
Maximilian E. Ororbia1

Weitzman School of Design,
University of Pennsylvania,
Philadelphia, PA 19146

e-mail: mororbia@upenn.edu

Gordon P. Warn
Department of Civil Engineering,

The Pennsylvania State University,
University Park, PA 16802

e-mail: gpw1@psu.edu

Discrete Structural Design
Synthesis: A Hierarchical-
Inspired Deep Reinforcement
Learning Approach Considering
Topological and Parametric
Actions
Structural design synthesis considering discrete elements can be formulated as a sequential
decision process solved using deep reinforcement learning, as shown in prior work. By
modeling structural design synthesis as a Markov decision process (MDP), the states cor-
respond to specific structural designs, the discrete actions correspond to specific design
alterations, and the rewards are related to the improvement in the altered design’s perfor-
mance with respect to the design objective and specified constraints. Here, the MDP action
definition is extended by integrating parametric design grammars that further enable the
design agent to not only alter a given structural design’s topology, but also its element
parameters. In considering topological and parametric actions, both the dimensionality
of the state and action space and the diversity of the action types available to the agent
in each state significantly increase, making the overall MDP learning task more challeng-
ing. Hence, this paper also addresses discrete design synthesis problems with large state
and action spaces by significantly extending the network architecture. Specifically, a hier-
archical-inspired deep neural network architecture is developed to allow the agent to learn
the type of action, topological or parametric, to apply, thus reducing the complexity of pos-
sible action choices in a given state. This extended framework is applied to the design synth-
esis of planar structures considering both discrete elements and cross-sectional areas, and
it is observed to adeptly learn policies that synthesize high performing design solutions.
[DOI: 10.1115/1.4065488]

Keywords: design process, machine learning

1 Introduction
Design can be regarded as a problem-solving task where a solu-

tion is determined by creating and searching through a space of
possible alternatives [1]. Computational design synthesis further
develops upon this problem-solving task by using various
approaches to generate a design space and applying computational
systems to automate the synthesis and evaluation of the candidate
solutions [2–8]. Viewing design as a problem-solving task also nat-
urally lends itself to machine learning approaches, in particular,
reinforcement learning (RL)—an area in machine learning focusing
on the behavioral learning of an agent that interacts with a dynamic

environment by taking actions in order to maximize a cumulative
numerical reward [9–11]. This work contributes to the aim of for-
mulating design as a sequential decision process solved by rein-
forcement learning.
There exist a variety of computational design tools that employ

machine learning to automate design tasks and/or aid designers,
for example, by generating and evaluating design alternatives
[12–15], exploring design spaces [16], optimizing design solutions
[17–19], and mimicking the human design process [20–22]. Here,
the application of design synthesis is focused on structures with dis-
crete geometries and discrete design variables, such as, frames and
trusses, which in some engineering disciplines are limited to being
designed using standardized elements of given shape and cross-
sectional area. In this context, several reinforcement learning-based
approaches have been developed to either design the geometry
[23,24], assign discrete parameters to predefined structural forms
[25], or adjust both structural shape and element size [26]. While
each approach has particular aims and applications, this work

1Corresponding author.
Contributed by Design Automation Committee of ASME for publication in the

JOURNAL OF MECHANICAL DESIGN. Manuscript received January 4, 2024; final
manuscript received April 22, 2024; published online June 3, 2024. Assoc. Editor:
Christopher Mccomb.

Journal of Mechanical Design SEPTEMBER 2024, Vol. 146 / 091707-1Copyright © 2024 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

mailto:mororbia@upenn.edu
mailto:gpw1@psu.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4065488&domain=pdf&date_stamp=2024-06-03

presents a framework and a unique deep reinforcement learning
(DRL) network architecture for the discrete design of structural
geometry and material layout.
In Ororbia and Warn [27,28], the design synthesis of discrete

structures considering only topological actions, i.e., altering the
topology of a given configuration, was modeled as a Markov deci-
sion process (MDP) and solved using a tabular reinforcement
learning algorithm in order to validate the overall framework, lever-
aging tabular RL’s strong convergence properties. To apply the
MDP framework to larger, more representative design synthesis
problems, Ororbia and Warn [29] integrated deep reinforcement
learning into the framework through the development of a deep
neural network (DNN) that served as an approximator for the
action-value function. The benefit of the integrated DNN in the
MDP framework is that it has far fewer parameters than the dimen-
sionality of the design problem’s state and action space cardinalities
and, as such, can adeptly solve design problems with significantly
large state and action spaces, noting that in spite of the use of the
DNN, each design configuration is represented precisely. In this
paper, the MDP framework action definition is extended to
include a parametric action type so as to realize the design synthesis
of discrete structures considering both topological (geometric) and
parametric (size) alterations, i.e., generating both the topology and
parameters of structures with discrete elements and discrete cross-
sectional properties. Through topological and parametric actions,
the agent is capable of altering both the placement of elements
and nodes as well as modifying the specific properties of the ele-
ments being generated.
The development and integration of a parametric action type here

introduce additional complexity to the state and action spaces; in
particular, it exponentially increases their cardinality and introduces
diversity to the type of action that is available to the agent in a given
state. While the prior fully connected, feed-forward network DQN
implemented for designing the topology of truss and frame struc-
tures performed well [29], the integration of parametric operators
in the action definition necessitates a more refined DRL architecture
to efficiently handle the corresponding increase in both the dimen-
sionality of the problem and the complexity of the learning task. As
such, the DRL architecture presented in Ororbia and Warn [29] is
significantly extended in this paper to adeptly handle the increased
action complexity while also properly abstracting the relevant fea-
tures of a given state since elements are now also assigned specific
parameters. A hierarchical-inspired deep reinforcement learning
(HDRL) approach is developed to address the challenges of high-
dimensional and complex state and action spaces associated with
discrete structural design synthesis considering both topological
and parametric actions. The HDRL architecture uses a separate con-
troller network to determine which type of action to apply when in a
given state and utilizes both dueling and branching deep state-action
networks enabling the agent to learn how to apply specific topolog-
ical and parametric action alterations, especially when the policy
requires many state transitions and different alteration types.
Hence, this paper presents several important developments in the

DRL neural network architecture that inform the agent of a given
state’s characteristics, which is beneficial given that discrete
element properties are accounted for as design variables. The sug-
gested extensions also facilitate a robust approach for applying a
sequence of intricate topological and parametric actions. Since the
underlying elements of the MDP framework pertain to the alteration
of discrete structures with specified performance metrics, the frame-
work is relevant and applicable in other disciplines, including, for
example, aircraft [30], composite [31,32], and gearbox [33,34]
design in the disciplines of civil, aerospace, materials, and mechan-
ical engineering, respectively. The extended MDP framework is
evaluated and applied here to the design of planar truss structures
with discrete elements and discrete cross-sectional design variables
with the objective of maximizing the cumulative rewards that simul-
taneously minimizes displacement at a specified node(s) in the
design domain subject to stability and volume constraints. Here
the parametric action type considers discrete cross-sectional areas.

For each example, the agent’s design solution, final synthesized
structure, is compared to the design determined by either conven-
tional discrete or continuous optimization methods.

