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ABSTRACT
With the support of digital learning platforms, synchronous
and collaborative learning has become a prominent learning
paradigm in mathematics education. Computer-Supported
Collaborative Learning (CSCL) has emerged as a valuable
tool for enhancing mathematical discourse, problem solv-
ing, and ultimately learning outcomes. This paper presents
an innovative examination of Graspable Math (GM), a dy-
namic mathematic notation and learning online platform,
to enable synchronous, collaborative learning between pairs
of students. Through analyzing students’ online log data,
we adopt a data-driven method to better understand the
intricate dynamics of collaborative learning in mathemat-
ics as it happens. Specifically, we apply frequency distri-
butions, cluster analysis to present students’ dynamic in-
teraction patterns and identify distinctive profiles of collab-
oration. Our findings reveal several collaboration profiles
that emerge through these analyses. This research not only
bridges the gap in current CSCL tools for mathematics, but
also provides empirical insights into the effective design and
implementation of such tools. The insights gained from this
research offer implications for the design of digital learn-
ing tools that support effective and engaging collaborative
learning experiences.
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1. INTRODUCTION
Collaborative Learning (CL) is an instructional approach in
which a group of students works together to complete a task
or solve a problem [27]. Studies have shown that students
can benefit greatly from CL opportunities; it helps them im-
prove social and communication skills, positive attitude to-
wards learning, motivation, and academic performance [27,
49]. With the advancement of technologies and increased de-
mand for online learning, CSCL tools play an important role
in many different academic subjects [23]. For example, in
writing-based subjects, existing collaborative solutions such
as Google Docs enable real-time student collaboration; stu-
dents can synchronously work on the same content or tasks
together, communicate with each other, and teachers can
immediately access students’ work and provide feedback.

However, there is a lack of similar strong CSCL tools for
mathematics learning, especially for algebra. Although a
large number of digital math learning applications (e.g.,
IXL, ASSISTments, DeltaMath, GeoGebra) and whiteboard
tools (e.g., MathSpace, FluidityMath) are widely used to im-
prove algebraic learning, few provide opportunities for stu-
dents to collaborate directly with their peers in real-time.
Further, many digital math learning tools overlook the cru-
cial role of mathematical discourse, collaboration, and inter-
actions among learners, as well as with their teachers. Stu-
dents often engage in a series of mathematical tasks individ-
ually, working in isolation from their peers. Consequently,
most studies in the field have focused on investigating indi-
vidual students’ behavioral patterns in math learning tools
and their correlation with learning outcomes [52, 29, 42,
24]. Few studies have delved deeper into how a group of stu-
dents behave or interact with each other during math collab-
orative learning activities, particularly within math CSCL
tools. This calls for further investigation.

A prototype of a collaborative whiteboard specifically de-
signed for mathematics learning, known as Graspable Math
(GM) Collaborative Whiteboard, allows students to work on
the same math problems or content in real-time and inter-
act with their peers simultaneously on a digital whiteboard.



Previous work has explored how students’ different behav-
ioral patterns in a gamified version of GM are related to
students’ mathematical knowledge and efficiency. The find-
ings indicated that some in-app behaviors provided mean-
ingful information to students’ algebraic understanding and
learning [29, 30]. However, these analyses were limited to
individual students’ problem-solving.

In this study, we utilize log data recorded as students collab-
oratively solve math problems in pairs using GM’s Collabo-
rative Whiteboard and explore different interaction patterns
that emerge in these activities. Specifically, we apply novel
visualizations and clustering techniques to present students’
interaction patterns to identify distinctive collaboration pro-
files. Further, we investigate how these visualizations pro-
vide meaningful and comprehensive information to support
collaborative learning in math. Given this backdrop, our
study is guided by the following research questions:

