k) since the simple relation @ = k. allows for
switching between the two. Finally, the reconstruction
formula of the range-stacking algorithm can be stated as

flx,y,2)
iV (202 K-k (z—2)
= fiﬁ{fﬁD{E“(x,y,Z,k)} __dke }
k

k
B (ks ky)y/ (k) —K2 =K
(20)

The formula in (20) allows for finding the image at
each desired range position z = const. independently. In
[35] the reconstruction formula (20) is employed with
the PSF in the second row of Table 1. It is referred to as
the accelerated holographic imaging with LFM (AHI-LFM)
since it is applied in an LFM imaging-radar system for
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whole-body scanning. There, it has been demonstrat-
ed that the AHI-LFM algorithm accelerates the image
reconstruction by at least an order of magnitude as
compared with the DH3D algorithm used previously
[23], while preserving the same image quality. Figure 8
shows a volunteer with various hidden items and the
reconstructed images using the DH3D and the range-
stacking DH3D-S algorithms, confirming similar im-
aging quality.

In [36] the DH3D-S range-stacking technique has
been equipped with compressive-sensing (CS) capabili-
ty to realize another efficient LFM imaging radar system
for whole-body scanning. The reconstruction formula is
the same as in (20), where the PSF in the first row of Ta-
ble 1isused. Also, the 2D inverse FT is carried out before
the integration over k, which is admissible since k, ky,
and k are independent variables. The CS algorithm re-
ported in [36] succeeds in producing high-fidelity imag-
es with randomly sampled sparse datasets amounting
to just 30% of the full datasets, which comply with the
Nyquist spatial-sampling recommendation.

DH3D-N

In [37],[38], and [39], direct 3D microwave holography has
been extended to near-field imaging where the analytical
approximations of the PSE, such as those in Table 1, are
inadequate. Instead, simulations are employed to obtain
the incident field and Green'’s function, from which the
PSF is then computed. Such PSFs represent better the
specific antennas and acquisition setup.
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Figure 8. (n) Optical image of a volunteer with various items hidden under the clothing. Reconstructed images using:
(b) DH3D, (c) DH3D-S [35]. While the images are of similar quality, the DH3D-S algorithm is much faster.
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To further improve the near-field imaging output,
in [40] a method has been proposed to acquire the PSF
function H(r, ») in (3) via measurements with a cali-
bration object (CO). The CO consists of a very small ob-
ject (scattering probe) in the background medium, thus
emulating a point scatterer, which provides an impulse
input to the imaging system. Figure 9 shows an illus-
tration of the DH3D-N measurement procedure [40] for
imaging at N. depths. To simplify the notations, we as-
sume that the measurement aperture is at z = 0. First,
measurements of the scattered signals over the aper-
ture are acquired when the probe is placed at the center
of each desired range slice (0,0, z:), i =1,..., N;, one at
a time. These measurements, denoted by H(x, y, zi, w),
provide the PSFs of the imaging system at each depth
z = z;. Then, similar to the DH3D techniques, the lin-
earized model of scattering in (3) and (4) is employed to
recover the object’s reflectivity f(x, y, z), which again
is assumed to be nondispersive, i.e., independent of w.
However, the integral along z is now discretized into
a summation over discrete imaged planes at z =z,
i=1,..., N.. This allows for writing (4) as

N: .
E*(ky, ky, 0, @) = > H(ks, ky, zi, @) f(ks, ky, z2).  (21)
i=1

Note that (21) is a linear equation, which is writ-
ten at each spatial-frequency point k = (ky, k,). Such
equation can be written for each frequency w and
for each response (e.g., a reflection or transmission
measurement). The coefficients H(ky, ky, zi, ) are
known by measuring the PSFs a priori and then tak-
ing their 2D FTs. The data (or measured responses)
E*(ks, ky, 0, w) are also known. The unknowns in (21)
are the reflectivity values f(ks, ky, zi) corresponding to
the N: depths. Thus, at least N. equations are needed

Measuring H (x, y, z4, ) Measuring H (X, y, z5, )