2 Modeling Discrete Structural Design Synthesis
as a Markov Decision Process
A Markov decision process can provide a solid mathematical

framework for modeling the design synthesis of structural
systems considering discrete elements and discrete design variables.
MDPs belong to a class of discrete-time stochastic control processes
based on the theory of multi-stage decision processes, or sequential
decision processes, and offer the ability to formulate and accommo-
date general goals, objectives, and constraints [11]. Hence, given its
flexibility, the design synthesis of structural systems can be mathe-
matically modeled as an MDP by considering structural systems as
finite graphs and actions as alterations made to the graphs. Specifi-
cally, alterations made to the connectivity of the graph, changing the
structural topology, and to the properties of the edges, changing, for
example, the volume allocated to a given element in the domain.
An undiscounted finite MDP is defined by a four-element tuple:

(S, A, P(st+1 | st , at), R(st , at)), where S is a finite set of all the
possible decision states st , A is a finite set of all valid actions at ,
P(st+1 | st , at) is the probability of transitioning to the next state
st+1 from st by taking action at , and R(st , at) is the immediate
reward from st after action at . In the context of discrete structural
design synthesis with the objective of minimizing displacement
subject to stability and volume constraints, an MDP state, st , repre-
sents a given design configuration at time t. In this work, each
design configuration in a given state st is represented as a finite
graph G, defined by the connectivity of a set of vertices and
edges as well as the parameters assigned to each edge. An action,
a ∈ A(st), is an alteration made to a given state st configuration
that results in the generation of a new design configuration (struc-
ture), forming the next state, st+1. Here, in the context of design
synthesis, once the agent takes a given action, the design determi-
nistically transitions to the next state. For a given design synthesis
problem, the goal state, i.e., the design with the least displacement
that satisfies the constraints, is unknown a priori. Therefore in
Ororbia and Warn [29], a conditional reward function was devel-
oped that encourages the agent to revisit states it has encountered
throughout its experience that have the best performance. These
states serve as estimates of the problem’s goal state until a better
performing solution is later synthesized.
The rewards are generated and assigned by a reward function,

R(st , at), and for the design problem considered here, the reward
is computed as follows:

R(st , at) =
βr(Δ(st) + Δ(s0)), ut+1 ≤ umin

βr(Δ(st)), st (continuing)
0, sT

⎧⎨
⎩ (1)

where u is a given design’s displacement at a particular nodal loca-
tion(s), Δ is the change in displacement between two states, and βr
is a parameter that scales the reward value. For continuing states, the
reward is proportional to the change in displacement u at a given
nodal location(s) of the design configuration in st with the altered
configuration’s displacement in st+1, i.e., Δ(st) = u(st) − u(st+1).
Since the best performing design (goal state) is not known a
priori, the agent is given a “bonus” reward when it visits a state
in which the displacement is less than a prior minimum encoun-
tered, umin. Specifically, the agent receives a reward that is propor-
tional to the difference between the seed configuration’s
displacement s0 and the configuration’s displacement in st+1, or, for-
mally, Δ(s0) = u(s0) − u(st+1). If the agent transitions to a terminal
state, sT , then it is assigned a zero reward. Since the reward’s mag-
nitude is in part dependent on the structural configuration’s displa-
cement, the βr coefficient is specified to scale the reward value. In
particular, the change in displacements can be quite small so they

091707-2 / Vol. 146, SEPTEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

are scaled so as to have a meaningful impact on the network
weights. For the design synthesis application considered here, the
structural performance has been normalized, hence the coefficient
is set to βr = 10 for all examples.
To further broaden the applicability of modeling the design

synthesis of discrete structures as an MDP, a parametric action
type is formulated and integrated into the action definition intro-
duced in Ororbia and Warn [28,29]. Specifically, to enable the
agent to generate both the discrete topology and assign discrete
parameters, the MDP action definition is extended to include both
available topological, Atopo(st), and parametric, A parm(st), action
sets, which are state st dependent. Hence, the set of actions for a
given state A(st) is defined as follows:

A(st) = {Atopo(st) = (ni, mj, ok), A parm(st) = (mj, P)} (2)

where the set of available topological actionsAtopo are a function of
the state’s available nodes ni, existing elements mj, and applicable
operators ok . Furthermore, the set of available parametric actions
A parm are a function of the states existing elements mj and applica-
bility of the P operator. By extending the action definition, the agent
is capable of altering both the topology (geometry) and parameters
(assigned cross-sectional parameters) of a structural configuration
in a given state. The topological action function as introduced in
Ororbia and Warn [28,29], presented below for convenience, is for-
mally defined as follows:

Atopo(st) = {(ni, mj, ok) | ni ∈ Navail.(st), mj ∈ Mallow(st , ni), ok
∈ Olegal(st , ni, mj)} (3)

where the topological action setAtopo(st) is described by three com-
ponents: (1) the selection of an available inactive node ni from a set
of available inactive nodes, Navail., in the design domain, (2) the
selection of a member mj from a set of eligible members, Mallow,
that are a part of the current design configuration, and (3) the
choice of an operator ok from a set of applicable, legal operators,
Olegal, that can add and/or remove elements. The set of inactive
nodes that are not a part of a given design configuration is referred
to as the design domain Ω. The reader is referred to Ororbia and
Warn [28] for further details pertaining to specific action rules
that prevent the synthesis of redundant configurations from
occurring.
The suggested parametric action type is inspired by generative

design grammars [7,34,35], and is specifically formulated here to
assign discrete cross-sectional area values to a given element,

although it could be generalized further to consider additional dis-
crete section properties, such as moment of inertia, or other material
properties. Since the overall MDP framework is a generative
sequential task, the number of structural elements increase after
each state transition, hence the consideration of multiple discrete
cross-sectional areas causes a combinatorial growth in the number
of possible area actions that can be assigned to a given structural
configuration if each possible element-area combination is consid-
ered. Specifically, this is proportional to the dimension of the
number of discrete areas specified in a set A, raised to the power
of the total number of eligible elements, Mallow, that make up a
given configuration; mathematically represented as dim (A)Mallow .
Therefore, to control the growth in the size and diversity of avail-
able actions an agent can take in a given state, the parametric
action is designed such that it incrementally increases the cross-
sectional area of a single selected element to the next largest
value in the specified set of areas for a given configuration. In
general, this approach reduces the total number of applicable
actions in a given state to exactly the number of elements that
make up that configuration, yet does not limit the agent’s ability
to synthesize any feasible designs.
Formally, a parametric action is defined as

A parm(st) = {(mj, P) |mj ∈ Mallow(st), ∃P :Aj <max (A)} (4)

where the parametric action set A parm(st) is defined by two compo-
nents: (1) the selection of a member mj from a set of eligible ele-
ments Mallow that exist in a state st , and (2) the application of a P
operator given that the selected mj element’s area is less than the
maximum value in the set of specified areas A. For a given state,
if all element areas are assigned the maximum value in the specified
area set, then the agent can not take a parametric action. If the
selected element’s area is less than the maximum area in the set,
a P operator can be applied, incrementally increasing the selected
element’s current assigned parameter to the next largest value in
the specified set of parameters.
Illustrative examples of the application of both parametric and

topological actions defined in Eq. (2) are presented in Fig. 1. In par-
ticular, Fig. 1(a) depicts how, for a given seed configuration with all
elements initially assigned the minimum cross-sectional areas con-
sidered in the specified set A, there are three available parametric
actions. These parametric actions are available for this specific
state since there are three elements m1, m2, and m3, all assigned
with the minimum cross-sectional area A1. Action a1 selects

