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This paper explores design of finite impulse response (FIR) filters for controlling
underdamped systems while dealing with uncertainties in model parameters. By setting
magnitude constraints in the frequency domain within a convex programing framework, it
ensures that dominant resonant modes are attenuated at the end of the maneuver, high-
frequency unmodeled modes are not excited, and there is no inordinate accentuation of
[frequencies in the passband of the filter. A mobile platform with an attached flexible beam
serves as a testbed to validate the designs for rest to rest maneuvers, demonstrating how
different cost functions of error between the desired and optimized magnitude response
affectthe filter performance. The study also examines robustness in the notch area by shifting
the natural frequencies of the system by shifting a tip mass at the free end of the beam. The
total energy at the final maneuver time of the first three system modes is calculated as a
vibration suppression metric and is used to compare established input shapers with the
proposed finite impulse response filters. [DOI: 10.1115/1.4065702]
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1 Introduction

Feed-forward control is a well-established technique for vibration
suppression in wafer scanners [1-3], cranes [4], assembly robots in
the automotive industry [5], flexible manipulators [6], and in hard
drives [7]. One method to design control constrained time-optimal
[8] or fuel-optimal [7] profiles is to pose them as the design of time-
delay filters (TDF) which can be designed for a single mode or
multiple modes [9]. The TDFs break a step input into a sequence of
delayed steps with the aim of eliminating residual vibrations and can
be used to design reference shapers for stable underdamped linear
systems in the continuous time domain [10] or in discrete-time [11].
These input-shaper designs are posed in the continuous time, while
finite impulse response (FIR) filters are a prime example for a feed-
forward controller design in discrete time. The main subgroups of
FIR filters are linear and nonlinear phase filter, while the
Parks—McClellan algorithm which was presented in Ref. [12] is
one of the most famous algorithms to achieve linear phase
characteristics [13]. Linear phase can be realized by enforcing
symmetry or antisymmetry about the midpoint of the filter
coefficients. Furthermore, complex filter coefficients can be used
to design FIR filter as in Ref. [14]. In recent years, many
contributions have shown that FIR filters can be designed by
solving a convex optimization problem, while characteristics like
linear phase behavior can still be guaranteed [15,16]. The main
feature of a convex problems is that the solution of the optimization
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problem guarantees the cost to be the global minimum [17] and
additional constraints like a DC-gain of unity or upper and lower
limits on the variables can easily be enforced [13]. An implementa-
tion of embedded real-time FIR filter for vibration control can be
found in Ref. [6].

The Chebyshev design is a minimax technique and is a widely
used approach to design FIR filters, where the difference between
the desired and the realizable values, so-called error, is solved as a
L, norm problem [18]. Preuss [19] states that there are different
approaches to optimize for the error, for instance, as an elliptical cost
function, which permits imposing greater weight on the phase or the
magnitude constraint which was used by Lai et al. [20]. Aggarwal
et al. [18] use the L; norm of the error as the cost, which lead to a
diamond-shaped cost function contour. Qin [21] uses different
polygons as a cost function. Davidson [13] exploits the magnitude
responses where lower and upper constraint are enforced as spectral
masks.

This work focuses on vibration suppression of multimode systems
where only the magnitude constraints of the filter are considered,
resulting in nonlinear phase filters. The FIR filter coefficients are
assumed to be real. Since the target applications are underdamped
systems, one metric to evaluate how well a filter is performing with
regards to attenuating vibrations, is the terminal time residual
energy. For applications where the focus lies on the attenuation of
single dominant modes, like in gantry crane systems, a simple TDF
for single mode cancelation can be used. However, these filters
might excite higher modes because of the abrupt changes in the
control profiles over time. To account for higher modes, for which the
natural frequencies might be unmodeled, low-pass FIR filters with a
notch canreplace the TDFs. Solely focusing the optimization of the FIR
filter on the residual energy would only target specific natural
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frequencies, whereas our approach aims to attenuate unmodeled higher
modes as well. The notch is placed around the known dominant natural
frequency and the higher modes are placed in the stopband. Different
notch low-pass FIR filters are designed where the cost function contour
could be a rectangle, diamond, circle, square or an ellipse, which are
shapes to ensure convexity of the optimization problem. Different
scenarios to account for variations in the number of filter elements,
transition widths or weights are presented. Additionally robustness is
studied in the notch area, and validated with experiments. This paper
considers a tabletop gantry crane driven by stepper motors which
permits commanding the position of the trolley. An attached flexible
beam with a tip mass will include multiple underdamped modes in the
tip displacement dynamics, making it an ideal testbed to validate the
proposed algorithms. The tip mass is realized by a pair of attached
magnets which could be slid along the beam to manifest model
uncertainties.

