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Abstract— This work presents a real-time time-delay filtering
approach for reference shaping of high precision motion control
of vibratory systems. The motion of the system is initiated
with a judicious (arbitrary) step command and the acquired
motion data is used to estimate the modal parameters in real-
time. The modal data is subsequently used to synthesize the
subsequent step commands to mitigate the residual vibrations.
The proposed control algorithm is tested on a gantry crane
structure with a suspended payload. Our method estimates the
system parameters based on computer vision while tracking
an ArUco fiducial marker which is integral with the payload.
Computational efficiency is ensured by using C++ to deploy the
algorithm. The goal is to minimize the residual energy at the
terminal displacement for rest-to-rest maneuvers of a suspended
payload with unknown dynamics. An inertial measurement unit
is used to track the pendular angular velocity at the end of the
maneuver and is not used in the model identification process.

Index Terms—Input Shaper, Computer Vision, ArUco,
Gantry Crane, Vibration Control.

I. INTRODUCTION

Vibration control for high speed rest-to-rest maneuvers has
become vital in numerous applications, especially industrial
crane control. For example, operating large cranes can often
become incredibly difficult due to unforeseen conditions,
such as strong winds, which can make moving large pay-
loads very difficult and even dangerous. Implementing an
algorithm for vibration suppression into operating cranes of
all sizes is easily motivated with benefits including making
their use easier, safer, and more efficient.

Previous research regarding pose estimation of crane loads
has been done using computer vision implemented with
particle filters for determining certain static parameters of
crane loads [1]. These static parameters are used for visual
motion tracking of crane loads in order to estimate precise
load motion that corresponds to crane movement [2], as well
as keeping tight control over crane movement in an effort to
prevent emergencies, such as detecting collisions of swinging
crane loads [3]. In research done in this field, cranes are often
modeled as pendulums with moving pivot points [1].

In this paper, we will demonstrate the development of an
algorithm for vibration suppression and validate it on a scaled
model of a crane instrumented with an inertial measurement
unit and an ArUco-based (Augmented Reality University

A. Stein and T. Singh is with the Department of Mechanical and
Aerospace Engineering, University at Buffalo, NY 14260, USA. (email:
{astein3, tsingh}@buffalo.edu).

D. Vexler is with the Williamsville East High School, East Amherst, NY
14051. (email: david.vexler796@gmail.com).

of Cordoba) computer vision system. This approach for
precise pose tracking [4], [5] and position estimation [6]
is demonstrated on a small-scale gantry crane undergoing
point-to-point maneuvers. The algorithm is capable of mea-
suring the relative position of the payload with respect to
the gantry crane and synthesizes a reference shaped input
to the crane motor which mitigates the swinging. For the
case of accurate pose and position estimation, we exploit
computer vision using ArUco markers. We incorporated an
inertial measurement unit (IMU) to track the swinging of our
payload as well.

ArUco is an open-source library that was developed using
OpenCV by Muiioz and Garrido [7]. The ArUco library
provides algorithms for the robust and fast detection, pose
tracking, and position estimation of square fiducial mark-
ers with six degrees of freedom. ArUco has been used
in autonomous unmanned vehicle control, including aerial
vehicles [8], [9], guided vehicles [10], and underwater ve-
hicles [11], 3D scanning [12], tag identification [13], crane
pose estimation [3], [1], and many other functions. Using
ArUco’s real-time tracking capabilities and the algorithm we
coded in C++, high frequency ArUco marker position was
acquired.

Referencing previous work, tests aimed to compare IMU
tracking with ArUco tracking have found the two methods
to both be extremely accurate with typically insignificant
differences [14]. However, ArUco data has been seen to
have much more noise than IMU data, likely because of
the fact that ArUco is much more sensitive to exterior
conditions than IMU, for instance, background and light
conditions. ArUco is heavily dependent on a high resolution
camera (In our experiment we used the Intel RealSense
D4351 with up to 1280 x 720 resolution), sufficient lighting,
and effective calibration [14]. Although IMU has also been
seen producing inaccuracies in its data from accumulation
of minuscule errors in its accelerometer, drift errors in its
gyroscope, and present external magnetic fields that affect its
magnetometer, these effects have been to a smaller degree
compared with ArUco. Some studies have integrated the
two methods together for position estimation where each
method’s are compensated

faults cancel each other out to some degree [15].