Measured Aperture Measured Aperture

Measuring H (X, y, ZN,, )

Measured Aperture

to solve (21) as a square or overdetermined linear sys-
tem of equations at k = (k, k,). Multiple equations are
indeed available from measurements at multiple (No)
frequencies and/or with various (Na.) pairs of TX/
RX antennas that move together to scan the aperture.
When data at multiple frequencies and multiple chan-
nels are collected, the resulting equations in the form
of (21) are stacked in a system of equations solved at
each k = (k, ky):

H(k) f(k) = d (k). (22)

The data vector is composed as: [d(k)]" = [di(k), ...,
di,(k)], where di(k)=[E(k,0, @), ..., EX.(k, 0, w)],
n=1,...,No. The vector of unknowns is composed as:
f(k) =[f(k, z1),..., f(k,zn.)]". Accordingly, the system
matrix H(k) contains the values of the Fourier-transformed
PSFs arranged as

Hi (k)
Hk)={ : |
Hy, (k)
H, (k, z1, @) H, (k, zN., @)
H, (k)= : - : ,n=1,...,No.
Ax.(k, z1, wn) - Hn,(k, 25, o)

(23)

The size of H(k) is (NoNa) X N.. Thus, (22) is a rela-
tively small linear system of equations since N, is on
the order of 10 to 100, N, is on the order of 1 to 4, and
N: is typically 3 to 10.

The solutions of all systems of equations, i.e., for all
k = (kx, k,), provide the FT of the images f(ks, ky, zi) at
each range position z = z;. Two-dimensional inverse
FTs applied to each f(ks, ky, z;) generate the slice-by-
slice image f(x,y,z), i=1,...,N-.

Measuring ESC (x, y, 0, @)
Measured Aperture
z

y
Antenna X

Antenna Antenna Antenna
A y A 2z A
— X = y z =3 g
y *"\: - Objects at
CO at (0, 0, z) X W Multiple
. =z COat (0, 0, z,) o X i= A =
b Z=2z 0,2 Z=2z 5. Depths
z=2 Z = z=2z, COat(0,0, zy) :z;.
oo Zy, S 2y, :Z =2y, zZ=2y,

(a) (b) (© (d)

Figure 9. Illustration of the DH3D-N setup when the aperture is at Z = 0 [40]. The PSFs are measured with the scattering
probe (CO) placed at the origin of: (a) first imaged plane at z = z,, providing H(x, y, z;, @), (b) second imaged plane at z = z,,
providing H(x, y, z;, @), and (c) N,-th imaged plane at z = zy, providing H(x, y, z;, ). (d) Measurement of the scattered field
due to objects at all imaged depths z = z1, .., zn..
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The DH3D-N methods employing measured PSFs
offer several advantages over the DH3D and DH3D-S
techniques.

e Measured PSFs account for the near-field dis-
tribution of the antennas used in the particular
imaging setup.

® Measured PSFs provide actual responses, such as
S-parameters or voltages, unlike analytical PSFs,
which assume that a scalar far-field value is mea-
sured at a point. Even if the scattered signal ema-
nates from the far-field region of the RX antenna,
the response at its terminals is not proportional
to a single vector-field component at the center of
its aperture. Antennas respond to the vector-field
distribution in their vicinity, not just the aperture
center. This “integrating” property of the antenna
is ever so important in near-field measurements.
Moreover, the way antennas respond to the field
depends on frequency.

® Measured PSFs account for the exact properties
of the background medium (instead of assuming
certain background wavenumber, as is done in
the DH3D and DH3D-S techniques). The specific
measurement environment is also accounted for,
which includes not only the background medium
but the components of the imaging setup, such as
the antennas, positioner, chamber, etc.

Measured PSFs capture quantitatively the system

sensitivity to the contrast of a point scatterer since

the scattering probe in the CO measurement is
usually of known material properties and size.