The paper starts in Sec. 2 with the formulation of a convex
optimization problem to determine the FIR filter. This is followed by a
detailed development in Sec. 3 of the model of an Euler—Bernoulli
beam with a tip mass and the experimental setup which uses strain
gauges to evaluate the performance of the feed-forward controllers.
Section 4 presents simulation and experimental results dealing with
multiple implementations of the controllers. Section 5 concludes the

paper.

2 Finite Impulse Response Design

An FIR filter can be represented in discrete time as
H(z) = SN hn)z~", where the number of filter elements are N,
h is the filter coefficients, and z is a complex number. Using
z = ¢/®Ts we can state

N-1
H(e™Ts) = Zh[n]ef-/‘"‘”’r‘ (1)
n=0
N-1
= Zh[n} (cos(nwyTy) — jsin(nwTy)) (2)
n=0

where [ € [0, L], L is the number of sampled frequencies (L = 15N),
and w; € [0, 7] is the frequency. The sampling time T determines
which frequencies can be captured in the FIR design. For smaller

sampling intervals T, the FIR filter can actively be optimized for
higher frequencies. If the number of filter elements is left constant
but T decreases, the largest reachable frequency in the spectrum
becomes greater, resulting in an increasing distance between each
sample and therefore in a generally poorer curve fit in between
frequency samples. The Chebyshev approach, which is a minimax
design is often used to pose the design of the FIR filter in a convex
programing framework, and can be written as

I}ll[i? max|H (w;) — Hy(wy)], 1 € [0,L] 3)
nl oy

where H(w) and H, () are the actual and desired transfer functions,
respectively. Since the Chebyshev approximation considers the
L.-norm, we introduce a different weighted error function to
account for various norms

minimize : 0

h[n (4)

subject to : 5

W (@) (Tenh — bin)ll, <0 ©
where :

|1 cos(ay) cos((N — 1)1) (6)

(o) = [0 sin(w,l) sin((N — l)l)}
bi(on) = Eﬁgf,jgﬁgg] @
h=[hy I ot ]" ®)

where W (w;) is a non-negative weighting function, p defines the
norm, and 0 is the maximum error between the desired and
optimized magnitude response M(w) = ||T'(w)h||. Figure 1 illus-
trates the different cost functions as Ly, L,, and L, in complex plane
which constrains the location of the complex vector. Ly, L, or L.,
norm is used in the passband and the L, norm in the stopband.
Another cost function is a rotated ellipse and can be seen in the
following equation:

o ( (Re(r(w,)h — Hy(oy))cos (¢ + g) +Im (T(@1)h — Hy(oy))sin (¢ + g))z

o+

2
a,

€]

where a, and b, represent the major and minor axis of the ellipse,
respectively. The convexity of the cost function is preserved and the
angle ¢ can simply be determined from the frequency of the desired
transfer function via

(10)

¢ = arctan <Im (Hd (w,) ) )

Re(Hd(w,))

It should be noted that the ratio between the major and minor axis
needs to be prescribed before the optimization process starts.
Similar to the elliptic cost function, a rectangular cost function can
be introduced, where the cost function is
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(Re(F(wz)h — Hy(ey))sin (qﬁ +g) — Im(T'(@1)h — Ha(or))cos (¢ +72r))2> By

Re (I (w))h Re(Hy(w) &
([t~ [mron) ) = ]2 00
Re (Hy (o) Re(T'(wy)h ar
W(w,)R( I gHj(wj); - [ImEF(wj)h%]) = {b,}(s (12)

TV _sin f(f)JrE
o ) < 2) (13)

2
n n
+§) cos(—¢+§>
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Fig.1 Convexoptimization of afiniteimpulse filter when looking
at it in the complex plane