This paper will proceed as follows: In Section II, we
illustrate the simulation results of our proposed method. In
Section III, we describe the experimental setup and results.
In Section 1V, we provide a brief conclusion.
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Fig. 1: Spring-Mass model.

II. SIMULATION

In this section we present the mathematical development
of a real-time time-delay filter (TDF) using the benchmark
spring-mass system as an example. Time-delay filtering of
step inputs results in a staircase profiles where the tread of
the stairs is a function of frequency of oscillation of the
structure. The core idea of the proposed work is to initiate
motion of the structure with an arbitrary step command
(judiciously selected with an estimate of the damping ratio
of oscillation of the suspended payload). In the interval prior
to the execution of the next step command, the measured
motion of the payload is used to estimate the damping and
natural frequency of the structural mode, which results in the
specification of the tread width of the current step.

A. Real-time time-delay filtering

Consider a spring-mass model as illustrated in Fig. 1 as an
example. The equation of motion for the spring-mass system
is:

mi(t) + kx(t) —
We define a TDF as:
G(s) =K+ Aje*T +

kxi(t) = 0. (1)

(1-K—Ap)e 7, 2

where 0 < K < 1 is an arbitrary user-selected gain. The
parameters A; and T are selected so that a pair of zeros
of the TDF cancels the underdamped poles of the system
located at s = —Cw,, + iw, /1 — (2. Equating the real and
imaginary parts of Eqn. (2) to zero leads to:

K+ A1enT cos(w, Tv/1 — C?)...
+(1— K — Ap)e*“T cos(2w,Tv/1—¢2) =0, (3)
AretnT sin(w, Ty/1 — ¢2)...
+(1 = K — Ap)e®“n T sin(2w, T/1 - ¢2) =0. (4)
Eqn. (4) can be written as:
en T sin(w, Tv/1 — ¢2) (A +2(1 — K — Ay )etenT
ecos(w,TA/1 — C2)> =0,
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whose solution is [16]:
T

T=—¢9.6Z#—/—. (6)
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Now we can substitute Eqn. (6) into Eqn. (3):

27¢

¢
K—A1eVi-@ 4 (1-K—A)eVi-& =0, ()

which simplifies to [16]:

2m¢
K+(1-K)evi-¢
Ay = W(C ) P ®)

The reason why the initial gain of the TDF G(s) is user-
selected is to permit the identification of model parameters
(¢ and wy,) over the time window of [0, 7] which can then
be used to determine the delay time 7" and the amplitude
A1, which is available in closed-form. This will result in a
real-time model identification and input shaping for vibration
control of underdamped systems. Extending the spring mass
model to include an input u, we consider the second order
system:

&+ 20wt + wie = wiu. 9

Laplace transform of Equation 9 assuming zero initial con-
ditions and with a step input of magnitude C results in:

2
Kow o)
S

82X (5) 4+ 2¢wnsX(s) + w2 X(s) =

Dividing Eqn. (10) by s? and evaluating the inverse Laplace

transform leads to:
2
x(t)—i—ZCwn/ TYdT + W2 // 7212.
(1m)

Dividing Eqn. (10) by s3 and performing another inverse
Laplace transform, we get:

/tx(T)dTngn /t /”(m(T)dT do
w? // / P)dr)drdo = Ko j.

Combining Egs. (11) and (12) in a matrix form results

in [17]:
A [255"] -| fézitr))dr]
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which can easily be solved for ¢ and w,,.

This approach is extended to a system where the com-
manded input is velocity. Assuming that a pendulum on a
gantry crane as shown in Fig. 4 can be approximated as
(see [18]):

#(t) 4 2Cwna(t) + wlz(t) — wizi(t) =0

z;(t) = v(t).