Fig. 1 Example of (a) parametric actions: representation of a finite graph at a state st and the
application of three applicable parametric actions, a1, a2, and a3, and the associated new
states st+1 with increased element areas indicated by the thicker line width and (b) topological
actions: adapted from Ororbia and Warn [28,29] altering the finite graph’s geometry

Journal of Mechanical Design SEPTEMBER 2024, Vol. 146 / 091707-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

element m1 and applies a P operator, which incrementally increases
the element’s area from A1 to next largest value in the set A, A2, and
transitions the agent from state st to state st+1. Similarly, actions a2
and a3 selects elements m2 and m3, respectively, and applies a P
operator, which increases the elements’ area from A1 to A2, and tran-
sitions the agent from state st to state st+1. In Fig. 1(b), all possible
topological actions that can be taken considering a design domain
with a single inactive node are illustrated, which also shows the
effect of applying D and T operators. A T operator removes a
selected element and connects a newly activated node, selected
from available inactive nodes in the domain, with other active
nodes. A D operator activates a new node and connects it to the
current configuration without removing an element.
In general, both topological and parametric actions are available

to the agent in a given state. The definition of terminal state, sT , is
extended from Ororbia and Warn [28]. In particular, if there are no
available topological and parametric actions then the state is consid-
ered terminal. In the context of design synthesis of discrete struc-
tures, a state is also considered terminal if a specified constraint is
violated. Additionally, since the overall MDP framework represents
design as a generative task, the seed configuration, s0, is specified as
a sparsely connected structure with discrete elements, each initially
assigned the minimum area value considered in the discrete set,
allowing for all possible area combinations to be potentially consid-
ered throughout the design synthesis process. Also, when a topolog-
ical action is taken, the newly generated elements are assigned with
the minimum area value in the specified set.

3 A Hierarchical-Inspired Deep Reinforcement
Learning Approach for Discrete Design Synthesis
While the initial deep Q-network implementation for topological

design synthesis in Ororbia and Warn [29] performed well overall,

the inclusion of parametric actions substantially increases the size of
both the state and action spaces. Not only does the number of
actions that are available to the agent in a given state increase,
but the policy required to generate high performing design solutions
will invariably entail an intricate sequence of actions, varying in
type. Furthermore, individual states can no longer be represented
by their topologies alone, since each element in a given configura-
tion is assigned a specific cross-sectional parameter. These exten-
sions to the MDP necessitate a refined DQN architecture so as to
effectively and adeptly solve the discrete structural design synthesis
learning task with parametric actions. As such, the previously
implemented DQN is extended to include a new state feature repre-
sentation and combines several approaches to inform the agent of
what action type to apply when in a given state, to guide the
agent experiencing and applying intricate topological actions, and
to aid the agent in converging to the best performing design solution
that it encounters during training.
A hierarchical network architecture that is inspired from feudal

reinforcement learning [36,37] is developed in order to reduce the
networks’ output dimensionality, to increase the diversity of
actions experienced by the agent during training, and to better
inform the agent on when to apply either a topological or a paramet-
ric action. Specifically, three separate networks are designed to
follow a hierarchy and are assigned individual “roles”,
or sub-tasks, with respect to the action space. One network, referred
to as the controller network, is trained to learn what specific action
type to apply when in a given state. The other two networks are
associated with either learning how to apply specific topological
actions, defined in Eq. (3), or parametric actions, defined in Eq.
(4), and both networks are referred to by the specific action type
that they learn to apply.
For problems with large action spaces, dueling network architec-

tures [38] have been shown to be effective at discerning valuable
states without having to learn the value of each action under each

Fig. 2 Illustration of the HDRL architecture developed for the discrete design synthesis MDP
framework. The controller network is trained to approximate the state-action value function
associated with the type of action that the agent can take in a given state and dictates
whether that action is taken. The parametric and topological networks are trained to approx-
imate the state-action values associated with their respective specific action. Both the control-
ler and parametric networks utilize a dueling DQN and the topologic network implements a
branching dueling Q-network.

091707-4 / Vol. 146, SEPTEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

state, achieving high-quality policies [39]. Hence, in this work a
dueling DQN approach is implemented for each component
network. Additionally, the agent’s ability to experience a diverse
number of topological alterations, as it did when solely being
trained to design the topology of configurations, decreases, since
it is able to select between taking either topological or parametric
actions. Therefore, to assist the agent in experiencing more
diverse topological actions during training, an action branching
DRL approach [39,40] is also developed and implemented for the
topologic network. Finally, since the agent will experience a
variety of different action types throughout its training, this work
suggests a simple mechanism based on prioritized experience
replay [41] to enable the agent to converge to the design configura-
tion with the best performance it has encountered during training.
Figure 2 provides an illustration of the HDRL architecture, includ-
ing the extensions and various approaches discussed as a unified
DRL architecture, referred to herein as the MDP-HDRL framework.
Additional details pertaining to the architecture’s particular compo-
nents are discussed in the subsequent subsections.

3.1 Feature Representation. In the context of the design
synthesis of discrete structures considering both the topological
and parametric actions, a state st can be described by its active ele-
ments and the parameters assigned to those elements. The feature
set defined in Ororbia and Warn [28] is insufficient to distinguish
between states when only a parametric action is taken. This is due
to the fact that the geometry, element connectivity, remains the
same during the state transition, but the specific parameter assigned
to an element has changed. Thus to inform the agent with an accu-
rate description of a given state, the specific feature values, repre-
sented as an input vector x, indicate the presence of existing
elements and the specific parameter values assigned to those ele-
ments. For the numerical examples presented in Sec. 4, the param-
eter values assigned to elements are associated with discrete
cross-sectional areas chosen from a specified set A. To assist with
the training and performance of the networks in the MDP-HDRL
framework, the input features for the topologic and parametric net-
works are standardized through binary encoding and normalized
respectively.

3.2 Hierarchical Deep Reinforcement Learning. If the
state-action values associated with parametric actions are directly
considered as outputs in the prior DQN architecture [29], several
challenges are introduced. The number of actions that the agent
can select from, as well as their associated state-action output
Q-values, substantially increase. This increase also varies through-
out the episodic task; specifically as the agent takes topological
actions that synthesize configurations with more elements, more
parametric actions become available. Furthermore, the agent may
not experience taking parametric actions early in the design synth-
esis process since there are generally fewer elements in the initial
structural configurations and more topological actions are available
due to the presence of more inactive nodes in the design domain.
Also, having the agent capable of selecting among both topological
and parametric actions can affect the model training, potentially
confusing the agent on what type of action to take in a given
state. These challenges can be addressed by separately training net-
works to identify the action type to take and how to apply the spe-
cific action. To overcome these challenges, the approach taken here
is inspired from feudal reinforcement learning [36,37] by applying a
hierarchy to the learning task, where the task is divided into sub-
tasks that are managed by a controller. In certain applications, hier-
archical architectures can lead to improved exploration through
increased and diversified experiences enabled by the controller
directly selecting between both action types and faster learning
since individual networks are focused on learning their sub-tasks.
In the context of discrete design synthesis, topological and paramet-
ric actions are represented as sub-tasks and a controller network is

implemented to determine the action type to apply when in a given
state.
As illustrated in Fig. 2, a controller network is used to determine

the state-action values associated with taking a topological or para-
metric action,Qtopo andQparm respectively. Depending on the action
selected by the agent, determined by using the controller network,
the topological or parametric state-action values are approximated
using either the associated topologic network or parametric
network. After the selection of the action type and application of
the corresponding topological or parametric actions, the loss and
gradient information are calculated to update each of the network’s
weights using the reward function defined in Eq. (1) and introduced
in Ororbia and Warn [29]. The network associated with the action
type that is not applied is not updated during this transition. In
general, this imposed hierarchy appropriately trains the controller
network to make decisions on when to apply either a topological
or parametric action. The separate topologic and parametric net-
works are also trained to apply the appropriate action from their
defined sets without being influenced by the other action definition
components. Details pertaining to each network are discussed in the
following subsection.