This allows for quantitative imaging, briefly dis-

cussed later in this section.

e The DH3D-N system of equations solved at each
spectral point k = (k, ky) has much smaller dimen-
sions and is less ill-conditioned compared with
the systems of equations constructed in the opti-
mization-based quantitative microwave imaging
techniques. DH3D-N is not only computationally
efficient, but it is also naturally suited for parallel
computations because the linear systems of (22) are
solved independently at each k = (kx, ky).

® The interpolation of the data in k-space (Stolt
interpolation) is not necessary in DH3D-N.

¢ The assumption that k., ky, and k: are indepen-

dent variables, which leads to errors in the DH3D

image reconstruction, is also unnecessary.

The data collected by multiple antennas, such as

forward-scattered and back-scattered signals, can

be easily combined in a single linear system of
equations to improve the image spatial resolution
and to suppress image artifacts.

Unlike DH3D, but similarly to DH3D-S, DH3D-N

reconstructs the 3D image as a stack of slice images

at desired range positions. Unlike DH3D-S, how-
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ever, all slices are extracted simultaneously lead-
ing to faster computations.

e The DH3D-N algorithm can operate with a small
number of frequency samples, especially when mul-
tiple TX/RX channels are available. This is in con-
trast to DH3D, where the 3D inverse FT demands
dense sampling along k., which in turn requires a
large number of frequency samples [see (8)].

A comprehensive review of the major developments
in DH3D-N can be found in [41]. Here, we only men-
tion that initially, the range resolution of the DH3D-N
techniques has been guaranteed by wideband frequen-
cy data [37], [38], [39],-[40], similar to the DH3D and
DHB3D-S techniques. However, it has been shown that a
single-frequency multistatic configuration with one TX
antenna and an array of RX antennas, both scanning
the aperture together, provides sufficient information
to achieve range resolution [42]. This offers further ad-
vantages, including:

* A single-frequency or narrowband measurement
system is more cost-effective, compact and easier
to design.

Resonant antennas can be employed that, in addi-
tion to the previous advantage, offer higher sen-
sitivity compared to wideband antennas. This
enhance the dynamic range of the imaging system.
Compact low-cost data-acquisition techniques, such
as the modulated scatterer technique [43], can be
employed. This allows for using fast electronic scan-
ning instead of the slow mechanical scanning of the
sensors over the 2D aperture, paving the way toward
real-time imaging applications.

Although a DH3D-N method has been proposed
to take into account the dispersive properties of
the object’s reflectivity [37], this issue has not been
considered widely in direct holography tech-
niques. Neglecting the dispersive material prop-
erties can cause additional errors in wideband
imaging. This issue is nonexistent in single-fre-
quency systems, and it is negligible in narrow-
band imaging systems.

Measurement time is shorter for a single-fre-
quency or narrowband frequency-sweep system.
This is important in many applications, such as
object tracking or medical imaging, where patient
movement during a scan may generate artifacts.

In the far-field systems employing DH3D or DH3D-
S, it is assumed that the wavenumber of the background
medium is known. In many applications, however, such
as nondestructive testing or biomedical imaging, the
background wavenumber is not exactly known, which
leads to imaging errors. In [44] an algorithm has been
presented to estimate the properties of the background
medium based on DH3D-N image reconstruction with
wideband data. For this purpose, the collected data
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(from measuring both the object under test and the
system PSF) at multiple frequencies are divided into
two sets corresponding to frequencies with even and
odd indices. Then, each set is used with several plau-
sible background wavenumbers for image reconstruc-
tion. Finally, a cost function, which is the {>norm of
the difference between the images reconstructed from
the two sets for each background wavenumber, is com-
puted. It is shown that the cost function attains a mini-
mum only for the true background medium. In the last
step, the data at all frequencies are employed simulta-
neously with the so obtained background wavenum-
ber to reconstruct the final image.