1. What are the various frequency patterns of student in-
teractions within collaborative mathematics activities?

2. What collaboration profiles emerge among pairs of stu-
dents in these activities?

3. What are the different patterns of actions that stu-
dents take within the emerging profiles?

2. BACKGROUND
2.1 Collaborative Learning in Education
Collaborative Learning (CL) is a situation in which two or
more learners work together to solve a problem and attempt
to learn something together [19]. It is drawn from Vy-
gotsky’s zone of proximal development theory, which sug-
gests that cognitive development is shaped by social inter-
action and collaboration with others [51]. In such a learning
paradigm, learners collectively engage in identifying prob-
lems, reading instructions, exchanging ideas, building mu-
tual understanding, and jointly developing solutions. In the
past decades, CL has benefited learners with different lev-
els of knowledge and experience in different scenarios [26,
39]. For example, [27] summarized Panitz’s work [39] on the
benefits of CL and synthesized them into four categories:
1) social benefits, (e.g., building diverse understanding); 2)
psychological benefits (e.g., reducing anxiety); 3) academic
benefits (e.g., improving learning outcomes); 4) alternating
students and teacher assessment techniques. In addition,
empirical evidence from recent studies has also supported
the benefits of CL activities for students from different age
groups, such as improving students’ critical thinking ability
[33]; self-efficacy, and social skills [28]; perception of collab-
oration [47]; learning outcomes [12, 47].

2.2 CSCL Across Disciplines
With the advancement of technology, more research focuses
on the effects of learning in CSCL settings [53], where col-
laborative learning is facilitated through the use of com-
puters and other digital technologies. CSCL may happen
in different learning environments, such as face-to-face, syn-
chronous, or asynchronous online education or blended learn-
ing settings [15]. As the number of empirical studies around
CSCL increased [20, 22, 45], researchers have conducted re-
views to understand its overall effect on different domains.

For example, a previous meta-analysis found a relatively no-
table effect size of CSCL in STEM education [25]. Similarly,
a positive and moderate effect has been found on academic
achievement [48]. Furthermore, in a more recent system-
atic review, the researcher demonstrated the adaptability of
CSCL across academic disciplines. They found that CSCL
has a significant impact on subjects ranging from STEM
to humanities, particularly improving outcomes in foreign
language education [50]. Collectively, these studies support
CSCL’s growing adoption and effectiveness across different
disciplines with different populations.

2.3 CSCL in Mathematics
A growing number of learning technologies made strides to
improve math learning through formative assessment and
a focus on encouraging students to articulate their knowl-
edge through open-ended prompts (e.g., ASSISTments) [7,
8, 11]. Few opportunities, however, are provided for stu-
dents to learn math in collaboration with their peers. Liter-
ature in math education points to the importance of allow-
ing students to engage in a rich conversation on math [44].
When students work in pairs or groups, they learn to not
only explain their conceptual understanding but also e to
disentangle the discrepancies underlying each other’s struc-
ture of knowledge. Studies have also shown that students
learn math better when they verbalize their mathematical
knowledge [37, 40]. Moreover, collaborating with peers to
solve a math problem together also helps students engage
more actively with their learning [32]. In recent years, a
growing body of work leveraged the use of classroom tech-
nologies (i.e., handheld dashboard) to promote collaboration
among students and support teachers’ real-time orchestra-
tion [34]. However, it remains largely unclear as to what
ways the content of speech and patterns of collocated col-
laboration jointly characterize quality learning experience
in math. Hence, it is necessary to conduct research in order
to enhance the comprehension of mathematical communica-
tion among students as they engage in collaborative tasks.
To design a successful collaborative learning experience in
math, it is critical to coordinate with students and teachers.

2.4 Behavior Profiles from Clickstream Data
In synchronous online learning landscapes, the clickstream
data left by learners encapsulate a wealth of information
pivotal for deciphering and profiling learner behaviors. The
analysis of such data is increasingly recognized for its ca-
pacity to shed light on user engagement and interaction pat-
terns within digital learning platforms [3]. The classification
of these intricate digital footprints enables the construction
of detailed learner profiles, critical for tailoring educational
experiences and enhancing learning outcomes [6].

Prior work by Amnueypornsakul et al. [4] utilized click-
stream data to forecast student attrition, offering educators
a valuable tool for identifying and assisting at-risk students.
In a similar vein, the application of generative adversarial
networks (GANs) by Cao et al. [13] highlights the potential
of advanced machine learning techniques to extract signifi-
cant patterns from complex behavioral data, enriching the
granularity of learner engagement analysis. The endeavor
by Belarbi et al. [9] to create structured user profiles from
video clickstream analysis in online courses demonstrates the
power of Bayesian methods and K-Means clustering. This



methodology effectively identifies distinct learner personas
based on their interaction with video content, showcasing
the versatility of clustering algorithms in educational data
analysis. Furthermore, the adoption of a dynamical systems
perspective by Poquet et al. [41] reveals the fluid nature
of learner behaviors. Their research, utilizing entropy mea-
sures in behavior recurrence, uncovers profiles of change in
student study habits, providing insights into the dynamic
engagement of learners and the efficacy of interventions.