The angle ¢ is calculated as in the elliptic cost function with Eq. (10)
and R is the rotation matrix. a, is the width and b, is the height of the
rectangle as can be seen in Fig. 2. For the results presented in this
paper, we assume a, = a, = 2 and b, = b, = 1. The velocity of the
trolley of the gantry crane used to validate the designs is constrained
to a maximum velocity v;.c. Therefore, the optimizer needs to
ensure that the FIR filter never exceeds vy, at any time instant.
Additionally, all FIR coefficients are required to sum up to 1, to force
the DC-gain of the system to be unity. These constraints result in

1 0 0
11 !
— 1y < h < 1yxi; Zhizl (14)
0 i=0
11 - 1
NxN

2.1 Finite Impulse Response With a Notch Filter. To cancel
the dominant mode for a point-to-point maneuver, a notch is added
to the low-pass FIR filter. It is well known that the notch cannot be
infinitesimally narrow, because this would lead to ripples around its
corners (Gibbs phenomenon). Similar to the transition from the
passband to the stopband tr, another transition band from
the passband to the notch trqp, is introduced. Figure 3 illustrates
the ideal FIR filter with a notch, which targets the underdamped
modes within the passband. The highlighted green, blue, and red
arearepresent the 1. pass and 2. pass and stopband, respectively. The
unmodeled dynamics are presumed to lie in the stopband to prevent
exciting them. It should be noted that one can include multiple

3 A 3 A
b,é
a,é
¢ A -
R

Fig. 2 Rectangular and elliptical cost function in the complex
plane for FIR coefficients
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notches in the passband to target well modeled low frequency
modes. A notch constraint can be added to the FIR design as
||IT(@noten )], < 1e7° (15)

where w18 the target frequency to place a notch. Each mode is
modeled as a resonance of a second-order system and therefore the

notch is placed at Wporch = Wy 14/ 1 —2{%, where the natural

frequency m, ; and the damping ratio {; need to be specified. Note
that 1= is considered as a reasonable attenuation in the magnitude
response of a filter.

2.2 Quality of a Notch. A metric to quantify the quality of a
notch is proposed which entails calculating the area under the
magnitude response over a specified range of frequencies. Figure 4
shows that the integration bound is twice tro.p, Where the black-
dotted and solid line represent the desired and optimized notch
realization, respectively. The calculation of the area under the
magnitude response Q and normalized area O, can be written as

*Onotch Hnoteh NV
0= ‘ Zh[n](cos(nwﬂ)...
J Wnotch —notch =0 (16)
... — jsin(nowTy))|dw
0
0. - a7
8 2tTyotch

The trapezoidal numerical integration rule is used to calculate
Eq. (16). Q, allows to fairly characterize robustness in terms of the
quality of the notch. A smaller O, indicates a better quality of the
notch.

3 Experimental Setup and Euler-Bernoulli Beam
Theory

The experiments were conducted on a 8’ x 4’ x 3’ gantry crane
system where the trolley is attached to a stepper motor via a timing
belt, which can be seen in Fig. 5. The strain gauges are placed near
the clamped end of the beam where four of them are connected in a
Wheatstone bridge circuit. The motion of the trolley is constrained
by the maximum number of steps per time instant (velocity
constraint). With the driver set to 400 steps per revolution, the
trolley displaces by 40 mm per motor revolution. For this setup, it is
found that the maximum velocity of the trolley is vy, = 240 mm/s.

3.1 Euler-Bernoulli Beam. Figure 6 illustrates the
Euler—Bernoulli beam model where one end is clamped to the
trolley and the other end is free with a tip mass. The tip mass, realized

@ 4 troo 1. passband
S Slle Lt 2. passband
o 1 stopband
e)
=
S Notch
©
= 0 —

0 @noer Erequency w /T,
(b)

—>> P.‘IR > Plant —>

Filter

Fig. 3 (a) Desired magnitude of low-pass FIR filter with a notch
and (b) block diagram of an FIR filter and a plant
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by a pair of magnets, can be displaced in a vertical direction to
emulate uncertainty. This feature will be used in Sec. 4.3 for
robustness studies of the FIR notch filter. The Euler—Bernoulli beam
is modeled with the partial differential equation

w(x, 1)