3.3 On the Branching Dueling Q-Network. A dueling
network architecture [38] is used for each of the component net-
works in the hierarchy since the discrete design synthesis problems
considered have large action spaces and the feature set includes
additional information describing the state’s assigned parameters.
Dueling networks offer an efficient alternative to estimating the
value of every action for a certain state [39]. The dueling network
augments the standard DQN network architecture by incorporating
a layer prior to the output layer to separately estimate the state value
function, V(st; θ), and the action advantage function, A(st , at ; θ).
Unlike a standard DQN, the dueling network’s additional evalua-
tion of the state value function enables the agent to better discern
states that may have the same element connectivity but different
assigned element parameters. Both the state value and action advan-
tage functions are parameterized with weights θ. These two func-
tions are then aggregated to produce the output layer state-action
value function Q(st , at; θ).
Formally, the state-action value function Q(st , at; θ) is deter-

mined by combining the state value branch V(st; θ) and the advan-
tage branch A(st , at ; θ) as

Q(st , at; θ) = V(st; θ) + A(st , at ; θ)

−
1

dim (A(st))

∑
at+1

A(st+1, at+1; θ) (5)

where A(st) is the set of actions corresponding to the specific
network used in the hierarchy. In general, this network augmenta-
tion enables the agent to be more effective at discerning valuable
states without having to learn the value of taking each action for
each state, ultimately resulting in high-quality policies [39].
However, as discussed, the number of actions experienced by the
agent during training is reduced since it can choose between
taking topological and parametric actions. While there exist a
variety of exploration techniques [42], they introduce additional
challenges associated with data storage and can not be readily
implemented due to the discrete and unique nature of the actions
considered. Accordingly, to assist the agent in experiencing topo-
logical actions and learning which are best to apply in a given
state, the dueling network architecture used for the topologic
network is further augmented.
An action branching architecture, also referred to as a branching

dueling Q-network (BDQ) [40], is adapted and implemented for the
topologic network in the hierarchy. BDQs have been shown to
effectively scale to learning tasks with increasing action dimension-
alities and offer an approach for the agent to better explore the com-
ponents that make up the topological action defined in Eq. (3). The
adapted BDQ used for the topologic network, illustrated in Fig. 2,

Journal of Mechanical Design SEPTEMBER 2024, Vol. 146 / 091707-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

assigns sub-networks to each of the individual topological action
components, selection of an inactive node ni, selection of an eligible
element mj, and application of an operator ok = {T , D}. These sub-
networks, or branches, are referred to here with respect to the spe-
cific topological action component that they estimate in the advan-
tage function, for example, the branch that estimates advantage
function An associated with the selection of an inactive node is
referred to as the “node-net.” A common state value Vtopo is esti-
mated and aggregated with each of the sub-network’s advantage
functions to determine their respective state-action values using
Eq. (5). A topological action atopo is determined by combining
the particular components selected in each of the sub-networks,
where the action is defined as atopo = (ni, mj, ok). After the action
is applied and the reward is received, the BDQ is updated via back-
prop using the following loss function:

L =
1
N

∑
d

(r(st+1) + γ max
ad∈Atopo(st+1)

Q(st+1, at+1; θd) − Q(st , at; θd))2

(6)

where N is the number of action components, which, for the defined
topological action N = 3, and d refers to the specific action compo-
nent considered. Since each sub-network is associated with a spe-
cific applicable topological action component, during training,
where an ε-greedy policy is used, the agent will randomly select
from each of the individual action components, thus increasing
the variety of topological actions explored. In the broader context
of the hierarchy, this is beneficial since, when the controller
network decides to use a topological action during training, the
agent has an increased chance of applying a topological action
that it has not yet experienced.

3.4 Episodic Replay for Discrete Design Synthesis. As a
design learning task, the agent’s objective is to learn a policy that
maximizes its accumulated reward, which synthesizes a high per-
forming design solution. The increased state and action spaces
that come as a result of this paper’s design problem formulation,
would suggest that the agent be trained for an extended period of
time in order to learn the optimal policy. However, to enable
more efficient learning and convergence to the policy that synthe-
sizes the high performing design solution, an approach to update
the network parameters is suggested that is inspired from prioritized
experience replay [41]. In particular, to assist the agent in converg-
ing to the policy that synthesizes the design with the best perfor-
mance that it has experienced during training, a memory bank, or
buffer, is used to store the trajectory, i.e., the set of transitions, asso-
ciated with the policy that synthesized the best performing design
solution observed so far. The buffer is continually wiped and
updated with a new trajectory during training whenever the agent
synthesizes a design that outperforms the design currently stored
in the “best trajectory” buffer. At a specified point in training, in
general, when the ε-greedy exploration probability has decayed sig-
nificantly, the agent separately updates its HDRL network weights
using the trajectory stored in the buffer, which is referred to here as
optimal experience replay updates.

4 Numerical Examples
This section applies the MDP-HDRL framework to four different

design synthesis numerical examples, each involving the design of a
planar truss structure. The design problem’s objective is to synthe-
size a truss considering both topology generation and assigned
cross-sectional areas that maximizes the cumulative reward and
simultaneously minimizes the displacement at a specified noda
location(s) for a given external force(s), subject to stability and
volume constraints. For all examples, every structural configuration
that is synthesized is represented as a finite graph and the length of
each element is determined by its nodal connectivity. In the subse-
quent figures, the nodes marked with triangles represent the pin

supporting points and the nodes with arrows represent the location
of the applied force(s). In all examples, the displacement for synthe-
sized structures is evaluated at the nodal location of the applied
force. For simplicity, structural parameter values are assigned
such that the results of the linear finite element analysis are non-
dimensional. With respect to the planar trusses, element local stiff-
ness matrices, kele, are assembled assuming an elastic modulus of
E = 103. A set of discrete cross-sectional areas A is specified for
each example.

