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Abstract

Starting from Kirchhoff-Huygens representation and Duhamel’s principle of time-domain
wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint
wave equations in both time and frequency domain in an inhomogeneous medium. First, we
incorporate the leading term of Hadamard’s ansatz into the Kirchhoff-Huygens representa-
tion to develop a short-time valid propagator. Second, using Fourier transform in time, we
derive the corresponding Eulerian short-time propagator in the frequency domain; on top
of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy
problem of time-domain wave equations. Third, we further propose a time-frequency-time-
frequency (TFTF) method for the corresponding point-source Helmholtz equation, which
provides Green’s functions of the Helmholtz equation for all angular frequencies within
a given frequency band. Fourth, to implement the TFT and TFTF methods efficiently, we
introduce butterfly algorithms to compress oscillatory integral kernels at different frequen-
cies. As a result, the proposed methods can construct wave field beyond caustics implicitly
and advance spatially overturning waves in time naturally with quasi-optimal computational
complexity and memory usage. Furthermore, once constructed the Hadamard integrators
can be employed to solve both time-domain wave equations with various initial conditions
and frequency-domain wave equations with different point sources. Numerical examples
for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed
methods.
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1 Introduction

We consider the Cauchy problem for the self-adjoint wave equation in m-dimensional space
R?’Il ,

puyy —V-Wu)=f, x e R", t >0 (1.1)
with initial conditions
u(0,x) = u'(x), ur(0,x) = u’(x), (1.2)

where ¢ is time, the subscripts ; and ;; represent the first and second time derivatives, respec-
tively, position x = [xg, x2,- - ,xm]T, the gradient operator V. = [0y, Ox,, - , BX,"]T,
both variables p and v are analytic and positive functions of position x, characterizing cer-
tain physical parameters of the medium, f (¢, x) is the source term, and u L(x) and u?(x) are
compactly supported, highly oscillatory smooth functions.

Taking

f(t.x) =8(t)8(x —z) and u' =u®>=0 (1.3)

in equations (1.1) and (1.2) and applying Fourier transform in time to equation (1.1)
accordingly, we obtain the frequency-domain wave equation, the Helmholtz equation,

V- (Vi) + o’ pii = —8(x — 2), (1.4)

with the Sommerfeld radiation condition imposed at infinity, where w is the angular frequency
and z is the source.

When the initial conditions in (1.2) are highly oscillatory or the angular frequency in (1.4)
is large, the wave field will be highly oscillatory; however, direct numerical methods, such
as finite-difference or finite-element methods, for such problems may suffer from dispersion
or pollution errors [5, 7], so that such methods require an enormous computational grid to
resolve these oscillations and are thus very costly in practice. Therefore, alternative methods,
such as geometrical-optics-based asymptotic methods, have been sought to resolve these
highly oscillatory wave phenomena.

The essential difficulty in applying geometric optics is that it cannot handle caustics
easily [4, 8, 12,22,24, 37, 39, 40, 42, 57]. One approach is to replace the geometrical-optics
ansatz with Gaussian beam (GB) summations [6, 46, 50, 51, 55, 56]. Eulerian formulations
of GB summations have been developed for Helmholtz equations in the high-frequency
regime [25, 27, 29] and time-dependent Schrodinger equations in the semi-classical regime
[26]. The main challenge of this approach is that the computations must be done in the
high-dimensional phase space. Another approach is to incorporate the geometrical-optics
ansatz into the Huygens secondary-source principle, resulting in fast Huygens sweeping
(FHS) methods, and these methods have been designed to solve time-dependent Schrodinger
equations [18, 28], Helmholtz equations [37, 40], frequency-domain Maxwell’s equations
[38, 45], time-harmonic vectorial Maxwell’s equations [23], and frequency-domain elastic
wave equations [48], all in the presence of caustics. FHS methods can propagate wave fields
through appropriately partitioned spatial layers by marching in that preferred spatial direction
in a layer-by-layer fashion, but these methods only work in media where geodesics satisfy
the sub-horizontal condition [53].

Although caustics occur with a high probability for wave propagation in inhomogeneous
media [58], we note that we are still able to use the geometrical-optics type method mainly
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because of the following fact [2, 53]: in an isotropic medium, the point-source eikonal equa-
tion has a locally smooth solution near the source point except the source point itself; this
implies that caustics will not develop right away on the expanding wavefront away from the
source. If we compute the geometrical-optics ansatz of frequency-domain Green’s function
of (1.4) in these caustic-free neighborhoods of point sources, for example, the WKBJ ansatz
or Babich’s ansatz, the locally valid Green’s functions can be incorporated into the Huy-
gens secondary-source principle to update the global wave field, resulting in fast Huygens
sweeping (FHS) methods for Helmholtz equations [37, 40]; alternatively, incorporating the
Hadamard’s ansatz [11, 17] for time-domain Green’s function of (1.1) into the Huygens
secondary-source principle results in the Hadamard integrator [57] for the wave equation.
We denote by T(xg) the time when the first caustic occurs for rays issued from a source
point xo. For AT < minyjep T (x0), where x¢ is located in a certain bounded domain £2,
the Hadamard’s ansatz is valid in this domain £2 so that we can propagate wave forward in
time with the time step AT using the Huygens secondary-source principle.

Although the frequency-domain Green’s function is highly oscillatory, the kernel matrix
generated on a uniform Eulerian grid can be constructed and applied with a quasi-linear com-
putational cost using butterfly decomposition. Thus, the FHS method [37, 40] can construct
high-frequency wave fields with quasi-linear computational complexity and memory usage.
However, as a frequency-domain method, the FHS method propagates the wave field layer
by layer along a preferred spatial direction, and the propagation along the artificial spatial
direction requires geodesics to satisfy the sub-horizontal assumption, implying that the FHS
method is applicable only to a limited set of specific media.

Although the time-domain Green’s function is non-oscillatory in time direction, it has
singularity on irregular wavefronts in time. The Hadamard integrator developed in [57] prop-
agates the wave fields along the natural time direction so that the sub-horizontal assumption
of geodesics in the FHS methods [37, 40] is no longer required in this new setting. However,
the singularity on irregular wavefronts prevents the Lagrangian Hadamard integrator [57]
from achieving quasi-linear computational complexity.

Then we immediately run into a question: is it possible to develop an Eulerian Hadamard
integrator and use butterfly decomposition techniques similar to those in the FHS methods
to achieve quasi-linear computational cost? The answer is yes! Our strategy is based on the
following two observations: (1) the time-domain Green’s function of the wave equation is the
inverse Fourier transform in time of the corresponding frequency-domain Green’s function of
the Helmholtz equation, and as shown in [47], each term in Hadamard’s ansatz for the time-
domain Green’s function is indeed the inverse Fourier transform in time of the corresponding
term in Babich’s ansatz [3, 37, 38] for the frequency-domain Green’s function; (2) moreover,
while the time-domain Green’s function has singularity concentrated on irregular curved
wavefronts which is unfriendly to numerical quadrature posed on regular mesh points, the
frequency-domain Green’s function only has a singularity at the source point so that it is
amenable to numerical quadrature defined on regular mesh points. These two observations
motivate us to take a detour to apply the time-domain Green’s function efficiently by first
carrying out relevant applications in the frequency domain and then coming back to the time
domain: first, take the Fourier transform in time to go to the frequency domain; second,
apply the frequency-domain Green’s function to corresponding arguments; third, take the
inverse Fourier transform in frequency to get back to time domain. This strategy leads to the
time-frequency-time (TFT) method for the Cauchy problem of the wave equation.