I*w(x,t)
YI P

82
Ox* +od

=0

(18)

where w(x, ) represents the deflection of the beam and Y, /, p, and A
represent the Young’s modulus, area moment of inertia, density, and
cross section area of the beam (A = gk), respectively. For a clamped-
free beam, the following boundary conditions apply [22]:

w(0,)=0  (19)
Ow(x,1)
= 2
ox | 0 0
O*w(x, 1) L2
e <It+mqt Q1)
8_2 <8w(x,t> 118214/(1, 1) —0
o\ ox )|, 2 oe |,
0 82w(x,t)> 82w(x,t)
Yla( N R (22)
B [7,,672 (aw(x,t)) _o
R A

The subscript “¢” is used for parameters associated with the tip mass.
The moments of inertia can be calculated as follows / = (kq3 / 12)
and I, = (m,/12) (Ltz + (2¢, + q)2>. Note that the tip with the
magnets is not modeled as a point mass and has a moment of inertia
1,, corresponding to the mass moment of inertia of two magnets and
the enclosed beam. Separation of variables permits writing the

deflection of the beam w(x, 7) with its closed form representation of
the mode shapes [23] as

w(x,f) =y O;(x)Ti(t) (23)
=1
/l,'X j.,'.X
®;(x) = Ky, cosh (T) + K, cos (T)
(24)

Aix Ai
...+ K3;sinh (f) + K4, sin (fx)

- - desired —— optimized

trnotch
A

I p—"

Magnitude M

A\

Wrotch
Frequency w (rad)

Fig. 4 Calculation of the area Q to determine the notch quality
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Fig. 5 Experimental setup of the gantry crane: (a) amplifier
module, (b) tip mass, and (c) strain gauges

where i, K, ®, and T are the ith mode, coefficients of the
eigenfunction, eigenfunction, and temporal solution, respectively.
Equations (19)—(22) can be written in a matrix form as shown in
Eq. (25)

CTA=0 (25)
v
—>
—>
Y
A
ZJl Y, I, p, A
Section C-C

7

A
Y

Y
A

I, m

Fig. 6 Trolley model with a clamped beam and tip mass at the
free end of the beam

1. mode

Fig. 7 Mode shapes of a clamped beam with a tipped mass
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1 0 cosh(4)— a;sinh(/;) — ¢;cosh(/;)  sinh(4;) + b; cosh(/;) + ¢; sinh(4;)
1 0  —cos(4) +a;sin(4;) — c;cos(4;) sin(4;) + b; cos(4;) — ¢;sin(/4;)

€= 0 1 sinh(4;) —a;cosh(/;) — ¢;sinh(4;)  cosh(Z;) + b; sinh(4;) + ¢; cosh(Z;) 2o
0 1 —sin(4;) — a; cos(/;) — ¢;sin(4;) —cos(Z;) + b;sin(2;) 4+ cicos(4;) | 44

where A=[K;K;K3; K4,,~}T,ai = ((1,+m, (Ltz/4))ﬂl3> / (pAL3), bi=m2;/(pAL), and ¢;= m,L,Az/ (2pAL2) To arrive at a nontrivial
solution for Eq. (25), a 4; can be computed by requiring the determinant of C to be zero. Then, the natural frequency can be calculated via

2
)v,' Yl w,, i
ni = \ 7 — = 27
o (L> pA = 0
Using Egs. (19), (20), and (22) lead to eigenfunctions given by the following equation:
Oi(x) — —cosh(/4;) — b; sinh(4;) — ¢; cosh(4;) — cos(4;) + b; sin(4;) + ¢; cos(/;)
7| sinh (/) 4 by cosh(2;) + ¢ sinh(2;) — sin(4;) — b, cos(/;) 4 ¢;sin(4;)
(28)

(cosh <M) — cos (}#X) ) ...... + sinh <Q) — sin (/L' )} K3,
L L L L

Since the system is a self-adjoint distributed parameter system, it can be shown that the eigenfunctions (mode shapes) are orthogonal. The
scaling parameters K3 ; can be selected to make the eigenfunctions orthonormal. The mode shapes of the clamped beam with the tipped mass
at the end can be seen in Fig. 7 which were generated by ANSYS and match well with the analytical mode shapes used in this paper. The

Supplemental Materials on the ASME Digital Collection provides the details of the orthonormalization of the mode shapes. The coefficients
K3 for the first three modes are: [2.570, 3.332, 3.298|.