We can transform this into the Laplace domain and combine
both equations to result in:

15)
(16)
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=0. (17



Applying a step velocity command, V' (s) = K/s, we have:

K
X (s) [8* +2¢wns + wi] — wZS—Q =0. (18)

We divide Eqn. (18) by s? and apply the inverse Laplace

transform which results in:
x(t) + QCW,L/ T)dT + wn/ / 6"
(19)

Since we have two unknowns (¢ and w,) we need to derive
another equation, which can simply be done by dividing
Eqn. (18) by s:

/t:c(T)dT+ZCwn /t /U(z(r)dT)da
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Writing Egs. (19) and (20) in a matrix form results in:
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(21b)

which can easily be solved for ¢ and w,. Now, we apply
a pulse input, G,(s) = 1 — e Strwuise where &y puise
is determined by the desired final displacement and the
maximum velocity. Note, that we assume that ¢ ;,,15¢ > 27

B. Numerical results

We simulate the gantry crane system using MATLAB and
set the desired final displacement to z; = 600 mm. Assume
that K = Ag = 0.25, Uppqe = 240 mm/s and the real system
has a natural frequency of w,, = 27 and a damping ratio
of ¢ = 0.1. The initial guess for the estimated parameters
are: 0, (0) = 37 and ((0) = 0.15. From Eqn. (6) it can
easily be seen that 7' = 0.5025 s. Thus, we know that the
system identification phase has to happen before 7. We set
the bounds for the identification as tppynqs = [0.35, 0.45] s
The justification for waiting to collect data prior to estimating
the model parameters is illustrated by the variation of the
condition number of the matrix given by Eqn. (21b) in Fig. 3,
whose inverse is required to determine ¢ and w,,. Waiting for
the condition number to reduce results in a stable estimate
of the model parameters.

In Fig. 2, it can be seen that the target of reaching 600 mm
is satisfied and that the velocity at the end of the maneuver
is 0 mm/s. This implies that there is no residual vibration
in the system. The red phase indicates the estimation phase
of the natural frequency and damping ratio over time, which
spans the time period of 0.1 s. The estimated parameters
for the input shaper are calculated as: T =0.5035 s and
Ay =122.4086. Fig. 3 shows the estimated natural frequency
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Fig. 2: Position and velocity of the payload. Velocity input
of the trolley.
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Fig. 3: Estimated natural frequency, damping ratio and con-
dition number of B in Eqn. (21b).

and damping ratio over time. It can be seen that the param-
eters converge rather quickly towards the true parameters
of the system. At the end of the estimation phase, the
parameters are estimated as: Wy, (0.45) ~ 6.2692 rad/s (true:
wy, = 6.2832 rad/s) and 5(0.45) = 0.0971 (true: ¢ = 0.1),
which has error of 0.2223% and 2.8962% respectively.

III. EXPERIMENT

This section describes the experimental part of the pro-
posed algorithm.

A. Experimental setup

The experiment is conducted on a 8°x4’x3” Gantry Crane
system where the trolley is attached to a stepper motor via
a timing belt, which can be seen in Fig. 4. The inset shows
the payload with the IMU, transmitter, and power bank. The



IMU is an MPU-6050 which is used to track the angular
velocity around the y-axis. It is attached to the payload
and transfers a timestamp and the angular velocity to an
nRF24L01 transmitter with the help of an Arduino Nano.
The IMU, transmitter, and Arduino Nano are all attached
to the payload and are powered by a power bank. The
IMU’s sampling frequency is on average 48 Hz. The motion
of the trolley is constrained by the maximum number of
steps per time instant (velocity constraint). With the driver
set to 400 steps per revolution, the trolley displaces by
40 mm per revolution. For this setup, it is found that the
maximum velocity of the trolley is vy, = 240 mm/s.
Furthermore, we use the Intel RealSense Depth Camera

Fig. 4: Experimental setup of the gantry crane.

D435i. To achieve high computational speed and capture
a sufficiently wide image, we use a 848 x 100 resolution.
This provides the highest frames per second and matches
the purpose of our experiment. Since we actuate the crane
trolley only in one axis, the payload will swing only around
one axis, which solely requires a long and thin frame. The
infrared camera can capture up to 300 frames per second
(fps) while the RGB camera module is limited to 30 fps.
We decided to use the left infrared camera of the Intel
RealSense D435i, which is sufficient to detect the 6 x 6
ArUco marker. During the experiments, the infrared emitter
is disabled. The intrinsic properties of the Intel RealSense
D435i infrared camera are [19]: [fs, f,] = [427.3,427.3]
and [c,cy] = [422.4,43.8]. For the depth calculation and
therefore the Cartesian position estimation, both infrared
cameras are being used. Our tests showed that using the
Intel RealSense D435i in a Python framework results in 30
fps while using C++ results in 200 fps when purely record-
ing images without the detection algorithm. Therefore, the
ArUco detection algorithm is implemented in C++ to achieve
a higher frame rate per second during the estimation phase.
The flowchart in Fig. 5 illustrates the sequence of tasks
starting with the capture of the ArUco marker and leading
to the ultimate stepper motor control. The initial guess of
W, (0) = 7 rad/s in the experimental implementation. We set
the estimated damping ratio to O for all time.