Different from the Lagrangian Hadamard integrator developed in [57], the TFT method
provides resolution-satisfying time sampling of wave solutions, implying that the Hadamard
integrator is also a time-domain method for solving the Helmholtz equation (1.4). After
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carefully handling the singularity of the delta function, we can use the TFT method to obtain
the time-domain global Green’s function numerically. By performing the Fourier transform
in time, we obtain the frequency-domain Green’s function, which is the solution to (1.4). We
dub this strategy the time-frequency-time-frequency (TFTF) method.

To accelerate matrix—vector multiplications in the TFT and TFTF methods, we first con-
struct low-rank separable representations of the Hadamard ingredients, including phase and
Hadamard coefficients in Hadamard’s ansatz, by solving the corresponding governing equa-
tions and utilizing the Chebyshev spectral expansions accordingly. Next we consider an
algebraic compression tool called butterfly [10, 30, 31, 43], a multilevel numerical linear
algebra algorithm well-suited for representing highly oscillatory operators, to compress the
Hadamard integrator. We have applied the method in [34, 37, 40] to deal with integrals of
Green'’s functions of the Helmholtz equation. to deal with integral kernels with singularities,
we combine the hierarchical matrix representation and the butterfly algorithm by designing
a suitable strategy for selecting proxy rows in the interpolation decomposition of butter-
fly construction, which allows the butterfly compressed Hadamard integrator to enjoy the
quasi-linear complexity in the overall CPU time and memory usage with respect to the num-
ber of unknowns; such quasi-optimal complexity is valid for both the wave equation in the
time-space domain and the Helmholtz equation in the frequency-space domain.

It is important to note that the Hadamard integrator is independent of initial conditions.
Once constructed, it can be used to solve both time-domain wave equations with various initial
conditions and frequency-domain wave equations with different point sources. Moreover,
once these butterfly representations are constructed, they can be applied recursively when
executing the Hadamard integrator; this unique feature allows the Hadamard integrator to be
efficiently parallelized.

This paper develops an Eulerian Hadamard integrator. The approach inherits the advan-
tages of the Lagrangian Hadamard integrator in [57] by marching in time direction; moreover,
since the Eulerian integrator relies on the butterfly algorithm to speed up the matrix—vector
multiplication arising from the integration process, the computational complexity of the
Eulerian integrator for the wave equation in both time and frequency domain can be reduced
to quasi-linear. Moreover, our Eulerian Hadamard integrator is also able to solve the point-
source Helmholtz equation in inhomogeneous media by treating caustics implicitly and
handling overturning waves naturally, thus settling the issue of how to remove the sub-
horizontal condition in the fast Huygens sweeping methods [37, 38, 40, 45] to accommodate
overturning waves.

The rest of the paper is organized as follows. We introduce in Sect.2 the Kirchhoff-
Huygens representation formula which utilizes Green’s functions to propagate waves.
Connecting Hadamard’s ansatz and Babich’s ansatz using Fourier transform, we propose
in Sect. 3 a novel Eulerian Hadamard-Kirchhoff-Huygens (HKH) propagator for the Cauchy
problem of the time-dependent wave equation and the point-source problem of the frequency-
dependent wave equation (the Helmholtz equation), and we further obtain the Eulerian
Hadamard integrators by applying it recursively. We then develop in Sect.4 numerical strate-
gies for implementing the Eulerian Hadamard integrators. To accelerate the constructions
and applications of the integrators, in Sect.5, we construct interpolative decomposition
butterfly (IDBF) and hierarchically off-diagonal butterfly (HODBF) representations of the
integral kernels, resulting in quasi-optimal computational complexity and memory usage.
Section 6 presents two-dimensional (2-D) results to demonstrate the accuracy, efficiency and
convergence of the proposed methods. We conclude the paper with some comments in Sect. 7.
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2 Kirchhoff-Huygens Representation Formula

We are interested in solving the Cauchy problem for the self-adjoint wave equation (1.1)
with initial conditions (1.2). Let S(¢) be the solution operator corresponding to f = 0 and
ul =0; namely, for a function ¥, u(t, x) = (S(#)¥)(x) solves (1.1) with the source term
f = 0 and the initial conditions u! = 0 and «?> = v. Then Duhamel’s principle implies that
the solution for wave equation (1.1) with initial conditions (1.2) is

t
u(t, x0) = 9 (S (xo) + (S)u*)(x0) +/0 (§@ —s)f(s,) (xo)ds.  (2.1)

Consider the time-domain Green’s function G (, xo; x) which satisfies equation (1.1) with
the source term and initial conditions specified in (1.3). Then, for a compactly supported
function ¥ such that the initial condition u* = 1, by [57] the solution operator S can be
written as

(S@)¥)(x0) Z/Vp(x)G(T,xo;xW(x)dx, (2.2)

where V is a region of space which contains the support of i and does not change in
time. Since the boundary integrals are not considered, we need to set a sufficiently large
computational domain to ensure that the waves do not reach the boundary [57].

Then we have

u(t, xo) = / PGyt x0: X" () + G2, x0: ) (¥)|dx
Vv

] (2.3)
+/ / p(x)G(t —s,x0;x) f(s,x)dxds.
0o Jv
Differentiating (2.3) with respect to ¢, we obtain
ur(t, xo) = / PX)[Gre(t, x0; X)u’ (x) + G (t, x0; X)u* (x)1dx
v (2.4)

t
+/ /,o(x)G,(t—s,xo;x)f(s,x)dxds.
o Jv

We refer to (2.3) and (2.4) as the Kirchhoff-Huygens representation formula. When the
medium is homogeneous, Green’s function for the wave equation is known so that the formula
has been used frequently in practice. When the medium is inhomogeneous and the source
term f = 0, in [57] we have used Hadamard’s ansatz to compute the needed Green’s func-
tion for the formula, leading to a short-time valid propagator in a Lagrangian formulation,
dubbed the Hadamard-Kirchhoff-Huygens (HKH) propagator, which is able to propagate a
highly oscillatory wave field for a short period of time; furthermore, a Lagrangian Hadamard
integrator is obtained by recursively applying the HKH propagator in time. In this article, we
continue to use Hadamard’s ansatz to construct Green’s functions in the Kirchhoff-Huygens
formula, but we compute the HKH propagator using an Eulerian formulation, resulting in an
Eulerian Hadamard integrator.

To simplify the presentation, in the current work we only consider the two-dimensional
case, where m = 2, and we leave the three-dimensional case as a future work. Consequently,
we consider the following two cases:

— Case 1. The pure initial-value problem for equation (1.1), where f = 0, and ' and u?
are compactly supported, highly oscillatory smooth functions.
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— Case 2. The point-source problem for equation (1.4), where the frequency-domain
Green’s function of the Helmholtz equation naturally corresponds to the time-domain
Green’s function of the wave equation (1.1) with f = §(¢)8(x — x¢) and w' =u>=0.

In Case 1 for pure initial-value problems, we employ the same setup as in [57], aiming to
achieve a quasi-optimal computational complexity using Eulerian formulations.