4.1 Experimental Setup. The HDRL architecture, illustrated
in Fig. 2, is used in an online setting for each example. To evaluate
the MDP-HDRL framework, five independent experimental trials
are conducted. For each trial conducted, the agent is trained starting
from a different, random initialization of network weights sampled
from a uniform distribution. Each network has two hidden, fully-
connected layers with hyperbolic tangent (tanh) activation func-
tions. By considering network capacity and computational
resources, all hidden layers have 128 neurons and the output
layer for each has a number of neurons equal to the total number
of possible actions associated with the respective network. For
example, the controller network has two outputs respectively asso-
ciated with the value function of either taking a parametric action or
a topologic action. Since not all actions are valid, the output layer
for each network is masked based on the given state such that the
agent is only able to select from a set of output Q-values related
to applicable actions. The network parameters (θ) are updated
using root mean squared propagation (RMSprop) optimization
[43] with a learning rate of 0.001.
The agent follows an ε-greedy behavioral policy where the explo-

ration rate for each trial is linearly decayed over a specified window
of episodes, and varies between examples since each has different
state and action space cardinalities. For all examples, the explora-
tion probability is decayed from 90% exploration and 10% exploi-
tation (ε = 0.9) to 5% exploration and 95% exploitation (ε = 0.05)
until the last 1000 final training episodes (where the exploration
probability is held constant at 5% for the remaining episodes).
The optimal experience replay updates are applied to the last
10,000 episodes for each example. In examples 1 and 2, the agent
is trained for 30,000 episodes, on average taking 1.8 and 2.3 h,
respectively. The agents in examples 3 and 4 are trained for
50,000 episodes, respectively taking on average 5.3 and 6.2 h
owing to the increase in the dimesionality of the state and action
spaces. The computational times reported include initialization,
training, inference, model evaluations, and pre/post-processing
and are with respect to a DELL Precision 7920 Tower: Intel(R)
Xeon(R) Platiunum 8168 CPU @ 2.70GHz, 24 Cores with 0.5
TB RAM. The HDRL agent is evaluated based on its ability to
learn an optimal policy and the final performance of the design solu-
tion synthesized according to that policy. Using a moving average
over 100 points, the HDRL agent’s learning is captured for each
example by plotting the displacement of the final synthesized, non-
terminal structural configuration after every ten episodes for all
trials, referred to as the displacement performance.

4.2 Example 1: An Incline-Loaded Michell Truss. The
design problem attributes and parameters, including the nodal
design domain Ω, seed configuration s0, support conditions, and
externally applied loads f , are presented in Fig. 3(a). Two discrete
cross-sectional areas A = {3, 5} are considered. Both a stability and
volume constraint of Vcnst = 750 are considered.
The MDP-HDRL framework’s performance is presented in

Fig. 3(b) where the displacement of the final synthesized structural
configuration associated with the ultimate, non-terminal state in the
learned policy after every ten episodes for all trials, is plotted. The
overall decrease in displacement performance in Fig. 3(b) illustrates
that the agent is effectively learning policies that synthesize high
performing design solutions with small displacements relative to
the seed configuration.

091707-6 / Vol. 146, SEPTEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

Fig. 3 (a) Example 1’s 5 × 4 “Michell” design domain Ω, seed configuration s0, specified volume constraint of
Vcnst = 750, and set of two discrete cross-sectional areas A= {3, 5}, (b) the MDP-HDRL framework’s performance
based on the agent following a greedy policy with respect to the HDRL network’s current approximation of the
state-action value function. The displacements of the synthesized structure prior to the terminal state sT for the five indi-
vidual trials are plotted as well as their mean and standard deviation. The agent learns the policies that synthesize high
performing design solutions as indicated by the decrease of the displacement performance, and (c) the MDP-HDRL
framework agent’s learned optimal policy where discrete cross-sectional areas are depicted by the elements color, spe-
cifically, the light gray and solid black elements represent A= 3 and A= 5, respectively. Action components taken at
each state are indicated by highlighted domain node, dashed selected element, and listed operator underneath state
illustration. The synthesized optimal design under state s5 closely resembles the discrete solution determined in Acht-
ziger and Stolpe [44].

Journal of Mechanical Design SEPTEMBER 2024, Vol. 146 / 091707-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

The agent’s learned optimal policy, determined for all trials con-
ducted, is illustrated in Fig. 3(c). The areas assigned are depicted by
the elements varying shades of gray, where light gray represents the
minimum area in the set A1 = 3 and solid black represents the
largest area A2 = 5. Numerical values of the identified element
cross-sectional areas are also shown adjacent to the corresponding
element in the final synthesized design in Fig. 3(c). The agent’s
learned policy demonstrates the MDP-HDRL framework’s ability
to appropriately discern and apply topological and parametric
actions. In particular, the agent learns to first take a topological
action which synthesizes the design configuration to establish the
general load path, and then it learns to take parametric actions there-
after to increase the elements’ areas, increasing the overall structural
stiffness. In other words, the learned optimal policy first established
an efficient load path, then allocates volume to elements in this path
so as to minimize the displacement at the specified node. The
agent’s learned policy also resembles the traditional structural engi-
neer’s design process, in which a general layout is determined prior
to detailing the structural elements.
As further qualitative validation, the synthesized design solution

is compared to the discrete Michell solution in Achtziger and Stolpe
[44]. While the agent’s design solution can not be directly compared
since the current MDP-HDRL framework does not consider cross-
ing elements and varying support conditions, both subject of future
work, the solutions closely resemble each other based on their
topologies and general allocation of area. The MDP-HDRL frame-
work’s agent only evaluated an average of 2911 total model evalu-
ations out of 1 × 105 design configurations in the state space. The
complete state space was only generated to track the agent’s perfor-
mance and is not needed for the design synthesis learning task.

4.3 Example 2: A Single-Load Truss. This example’s design
problem attributes and parameters are presented in Fig. 4(a). The
design domain and seed configuration considered for this example
are the same as the one used in Ororbia and Warn [28]. However,
here the design problem also includes a set of three discrete cross-
sectional areas A = {1, 2, 3} for the agent to choose from. Addi-
tionally, the volume constraint is increased to Vcnst = 220 due to
the ability of the agent to assign larger cross-sectional area values
to individual elements. The stability constraint for this example is
the same as in the prior. Due to the combinatorial increase in
states, resulting from the inclusion of parametric choices, the feasi-
ble design space was not exhaustively evaluated due to the exces-
sive computational effort required. Alternatively, the size of the
state space was approximated based of the number of feasible
designs generated using just topological actions and accounting
for the average number of elements generated at each step. This
approximation approach is also used for the subsequent examples.
The state space for this example is made up of approximately 2 ×
106 designs, which is a significant increase from an example with
the same design domain and seed configuration that considered
only topological actions and having a state cardinality of 1058.
This significant increase demonstrates how the discrete design
problem becomes more challenging when parametric actions are
included, even when considering a modest number of discrete areas.
The MDP-HDRL framework’s performance is presented in

Fig. 4(b) where the displacement of the final synthesized structural
configuration associated with the ultimate, non-terminal state in the
learned policy after every ten episodes for all trials, is plotted. From
Fig. 4(b), the agent effectively learns policies that synthesize high-
performing design solutions, indicated by the decrease in displace-
ment performance, relative to that of the seed configuration.
The agent’s learned optimal policy, determined for all trials con-

ducted, is illustrated in Fig. 4(c). The areas assigned are depicted by
the elements varying shades of gray, where light gray represents the
minimum area in the set A1 = 1, dark gray represents A2 = 2, and
solid black represents the largest area A3 = 3. Numerical values of
the identified element cross-sectional areas are also shown adjacent
to the corresponding element in the final synthesized design in

Fig. 4(c). The agent’s learned policy again demonstrates the
MDP-HDRL framework’s ability to appropriately discern and
apply topological and parametric actions. In particular, the agent
learns to first take a topological action which synthesizes the
design configuration to establish the general load path, and then it
learns to take only parametric actions thereafter to increase the ele-
ments’ areas, increasing the overall structural stiffness. As further
qualitative validation, the synthesized design solution is compared
to the continuum solution determined using TopOpt [45]. The
MDP-HDRL framework’s agent only evaluated an average of
22,090 total model evaluations out of ≈ 2 × 106 design configura-
tions in the state space.