3.2 Sensing and System Identification. The static Euler—Bernoulli beam given in Eq. (18) with a tip load Q, and clamped free
boundary conditions reduces to

84w(x) 0,
Y =0= w) = —= (3L — ) 29
ot ) = Gvi @)
and the surface strain for a beam of thickness ¢ is
1. passband e 2. passband e stopband Wq1, Wa
rectangle diamond
1 101 T T T
A 10 T T T 2
-l 51072 S10
\ i = c
A S 5 g
2 10 =10
e B R L
circle
A 101 T T T
1k = T =
K ) [} r A [
-t S107%F i s
\ - = Ly i =
A e 5 [ ] 5
L CEU 1075 I L . L g 1075 1 | |
=il 1 % 0 50 100 150 0 50 100 150

Frequency w

Magnitude M

Frequency w

1 1
50 100
Frequency w

Fig. 8 Different cost functions with the FIR filter in the complex plane and the respective magnitude response (Color version

online)
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qPw(x) 40

W) =-5"5a = LY G0
3gw(L
— q;L(B )(fo):cflUJerz (3D

which represents a linear mapping between the tip displacement
w(L) and the strain at any location x. It should be noted that a
bias &, is included in the model since the measured voltage U is
only positive and the zero strain corresponds to a nonzero
voltage. For the strain gauge located at x=0.01 m, we have

B 3qw(L)

€(0.01) = TE

(L-001)=&U+& (32)

The highlighted part of Eq. (32) is used to map voltage to strain via
various known tip displacements w(L). Additional details for the
mapping between measured voltage and displacement is provided in
the Supplemental Materials on the ASME Digital Collection. The
parameters in Eq. (32) are &, = —6.9332¢7* and &, = 5.4220e .
The time series data from the strain gauge can now be used to
estimate the kinetic and potential energy resident in the modes of the
beam. The kinetic and potential energies of the beam are [24]

e
Eyin(1) = EL PA(Y 4+ w(x, t))zdx...

1 L :
-t <y' +w(L, 1) + éw/(x, z)|,\.:L) I CE)
..
.+ 5[, (W' (x,1) |X=L)2
(e (0w’
Epa(t) = 5 L v (T) dx (34)

For a point-to-point maneuver, the residual energy can be used as a
performance metric to gauge the deviation from the desired position
of rest. At the end of the maneuver, i.e., 1 =1y the stepper motor
ensures that the velocity of the trolley is zero. Substituting 7 = t,and

y = Ointo Egs. (33) and (34), the residual energy can be determined.
Assuming that three modes capture the dominant energy content, the
measured strain for all time ¢ > #; is approximated as

3 92
g0 (x)
€(0.01,1) = —5; o2 x:o.OITi(t) (35)
which permits approximating the deflection as
3 v
w0 = > 0i(x) (Ce 5 sin(ait +00))  (36)

i=1

(1)

The curve fitting process assumes that the identified damping ratios
{; =0.002675 and ¢, = 0.002900 are constant, while C; to C5 and
oy to a3 as well as L and (5 are optimized for. The curve fitting
process is posed as a least squares problem between the measured
strain represented by Eq. (32) and the estimated strain in Eq. (35)
which assumes ideal clamped geometric boundary conditions as
represented in Egs. (19) and (20). Note that optimizing for L might
seem redundant for the current curve fitting process but will be
important for robustness studies. The damping ratio (5 is optimized
because it is rather difficult to identify from the frequency response
function. The method presented in this section permits identifying
parameters from the measured strain and consequently computing
the energy contribution of each mode.

Subjecting the system to a pulse input, the strain gauge
measurement is used to identify the following natural frequencies
and damping ratios for the first two modes: f, | = 1.2277 Hz, f,,» =
12.1974Hz, {; = 0.002675, and {; = 0.002900. The corresponding
geometric and material properties of the beam are: thickness
¢=0.0016m, length L=0.72 —-L,m, width £=0.0295m,
Young’s modulus ¥ = 69 x 10° Pa, and density p =2700 kg/m3.
The tip mass has the following parameters: thickness ¢, = 0.0123 m,
length L; = 0.0441 m, and mass m, = 0.0821 kg.