In Case 2 for point-source problems of the Helmholtz equation, since the time-domain
Green’s function corresponding to f = 8(1)8(x —xo) and u' = u? = 0 in the Cauchy prob-
lem (1.1)-(1.2) is naturally linked to the frequency-domain Green’s function of the Helmholtz
equation, we extend the Hadamard integrator to point-source wave equations in frequency
domain so as to solve the point-source Helmholtz equation. Because the Hadamard integrator
marches in the time direction, it can naturally handle overturning waves in frequency domain,
which is in sharp contrast to our previous frequency-domain asymptotic methods in [37, 40],
in that the methods in [37, 40] are not able to treat overturning waves.

On the other hand, for a generic source term f(x, t) # 0 with compact support in both
space and time, the Kirchhoff-Huygens representation (2.3)-(2.4) contains a volume integral
of m + 1 dimension, which is expensive to evaluate; therefore, we leave this as a future work.

3 Eulerian Hadamard Integrators

3.1 Hadamard’s Ansatz for Time-Domain Green’s Functions

Consider Green’s function of the self-adjoint wave equation
pug — V- (vWVu) =8(1)8(x —xp), x eR", >0 @3.1)
with initial conditions

u(0,x) =0, 1,0, x) = 0. (3.2)

c:\/?, n 1:\/E 3.3)
P c v

Then Hadamard’s ansatz [57] is written as

Let

m—1

u(t, xo: x) = Y _vs(xo; X)fy > [1* = (xo; )], (3.4)
s=0

where the Gelfand-Shilov generalized functions f _f:(;‘) are given in [15]. They are defined
for A > —1 as follows:
A

Fhe = (5)

where

¢ = { 0, for¢ <0, 3:6)

A_ .
¢*, otherwise,

and by analytic continuation for other values of A. We have the important relationship [15]

b = (3.7)
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In particular, . = 0 corresponds to the Heaviside function, yielding a jump discontinuity at
¢ = 0, while by (3.7), . = —1 corresponds to the §-function. Here 7(x¢; x) is the phase
function, also known as traveltime, satisfying the eikonal equation (3.8),

IVt =n, t(x0; X)|x=x, = 0. (3.8)
And the coefficient functions vs(x0; x) in (3.4) satisfy the recurrent system
d
4pt dUs + v [V-(vV rz) +2Q2s—m)pl=V-(wVus_y), s=0,1,2,---,(3.9)
T
and v_; = 0. By leveraging properties of the Gelfand-Shilov function as demonstrated in

[57], we have the initial condition for vy at xq:

n™ (xo) n"=2(xo)
V(X0 %) |x=x, = = —. (3.10)
2p(xp)r 2 2v(xo)m 2

‘We introduce some definitions and properties of generalized functions [15] here. We first
denote K the space of test functions which consists of all real functions ¢ (x) with continuous
derivatives of all orders and with bounded support. We next define a generalized function as
any linear continuous functional on K. These functionals (generalized functions) which can
be given by an equation such as

W, ) :/ U(x)p(x)dx forVep e K 3.11)
RI'I

with ¥ an absolutely integrable function in every bounded region of R” shall be called
regular, and all others (including the delta function) will be called singular. It is worth noting
that f_fj(;) is regular when A > —1 and singular when A < —1.

3.2 Babich’s Ansatz for Frequency-Domain Green'’s Functions

In order to develop Eulerian formulations, we introduce Babich’s ansatz [3, 37, 38, 45] for
the frequency-domain Green’s function i = G(w, x¢; x) of the Helmholtz equation (1.4),
which is written as

o0
(@, x0; ¥) = G(, x0; %) = Y v5(x0; X) fip1-2 (7(X0; X), @), (3.12)
s=0

where t still represents the traveltime, v, represent the coefficient functions,
N N

) ) AN ) 2t\?
fp(rw) = i¥=e” (Z) H,‘,U(m):zT(Z> HY) (1), (3.13)

and H ;l) is the p-th Hankel function of the first kind. In [37], using properties of the basis
fp(z, w), we have obtained that T satisfies the eikonal equation (3.8) and v satisfy the
recurrent system (3.9) with the initial condition (3.10). That is, the time-independent phase
and coefficient functions in Hadamard’s ansatz are the same as the frequency-independent
phase and coefficient functions in Babich’s ansatz. Furthermore, [38] shows that the basis
functions of Hadamard’s ansatz and Babich’s ansatz are linked to each other:

o0 v—1 Vo
/ e"w"fJE J (t* — % (x0; %)) dt = %:ﬁ(%) " HD (w1) = f(0, 7).
(3.14)
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Because of the reciprocity, we have G (w, x0; x)=é (w, x; x0), which will be used fre-
quently in the following algorithmic development. Letting Go(z, xo; x) and éo(w, X0; X) be
the leading term of Hadamard’s ansatz (3.4) and Babich’s ansatz (3.12), respectively, for a
point source located at x¢, we have the following crucial relations,

| I N ; 1 RN :
Go(t, x0; x) = —/ Go(w, x0; x)e ' “dw = —% [/ Go(w,xo;x)e_’“”dw:|,

27 J o 4 0

(3.15)

where ) represents the real part, and

~ 0 .

Go(w, xp; x) =/ Gol(t, xp; x)e' " dt, (3.16)

0

where Go(t, xg; X)|;<0 = 0.

The above observations inspire us to replace the time-domain Green’s function with a
truncated finite-bandwidth Fourier summation of the frequency-domain Green’s function,
where the singularities of the time-domain Green’s function are naturally transferred to the
singularities at source points of the frequency-domain Green’s function, resulting in the time-
frequency-time (TFT) method for Case 1 and the time-frequency-time-frequency (TFTF)
method for Case 2, as alluded to in Sect. 2.

3.3 TFT Eulerian Hadamard Integrator

Now we start with developing the TFT method for Case 1, where f = 0, and u' and u? are
compactly supported highly oscillatory smooth functions, and we will compute the integrals
of Go, Go and Gy, respectively, where, by the integration or integral of a Green’s function,
we mean the integral of the product of a Green’s function and a sufficiently well-behaved
function.

First, we apply the time-domain Green’s function to ¢ (x), a test function in the space K
as defined above, and use (3.15) to obtain

/ Golt, x0; )b (x)dx
V,

X0

i OO —iwt A .
e Go(w, xg; x)dwp(x)dx
Vag T

1 o0 A .
— / / Go(w, x0; x)d)(x)dxe*""’da) (3.17)
T J—00 VJ‘-0

o
“)i/ / Go(w, xg; x)p(x)dxe " dw | .
T 0 JVy,

Here Vy, is an integration region independent of time ¢, satisfying

Vg 2{x 7t <o} 2{x:7 < AT}, (3.18)

where #( is a constant that depends on the medium and satisfies t < AT < 1y < T(xg).
To apply the time derivatives of a Green’s function in the frequency domain, we follow
[57] to introduce the geodesic (ray) polar transformation for a given source xg:

Plxo]l : x = (1, w), (3.19)
where 7 is the traveltime, @ € S”! is the take-off angle of the ray, and (7, w) are the geodesic

polar coordinates. Within any neighborhood of x( not containing any caustics other than xy,
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there is one and only one ray connecting x and xo, which means P[x] is well-defined and
one-to-one, and x is a smooth function of the point y = x¢ + tw. To facilitate our following
discussions, we also write down the volume element as the following,

as
dx =dsdS = cdrdS =c¢ e drde, (3.20)

where s is the arc length along the ray, dS = |%| dw is the element of area cut out on the
wave front T = const. by rays emanating from the solid angle element dw at the source.
According to the appendix of [57], we have

= 1
‘ 4p0€0ﬂm S p— 3.21)

where pg = p(x9) ar}d co = c(xp).
We now apply G(t,xp;x) to a test function ¢ € K and use the geodesic polar
transformation and its inverse,

/G(r, x0: X)p (x)dx :2;/f;%*l[ﬁ—rz]vo(x)mx)dx

-2 9 d

= ;/( 2131>f+ [1* — 2] vopdx
27

_2;/ / ( 2rar>f+ [ —r]v0¢
S P

:r/O [f+ - ]4pocgnpvol_t do
27 r 9 ¢ (3-22)

2142 _ 229 R A—

e[ () |

o) [P [ Y ¢

= p@xo) +’/o /0 Golt-xoi 0 (ar> [4poc3npvo}dfd9

 $xo) / 1 <a> ¢ !

~ plxo) A v, Golt, xo,x) 3t ) | 4pocgmpvo | c|35 |d

*0

= ¢ (xo) +r/ Golt, xo,x)( 9 ) [i] de,
p(xo) 1% ot pvg | T

*0

cdrd@

where 0 is the take-off angle @ when m = 2, and we have used (3.21), (3.10) and ffr‘[O] =0.
Further using (3.17), we have

. X t
/Go(r,xo;xm(x)dx _ o) 1
plxo) m (323)
/ e—zwt/ Go(a) xo,x)< ) [i] @d dw
0 Vio T pvo | T
Here the directional derivative

0
R (3.24)

T
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is obtained by utilizing the method of characteristics to solve the eikonal equation (3.8).
As for Gy, for r > 0, we have

pGo(t, x0; x) — V - (WWGo(t, x0; x)) = 0. (3.25)

Applying Go(t, xo; x) to a test function ¢ (x) and using integration by parts and (3.17), we
have

/ éo(t,xo;x)¢(x)dx :/ V-(vVGo(t,xg;x))%dx

Vg Vx

/Go(t,xo;x)V : (W%)dx (3.26)

1 *® ~ ¢ —iwt
—N Go(w, x0; x)V - WV =)dxe do | .
T 0 Vo Y

Now, taking ¢(x) as p(x)u'(x) and ,o(x)uz(x), respectively, in the Kirchhoff-Huygens
representation formulas (2.3)-(2.4), we obtain the following Eulerian formulations,

1 © ~ .
u(t, xo) = u'(xo) + —N |:/ / Go(w, x0; x),ouz(x)dxe""’dw:|
T 0 Jvy,

(3.27)
4 2y *© A 3 ul PYo —iwt

+ —N / / Go(w, x9; x)(—)(—)—dxe dw |,
b4 0o Jvy, at vy T

and

t * . 9 u? :
ur(t, xo) = u’(xp) + —N |:/ / Go(w, x0; x)()(u)pvodxe’“”dw:|
T 0 Vo ot vy T

1 oc . .
+ —R / / Go(w, x0: )V - WVu)dxe ™ do | .
T 0 Vo

Since the frequency-domain Green’s function is only singular at the source point which
is amenable to Eulerian evaluation on uniform meshes, we refer to (3.27)-(3.28) as the
Eulerian Hadamard-Kirchhoff-Huygens (HKH)-TFTF propagator, which is used to propagate
the wave field from 7 = 0 to T = ¢, where 0 < ¢t < AT. Although the HKH-TFTF
propagator is only valid for a short-time period in a caustic-free neighborhood, recursively
applying this propagator in time yields the TFT Eulerian Hadamard integrator to solve time-
dependent wave equations globally in time, where caustics are treated implicitly and spatially
overturning waves are handled naturally in time domain.

Here we remark in passing that we use the term “propagator” to indicate a short-time valid
solution operator, while we use the term “integrator” to indicate a globally valid solution
operator in either time-space or frequency-space domain.

(3.28)

3.4 TFTF Eulerian Hadamard Integrator
Now we develop the TFTF method for Case 2, point-source problems for the Helmholtz

equation, by first solving the corresponding time-domain wave equations and then applying
the Fourier transform in time to the resulting time-domain solutions.

@ Springer



Journal of Scientific Computing (2024) 100:79 Page 110f42 79

According to Duhamel’s principle, we can rewrite the corresponding time-domain wave
equation of the point-source Helmholtz equation (1.4) in the same form as Case 1,

pX)up(t,x) =V - -[v(x)Vu(t,x)] =0 for >0, (3.29)

with initial conditions

u(0,x) =0 and u,(0,x) = L (x —z). (3.30)
p(z)
The challenge arises from the fact that the wave solution in Case 2 is the time-domain Green’s
function, a generalized function. In each time step, we need to numerically apply generalized
functions to other generalized functions. Specifically, with the initial conditions at 7 = 0
containing the singular generalized function §, we have

u(t,xg) = /p(x)G(t, X0; x)mdx = G(t,x0;2) (3.31)
p(2)
and
3(x —2)
u(t, x9) = /p(x)Gt(t,xo; X)de = G(t,x0:2) (3.32)

in the distributional sense. Since G(t, x¢; z) is singular, no locally integrable function is
available that can be used to update u, (¢, xg) through direct integration. To overcome this
challenge, instead of initializing at 7 = 0 using the singular delta function, we initialize the
wave field at T = AT with a smooth approximation, which is obtained by truncating the
inverse Fourier transform of the frequency-domain Green’s function.

According to (2.3) and (2.4), we approximate the initial wave fields at time t € (0, AT]
as follows,

1 LN
ut, x) G, z;x) ~ —NR |:/ e “"Go(w, z; x)da):| , (3.33)
T 0
and
1 B A
us(t, x) ~ —N |:/ (—iw)e "' Go(w, z; x)da):| , (3.34)
T 0

where B is an artificial bandwidth, leading to truncated, frequency-domain smooth approxi-
mations to the wave fields. Although here we have dropped the frequency information beyond
the bandwidth B of the time-domain solution, the Shannon-Nyquist Sampling theorem indi-
cates that the remaining frequency content is sufficient for reconstructing the band-limited
frequency-domain solution with angular frequency v < g from the truncated wave solutions.

Now recursively applying the HKH-TFTF propagator starting from the initial timet = AT
yields the global time-domain Green’s function. Further we can utilize the Fourier transform
to get the frequency-domain solution i (w, x)

w .
(o, x) = / e lu(t, x)dt, (3.35)
0

leading to the TFTF Eulerian Hadamard integrator to solve frequency-domain point-source
wave equations (point-source Helmholtz equations) globally in time and thus globally in
space, where the latter (“globally in space”) is implied by the eikonal-defined traveltime
function.