4.4 Example 3: A Single-Load Bridge. The design problem
attributes and parameters are presented in Fig. 5(a) for this
example. The same design domain and seed configuration that
were used in example 5 of Ororbia and Warn [28] are used here
with the notable exception that this example considers two discrete
cross-sectional areas A = {1, 2} (or two choices). Both a stability
and volume constraint of Vcnst = 430 are considered. The state
space for this example is made up of approximately 2 × 106 designs.
The MDP-HDRL framework’s performance is presented in

Fig. 5(b) where the displacement of the final synthesized structural
configuration associated with the ultimate, non-terminal state in the
learned policy after every ten episodes for all trials, is plotted. As
observed in Fig. 5(b), the agent effectively learns policies that
synthesize high performing design solutions, as indicated by the
decrease in displacement performance, relative to that of the seed
configuration.
The agent’s learned optimal policy, determined for all trials con-

ducted, is illustrated in Fig. 5(c). Again, the agent learns a policy
that initially takes actions that alter the topology of the seed struc-
ture before taking parametric actions to increase element areas.
The resulting design configuration in state s6 also makes practical
sense from a structural engineering perspective, where the outer ele-
ments, making up the top chord of the truss’ arch, are assigned the
larger areas. Again as further qualitative validation, the synthesized
design solution is compared to the continuum solution in Fig. 5(c)
determined using TopOpt [45]. Notably, the MDP-HDRL frame-
work’s agent evaluated an average of 18, 837 total model evalua-
tions out of ≈ 2 × 106 design configurations in the state space.

4.5 Example 4: A Multiple-Load Truss. The design problem
attributes and parameters, similar to example 3 in Ororbia and
Warn [28], are presented in Fig. 6(a) for this example. This
example considers two discrete cross-sectional areas A = {1, 2}
choices. Both a stability and volume constraint of Vcnst = 365 are
considered. The state space for this example is considerably large,
made up of approximately 4 × 106 designs.
The MDP-HDRL framework’s performance is presented in

Fig. 6(b) where the displacement of the final synthesized, non-
terminal structural configuration after every ten episodes for all
trials, is plotted. As observed in Fig. 6(b), the agent effectively
learns policies that synthesize high performing design solutions,
as indicated by the decrease in displacement performance, relative
to that of the seed configuration.
The agent’s learned policy that synthesizes the design with the

least displacement across all trials is illustrated in Fig. 6(c). Impres-
sively, the agent is capable of learning this intricate policy which
requires taking nine actions, the first three being topological
actions. Also, the first topological action taken to transition the
agent from s0 to s1 and the first parametric action taken to transition
the agent from s3 to s4 synthesizes a design with worse displace-
ment than in the prior state, demonstrating that the agent can
adeptly learn policies that may require taking actions that initially
result in a worse performing design in order to synthesize a
higher performing design solution over longer time horizons.
This policy was determined by the agent for 80% of the trials con-
ducted. The other policy resulted in a configuration with a

091707-8 / Vol. 146, SEPTEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

displacement of u = 0.0198 and volume v = 348.5 which is slightly
greater than the displacement of the truss synthesized in state s9 in
the policy illustrated in Fig. 6(c) and significantly less than the
seed’s displacement. The synthesized design solution under state
s9 generally matches the continuum design solution determined
using TopOpt [45], also shown in Fig. 6(c). The MDP-HDRL
framework’s agent notably evaluated an average of 75, 941 total
model evaluations out of ≈ 4 × 106 design configurations in the
state space.

5 Concluding Remarks

To further broaden the applicability of design synthesis of struc-
tures to include both discrete elements and discrete cross-sectional
properties, this paper presents an MDP framework that considers
both topological and parametric actions. This extension of the
action definition also necessitated a significant refinement and
development of the hierarchical deep reinforcement learning archi-
tecture inspired by feudal learning in order to address the increased

Fig. 4 (a) Example 2’s 4× 3 design domainΩ, seed configuration s0, specified volume constraint of Vcnst = 220, and set of three
discrete cross-sectional areas A= {1, 2, 3}, (b) the MDP-HDRL framework’s performance based on the agent following a greedy
policy with respect to the HDRL network’s current approximation of the state-action value function. The displacements of the
synthesized structure prior to the terminal state sT for the five individual trials are plotted as well as their mean and standard
deviation. The agent learns the policies that synthesize high performing design solutions as indicated by the decrease of the
displacement performance, and (c) theMDP-HDRL framework agent’s learned optimal policy. Action components taken at each
state are indicated by highlighted domain node, dashed selected element, and listed operator underneath state illustration.
Assigned discrete cross-sectional areas are depicted by the elements color, specifically light gray represents the minimum
area in the set A= 1, dark gray represents A= 2, and solid black represents the largest area A= 3. The synthesized optimal
design under state s7 closely resembles the continuum solution, included to the right of s7, determined using TopOpt [45].
Similar to the large area assignment to the left most elements in the design under state s7, the continuum solution also
assigns more volume to similar locations in the domain.

Journal of Mechanical Design SEPTEMBER 2024, Vol. 146 / 091707-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

size and action space complexity. A set of features were developed
to accurately describe a given design configuration’s topology and
element parameters. Particular component networks were devel-
oped and assigned for determining the action type. The specific
applied actions were also implemented with dueling deep
Q-network structures in order to achieve efficient generalization
over large state and action spaces. To enable the agent to experience
a variety of topological actions during training, a branching action
neural structure was formulated for the topological network within
the modular, hierarchical model. Lastly, a prioritized experience
replay inspired approach, which is referred to as the optimal expe-
rience replay, was developed to aid the agent in learning and

converging to the policy that synthesizes the best performing
design that it experiences throughout training.
Through the application to the design synthesis of discrete planar

truss structures, considering parametric and topological actions, it
was observed that the MDP-HDRL framework performed well,
i.e., synthesized high performing designs that qualitatively agreed
with those obtained from analogous discrete and continuum prob-
lems, for each of the different numerical examples with significantly
large state space cardinalities. For all examples, the learned optimal
policy first establishes an efficient load path, then allocates volume
to elements in this path so as to minimize the displacement at the
specified node. This sequence of establishing the load path, then

Fig. 5 (a) Example 3’s 5 × 5 “bridge” design domain Ω, seed configuration s0, specified volume constraint of Vcnst = 430, and
set of two discrete cross-sectional areas A= {1, 2}, (b) the MDP-HDRL framework’s performance based on the agent following a
greedy policy with respect to the HDRL network’s current approximation of the state-action value function. The displacements
of the synthesized structure prior to the terminal state sT for the five individual trials are plotted as well as their mean and stan-
dard deviation. The agent learns the policies that synthesize high performing design solutions as indicated by the decrease of
the displacement performance, and (c) the MDP-HDRL framework agent’s learned optimal policy. Assigned discrete cross-
sectional areas are depicted by the elements color, specifically, light gray represents the minimum area in the set A= 1 and
solid black represents the largest area A= 2. The synthesized optimal design under state s6 closely resembles the continuum
solution at the bottom right, determined using TopOpt [45]. The volume allocation in the continuum solution matches the
element placement and area assignment (larger areas assigned to the outer chord, arch elements) in the design under state s6.