4 Simulation and Experimental Results

This section presents the results from simulations, which are
validated with experiments. A rectangular pulse serves as the

Pulse 1 mode TDF 1 mode TDF 2 mode TDF 2 mode TDF
> (non-robust) (robust) (non-robust) (robust)
g = A
SE 200f
S E
~E i
Q3
(_,2 0 L L1 1y
(= 0 0.8 0 0.8 0 0.8 0 0.8 0 0.8

time (s)
E [ ] ] [ ]
.% - P
% i 1 1 1 1 | 1 ] I 1 1 1 1 |
0 5 5 0 5
e time (s)
GL) _—!— T T ] L T o T ] [ T T T ] [ T T T ] L T T T ]
C = —_—
= ?: 10 | - = == = - | ey F— = - = T
© L . L 4 - 4 L i L 4
SR = —_
% 10_8 C 1 1 1 ] C 1 1 L ] C 1 1 1 ] C 1 1 1 ] C 1 1 1 ]
g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
modes

Fig.9 Experimental results for the residual energy of first, second, and third modes when a rectangular pulse

input or velocity constrained TDFs are applied

051003-6 / Vol. 146, SEPTEMBER 2024

Transactions of the ASME


http://dx.doi.org/10.1115/1.4065702

Rectangle

Diamond

200

Trolley Velocity
v (mMm/s)

Circle Square Ellipse

= 8x107°
&
(=
©
N _8x107

0
>
o
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C/‘\ B T B T B T B T B T
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Fig. 10 Experimental results for the residual energy of first, second, and third modes for various convex

optimized low-pass FIR filters presented in Fig. 8

velocity reference input and various open loop filtering techniques
are used to shape the pulse input. It should be noted that the TDFs are
designed with knowledge about the velocity constraint and the
objective being time-optimality. In the end of this section, a
robustness study related to uncertainty of the first mode is
performed.

4.1 Comparison: Rectangular Pulse Input, Time-Delay
Filters, and Finite Impulse Response Filters. Nonrobust and a
robust single mode TDFs are designed to solely cancel the first mode
(w1 = 7.7139 rad/s). To additionally cancel the second mode at
Wy = 76.6379 rad/s, nonrobust and robust 2 mode TDFs are
synthesized. Here robustness is ensured for uncertainties in w, ; and
@, . For the FIR filter design, we choose: N=25, L = 15N, T, =

/ 2
0.02, trhotch = 2% Ofinal, 1T = 10% final, Wnotch = Wp,1 1- 2(1

The stopband starts at 5 Hz (w = 10m rad/s) which places the second
mode in the stopband. The weights are selected as W,=1 and
W, =10. Figure 8 illustrates the frequency response functions when
various convex shapes are used to enclose the permissible
magnitudes of the FIR filter for various frequencies in the range
; € [0, 7]. Each FIR filter is plotted in the complex plane and in a
magnitude response as a function of frequency. The green and blue
highlights correspond to the passbands and the stopband is
highlighted in red. The nonhighlighted parts of the graphs

—— 2 mode time delay filter (robust) Wy 1, Wy 2, Wg3

FIR filter (circle cost function) === Whngl
104 T T T : T T T
S 1
g 10° :
= :
(o)) 1
g 1
107 :
0 100 200 300
Frequency w (rad/s)
Fig. 11 Comparison between a robust 2 mode TDF and an FIR