Consequently, the TFTF Eulerian Hadamard integrator is able to treat caustics implicitly
and handle spatially overturning waves naturally in frequency domain.
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4 Numerics for Eulerian Hadamard Integrators

We present numerics for implementing TFT and TFTF Eulerian Hadamard integrators. We
will design Eulerian methods to numerically discretize the HKH-TFTF propagator so as to
obtain the corresponding Eulerian Hadamard integrators by recursively applying the propa-
gator in time. For highly oscillatory wave fields, we maintain a fixed number of points per
wavelength (PPW) to uniformly discretize the computational domain into regular grid points.

To start with, we briefly discuss higher-order sweeping schemes for the eikonal and
transport equations, yielding the squared-phase function 72 and the Hadamard coefficient
vo, respectively. Subsequently, the low-rank representations based on Chebyshev interpola-
tion are introduced to compress those smooth ingredients used in the propagator. Finally,
we present preliminary algorithms for implementing TFT and TFTF Eulerain Hadamard
integrators.

4.1 Hadamard Ingredients

In order to form the HKH-TFTF propagator (3.27)-(3.28), we need to compute some
ingredients corresponding to t and vg, including

T, v9, V1, VT - V. 4.1)

Since 72 rather than 7 is smooth at source points, we obtain smooth representations for the
following quantities:

2, vy, V12, V2.V, (4.2)

which can be transformed back to (4.1) via dividing by V72, We refer to the ingredients in
(4.2) as Hadamard ingredients.

2 and vy are obtained by solving the eikonal equation (3.8) first and the transport equation
(3.9) afterwards. V2 is obtained by a proper finite-difference method. As for Vz?2 - Vuy,
instead of using finite differencing which may reduce accuracy, we again use the transport
equation (3.9) to obtain

2mpvg — V - [erz] Vo

V2. Vg =
2v

(4.3)

4.2 Numerical Schemes

The leading-order term of the Hadamard’s ansatz is defined by two functions, the eikonal t
satisfying the eikonal equation (3.8) and the Hadamard coefficient vg satisfying the transport
equation (3.9). Since we have assumed that the Hadamard’s ansatz is valid locally around
the source point, we need access to these two functions in order to construct the ansatz.
Since the eikonal equation as a first-order nonlinear partial differential equation does not
have analytical solutions in general, we have to use a robust, high-order numerical scheme
to numerically solve this equation; moreover, the eikonal equation equipped with a point-
source condition is even more tricky to deal with due to the upwind singularity at the source
point [49]. To make the situation even more complicated, the transport equation (3.9) for
the Hadamard coefficient vy is weakly coupled with the eikonal equation (3.8) in that the
coefficients of the former equation depend on the solution of the latter.
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Fortunately, this set of weakly coupled equations with point-source conditions has been
solved to high-order accuracy by using Lax-Friedrichs weighted essentially non-oscillatory
(LxF-WENO) sweeping schemes as demonstrated in [52]. The high-order schemes in [52]
have adopted essential ideas from many sources including [14, 19, 21, 32, 37, 41, 44, 49, 59,
60] and have been used in many applications. Consequently, we will adopt these schemes to
our setting as well and we omit details here.

4.3 Multivariate Low-Rank Representation

The Hadamard ingredients (4.1) are time-independent. According to [52], if variable functions
p and v are analytic, then 72 and vy are analytic in the region of space containing a point
source but no other caustics. Consider the source region 25 and the receiver region $2g,
with 25 C $£2g, such that rays originating from any xo € £2g will not intersect in g,
which means that no caustics will develop in §2g; consequently, rz(xo; x) and vo(xg; x)
are analytic in 25 x 2g so that we can construct Chebyshev-polynomials based low-rank
representations of Hadamard ingredients with respect to both xo and x [34, 36-38].

Letting f(x, y, x0, yo) = 72, v, %, %, vil. Vg, respectively, we consider the
following analytical low-rank representation using Chebyshev interpolation,

nig nj np n

FOy %000~ Y Y 3 N FG, .k DTOT ) Tk(xo)Ti(yo),  (4.4)

i=1 j=1k=1I=1

where n;, nj, ng, and n; are the orders of Chebyshev interpolation, F' is a 4-D tensor of size
n; x nj x ng x n; which contains the spectral coefficients to be determined, and T;, fj, Ty,
and T; represent the Chebyshev interpolants defined via translating the standard Chebyshev
polynomials 7, defined on [—1, 1] to the corresponding domain,

T (s) = cos(m arccos(s)), sel[—1,1]. 4.5)

We can obtain F by applying fast cosine transforms with respect to x, y, xg, and yo to the
tensor f(x, s yJ, xo o y0 s wherex y xo > and y0 ;aren;, nj,ny, and nj-order Chebyshev
nodes in 2z X §25, respectively, Wthh are also obtained by translating the n-order Chebyshev
nodes {s;;} in [—1, 1],

2m — 1
Sm = COS s m=1,2,---,n. 4.6)
2n

To calculate f(x7, yjc., xéﬁ o ya ;). we adopt a computational strategy as used in [34]: first
choose a region §2. which is slightly larger than £2g and on which the ingredients are still
analytic, then compute numerically the ingredients in §2. with sources located at (xa K 0.0
respectively, and finally use cubic spline interpolation of the just computed ingredients on
uniform grids to obtain f (x}, y;.', x(‘)" o y(‘)" ;). Here £2. is introduced to ensure the accuracy of
the interpolations near the boundary of §2g.

After obtaining F, we can evaluate f(x, y, xo, yo) at any point (x, y, xg, Yo) € 2g X £2g
using (4.4), and the evaluation can be further accelerated by partial summation [40]. So
far, we have finished the pre-computation and compression of the Hadamard ingredients in
g X 825 so that the integral kernels can be constructed by assembling these ingredients into
the Hadamard’s or Babich’s ansatz.

Different from marching along a spatial direction [37], when we use the Hadamard inte-
grator to march in time direction, we always take £25 as a subset of §2r. Actually, for
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given caustic-free regions 25 and §2g, the maximum time step is bounded by the minimum
traveltime

Tmin = min T(x0; X). 4.7
X0€0825, X€IS2R

We do not need to obtain the strict upper bound. Instead, we can determine the time step
by dividing the minimum distance between 9525 and d§2r by the maximum wave speed
max c¢. Due to possible caustics in an inhomogeneous medium, we need to partition the
computational domain 2 into N; source regions {.Qg, £ =1,2,--- Ny} and designate a
corresponding receiver region .Qf; for each source region £2%, such that we can utilize the
locally valid short-time HKH propagator to update the wave fields in .Qg using the information
in .Qf;, separately. Since the waves will not propagate to the boundary of the computational
domain, the wave field in the parts of the receiver regions that lie outside the computational
domain is naturally set to zero. The partitioning of regions and the time step only depend on
the medium.

With the low-rank approximations, we are able to evaluate the Hadamard ingredients with
O(1) computational complexity, which is crucial for the numerical algorithm that follows.
Additionally, we will demonstrate that the computational cost of constructing these low-rank
approximations is independent of the oscillatory wave field.

Since both 72 and v are non-oscillatory analytic functions in a caustic-free region, this
means that we can solve the eikonal and transport equations with high-order accuracy on a
coarser grid (compared to the sampling grid for oscillatory wave fields); on the other hand,
the orders of the multivariable Chebyshev interpolations are chosen according to the accuracy
requirement in compressing the Hadamard ingredients, which are in turn medium-dependent.
For instance, in the numerical examples that we are going to show, we setn; = n; = 13 and
ng = n; = 11, which do not change with the oscillatory nature of the wave field.