Recently, in a major step toward fast quantitative
microwave imaging suited for biomedical applications,
quantitative DH3D-N methods have been presented in
[45] and [46]. This is accomplished by measuring the
PSF with a scattering probe of known size and permit-
tivity, e.g., a small cylinder (size is less than quarter-
wavelength) made of microwave ceramics. According
to the linearized scattering model, the measured PSFs,
H,(x,y,zi,w), ¥=1,...,Na, i=1,...,N;, n=1,...,No,
are proportional to the probe’s volume Qs, and relative-
permittivity contrast Aeys,. This allows for extracting
the object’s contrast Ae: quantitatively by scaling prop-
erly the k-space DH3D-N (21) as [45]:

osc _ Qv & - . A
Sy (kx, ky, a)n) = 4A£r,spgsp P Hr(kx, ky, Zi, CDn)AEr (kx, ky, Zl)/
r=1,...,Nan=1,...,No. (24)

Here, 5 (k., ky, wy) is the 2D FT of the scattered-field
response (e.g., S-parameter or voltage) acquired with the
rth antenna pair at the nth frequency, H, (k, ky, zi, wy) is
the 2D FT of the PSF measured with the scattering probe
of volume Qs and relative-permittivity contrast Aey,sp
positioned at the center of the z; slice, Aer(ky, ky, z:) is
the 2D FT of the object’s contrast at the z; slice, and Q.
is the volume of a voxel in the 3D image.

(b)

Quantitative DH3D-N methods have the potential
to make real-time biomedical imaging systems a real-
ity. They offer reconstruction speed that is far superior
to the speed of optimization-based quantitative MMI
techniques [3], while at the same time achieving com-
parable image quality. As an example, consider the im-
aging of a 55-mm-thick compressed breast phantom,
which is based on transmission (bistatic) S-parameter
measurement [46] with two boresight aligned anten-
nas scanning two parallel planes. The boresight trans-
mission measurement has the advantage of maximum
scattered-field strength due to the shortest possible
path through the highly dissipative breast-tissue me-
dium. The disadvantage is that the planar boresight
arrangement leads to loss of range resolution and the
images are only 2D, similar to X-ray mammography.
Figure 10 shows the constructed phantom using five
11-mm-thick custom-made carbon-rubber slabs. The
custom complex permittivity of these slabs is tailored
to match the average permittivity of Breast Imaging
Reporting and Data System type 2 breast tissue, which
has scattered fibroglandular content of less than 50%
of the overall breast-tissue mass. Inside two of the five
slabs (slabs 2 and 4), sections are hollowed out and tis-
sue simulants are inserted (see Figure 10(a) and (b).
The cancerous tissue simulants are dark in color (cir-
cled in blue). The white-colored simulant represents
healthy fibroglandular tissue. The brown-colored sim-
ulant is that of scattered fibro-glandular tissue and it
has permittivity that matches approximately that of
the carbon-rubber slabs. All five carbon-rubber slabs
are stacked to form the completed phantom [see Fig-
ure 10(c)], wherein layers 1, 3, and 5 are homogeneous.
Plastic wrap is used to secure the inclusions in layers
2 and 4 as well as to hold together the whole phantom.

First, PSF measurements are performed using a small
dielectriccylinder of relative permittivity &, s, = 50 —10.05
(microwave ceramics), of radius 5 mm and height 10 mm
as the scattering probe. The scattering probe is embedded

Figure 10. Photographs of the compressed breast phantom. (a) Layer 2, containing two tumor simulants (circled with solid blue
line) in the embedding (brown) medium emulating scattered fibroglandular tissue. (b) Layer 4, containing two tumor simulants
(circled with solid blue line) within the fibroglandular simulant (white) in the embedding medium, and (c) assembled phantom [46].
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in the center of a 55-mm-thick stack of five 11-mm-thick
uncut homogeneous carbon-rubber slabs.

Solving quantitative (24) provides the images of the
real and imaginary parts of the breast phantom shown
in Figure 11(a). Due to the lack of range resolution,
these are 2D images, which are effectively displaying
the object’s relative complex-permittivity averaged
over the depth of the breast phantom (z-axis). To vali-
date the quantitative accuracy of the reconstruction,
Figure 11(b) shows the actual 2D distribution of the
averaged real and imaginary relative permittivity.