This subsection seeks to bridge the existing gap in the liter-
ature by concentrating on the delineation of learner profiles
through the analysis of clickstream-level data in collabora-
tive learning settings. By harnessing sophisticated data ana-
lytics, this study aims to unravel the latent structures within
learner interactions, offering a detailed perspective on the
digital learning journey. The findings from this analysis are
expected to inform the development and implementation of
future digital learning tools, ultimately enhancing the per-
sonalization and effectiveness of online education.

3. CONTEXT: GRASPABLE MATH (GM)
Graspable Math1 (GM; Figure 1a) is a dynamic mathemat-
ics notation tool that was developed based on theories of
perceptual learning and embodied cognition to support stu-
dents’ mathematics learning [38]. GM treats mathematical
symbols as tactile objects, which allows students to physi-
cally interact with numbers and symbols on a digital white-
board and manipulate them via touch or mouse-based ges-
tures (Figure 1b). By treating mathematical notations like
objects on a screen, students can solve mathematical prob-
lems (e.g., 2x+4=16 in Figure 1b-a) by moving symbols
to transform expressions or equations, resulting in tangible
learning experiences (Figure 1b-b through f).

GM also provides a fluid visualization that allows students
to see the entire transformation process of algebraic expres-
sions to solve a problem. The fluid visualizations of the
problem-solving process can help reduce students’ cognitive
loads and direct students’ attention to the structure of al-
gebraic notations, which, in turn, shifts their focus to the
problem-solving process as a whole. In this way, students
can quickly identify algebraic structures, think more flexibly,
and realize that mathematical transformations are more dy-
namic than a static re-copying of lines. The positive effects
of GM on student mathematics learning have been estab-
lished in several empirical studies (e.g., [14]), most notably
in a randomized control trial with 1,850 7th grade students
[18]. The study found that the students in a gamified version
of the GM condition significantly outperformed their coun-
terparts in the traditional online math learning platform.

GM recently released a prototype of a collaborative white-
board that operates with a standalone link and can be inte-
grated into a classroom-based real-time teacher dashboard.
In particular, the collaborative whiteboard in GM provides
functionality for assigning students into small groups and
allows students to work on the same math problems or con-
tent and interact with their peers simultaneously, like Google
Docs. In addition, it provides a teacher-facing dashboard
that allows teachers to review student work and provide

1https://graspablemath.com/

(a) GM’s Collaborative
Whiteboard Interface

(b) Algebraic Problem Solv-
ing Process and Gesture-
Actions in GM

Figure 1: Overview of Graspable Math (GM)

real-time feedback. Our current work focuses on examining
student collaboration patterns that emerged from student
interactions with collaborative whiteboards in GM.

4. DATASET
The dataset underpinning our analysis originates from the
GM, which records detailed log data of student interactions
during mathematical problem solving activities. Each stu-
dent action within the platform generates a discrete data
point that encapsulates the specifics of their engagement
with the digital whiteboard environment. To uphold pri-
vacy standards and ethical considerations, all data have un-
dergone rigorous anonymization processes, ensuring the con-
fidentiality of participant identities. The dataset is derived
from GM’s typical user base, which primarily consists of
middle and high school students and their teachers, along
with a smaller number of elementary and post-secondary
students. The user base is international in nature, with ap-
proximately half of the users residing in the United States,
while the majority of the remaining users are from South
America and Europe.

The GM data set is characterized by its granular detail,
which captures a myriad of student actions within the col-
laborative whiteboard space. Each record within the dataset
is structured as a nested JSON object, reflecting the com-
plexity and depth of student interactions. These records
contain comprehensive details about each action, including,
the spatial coordinates, the nature of the action (e.g., cre-
ation of mathematical expressions), and the sequential in-
dex of the action, providing insights into the temporal or-
der of events. A key feature of the dataset is the repre-
sentation of collaborative activities, where each whiteboard
session can involve one or more students. The data set
meticulously records the collaborative dynamics, each action
tagged with individual student identifiers within a shared
whiteboard session. This allows the reconstruction of col-
laborative problem-solving processes, offering a lens into the
interactive patterns that emerge when students engage in
mathematics collaboratively.