filter (circle cost function) with 25 elements
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correspond to the transition zones. The vertical dashed lines
correspond to the location of the first two natural frequencies of
the beam, where the first mode is targeted with a notch, while the
second mode is relegated to the stopband without any explicit
constraint imposed at that frequency. It is interesting to note that the
rectangular and square case seem to result in a comb filter
characteristic in the stopband. For the rectangular, circle, and
square FIR cost function, the second mode is serendipitously located
at a local minimum in the magnitude response. In contrast, the
diamond and elliptical magnitude response show the second mode is
less attenuated. To evaluate the notch quality, we use Eq. (17) and
obtain the following results: O reciangle = 0.3238, O, diamond =
0.3281, Qn,circle = 0.3244, Qn,square = 0.3238, and Qn,ellipse
= 0.3303, showing that the normalized area is smaller in the
rectangle, circle, and square than in the diamond and ellipse case.
For a final displacement of 10.08 cm, a rectangular pulse with
Vimax = 240 mm/s is applied for 0.42 s and passed through the TDFs
and FIR filters. For each filter, five experiments were conducted.
From Fig. 9, it can be seen that the pulse input creates the largest
oscillations followed by the nonrobust single mode TDF, for which
the box and whisker chart are confirming that most of the residual
energy is resident in the second mode. The least oscillation of all
TDFs is related to the robust 2 mode TDF, where it is visible that
mostly the third mode is responsible for the residual vibrations. Each
FIR filters introduces 75 x N = 0.5 s delay, resulting in a final
maneuver time of 0.92s. Applying different cost functions for the
FIR filter design reveals in Fig. 10 that the first mode gets largely
attenuated in the rectangle, circle, and square case. The diamond and
ellipse case show marginally greater oscillations in the first mode,
which can be confirmed by the box and whisker chart. Furthermore,
the diamond and ellipse FIR filters show that the second mode gets
more excited than in the other cases. The experimental results in
Fig. 10 are consistent with the theoretical results from Fig. 8. It is
clear that the FIR filters have a lower total residual energy than any
TDF (note the scale of the strain is one order lower than for the
TDFs). This is not surprising since the TDFs target specific modes,
while the FIR filter include a stopband and any unmodeled/
uncontrolled mode in the stopband will be better attenuated. In other
words, the TDFs are agnostic to the existence of the third or fourth
mode and the staircase structure of the time-delay filtered signals can
excite unmodeled modes. Figure 11 illustrates the frequency
response function of the robust two-mode TDF and a FIR filter
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designed with a circular cost function. wgy,, is the final frequency
until which the FIR filter is optimized for. It is evident that the
magnitude spectrum in the stopband is significantly greater for the
TDF relative to the FIR filter.

4.2 Changing the Transition Band Width. The transition
width between passband and notch (tr,,o.,) Or between passband and
stopband (tr) plays an important role in the filter design process. A
very narrow transition band leads to undesirable peaks, known as the
Gibbs phenomena or might just lead to poor tracking of the desired
magnitude response. To analyze the impact of the transition band’s
influence on how well the magnitude plot tracks the desired
frequency response function, both tr,,., and tr are changed over a
grid. The only change compared to Sec. 4.1 is that we choose N = 30.
In Fig. 12, a surface plot of 9, the maximum difference (L, norm)
between the FIR-FRF and the desired FRF, over the variation of the
troreh and tr is illustrated. o is calculated for 10,000 equally spaced
frequency samples from O to wgp,. The plotted variable along the z-
axis is the variation of the L, norm. It should be noted that tr,,., and
tr are presented as a percent values of gy, the final frequency in the
frequency spectrum. A trend which can be observed is that the
tracking becomes better as tr becomes greater. It is interesting to
note that tr, .., does not need to be at its largest value to achieve the
best tracking for the magnitude. The worst magnitude tracking
occurs when both transition band widths are very small, matching
the aforementioned Gibbs phenomena. Figure 13 illustrates the
variation of the magnitude peak of the FIR-FRF for w > @yotch,
where it can be observed that a narrower tr,y, leads to a greater
magnitude and therefore a greater peak. On the other hand it can be
seen that the smallest peak is obtained at tryoen=3.15% and
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Maximal Magnitude

for a variation of tr,,o1cn, and tr

tr=3.7%. As it can be seen on the left side of Fig. 13, the smallest
magnitude peak does not mean that the tracking error is minimized.