In [47] the DH3D-N technique of [40] has been ex-
tended to cylindrical setups targeting applications in
nondestructive testing. The method employs convolu-
tion and its efficient computation in k-space, similarly
to the rectangular-aperture case. Another similarity is
the use of multiple frequencies and/or multiple TX/
RX channels to improve the range (radial) resolution.
However, there is a difference in processing the data
along the azimuthal direction ¢ in a cylindrical setup
compared to a rectangular setup, because all of the
functions (responses and the contrast function) are
periodic along ¢. As explained in [47], the discrete
FT (DFT) accommodates the data periodicity along ¢,
whereas the discrete-time FT (DTFT) is suitable for the
data dependence on the vertical (z) position. For the
difference between the DFT and DTFT, as well as their
implementation, refer to [48]. Similarly to the planar
case, a system of equations is constructed and solved
for the unknown object reflectivity at each Fourier
variable pair (ky, kz), where ks and k: correspond to
the spatial variables ¢ and z, respectively.

An important advantage of the cylindrical setups is
that radial resolution can be obtained with narrowband
data provided an array of RX antennas is employed
to receive the scattered signals due to one or more TX
antennas. In [49] one TX antenna and an array of eight
RX antennas move together to scan a cylindrical ap-
erture with radius of 60 mm and height of 160 mm,
where the envisioned application is biomedical imaging.
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Due to the narrowband operation, a custom cost-effec-
tive data acquisition system for vector measurements is
constructed, thus replacing the costly and bulky general-
purpose instruments such as vector network analyzers.

In [50] and [51] the cylindrical DH3D-N technique is
applied to the nondestructive testing of multiple concen-
tric nonmetallic pipes through imaging of their defects.
In [50], wideband data (8 to 12 GHz) are collected to im-
age double concentric pipes. The solution of the system
of equations at each spectral point (ky, k:) is then aug-
mented using beam-space transformation, which focus-
es the image on the surface of each pipe and improves
the image quality for the pipes that are farther away
from the antennas. In contrast, in [51], narrow-band data
(or even single-frequency measurement at 10 GHz) are
collected by an array of RX antennas distributed along
the azimuthal direction on both sides of a TX antenna.
The system achieves drastically improved radial resolu-
tion compared to the wideband system in [50]. With a
similar number of antennas, the method in [51] can im-
age concentric pipes with only 1-mm gap between their
walls whereas the method in [50] requires at least an 18-
mm gap. Figure 12 shows the nondestructive testing tool
reported in [51] along with sample images produced for
defects on double concentric polyvinyl chloride pipes
using the 10-GHz data only. Figure 13 shows the 1D im-
age cuts through the defects on the double concentric
pipes (two defects on the outer pipe and one defect on
the inner pipe) for a small gap of only 1 mm between the
pipes, demonstrating the striking radial (range) resolu-
tion even when using single frequency data at 10 GHz.
Achieving high radial resolution in [51] inspired further
work, which led to a method to estimate the thickness of
defected regions in thick pipes [52].

For DH3D-N techniques, the sampling steps should
be smaller than the recommendations discussed in
the “Spatial Resolution and Sampling Requirements
in Imaging With Far-Field Measurements” section.
This is due to the fact that in the near-field measure-
ments, parts of the evanescent wave spectrum can be

Real Permittivity

-50 0 50

X (mm)

Imaginary Permittivity

Figure 11. (a) Two-dimensional quantitative images of the 55-mm compressed breast phantom shown in Figure 10 showing
the real and the imaginary parts of the relative permittivity averaged over the phantom’s depth. (b) Actual distributions of the
real and imaginary relative permittivity when averaged over the depth of the phantom. (From [46].)

IEEE microwave magazine

August 2024

Authorized licensed use limited to: New York Institute of Technology. Downloaded on August 09,2024 at 13:10:25 UTC from IEEE Xplore. Restrictions apply.