091707-10 / Vol. 146, SEPTEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

Fig. 6 (a) Example 4’s 5 × 5 design domain Ω, seed configuration s0, specified volume constraint of Vcnst = 365, and set of two dis-
crete cross-sectional areas A= {1, 2}, (b) the MDP-HDRL framework’s performance based on the agent following a greedy policy
with respect to the HDRL network’s current approximation of the state-action value function. The agent learns the policies that
synthesize high performing design solutions as indicated by the decrease of the displacement performance, and (c) the
MDP-HDRL framework agent’s learned optimal policy. Assigned discrete cross-sectional areas are depicted by the elements
color, specifically light gray represents the minimum area in the set A= 1 and solid black represents the largest area A= 2. The
synthesized optimal design under state s9 generally matches the continuum design solution’s volume allocation, resembling the
same load path, determined using TopOpt [45].

Journal of Mechanical Design SEPTEMBER 2024, Vol. 146 / 091707-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

allocating volume, or sizing the elements, in general, agrees with
the historical and conventional approach to structural design
learned by human designers over decades of practice. Furthermore,
the MDP-HDRL framework adeptly learned optimal policies even
when the policy required the agent to take initial actions that
resulted in poor performing design configurations, yet were
required in order to synthesize the best performing configuration
in the long run. For all examples, it was observed that the
MDP-HDRL framework requires significantly few finite element
model evaluations in order to learn a policy that synthesizes a
high performing design solution in relation to each problem’s
state space cardinality.
Beyond the contributions of this paper, the MDP framework is

general such that other methodological enhancements and develop-
ments for other applications are possible, although outside of the
scope of this work. For example, refinements to the actions and
rewards could expand the applicability of the suggested
MDP-HDRL framework and enable it to be readily benchmarked
to established discrete optimization approaches. Also, the design
domain’s nodal grid dependency could be relaxed. Typically this
nodal grid dependency can be relaxed by refining the mesh,
decreasing the node spacing, and increasing the element connectiv-
ity; however, this generally is achieved at the expense of increasing
the state and action space as well as the computational cost to obtain
a high performing design solution. The ability to connect to a node
placed at any point in the design domain, not only at fixed points,
could alleviate the mesh dependency without adding any, or signif-
icant, computational cost. Additionally, there are many suitable
deep reinforcement learning techniques that can readily accommo-
date continuous actions that could be explored and incorporated into
the framework. These topics are a part of future work.
Overall, the potential enhancements that could be made to the

MDP-HDRL framework and other unknown, yet complementary
research applications can lead to fully automated as well as interac-
tive approaches, that assist designers in directly generating discrete
design solutions that offer new structural forms, particularly when
designing structures constructed from standardized sections/ele-
ments as with steel and timber. These new structural designs may
also have the potential to reduce the consumption of natural
resources and hence yield positive environmental impacts.

Acknowledgment
Gordon P. Warn acknowledges the support of the U.S. National

Science Foundation under CMMI Grant No. 2322853. All opinions,
findings, and conclusions expressed in this paper are those of the
authors and do not necessarily reflect the views of the sponsor.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request.

References
[1] Stiny, G., and Gips, J., 1980, “Production Systems and Grammars: A Uniform

Characterization,” Environ. Plann. B: Plann. Des., 7(4), pp. 399–408.
[2] Shea, K., and Cagan, J., 1999, “Languages and Semantics of Grammatical

Discrete Structures,” AI EDAM, 13(4), pp. 241–251.
[3] Antonsson, E. K., and Cagan, J., 2005, Formal Engineering Design Synthesis,

Cambridge University Press, Cambridge.
[4] Chakrabarti, A., 2013, Engineering Design Synthesis: Understanding,

Approaches and Tools, Springer Science & Business Media, London.
[5] Campbell, M. I., and Shea, K., 2014, “Computational Design Synthesis,” AI

EDAM, 28(3), pp. 207–208.

[6] Hooshmand, A., and Campbell, M. I., 2016, “Truss Layout Design and
Optimization Using a Generative Synthesis Approach,” Comput. Struct., 163,
pp. 1–28.

[7] Königseder, C., and Shea, K., 2016, “Visualizing Relations Between
Grammar Rules, Objectives, and Search Space Exploration in Grammar-
Based Computational Design Synthesis,” ASME J. Mech. Des., 138(10),
p. 101101.

[8] Mata, M. P., Ahmed-Kristensen, S., and Shea, K., 2019, “Implementation of
Design Rules for Perception Into a Tool for Three-Dimensional Shape
Generation Using a Shape Grammar and a Parametric Model,” ASME J. Mech.
Des., 141(1), p. 011101.

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., and Ostrovski, G., 2015,
“Human-Level Control Through Deep Reinforcement Learning,” Nature,
518(7540), p. 529.

[10] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., and Lanctot, M.,
2016, “Mastering the Game of Go With Deep Neural Networks and Tree
Search,” Nature, 529(7587), p. 484.

[11] Sutton, R. S., and Barto, A. G., 2018, Reinforcement Learning: An Introduction,
MIT Press, Cambridge.

[12] Burnap, A., Liu, Y., Pan, Y., Lee, H., Gonzalez, R., and Papalambros, P. Y., 2016,
“Estimating and Exploring the Product Form Design Space Using Deep
Generative Models,” International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, 50107.

[13] Dering, M. L., and Tucker, C. S., 2017, “Generative Adversarial Networks for
Increasing the Veracity of Big Data,” IEEE International Conference on Big
Data (Big Data), pp. 2595–2602.

[14] Dering, M. L., and Tucker, C. S., 2017, “Implications of Generative Models in
Government,” AAAI Fall Symposium Series.

[15] Vermeer, K., Kuppens, R., and Herder, J., 2018, “Kinematic Synthesis Using
Reinforcement Learning,” International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, 51753.

[16] Shu, D., Cunningham, J., Stump, G.,Miller, S.W., Yukish,M. A., Simpson, T.W.,
and Tucker, C. S., 2020, “3D Design Using Generative Adversarial Networks and
Physics-Based Validation,” ASME J. Mech. Des., 142(7), p. 071701.

[17] Yu, Y., Hur, T., Jung, J., and Jang, I. G., 2019, “Deep Learning for Determining a
Near-Optimal Topological Design Without Any Iteration,” Struct. Multidiscipl.
Optim., 59(3), pp. 787–799.

[18] Jang, S., Yoo, S., and Kang, N., 2022, “Generative Design by Reinforcement
Learning: Enhancing the Diversity of Topology Optimization Designs,”
Computer-Aided Design, 146, p. 103225.

[19] Sun, H., and Ma, L., 2020, “Generative Design by Using Exploration Approaches
of Reinforcement Learning in Density-Based Structural Topology Optimization,”
Designs, 4(2), p. 10.

[20] Raina, A., McComb, C., and Cagan, J., 2019, “Learning to Design From Humans:
Imitating Human Designers Through Deep Learning,” ASME J. Mech. Des.,
141(11), p. 111102.

[21] Puentes, L., Raina, A., Cagan, J., and McComb, C., 2020, “Modeling a
Strategic Human Engineering Design Process: Human-Inspired
Heuristic Guidance Through Learned Visual Design Agents,” Proceedings of
the Design Society: DESIGN Conference, 1, pp. 355–364.

[22] Raina, A., Puentes, L., Cagan, J., and McComb, C., 2021, “Goal-Directed Design
Agents: Integrating Visual Imitation With One-Step Lookahead Optimization for
Generative Design,” ASME J. Mech. Des., 143(12), p. 124501.

[23] Hayashi, K., and Ohsaki, M., 2020, “Reinforcement Learning and Graph
Embedding for Binary Truss Topology Optimization Under Stress and
Displacement Constraints,” Front. Built Environ., 6, p. 59.