4.3 Optimal Weights, Wider Notch, and Robustness to
Uncertainties. To enhance robustness around the first mode w,, 1, a
stopband is created around o, instead of solely enforcing a notch
with My(0noten) < le™>. In four different scenarios which are (a)
Wroteh £0.27, (b) Wyoren =0.67, (C) Wporen =7 with N =30, and (d)
Wnoteh £ With N =50 a notch-stopband is designed. Other than
changing parameter N all FIR parameters are used as in Sec. 4.1.
Three different weight parameters are considered, where W, is the
passband, W, is the notch-stopband, and Wj is the stopband for
higher frequencies. In conjunction with the filter coefficient
optimizer, another optimizer endeavors to identify the optimal
weight distribution of W),, W,,, and W, which are not influenced by
their value, and rather by their respective ratio. For our optimization
strategy, we require W, + W, + W, = 1. § is the L, norm between
the desired and optimized magnitude response. Figure 14 in the top
row illustrates the cost as a function of the weights for all four cases.
The optimal values for the weights for [W,, W,, W,] are [0.0115,
0.1006,0.8879]a), [0.0121,0.0278,0.9601],,), [0.0119,0.0181,
0.9710}(‘), and [0.0120, 0.0573,0.9227}‘,). For cases (a)—(c), it can
be observed that a wider notch results in the notch moving toward
higher frequencies in the magnitude response. The optimal weight
on the passband is almost constant but the weight on the notch is
decreasing as the desired notch becomes wider, which is a weight
shift from W, to W,. The normalized areas for the notches are:
Ona) = 0.3519, Q,,) = 0.4357, and Q, . = 0.5038, where the
lower notch quality when transitioning from (a) to (c) stems from
the constraint of using only N =30 coefficients, which results into
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Fig. 14 Simulation (top and middle) and experimental results (bottom). Notch-stopband enforced for: (a) wnotch==0.27,
(b) ®notch=*0.67, (c) Wnotch =*7 for N= 30, and (d) Wnotch =*7 for N=50.

only one constraint used to enforce the stopband, resulting in
deterioration in the quality of the notch. In case (d) the inset shows
that the filter optimizer leads to a minimax design in the notch, which
provides robustness toward uncertainty around @yoch, €.8., referring
to uncertainties in the first mode. The minimax design offers the best
design for a worst-case scenario and the normalized area of the notch
is: 0, 4) = 0.3638, which is 27.79% lower than the FIR filter in (c).

This observation is worthwhile exploring with the experimental
setup described in Sec. 3. Since the notch refers to the first mode of
the beam structure, it is of interest to determine the residual energy of
the first mode. Referring to Fig. 6, uncertainty in the modal
frequencies can be realized by sliding the tip mass in x-direction,
which changes L, the effective length of the beam. Figure 14 in the
bottom row illustrates the residual energy of the first mode for the
FIR filters. Each box and whisker chart contains 65 samples. In total,
13 different stages of the tip mass were tested, where it should be
mentioned that at the lower frequency end the beam structure is
constrained because the tip mass cannot be placed beyond the end of
the beam (x =0.72 m). With the help of Egs. (33) and (34), each
experimental result has to undergo a curve fitting process to
determine the contribution of each mode in the measured signal.
Figure 14 in the bottom row confirms with the subfigures (a)—(c), the
theoretical observed results that the notch is moving toward higher
frequencies. Case (c) has generally the lowest residual energies over
the uncertain space. Case (d) which led to a minimax design shows
that the residual energy of the first mode follows the magnitude
response pattern as in the numeric study. The low residual energy of
the first mode confirms the robustness of the minimax design over
the uncertain domain.

5 Conclusion

This paper formulates a convex optimization problem to design
FIR filters to cater to rest-to-rest maneuvers for systems with
uncertain underdamped modes and unmodeled high frequency
modes. To test the FIR designs, a beam with a tip mass is attached to
a moving trolley to emulate point-to-point maneuvers of a flexible
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structure. Velocity-constrained time-optimal controllers are com-
pared to FIR filters with five different cost functions: rectangle,
diamond, circle, square, and ellipse. FIR filters perform better than
TDFs in terms of residual energy. Several scenarios are simulated
with varying numbers of filter elements, transition widths, and
weights. A robustness study in the notch area demonstrates the
ability to handle uncertainties in the first mode, such as changes in
the tip mass location on a beam. A minimax design is created in the
notch area and proved to be more effective than other methods when
the first mode of the system is perturbed. The authors introduce the
normalized notch area of the magnitude response as a tool to quickly
compare filters for robustness. Future research will explore adding
more than one robust notch for different system modes. The
experiments confirm that FIR filters may take slightly longer for
maneuvers but excel at vibration suppression compared to TDFs in
the presence of high-frequency dynamics and uncertain modal
parameters.
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