Quter Pipe

Inner Pipe

0.8
0.6
0.4

0.2

Figure 12. (a) Experimental setup in [51] for the imaging of double concentric pipes at 10 GHz when the antenna array is
placed outside the outer pipe. (b) The imaging results at the surfaces of the outer and the inner pipe, separated by a 1-mm gap.
The dashed white lines show the boundaries of the defective regions on the pipes.

measured over the scanned aperture. This spectrum
contains spatial frequency values that lie beyond the
2kmax limit as a result of the near-field variations in the
spatial (x and y) domain, which are faster than those of
the far field. Measurement of these components pro-
vides information for larger kx and k, values leading
to better cross-range resolutions. However, analytical
estimates of the maximum limits of k. and k, when us-
ing near-field measurements do not exist. Thus, these
limits must be determined carefully for the DH3D-N
techniques. These limits are used to set the width of
low-pass filters applied to the reconstructed reflectiv-
ity in k-space (before applying inverse FT) in order to
suppress erroneous output resulting from excessive
noise at the high spatial frequencies [20], [45]. Choos-
ing too large limits may lead to the processing and
amplification of high-frequency noise in the images.
Furthermore, discontinuities of the responses at the
edges of the measurement aperture lead to Gibb’s arti-
facts (“ringing”) in the spectral domain, which in turn,
causes artifacts in the reconstructed images. This prob-
lem is alleviated using apodization filters that damp
down the sharp response discontinuities at the edges
of the measurement aperture [45].

Progress Toward Real-Time Imaging:
Expediting the Recording Step

The holographic imaging techniques discussed earlier
in this article are fast. They can provide 3D images of
electrically very large scenes within seconds. The com-
putational efficiency benefits from the use of FFT and
inverse FFT to implement the direct and inverse FTs.
Further acceleration is achieved by parallelizing the
computations. For example, in the DH3D-N methods,
the systems of equations constructed at each Fourier
variable pair—(ky, k,) in the rectangular setups or

(ky, k=) in the cylindrical setups—are independent;
thus, they can be solved in parallel, leading to drastic
reduction of the running time.

Unfortunately, while holographic image recon-
struction techniques are very fast, currently, the data
acquisition through 2D scanning on rectangular or
cylindrical apertures is slow, hindering the real-time
imaging of moving objects. Here, we briefly review
the recent advances to address this bottleneck via the
use of: 1) the electronic scanning of a 1D antenna array
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Figure 13. One-dimensional cuts (along ¢) of the images of
defects on double concentric pipes (two defects on the outer pipe
and one defect on the inner pipe) for a gap of 1 mm between

the pipe walls [51], where single-frequency measurement at

10 GHz is employed. The DH3D-N systems of equations in
k-space are solved with two methods: standardized minimum
norm (SMN) and minimum norm (MN), showing reduced
artifacts when using the SMN approach.

August 2024 IEEE MiCrowave magazine 51
Authorized licensed use limited to: New York Institute of Technology. Downloaded on August 09,2024 at 13:10:25 UTC from IEEE Xplore. Restrictions apply.



52

and mechanical scanning of the array along a direction
perpendicular to the array axis, 2) the electronic scan-
ning of 2D antenna arrays, 3) sparse arrays of TX and
RX antennas and collecting data corresponding to the
midpoint of the phase centers of each TX/RX pair, 4)
stationary MIMO antenna configurations, 5) frequen-
cy-modulated continuous wave (FMCW) radar-based
data collection, and 6) analytical refocusing of a PSF
measured at a certain range position to other range po-
sitions when using DH3D-N methods.

The first approach to expedite the data acquisition
is electronic scanning with switched antenna arrays,
where the antennas are distributed over the mea-
surement aperture. The most common approach is to
employ electronic scanning along one direction and
mechanical scanning along the other orthogonal di-
rection to cover a 2D aperture. This approach is em-
ployed in [15] and [53] for imaging setups paired with
DH3D image reconstruction, as well as in [54] and [55]
for cylindrical setups with DH3D-N reconstruction. In
[56] and [57] a sparse multistatic linear antenna array
has been proposed to improve the speed of the mea-
surement and to reduce the complexity of the system.
There, the main concept is that a TX/RX antenna pair
effectively samples the spatial point located halfway
between the phase centers of the two antennas. Thus,
using combinations of sparse arrays of TX antennas
and RX antennas, dense uniform sampling of the field
can be achieved, which emulates a dense virtual trans-
ceiver array. This technique substantially reduces the
number of antennas and switches while it can result
in good imaging performance using the DH3D tech-
niques [15], [21] described earlier.