The dataset comprises a total of 448,025 entries, with data
collection ending on September 27, 2023. This extensive col-
lection encapsulates real-world usage scenarios of the GM,
providing a rich foundation for our exploratory data analy-



sis. The breadth and depth of the dataset enable a compre-
hensive examination of student behaviors, interaction styles,
and collaborative problem solving strategies within the con-
text of digital math learning environments. For the benefit
of the broader research community, our team has committed
to transparency and accessibility by providing the analyti-
cal code2 associated with this study on the Open Science
Framework (OSF). Although direct access to the dataset is
not provided to safeguard participant privacy, interested re-
searchers may request access through our OSF page.

5. METHODS

5.1 Analysis 1: Normalized Time Distribution

Visualization Analysis
Our research initiated an extensive overview and analytical
examination of students’ engagement in the GM’s white-
board environment, and our focus on pairwise student col-
laboration in light of our research questions led us to scru-
tinize the 237,945 data points in the relevant full dataset,
which contains only cases where there are two students in
a whiteboard. Specifically, we focus on the distribution and
participation trends on 504 different whiteboards that in-
volve 736 students. Furthermore, we analyzed the students’
time spent on whiteboards, dividing the data into time seg-
ments from 0.0 to 23.5 hours and conducting a detailed
statistical breakdown for each segment. This fine-grained
analysis revealed distinct usage patterns across various time-
frames. In the next step, we focused on one-hour interac-
tions, analyzing a subset of 70,517 data points. This decision
was driven by our anticipation that collaborative mathemat-
ics activities would primarily involve pairs of students work-
ing together for relatively short periods. By concentrating
on interactions lasting up to one hour, we were able to align
our main research dataset with the typical context of collab-
orative problem-solving in classroom settings. This detailed
segment, which encompassed 368 unique whiteboards and
606 students, allowed for an in-depth analysis of short-term
participation and its potential impact on learning behaviors.
Subsequently, we applied Dynamic Time Warping (DTW)
analysis to investigate the temporal interaction patterns of
students on the whiteboards. DTW is a statistical technique
that aligns sequences in time, allowing for the measurement
of their similarity even when they vary in speed, making
it particularly useful for analyzing temporal patterns in ed-
ucational data [10]. We analyze instances within one-hour
periods, using 5-minute intervals to discern potential behav-
ioral patterns.

We have made some modifications and enhancements to the
existing methods that utilize DTW for monitoring tempo-
ral changes. These adjustments are specifically designed to
cater to the unique characteristics of collaborative learning
among paired students in CSCL environments. To simplify
matters, we refer to this as “Normalized Time Distribution
Visualization” (NTDV). Our solution involves standardizing
the duration of whiteboard sessions to a consistent x-axis
length and dividing this standardized timeline into 12 equal
segments. Unlike conventional approaches that treat time
segments uniformly, NTDV adjusts the duration of each seg-
ment proportionally to the total session length, ensuring a
uniform distribution across the standardized timeline. The

2http://tiny.cc/MathinMotion

practice of normalizing and segmenting time series data for
analysis is widely employed in various fields [5, 1]. To facili-
tate comprehension and comparison across different session
lengths, we transformed raw activity counts into a more ac-
cessible format within each segment. By visualizing the dis-
tribution and frequency of student interactions within these
standardized temporal segments, we were able to discern
patterns of engagement, turn-taking, and collaboration in-
tensity, shedding light on the collaborative strategies em-
ployed by students. This innovative approach not only en-
hanced our understanding of student dynamics on the GM
platform but also provided a scalable framework for analyz-
ing collaborative learning activities in digital environments.