The computation was performed on a Intel(R) Core(TM)
i7-4500U CPU @ 1.80GHz 2.40GHz with 8GB RAM using
Visual Studio 2022 and OpenCV 4.6.0. It should be men-
tioned that there is a 55 mm offset in the x-axis between the
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Fig. 5: Flowchart of data processing and control.
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Fig. 6: Estimated position measurement in x-axis with cam-
era versus real position using an ArUco marker.

center of the infrared camera and the center of the ArUco
marker.

B. Experimental results

We place the Intel Realsense D435i on the trolley and
test the intrinsic properties of the camera. We choose a
distance between the ArUco marker and the camera module
of 53.3 cm. Then, a 6 x 6 AruCo marker gets displaced
only along the x-axis from —20 to 20 cm in 21 equally
spaced increments, which are shown by the blue dots in
Fig. 6. The red-dashed line shows the position which would
be an exact match between the actual (real) displacement and
the estimated position by the camera. The blue dots align
with the red-dashed line and we conclude that the chosen
intrinsic properties of the camera module are satisfying the
position tracking along the x-axis and can be used for our
proposed algorithm. Fig. 7 shows an image of the 848 x 100
resolution image from C++ and is displayed to the user.
The authors are aware that displaying the image during
the real-time system identification has an impact on the
sampling frequency of the algorithm. Alg. 1 explains the
procedure for the tracking of the ArUco marker, the real-
time system identification, and the control via the stepper
motor. When integrating with Runge Kutta Dormand—Prince
method, we are using linear interpolation to get the marker

Fig. 7: Camera view on the payload with ArUco marker.



position between two time instances. We decided to move

Algorithm 1: Position and parameter estimation with

ArUco and crane control
Prerequisites: //Identification of intrinsic camera

properties;
//Using infrared channel in 848 x 100 resolution with
300 fps setup;
Ensure: //Initialize states z to be 0;
K =60, ¢y =600, of fr, =55, t =0;
1=0,7=0,k=1;
//global to, tl, o, T1,
while (Marker detected == True) do
//Apply velocity K to crane;
/lAssign marker center — z,, & system clock T
if (1 == 0) then
to = tl =1
| Zo=x1=2pm +0ffrmn=0;

else
to =11, t1 = T;
Tog =T1, T1 = Ty, + Offm + (t — tl — to)K;
x[0] = xo (Payload’s position);
x = fet_integration(z, t, t1 — tp);
t=t+t1 —1o;
//Estimation,;
if (t > 0.35 & t <0.6) then
L /I Use Eqgs. (21),(6),(8);

else if (t > 0.6 & kK == 1) then

k= 0;
L //Apply control algorithm to crane;

t=1+41;
| //Plot the image with recognized marker (Fig. 7)

the trolley 600 mm for 3 different cases: 1) Pulse input; 2)
closed-form based TDF for the 1st mode; 3) ArUco based
TDF for the 1st mode. Fig. 8 illustrates the velocity about
the y-axis 10 s after the completion of the maneuver. It
can be seen that the response to a pulse input causes the
largest oscillation in the Ist mode and slight oscillations
in the 2nd mode (top graph). The closed-form based TDF
for the 1st mode cancels the vibration completely for the
Ist mode but causes large oscillations in the 2nd mode due
to the aggressive maneuver (middle graph). Our proposed
controller, which is designed based on the ArUco marker
(bottom graph), almost cancels the 1st mode completely and
only excites the 2nd mode slightly. To reflect the magnitude
of the oscillations for each controller case, we make use
of the fast-fourier-transformation, which is also shown in
Fig. 8 as a single sided amplitude spectrum. It can be
seen that the ArUco proposed algorithm is minimizing the
residual vibration compared to the pulse input tremendously.
The reduction of the amplitude in the 1st mode is 92.81%
compared to a pure pulse input.