4.4 Numerical Discretization of HKH-TFTF Propagator

To numerically implement the HKH-TFTF propagator, we shall first truncate the infinite
frequency-domain integration interval [0, o) with an artificial frequency-bandwidth B that
is problem-specific in the sense that the bandwidth depends on the highly-oscillatory initial
conditions in Case 1 and on the angular frequency w in Case 2.

In the TFT method, once the oscillatory, smooth initial conditions (1.2) are given, the wave
solution is essentially bandlimited in the sense that the frequency content of the corresponding
wave solution is determined and decays rapidly outside a certain frequency band. Thus we can
select a sufficiently large artificial frequency-domain bandwidth B to truncate the Fourier
integral in frequency, where the fast decaying property ensures that truncation does not
introduce significant truncation errors.

In the TFTF method, the bandwidth B = «w is selected according to the angular frequency
w, where « is an oversampling parameter.

Using asymptotic properties of Hankel functions [1], for m = 2, we have the following
asymptotic approximation for the frequency-domain Green’s function,

A T 2
Go(w, xp; X) ~i—1vg,/ ——€
2 TwT

0T=F a5 wr — oo0. (4.8)
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Hence, truncation errors may occur when we reconstruct the wave solution in Case 2 by
0 . A B . ~
Go(t,x0;x) = ﬂi[/ e " Go(w, x0; x)dw] ~ S)t[/ e Go(w, xo; x)dw]. (4.9)
0 0
For fixed t and x € {x : 7(x0;x) # t}, e‘i‘”’éo(w, xp; x) is oscillatory and decays at
O(ﬁ). Therefore, truncation of (4.9) to bandwidth B will introduce an error of no more
1

than O( JE)'

After truncating the infinite frequency domain to a bounded interval, we uniformly
discretize the frequency interval [0, B] into

1
for o = (k+ ) Aw k=012, Ny~ 1}, (4.10)

where B = N, Aw. Since the frequency-domain Green’s function Gg(a), x0; x) in the two-
dimensional case has logarithmic singularity when wt — 0,

N 2
Go(w, x0; x) ~ gvo— In(wt) as wt — 0, (4.11)
b4

we need to treat the integrals of éo(w, x0; x) over [0, Aw] with care.
Now we discretize the HKH-TFTF propagator (3.27)-(3.28) in the frequency domain as
follows,

1 Aw R '
u(t, xg) ~ ul(xo) + ;?R |:/ / Golw, xo; x)puz(x)dxe""’dw:|
0 Vo
Aw No—1
N [Z 7”””/ Go(wk,xo,x)puz(x)dx}

v
Aw .
[/ /;/ Go(o, x0; x)(*)(*) ""’dw}

N,—1
[Z ent / Go(wk,xo,x>(><>"”°dx}

(4.12)

and

Aw
ot 20 %0+ [/ /v Go(@, xo,x><—><—>””° ’“"dw:|
N,—1
I‘Aa) \|:Z —ICUAf/ Go(a)k,xo,x)(f)(f)@d :|

Aw
+ «n/ / Go(w, x0; X)V - WVuYdxe ' dw
T 0 Vao

Ne—1
+ —‘h |: Z _’“”"/ Golwx, x0: )V - (WWu )dxi|
T Vio

k=1

(4.13)
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Before we further discretize the propagator in space, we need to deal with the frequency-
space integral

Aw
/ / e Go(w, x0; x) do Y(xg; x) dx, (4.14)
Vo 70

where ¥ (x¢; x) represents the frequency-independent part of the integrand in the propagator.
The difficulty comes from the singularity of the frequency-domain Green’s function when
o — 0. However, since t has a small upper bound that only depends on the medium, we
have wt ~ 0 uniformly; we thus use the polynomial approximation of the Hankel function
HOl (wt) [1] to approximate the kernel éo so that

Aw
I(t, x0;x) = / e "' Go(w, x0; X)dw (4.15)
0

can be evaluated, and the technical details can be found in Appendix A.1. Then integral (4.14)
can be rewritten using the time-dependent kernel 7 (¢, x¢; x)

Aw
/ / e Go(w, x0; x) do ¥ (xo; x) dx =/ I(t, x0; X)¥ (x0; x)dx.
Vieg J0 Vo

(4.16)

‘We now discretize the HKH-TFTF propagator in space. Consider a source region §25 and
the corresponding receiver region §2r which are uniformly discretized into N and M grid
points, respectively. Then, a key issue is how to evaluate the self-interaction (diagonal) terms
of the kernels. In (4.12) and (4.13), we have the following singular diagonal terms

Go(@, X0; %) x=x,» 4.17)
I(t, x0: X)|x=x¢- (4.18)
. k=1,2, (4.19)

N 0 uk
Go(w,x0;x)—— | —
TdT \ Vo x=x0

Aw k
—iwt A 0 u
e Go(w, x0;x)— | — Jdw
0 TdT \ Vg

After uniformly discretizing the computational regions, the diagonal terms can be replaced
by integral averages over a cell centered at x(, where the non-singular parts of the integrand
are treated as constants. Letting c; be the cell of size & centered at x(, the Appendix of [34]
provides

, k=1,2. (4.20)

xX=x0

. 1 R
Go(w, x0; x0) = */ Go(w, x0; x)dx

h? ¢
. z (4.21)
i & hnow _ 1) ( hnow .

N 8 H, do +4i|,
(2hnow) o 2cosé 2cos6
where ng = n(xg). Based on (4.21), we derive the approximation for
1 Ao
1(t,x0; x9) = ﬁ/ / e "' Go(w, x0; xX)dwdx (4.22)
c;j J0
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in Appendix A.2, where we have used the polynomial approximation of the Hankel function
H 1(1)' ‘We further show in Appendix A.3 that

~ d uk
Go(w, x0:x)—— | —
70T \ V0 / Jlxex,

1 A d uk
= — Go(w, x0;x)— | — ) |dx =0, k=1,2.
h2 ¢ 79T \ g

Multiplying (4.23) by e /', we integrate the resulting formula over [0, Aw] to compute the
last diagonal term, leading to

Aw k
—iwt A 0 u

e Golw,xp;x)— | — Jdw
0 TdT \ V9

(4.23)

X=Xx0

4.24
.1 Ao —iwt A d uk ( )
= — e Go(w, xp; x)do— | — )dx =0, k=1,2.
h? e; Jo 70T \ Vo
At this point, we define the following frequency-dependent kernels:
o _ oy, 1 | A -
U = (WP 1 = [Gotw. xhieh] 425)
_éo(a), xk; xJ) Brz(xi cxh)
Uf =10l = | S o ; (4.26)
| 2t7(xq: X)) 1<i<N,1<j<M
_f}o(w,xi sxd) at2(xi; x¥)
U3 = U1 = | S5 o P~ : 4.27)
| 2t7(xqi x) Y 1<i<N,1<j<M

Go(w, xiy; x7)