5.2 Analysis 2: Cluster analysis and Collabo-

rative patterns
In Analysis 2, we started by combining actions for each stu-
dent across 12 predefined time intervals to capture the dis-
tribution of activities during a session. Using the tsfresh
Python package, we extracted a wide range of features (more
than 785) from these time intervals, including various statis-
tical properties and characteristics of the time-series data.
This comprehensive set of features aimed to capture the di-
verse nature of student interactions in the collaborative en-
vironment. Since the feature space was high-dimensional,
we used Principal Component Analysis (PCA) to reduce the
complexity while preserving 75% of the variance in the data.
This dimensionality reduction resulted in a more manage-
able set of 20 features that still captured the essential in-
formation and dynamics of the original dataset. These con-
densed features formed the basis for our subsequent analysis
of the K-means cluster. We explored different cluster con-
figurations, starting with k = 3 and increasing to assess the
coherence and distinctiveness of the resulting clusters. This
iterative process was guided by an examination of cluster
centroids and the distribution of data points around them.
To visualize the collaborative patterns emerging from these
clusters, we selected whiteboards that were proximal to the
cluster centroids and constructed a frequency plot. These
visualizations facilitated a granular examination of the col-
laborative dynamics, highlighting the temporal sequencing
and overlap of actions between students.

Continuing from the initial exploration of individual-level
clustering, we recognized the need to understand the col-
laborative behaviors manifesting on each whiteboard more
holistically. To encapsulate the interactions between pairs
of students within the same collaborative whiteboard, we
transitioned our analysis to a whiteboard-level perspective.
This approach aggregates the actions of two students on a
collaborative whiteboard, linking the behaviors of the pair
of collaborating students. It constructs a 24-feature vector
comprised of the combined number of actions of each student
in 12 equal-duration time windows on the whiteboard. This
whiteboard-level clustering aimed to capture the collective
behavior of student pairs, offering insights into how dyads
synergize and coalesce their efforts toward problem solving.
To enhance the granularity of our analysis, we incorporated
additional features that accounted for peak and off-peak ac-
tivity periods, as well as direct interactions, where students
concurrently engaged with the same object within the dig-
ital environment. These refinements aimed to capture the
ebb and flow of collaborative intensity and the focal points



of joint attention, which are essential in understanding the
dynamics of real-time collaboration.

Given the significant variance in the duration of the collabo-
rative whiteboard, it became imperative to discern how col-
laborative patterns varied between different session lengths.
To address this, we segmented our dataset into four distinct
groups based on the duration of whiteboard usage: under
5 minutes, between 5 and 10 minutes, between 10 and 20
minutes, and over 20 minutes. This categorization allowed
us to tailor our analysis to the unique dynamics and po-
tential constraints presented by each time frame. Within
each duration-based group, we applied K-means clustering,
leveraging the composite 24-feature vectors that represented
the concatenated actions of both students on a whiteboard.
This method was designed to uncover different clusters of
collaborative behavior that were characteristic of each dura-
tion group. The choice of the number of clusters (k) for each
group was informed by methods such as the arrow method,
ensuring that the selected k-value struck a balance between
cluster coherence and the granularity of the segmentation.
To elucidate the characteristics of each cluster, we employed
95% confidence interval plots to examine variations in action
frequencies between pairs of students in different clusters.
This statistical visualization provided insight into the pre-
vailing collaborative patterns within each group, shedding
light on how the frequency and types of actions varied be-
tween distinct collaborative modalities.

6. RESULTS

6.1 Analysis 1: Student Interaction Dynamics
We used NTDV to display the frequency of student actions.
This approach overcame the limitations of the original DTW
method, such as the short duration of whiteboard sessions
and the uneven distribution of student actions, which previ-
ously resulted in sparse data. Meanwhile, NTDV provided a
clearer representation of student engagement over time. We
utilized this method to generate random images consisting
of 16 plots, to observe the changes in frequency of paired
students’ actions on the same whiteboard. Figure 2 is based
on the frequency distribution of student activities within dif-
ferent time windows. By visualizing the data on a dynamic
axis, we were able to examine the levels of participation of
students on each whiteboard and analyze the collaborative
patterns that emerged during their interaction within the
GM. In Figure 2, we used two parts, (a) and (b), to present
the information more clearly and to indicate specific plots.
These labels are solely for the purpose of identification and
do not imply any division into separate categories.