[24] Zhu, S., Ohsaki, M., Hayashi, K., and Guo, X., 2021, “Machine-Specified Ground
Structures for Topology Optimization of Binary Trusses Using Graph Embedding
Policy Network,” Adv. Eng. Softw., 159, p. 103032.

[25] Hayashi, K., and Ohsaki, M., 2022, “Graph-Based Reinforcement Learning for
Discrete Cross-Section Optimization of Planar Steel Frames,” Adv. Eng.
Inform., 51, p. 101512.

[26] Kupwiwat, C.-T., Hayashi, K., and Ohsaki, M., 2024, “Multi-objective
Optimization of Truss Structure Using Multi-agent Reinforcement Learning and
Graph Representation,” Eng. Appl. Artificial Intell., 129, p. 107594.

[27] Ororbia, M. E., and Warn, G. P., 2020, “Structural Design Synthesis Through a
Sequential Decision Process,” International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference,
83983, p. V009T09A045.

[28] Ororbia, M. E., and Warn, G. P., 2021, “Design Synthesis Through a Markov
Decision Process and Reinforcement Learning Framework,” ASME J. Comput.
Inf. Sci. Eng., 22(2), p. 021002.

[29] Ororbia, M. E., and Warn, G. P., 2023, “Design Synthesis of Structural Systems
as a Markov Decision Process Solved With Deep Reinforcement Learning,”
ASME J. Mech. Des., 145(6), p. 061701.

[30] Oberhauser, M., Sartorius, S., Gmeiner, T., and Shea, K., 2015, “Computational
Design Synthesis of Aircraft Configurations With Shape Grammars,” Design
Computing and Cognition’14, Springer, Switzerland, pp. 21–39.

[31] Spallino, R., and Rizzo, S., 2002, “Multi-objective Discrete Optimization of
Laminated Structures,” Mech. Res. Commun., 29(1), pp. 17–25.

[32] Sjølund, J., Peeters, D., and Lund, E., 2019, “Discrete Material and Thickness
Optimization of Sandwich Structures,” Composite Struct., 217, pp. 75–88.

[33] Marjanovic, N., Isailovic, B., Marjanovic, V., Milojevic, Z., Blagojevic, M., and
Bojic, M., 2012, “A Practical Approach to the Optimization of Gear Trains With
Spur Gears,” Mech. Mach. Theory, 53, pp. 1–16.

091707-12 / Vol. 146, SEPTEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

https://dx.doi.org/10.1016/j.compstruc.2015.09.010
https://doi.org/10.1115/1.4034270
http://dx.doi.org/10.1115/1.4040169
http://dx.doi.org/10.1115/1.4040169
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1115/1.4045419
http://dx.doi.org/10.1007/s00158-018-2101-5
http://dx.doi.org/10.1007/s00158-018-2101-5
http://dx.doi.org/10.3390/designs4020010
http://dx.doi.org/10.1115/1.4044256
http://dx.doi.org/10.1115/1.4051013
https://dx.doi.org/10.3389/fbuil.2020.00059
https://dx.doi.org/10.1016/j.advengsoft.2021.103032
http://dx.doi.org/10.1016/j.aei.2021.101512
http://dx.doi.org/10.1016/j.aei.2021.101512
http://dx.doi.org/10.1016/j.engappai.2023.107594
http://dx.doi.org/10.1115/1.4051598
http://dx.doi.org/10.1115/1.4051598
http://dx.doi.org/10.1115/1.4056693
http://dx.doi.org/10.1016/S0093-6413(02)00227-6
http://dx.doi.org/10.1016/j.mechmachtheory.2012.02.004

[34] Königseder, C., and Shea, K., 2016, “Comparing Strategies for Topologic and
Parametric Rule Application in Automated Computational Design Synthesis,”
ASME J. Mech. Des., 138(1), p. 011102.

[35] Shea, K., Cagan, J., and Fenves, S. J., 1997, “A Shape Annealing Approach to
Optimal Truss Design With Dynamic Grouping of Members,” ASME J. Mech.
Des., 119(3), pp. 388–394.

[36] Dayan, P., and Hinton, G. E., 1992, “Feudal Reinforcement Learning,” Advances
in Neural Information Processing Systems, Vol. 5.

[37] Dietterich, T. G., 1998, “The Maxq Method for Hierarchical Reinforcement
Learning,” ICML, Vol. 98, pp. 118–126.

[38] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N., 2016,
“Dueling Network Architectures for Deep Reinforcement Learning,”
International Conference on Machine Learning, PMLR, pp. 1995–2003.

[39] Wei, F., Feng, G., Sun, Y., Wang, Y., Qin, S., and Liang, Y.-C., 2020, “Network
Slice Reconfiguration by Exploiting Deep Reinforcement Learning With Large
Action Space,” IEEE Trans. Netw. Serv. Manage., 17(4), pp. 2197–2211.

[40] Tavakoli, A., Pardo, F., and Kormushev, P., 2018, “Action Branching
Architectures for Deep Reinforcement Learning,” Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[41] Schaul, T., Quan, J., Antonoglou, I., and Silver, D., 2015, “Prioritized Experience
Replay,” preprint arXiv:1511.05952.

[42] Yang, T., Tang, H., Bai, C., Liu, J., Hao, J., Meng, Z., Liu, P., and Wang, Z.,
2021, “Exploration in Deep Reinforcement Learning: A Comprehensive
Survey,” preprint arXiv:2109.06668.

[43] Tieleman, T., and Hinton, G., 2012, “Lecture 6.5-rmsprop: Divide the Gradient by
a Running Average of Its Recent Magnitude,” COURSERA: Neural Networks for
Machine Learning, 4(2), pp. 26–31.

[44] Achtziger, W., and Stolpe, M., 2007, “Truss Topology Optimization With
Discrete Design Variables-Guaranteed Global Optimality and Benchmark
Examples,” Struct. Multidiscipl. Optim., 34, pp. 1–20.

[45] Sigmund, O., 2001, “A 99 Line Topology Optimization Code Written in Matlab,”
Struct. Multidiscipl. Optim., 21(2), pp. 120–127.

Journal of Mechanical Design SEPTEMBER 2024, Vol. 146 / 091707-13

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/9/091707/7345638/m
d_146_9_091707.pdf by The Pennsylvania State U

niversity user on 07 August 2024

http://dx.doi.org/10.1115/1.2826360
http://dx.doi.org/10.1115/1.2826360
http://dx.doi.org/10.1109/TNSM.2020.3019248
http://dx.doi.org/10.1007/s00158-006-0074-2
http://dx.doi.org/10.1007/s001580050176

	1 Introduction
	2 Modeling Discrete Structural Design Synthesis as a Markov Decision Process
	3 A Hierarchical-Inspired Deep Reinforcement Learning Approach for Discrete Design Synthesis
	3.1 Feature Representation
	3.2 Hierarchical Deep Reinforcement Learning
	3.3 On the Branching Dueling Q-Network
	3.4 Episodic Replay for Discrete Design Synthesis

	4 Numerical Examples
	4.1 Experimental Setup
	4.2 Example 1: An Incline-Loaded Michell Truss
	4.3 Example 2: A Single-Load Truss
	4.4 Example 3: A Single-Load Bridge
	4.5 Example 4: A Multiple-Load Truss

	5 Concluding Remarks
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