The controller that was designed by the
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Fig. 8: Angular velocity ¢ of the payload for a displacement
of 600 mm after the maneuver is completed and single sided
amplitude spectrum of different controllers.
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Fig. 9: Bode magnitude plot of closed-form and ArUco TDF.

proposed  ArUco  algorithm has the  structure:
Switch times = [0.831,1.662, 2.500, 3.331,4.162] s, and
Velocities = [60, 180, 240, 180, 60] mm/s. The rope length
to the center of the mass of the payload is 53 cm.
Thus, the switch times for the closed-form TDF are
[0.735,1.471,2.500, 3.235, 3.971] s. Fig. 9 shows the bode
plots of the controller designed in closed form and by the
ArUco marker. It can be seen that the magnitude of the
second natural frequency is much higher for the closed-form
TDF than for the ArUco one. Thus, the excitation of the
second mode is much larger, as it was shown in Fig. 8.
The damping ratios are very small, thus only the undamped
natural frequencies are illustrated. The ArUco controller
takes longer for the maneuver because the switch time is
identified as 7" = 0.831 s instead of 0.735 s. The actual 1st
natural frequency of the system is w, = 4.273 rad/s and
the estimated one is @,, = 3.779 rad/s, which is an error of
11.56% in the estimation. Note that the proposed ArUco
algorithm does not have any knowledge about the system
parameters, as it estimates the natural frequency within 0.25
s, which can be found in Table I. It can be seen that the
switch time converges from 0.923 to 0.831 s. It should be
mentioned that the user needs to approximately know where
the switching time lies because if the estimation phase starts
too late and the 7' > T, the algorithm cannot be successfully
implemented. Another burden was to align the payload’s
IMU with the direction of the motion, which is due to the
design of the experiment. Our proposed method can yield
the time-optimal results if, for instance, an undampened
system is assumed and the parameter Ay is set to 0.5.
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Time  Natural Estimated Trolley Switch
frequency  payload position  position  time
t [s] Wn, [rad/s] Z [mm)] x; [mm] T [s]
0.380 3.402 8.057 22.800 0.923
0.407 3.434 9.677 24.420 0914
0.425 3.478 10.757 25.500 0.904
0.440 3.516 11.657 26.400 0.893
0.456 3.370 13.684 27.360 0.932
0.472 3.475 14.644 28.320 0.904
0.489 3.578 15.664 29.340 0.878
0.504 3.463 17.631 30.240 0.907
0.520 3.592 18.591 31.200 0.874
0.534 3.693 19.431 32.040 0.850
0.551 3.663 24.252 33.060 0.857
0.590 3.779 24.603 35.400 0.831

TABLE I: Parameters during ArUco estimation phase.

This means, choosing a different initial velocity during the
identification phase can lead to a time-optimal solution, so
no final maneuver time increase will occur. This will be
performed in future work.

The algorithm can be easily extended to identify more than
just the first mode of the system and, for instance, reduce
the vibration in the 27¢, 37¢ .. modes. The classic method
of a vibration control is to identify the system first, design a
controller and then apply the control. This will require one
experimental run first before the vibration can be suppressed.
The errors in the estimation of the natural frequency can be
accommodated for with the design of a robust TDF, which
can easily be implemented to our algorithm. Usually an IMU
with a power source (e.g. power bank) and a transmitter
needs to be attached to the payload, while our method only
requires a QR code-like marker and a camera which can
track the marker. This offers several advantages such as non-
invasive sensing of the payload’s motion, less equipment,
battery-free tracking of the payload, and a simple setup.
An application of our method can be used for container
hubs, where stickers could be placed on containers, precision
motion control in package deliveries with quadcopters, wind
mill assemblies onshore or offshore, oil and gas industry for
pipeline mounting, or helicopter operations such as heavy
load transportation, rescue operations with rope ladders,
firefighting operations with water buckets etc.

IV. CONCLUSIONS

This work deals with adaptive precision motion control,
while the proposed algorithm estimates the natural frequency
on the fly and leads to a reduction in residual vibration
of the targeted mode. Experiments were performed as a
proof of concept for a suspended payload on a gantry
crane system. The algorithm was implemented in C++ to
enable a higher sampling rate, thus the authors would like
to stress that the identification phase happens in a quarter
of a second. Currently, the proposed method requires zero
initial conditions but can easily be extended to non-zero
initial condition scenarios. Future work will include oper-
ations such as lifting/lowering of the payload and deriving
a robust version of the real-time time-delay filter structure

via Augmented Reality. Tests will be performed to test time-
optimal precision motion algorithm and will be extended to
2D motions.
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