Uy = (Ui jl=

Vtz(x{); xj) . Vvo(xf); xj):| ,

Ly iV 2(xl - yJ
| 2vo(xg: x/)T=(xg; x7) 1<i<N.1<j<M

(4.28)
and the corresponding time-dependent kernels
Aw
ljﬁ:[(ﬁ;),-,j]z[/ eiw’Uf)(xf);xj)da):| . s=1,2,3,4. (429
0 I<i<N,1<j<Mm
‘We further define vectors
fi=loaxhu*xhy, -, peMu M1’
f=leGhHulely, -, cMul )T,
fr=Tle@huyxeh, o caMuy T,
fo=Dahu'ah, -, v M7, 430)
fs=I1V-ahHva'ah, -, v ea)ve' @),
fo=lexhHuixh, -, cx™uiE)’,
fr=Tle@huih, -, caMu T,
fs =P, -, vaMutEM)T.
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Then we introduce the following frequency-sampling functions of size N x 1 for 1 < k < N,

(o) = U™ f1,
(o) = U™ fo + U™ f3 — U™ fa,

o (4.31)
i3(wp) = U™ fs,
dg(ox) = Uy* fo + U™ fr — U™ fs,
and the time-sampling functions of size N x 1 for0 < #; < AT
iy (t) = U} fu,
lia(te) = U fo + UL f3 — UL fy4,
22U L= U] (4.32)

i3(t) = U} fs,
ita(te) = UY fo + UY f1 = Uy f.

Once we obtain all the above sampling functions, according to (3.27) and (3.28), we update
u(te, $2s) and u;(t¢, 25) forall 0 < tp < AT as

8| —

No—1
u(ty, 25) = =N |:Lvtl(te) + 112 (tg) + Aw Z e (i1 (w) + Izﬁz(wk)):| (4.33)

k=1
and

No—1

Lo, . i . .
uy (1, 25) ~ —9 |:M3(tz) + st + Aw Y e (i3 (an) + t£u4(0)k)):| . (434
k=1

4.5 Direct Computation of the Hadamard Integrators

‘We first present a direct summation algorithm for the TFT Eulerian Hadamard integrator for
Case 1, and based on this, we further present the TFTF Eulerian Hadamard integrator for
Case 2.

Algorithm 1 (TFT Eulerian Hadamard integrator for Case 1)

1. Uniformly discretize the computational domain §2 into a wave-resolution-satisfying uni-
form grid; partition 2 into N; non-overlapping source regions {.Qé, £=1,2,---, Ny}
and designate the corresponding receiver regions to be {.Q‘Z ,£=1,2,---, Ny}, set the
initial time Tp, the large time step AT < Ty for updating the initial condition, the small
time step At = A—: for wave resolution, and an ending time 7,4 to ensure that the waves
do not reach the computational boundary; determine the bandwidth B according to the
initial conditions; set the frequency step Aw = N%, where N, = O(B), and generate
wr = (k+ %)Aa) fork =0,1,2,--- N, — 1; pre-compute and compress Hadamard
ingredients (4.2) in all sub-region pairs; precompute the diagonal terms for the kernel
matrices.

2. Initialize u(Tp, x) = u'(x) and u,(Tp, x) = uz(x); settime 7 = T and the loop variable
p=0.

3. For the current time step with T = Ty + pAT:

(a) compute finite-difference derivatives of u(T, x) and u,(T, x) and construct vectors

fi. fa. L Sl
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(b) determine a sub-region £2, of £2 that contains the region of influence of current data
by extending each direction of the non-zero region of the solution u (7', x) outward
by max cAT'; designate the source regions intersecting with £2,, as the regions to be
updated.

(c) for all the source regions .Qf to be updated:

i Interpolate the Hadamard ingredients via partial summation; construct the kernels

U, s=1,2,3,4, 1<k<N,—1, and U s=1,2,3,4,1<n < Nr;
compute the matrix—vector multiplications to obtain the corresponding frequency-
and time-sampling functions {it; (wy)} and {it; (n At)}:

ii(wp), i=1,2,3,4, 1<k<N,—1, and
u;(nAt),i =1,2,3,4, 1 <n < Ny.

ii Update wavefields u(T + nAt, .Qg) and u, (T + nAt, .Qg) forn=1,2,---,Nr
via (4.33) and (4.34).
(d) Set to zero the wave fields within the source regions that do not require updating.

4. Update T =To+ (p+ DAT.If T < T,p4, then p < p + 1 and go to Step 3; else, stop.

Now we consider the computational cost of Algorithm 1. For a given frequency bandwidth
B, according to the Shannon-Nyquist Sampling theorem, we will have a spatial grid of size
O(B?) in the two-dimensional space. To ensure that wave field is well resolved, we have
At = O(1/B), leading to O(B?) unknowns to compute.

As mentioned before, AT = O(1) since it only depends on the medium, so is N;. Thus
we will perform Step 3 for O(1) times, and in each iteration, there are O (B) matrix—vector
multiplications of size O(B? x B?), resulting in a computational complexity of at least
O(B). It is extremely expensive and impractical compared to the number of unknowns. To
resolve this issue, we will utilize butterfly algorithms and their hierarchical extensions to
accelerate matrix—vector multiplication.

As for Case 2, we first use (3.33) to approximate the time-domain solution in the interval
0 < t < AT and then apply Algorithm 1 to solve the following wave equation in the interval
AT <t < Tepa,

puy —V-(wVu) =0, x e R", AT <t < Topa, (4.35)

with initial conditions
1 . ~
u(AT, x) = —% [Z e * A Go (o, 2, x)} : (4.36)
T k

u (AT, x) = %m [Z(—iwk)e"wk”f;o(wk, Z x)i| ) 4.37)
k

Consequently, the frequency domain solution #i(w, £2) is constructed by (3.35). This leads
to the TFTF Eulerian Hadamard integrator.
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Fig. 1 Tllustration of £2} and £2%:
The red square represents the
source region 2 g, and the largest
square divided into nine parts
represents the corresponding
receiver region £2 ]Ke

5 Fast Computation of Hadamard Integrators

Here we propose a butterfly-based algorithm for the construction and application of each
kernel, which is quasi-optimal in the sense that the complexity and memory usage are reduced
from O (B*) to O(B?log?(B)).

For large wy, the discretized integral operators U™ are full rank due to the oscillation of
é(wk, x0; x), but the judiciously selected submatrices of the discretized operators are low-
rank compressible due to the so-called complementary low-rank property [37]. Consequently,
we can use the butterfly algorithm to compress those frequency-dependent kernels.

Even though the time-dependent kernels do not oscillate (which means that the comple-
mentary low-rank property is naturally satisfied), in this work we will use the same butterfly
algorithm to compress them. Since the ranks of the submatrices of the time-dependent kernels
are smaller than those of the frequency-dependent kernels, this fact naturally helps us reduce
the computational complexity and memory usage required for compression and application.

We have partitioned the computational region §2 into N; source regions {25, ¢ =
1,2,---, Ny} and designated a corresponding receiver region .Qﬁ for each source region
.Qﬁ. As shown in Fig. 1, we further partition each receiver region .Qﬁ, into nine sub-regions,
one of which overlaps with the corresponding source region .Qg (the red square), while the
remaining eight (the white squares) are adjacent to the corresponding source region.

We first describe the interpolative-decomposition butterfly representation for the non-
overlapping sub-regions and then introduce the hierarchical structure to handle the
overlapping sub-region.