Several notable trends emerged from the frequency graphs
derived from our dataset. Specifically, student activity lev-
els varied significantly across the whiteboard sessions, with
some pairs of students demonstrating high levels of engage-
ment throughout their session while others showed sporadic
bursts of activity. For example, in the whiteboards of Figure
2 (b) examined, Student 2 and Student 6 displayed comple-
mentary activity patterns, with one student’s activity peak-
ing when the other’s dipped, suggesting a possible turn-
taking approach to collaboration. On another whiteboard
shown in Figure 2(b) Plot 2, Student 11 and Student 5 ex-
hibited contrasting behaviors, where one student’s activities

were densely clustered at specific time intervals, possibly in-
dicating focused periods of problem-solving or discussion.

Some students maintained a steady pace of interaction through-
out their session, as seen in the activity lines of Students 12
and 10 in Figure 2(b) Plot 4, which could imply a consistent
and sustained collaborative effort. Conversely, the interac-
tion patterns of Students 8 and 15 in Figure 2(b) Plot 7
were characterized by sharp peaks and troughs, hinting at
intermittent collaboration or independent work followed by
joint discussions.

The frequency graphs also allowed for the identification of
dominant and passive roles within the student pairs. For
example, in Figure 2(a) Plot 4, Student 13’s consistently
high activity across the session, as opposed to Student 2’s
sporadic contributions, might indicate a more dominant role
in driving the collaborative effort.

6.2 Analysis 2: Collaboration Profiles
As initially described in our methods section about Analysis
2, we embarked on a detailed examination of both individual-
level and whiteboard-level data through k-means clustering
analysis. To this end, we identified points closest to the
cluster centroids and employed the NTDV method to depict
the frequency of paired student actions on each whiteboard.
However, the potential influence of noise in the data pre-
sented challenges in deriving meaningful insights from the
clusters at an individual and whiteboard level. This limita-
tion highlighted the need for more data and further inves-
tigation in this direction, which could potentially address
these challenges in future research endeavors. As a result,
we shifted our focus to a segmented analysis based on the
duration of whiteboard sessions, categorizing them into four
distinct groups. This segmentation allowed us to perform k-
means clustering within each group, aiming to uncover more
discernible and meaningful patterns of collaboration.

Table 1 provides a summary of the clustering of k-means in
different duration groups to contextualize the distribution
of the clusters. In particular, each duration group displayed
noise in the form of clusters with minimal member counts.
Therefore, for a more representative analysis, we focused on
clusters with an n ≥ 10.

Table 1: K-means Cluster Analysis Distribution

Duration Group Values of k
Cluster Sizes (n)

0 1 2 3 4 5 6
Under 5-Min 6 58 1 2 1 4 16 N/A
Between 5 and 10 Min 7 36 1 1 6 10 1 4
Between 10 and 20 Min 7 79 3 2 4 1 1 11

Over 20 Min 4 13 1 8 81 N/A N/A N/A

For each duration of the session, two main groups were de-
termined and the patterns of their collaborative interactions
were clarified using Confidence Interval (CI) plots as shown
below in Figure 3.

In the first duration group, Figure 3(a) represents the first
cluster, revealing a delayed peak in student activity, indicat-
ing a gradual build-up to collaboration. Conversely, Figure
3(b) illustrates an early peak, suggesting a swift engagement
from the outset. For the second duration group depict an
interaction crossover between students and a dominance by



(a) (b)

Figure 2: Frequency of collaborative students action [Note: Parts (a) and (b) serve as identifiers for specific plots, without
implying different categories]

Student1, respectively. In Figure 3(c), Student1 starts with
less activity, which increases over time, while Student2’s ac-
tivity decreases, hinting at a collaborative mode where roles
evolve throughout the session. Figure 3(d) shows Student1’s
clear predominance in activity levels, suggesting a leading
role in the collaborative process. The third group’s cluster
plots present contrasting interaction patterns. Figure 3(e)
shows closely aligned CI between students, implying syn-
chronous collaboration. In contrast, Figure 3(f) shows a
distinct separation between the students’ CI, with Student1
taking a less active role, suggesting an asymmetric collabora-
tive dynamic in which one student predominantly leads the
interaction. Finally, in the fourth duration group, Figures
3(g) and 3(h) also reflect divergent collaborative patterns.
Figure 3(g) mirrors the third group’s first cluster with over-
lapping CI, while Figure 3(h) displays no overlap, indicating
a more independent work dynamic, with Student1 engaging
significantly less than Student2.