In [58] the development of a microwave camera is
described that operates in the 20- to 30-GHz frequency
range. The camera utilizes a 2D array of 16 x 16 ele-
ments on a printed circuit board, each operating in a
monostatic mode. Each array element consists of a
larger tapered-slot TX antenna and two small bow-tie
RX antennas located at the edges of the TX slot. The
two bow-ties connect to their respective Schottky di-
odes. The transmitted signal is partially coupled to the
two bow-tie antennas, providing the reference signal.
The signals reflected by the object are picked by the RX
antennas and are mixed with the reference signals by
the Schottky diodes. The low-frequency voltages gen-
erated by the diodes of the array are multiplexed to two
analog-to-digital convertors for sampling. The use of
dual receivers provides nonuniform spatial sampling
for nonuniform SAR processing, like the approach in
[24], which has been discussed above. The camera pro-
duces 3D images at a video frame rate of 30 frames per
second. Figure 14 shows the schematic of the micro-
wave camera in [58] along with the imaging results for
objects hidden inside a laptop bag.

IEEE microwave magazine

In [59] a fully electronic E-band imager has been
presented for high-speed imaging with typical mea-
surement time of 20 ms. It is based on a stationary
multistatic array architecture, which employs linear
SFCW signal in the 70- to 80-GHz bandwidth. Figure 15
shows the imaging system along with some sample
images it produces of a person carrying a P99 pistol hid-
den underneath clothing. Note that these images are
reconstructed with the BPA (see [60]). The BPA, which
processes the data directly in real (x, y, z) space, is less
computationally efficient than the Fourier-based (holo-
graphic) algorithms [60] described here. However, the
uniformly sampled data provided by this system can
be processed by holographic algorithms.

In [61] another microwave camera with dimensions
of 280 mm x 225 mm x 140 mm is reported based on a
2D array of 576 switchable slot antennas operating at
24 GHz. The data collection employs the modulated
scattering technique (MST) [43] and the processing is
based on a DH3D technique. The use of the MST tech-
nique allows for dense sampling (every A/2) of the
scattered fields by a large number of sampling probes
(planar array of 24 x 24 slot antennas). The probes are
modulated with a frequency of 1 MHz. The modulated
RF outputs of all sampling probes are collected by a
network of rectangular waveguides, acting as the MST
collector. A heterodyne receiver measures the collec-
tor output signals at a fixed intermediate frequency of
10.7 MHz. Figure 16 shows the schematic of the imag-
ing system and an image of a balsa wood sample with
a small rubber inclusion. This system provides images
with a video frame rate of 22 frames per second. The
microwave camera in [58], discussed earlier, offers
higher imaging speed and simplicity of the microwave
circuitry, compared to the one in [61]. This is due to the
use of built-in dual receivers at radiating ends allow-
ing a low-frequency multiplexing network that leads
to more compact, efficient, and cost-effective portable
system, compared to the one in [61].

The other approach to expedite the data acquisi-
tion process is the use of stationary MIMO configura-
tions. In [19] a sparse planar MIMO imaging system
has been proposed for fast data collection and the im-
aging technique belongs to the DH3D category. The
array consists of 12 TX and 13 RX antennas arranged
along two orthogonal axes, which collect data from
3 to 19.5 GHz. Further, in [62] a highly efficient
DHB3D algorithm is proposed for MIMO arrays in a
cylindrical configuration.

The advancements described so far are based on
stepped-frequency measurements. Yet, such measure-
ments are lengthy and the associated hardware is rel-
atively expensive [63]. This is particularly true when
enhanced range resolution is desired, which demands
wideband data. The alternative offered by FMCW radars
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is advantageous due to faster data acquisition while be-
ing more cost-effective. Most of the FMCW radar sys-
tems proposed so far are based on LFM radars.