These visualizations for the most representative clusters un-
derscore the variability of real-time collaboration on the GM.
The data suggest different collaborative models: some hint-
ing at balanced interactions, others at dynamic role shifts,
and some at a more leader-follower dynamic.

7. DISCUSSION
This study aims to explore and understand the intricate dy-
namics of collaborative learning within a math CSCL tool
by analyzing students’ log data. We first identify different

collaborative patterns by observing the frequency of actions
of students within GM. We then build learners’ collabora-
tive profiles using clustering techniques. Leveraging a series
of data analytics techniques, our study provides a nuanced
understanding of how students engage with each other and
with mathematical content in CSCL.

Having outlined the key aspects of our collaborative learning
analysis, we now delve into the findings at each step. The
variability in student interaction dynamics suggests that col-
laborative learning in digital environments is not monolithic
but rather characterized by a diverse array of engagement
strategies. This diversity, which encompasses everything
from synchronized turn-taking to independent parallel pro-
cessing, underscores the need for CSCL tools to offer flexible
and adaptable interfaces that cater to varying pedagogical
needs and learning styles. For example, the observed com-
plementary and divergent interaction rhythms could inform
the development of features within GM that dynamically ad-
just to facilitate or moderate student interactions based on
emerging collaborative patterns. This finding is particularly
important considering that previous research often lacked a
comprehensive understanding of these dynamic interaction
patterns, focusing on more static models of collaborative
learning [36, 2, 35, 31, 46]. Our research addresses this gap
by providing multifaceted and dynamic collaboration pat-
terns among students in digital environments, showcasing
a spectrum from highly synchronized activities to distinct,
independent task engagements.



Group 1: Under 5-Minute Whiteboard Duration

(a) (b)

Group 2: 5 to 10 Minute Whiteboard Duration

(c) (d)

Group 3: 10 to 20 Minute Whiteboard Duration

(e) (f)

Group 4: Over 20 Minute Whiteboard Duration

(g) (h)

Figure 3: Mean Values with 95% CI for each cluster [Note:
Student 1 and 2 are used to distinguish between students on
each collaborative whiteboard]

Cluster analysis revealed distinct patterns in the increas-
ing duration of collaborative learning for different pairs of
students. Specifically, we segment collaborative whiteboard
sessions into four groups based on their duration to explore
how the length of collaboration affects the dynamics of stu-
dent interaction. Our findings from the cluster analysis re-
vealed two distinct patterns of collaboration. Intriguingly,
as the duration of collaboration extended, the contrast be-
tween these two patterns within each group became more
stark, one pattern showed the continuous close interaction
between two students, whereas the other pattern increas-
ingly exhibited a scenario where one student takes the lead-
ership role. This approach not only highlights the nuanced
nature of student collaborations but also addresses gaps in
previous research, which often focused on individual learning
behaviors or lacked the granularity to capture the fluidity of
real-time student collaborative interactions. For example,

some recent studies have utilized clustering to reveal indi-
vidual student learning patterns through the analysis of log
data on different topics [29, 16, 21, 17, 6]. Furthermore,
techniques such as cluster analysis and decision tree model
have proven effective in discovering hidden patterns within
educational data [43]. None of these studies used clustering
analysis to examine students’ interactions in the collabora-
tive learning environment.

8. LIMITATIONS AND FUTURE WORK
This exploratory study has some limitations. Firstly, it relies
solely on log data. While it provides rich interaction among
students in detail, it may not capture the full spectrum of
collaborative dynamics. Moreover, the findings are descrip-
tive rather than causal, only offering insights into patterns
of collaboration without delving into the underlying mech-
anisms or the impact on learning outcomes. Recognizing
these limitations, we aim to expand our current work to
include other data sources and consider contextual infor-
mation to promote a nuanced understanding of students’
collaboration. Specifically, we plan to recruit teachers and
students to participate in structured experiments that pro-
vide collaborative whiteboards for paired student activities
and incorporate multimodal data to capture the richness
of students’ collaborative activities. The inclusion of mul-
timodal data will enable us to analyze not just the what
of student actions but also the how and why of their col-
laborative strategies, providing a more holistic view of the
cognitive and social processes in CSCL.

9. CONTRIBUTIONS
This study explored ways we can understand students’ real-
time collaboration within the context of GM. Our work iden-
tified intricate patterns of interaction and distinctive collab-
oration profiles based on different types of student engage-
ment and problem-solving approaches. Using novel methods
such as NTDV allowed us to assess the granular levels of
student-level interaction across different time intervals with
enhanced precision, revealing complex patterns of engage-
ment that traditional methods may overlook. Coupled with
more traditional methods, our work provides a comprehen-
sive view of students’ diverse strategies and contributes to a
nuanced understanding of collaborative behaviors in a CSCL
environment.

Despite the in-the-wild nature of the study, our work has
significant potential to inform different stakeholders on the
design of new interventions through a real-time analysis of
student collaboration. For educators, the different profiles
of collaboration present an opportunity to employ targeted
strategies and provide effective feedback that aligns with
the specific needs of each collaborative profile. These pat-
terns can also inform researchers and developers with the
development of algorithms to detect shifts in collaboration
patterns to support timely monitoring and foster a more en-
gaging learning experience. In summary, our contributions
offer practical implications for designing and implementing
responsive and effective educational technologies.
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J. Chow, and A. Sales. Examining the mutual relations
between language and mathematics: A meta-analysis.
Psychological Bulletin, 146(7):595, 2020.

[41] O. Poquet, J. Jovanovic, and A. Pardo. Student
profiles of change in a university course: A complex
dynamical systems perspective. In LAK23: 13th
International Learning Analytics and Knowledge
Conference, pages 197–207, 2023.

[42] J. Rhim and G. Gweon. Understanding the
relationship between students’ learning outcome and
behavioral patterns using touch trajectories. In
Proceedings of the Ninth ACM Conference on
Learning@ Scale, pages 441–445, 2022.

[43] S. N. Safitri, H. Setiadi, and E. Suryani. Educational
data mining using cluster analysis methods and
decision trees based on log mining. Journal Name,
Volume Number(Issue Number):Page Range, 2022.

[44] A. H. Schoenfeld. Classroom observations in theory
and practice. ZDM, 45:607–621, 2013.

[45] B. B. Schwarz, N. Prusak, O. Swidan, A. Livny,
K. Gal, and A. Segal. Orchestrating the emergence of
conceptual learning: A case study in a geometry class.
International Journal of Computer-Supported
Collaborative Learning, 13:189–211, 2018.

[46] J. Scianna, M. Woodard, B. Galarza, S. Lee,
R. Kaliisa, and H. V. Quesada. Community at a
distance: Understanding student interactions in
course-based online discussion forums. In International
Conference on Quantitative Ethnography, pages
270–284. Springer, 2022.

[47] D. F. Shell, J. Husman, J. E. Turner, D. M. Cliffel,
I. Nath, and N. Sweany. The impact of computer
supported collaborative learning communities on high
school students’ knowledge building, strategic
learning, and perceptions of the classroom. Journal of
Educational Computing Research, 33(3):327–349, 2005.

[48] T. Talan. The effect of computer-supported
collaborative learning on academic achievement: A
meta-analysis study. International Journal of
Education in Mathematics, Science and Technology,
9(3):426–448, 2021.

[49] Q. Tian and X. Zheng. Effectiveness of online
collaborative problem-solving method on students’
learning performance: A meta-analysis. Journal of
Computer Assisted Learning, 40(1):326–341, 2024.

[50] K. J. Topping, W. Douglas, D. Robertson, and
N. Ferguson. Effectiveness of online and blended
learning from schools: A systematic review. Review of
Education, 10(2):e3353, 2022.

[51] L. S. Vygotsky and M. Cole. Mind in society:
Development of higher psychological processes.
Harvard university press, 1978.

[52] J. Zhang, J. M. A. L. Andres, S. Hutt, R. S. Baker,
J. Ocumpaugh, C. Mills, J. Brooks, S. Sethuraman,
and T. Young. Detecting SMART model cognitive
operations in mathematical problem-solving process.
In A. Mitrovic and N. Bosch, editors, Proceedings of
the 15th International Conference on Educational
Data Mining, pages 75–85. International Educational
Data Mining Society, July 2022.

[53] C. Zhu. Student satisfaction, performance, and
knowledge construction in online collaborative
learning. Journal of Educational Technology & Society,
15(1):127–136, 2012.