In LEM radar, heterodyne mixing provides an inter-
mediate frequency version of the LFM signal. In [23] a
rigorous mathematical model of the holography-based
imaging with LFM radar is presented, in which system
limitations in terms of the object extent and distance are
derived and explicitly related to the frequency-modula-
tion slope. The imaging system in [23] is paired with the
DH3D image reconstruction, whereas in [35] it employs
the DH3D-S method for improved computational speed.

In [64] an LFM radar is paired with a virtual MIMO
antenna array. The TX and RX antennas in a sparse

16 Element ID Arrays (x16) \ £

MIMO configuration are paired to approximate a mo-
nostatic radar operation. In other words, assuming that
the distances between the TX and RX antennas in the
MIMO array are much smaller than the distance to
the target, each TX/RX pair is assumed to represent a
transceiver located at the midpoint between them. In
[65] a W-band LFM MIMO system is proposed for far-
field 3D imaging with BPA-based image reconstruc-
tion. In [66] a generalized LFM-based SAR method is
proposed, which uses a triangular frequency-modulat-
ed waveform to perform 2D imaging.

Finally, despite the advantages highlighted earlier
in exploiting measured PSFs in the DH3D-N meth-
ods, when the number of imaged slices (N:) is large,
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Figure 14. (a) Schematic of the 3D microwave camera in [58]. (b) Laptop bag placed in front of the camera with inset showing

the objects hidden inside the bag. (c) Reconstructed 3D view of the object including a metallic button pointed by the arrow.
MUX: multiplexer; VCO: voltage-controlled oscillator.
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the measurement of the PSFs with the scattering probe H(x, y, zi, w), to any other range position zo+ Az. The

placed at each imaged slice becomes very time-con- refocusing is done directly in k-space and it employs
suming. To alleviate this practical issue, a method has the range dependence of the PSF in the third line of Ta-
been proposed in [20] to analytically refocus a mea- ble 1, leading to a simple range-migration expression:
sured monostatic PSF with a scattering probe at z = zo, H(ks, ky, 2o+ Az, @) = H(kyx, ky, zo, ©)zoe ™ /(20 + Az).

Cluster

(©)

Figure 15. (a) Personnel imager proposed in [59] with dimensions of 2 m x 1 m, including 32 clusters, each with 94 TX
and 94 RX antennas. The reconstructed image of a person concealing a P99 pistol is visualized as: (b) a reflectivity image in
logarithmic scale and (c) a color-coded reflectivity image with depth.
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Figure 16. (a) Schematic of the microwave camera proposed in [61]. (b) Imaging experiment with a balsa wood sample with a
small rubber inclusion. (c) Snapshot of reconstructed DH3D image as the sample is being positioned close to the aperture.
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Outlook for Holographic MMI
It has been more than 70 years since the original holo-
graphic imaging concepts were proposed by Gabor.
Since then, in the microwave and mm-wave regimes,
major advancements have been made in data-acquisition
schemes, hardware, and processing algorithms. Elec-
tronically switched antenna arrays and MIMO systems
have opened the pathway toward fast real-time imaging
systems capable of producing an image within a second,
and often being able to capture objects in motion. With
the advent of low-cost chip-scale systems implementing
FMCW radars and software-defined radios, building
fast microwave and mm-wave imagers is within reach.
These technological developments and fast reconstruc-
tion algorithms will make microwave and mm-wave
video cameras a reality. Deployment of such cameras on
mobile platforms will give them a new unique sensing
capability, complementing optical and infrared imag-
ery. With its unrivaled speed and resilience to noise
and uncertainty, holographic image reconstruction has
become the frontrunner toward achieving these goals.
While holographic MMI is best known for the now
ubiquitous security screening systems, many other
applications are emerging in biomedical imaging and
nondestructive testing as briefly discussed here. In
such close-range and extreme near-field imaging sce-
narios, adaptations of microwave holography to near-
field applications such as DH3D-N and quantitative
microwave holography have been proven to be critical.
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