5.1 Interpolative-Decomposition Butterfly (IDBF) Representation

For the integral kernel K (£21, £22) defined on two non-overlapping regions £2; and §2;, we
closely follow [10, 30, 31, 34, 35] to introduce the interpolative-decomposition butterfly
algorithm. The algorithm first recursively subdivides the geometrical point sets £21 and £2,
associated with the rows and columns of these operators into two subsets of approximately
equal sizes using a k-dimensional tree clustering algorithm, until the number of elements in
each subset is less than a preset value. When £2; and §2, have different sizes, the number of
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levels of the binary tree will depend on the set of a smaller size. This procedure generates two
complete binary trees 71 and 75 of L levels with root level 0 and leaf level L. In both trees,
a non-leaf node 7 at level [ has two children t; and 75, where T =ty U, and 11 N 1p = 0.
For a non-root node t, its parent is denoted p;.

The L-level butterfly representation of the kernel K (£2, £2,) requires the complementary
low-rank property: at any level 0 </ < L, for any node t at level / of 71 and any node v at
level L — [ of 73, the subblock K (7, v) is numerically low-rank with rank r; ,, bounded by a
small number r called the butterfly rank. As discussed in [34], even if there is a singularity in
the integral kernel which may cause some subblocks to have non-constant ranks, the butterfly
algorithm will still work when the singularity only exists at the interface of adjacent regions.

Thus, for any subblock K (7, v), where t € 7] and v € 73, the complementary low-rank
property permits a low-rank representation using interpolative decomposition (ID) as

K(t,v) ~ K(t,v) Vi, (5.1)

where the skeleton matrix K (z, V) contains r;, skeleton columns indexed by v, and the
interpolation matrix V; , has bounded entries. The ID can be computed via, for instance,
rank-revealing QR decomposition with a relative tolerance tol, which actually determines
the accuracy of the overall butterfly representation. Here we briefly describe the so-called
column-wise butterfly representation [31] [34].

Atlevel [ = 0, the interpolation matrices V; , are explicitly formed, and at level / > 0,
they are represented in a nested fashion. To see this, consider a node pair (z, v) atlevel / > 0,
and let v; and v2, and p; be the children of v and parent of t, respectively. From (5.1), we
have

K(r,v) = [K(t,v1), K(7, 12)]

~ - el Ver]
~ [K(t, 1), K(t, w)][ p sz,v2:| (5.2)

~ K(t, E)W‘L’,l} |:VPT’VI % :| .
Pr,V2

Here W;, and v are the interpolation matrix and skeleton columns from the ID of
[K (z, V1), K (7, V2)], respectively. This allows representing V-, as

Vew = We [V”“”l (5.3)

VPT‘UZ ] '
where we refer W, as the transfer matrix. We will select O(rr,,,) proxy rows ¢ C t to
approximately compute V; , and W, ,, via ID:

Kz, v)~ KE )V, =0, (5.4)
[K (2.01).K (2, 02)] ~ K&, D)W, 0<I<L. (5.5)

And we do not select proxy rows at level L.

In the current work, we select the proxy rows as follows. Consider a subblock (z, v) at level
0 <1 < L.Let x' be the geometrical centroid in the computational domain corresponding
to the row index i. Let s; be the index set consisting of the indices of neighboring centroids
of the centroid x’, where i € by U y; for example, s; may be the index set of all indices
for centroids that are within a 10 % h distance of x!, where & is the mesh size. Let fr
be the index set consisting of x| [v1 U 1| indices for uniformly selected centroids near the
boundary of the subdomain T with an oversampling parameter x, and let g, denote the index
set consisting of x7 |v; U 1| indices for randomly selected centroids inside the subdomain
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T with an oversampling parameter x», where |V;| indicates the cardinality of the set vy.
Accordingly, we choose the proxy rows as

T = (Uienumsi) NTU f; Ug,. (5.6)

Numerically, we take the oversampling parameters x; = x2 = 3. Here, the selection cri-
teria for proxy rows and oversampling parameters are empirical, determined by the properties
of the kernel function and numerical accuracy tests. This ensures that the error introduced by
the butterfly decomposition is significantly smaller than that from the numerical Hadamard
integrator itself. The proxy rows can greatly reduce the complexity. With all the interpolation
and transfer matrices computed, the butterfly representation of K (£21, £2;) is:

K(21, ) ~ KEwtwt=1 . wlvo. (5.7)
Let vy, v, ..., and vy~ denote the nodes at level L — [ of 75, and 71, 12, ..., and 7y
denote the nodes at level / of 7;. The interpolation factor VO, the transfer factors W! for
[ =1,..., L, and the skeleton factor KL are assembled in the following way,
V0 — diag (vml, o szL) . (z,v) atlevel [ = 0, (5.8)
KL = diag (K (11, V), ..., K (t1, D)), (m,v) atlevell =L, (5.9)
w! = diag (W ... W,ﬂfl), I=1,....L (5.10)
diag {W_1 ,..., W
Wy = | oy M et (@ M) atlevel 1 (5.11)
diag Wea oo W,

; VL1

where ‘L’il and riz denote the children of ;.

5.2 Hierarchically Off-Diagonal Butterfly (HODBF) Representation

When £2| = §2,, the resulting integral kernels K (£2;, £21) have singular diagonal terms. We
use the hierarchically off-diagonal butterfly (HODBF) [33, 34] representation to resolve such
singularities.

‘We still use the L-level binary tree 7; for £2 as in the last subsection. For any two siblings
71 and 7o with parent 7 at level [ of 77, we can directly extract two (L — [)-level subtrees 7z,
and 77, rooted at 71 and 17 from 77, respectively, due to the nested structure of the binary tree.
Next, we construct the (L —[)-level butterfly representation for K (z1, t2), where 71Nt = .
Finally, there are 2! butterfly representations at each level / = 1,2, .-, L. The subblocks
K(t, 1) for T at level L are kept as the dense blocks. Such a representation is called the
hierarchically off-diagonal butterfly (HODBF) representation.

5.3 The Complexity and Memory Usage

We analyze the complexity and memory usage of IDBF and HODBF for K = U;” for
i = 1,2,3,4 and lV]j’ for j = 1,2,3,4. Using the Chebyshev interpolation and partial
summation, we can evaluate each element in those kernels with O (1) complexity [34].

For IDBF of K (£21, §22) € COM*0™) we see that, in (5.8)-(5.11), V° and KL contain
2L diagonal blocks each with O (r,,,,) non-zeros, and W' contains 2% blocks W,y each
with O (r%_v) non-zeros. After selecting proxy rows, we will evaluate O(n) IDs of size
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O(rry) X O(re,y) for O(log(n)) levels, resulting in O (nlog(n)) complexity and memory
usage if O(rr,,) = O(1), analogous to the classic result of the butterfly algorithm.

However, for the kernel with singularity near the interface in our setting, we follow [34] to
analyze the sub-blocks near the interface separately. Letting /,,, = % denote the middle level
of the butterfly, we can show that among the O (n) subblocks K (z, v) ateach level /, there are
o (2” “lml2p1/ 4) subblocks representing interactions between adjacent or close-by geometric
subdomains. The non-constant ranks of these subblocks scale as r;, = 0(2’“”’”'/2111/4),
which are dominated by the interface degrees of freedom (DOFs) between the two sub-
domains. Moreover, each non-constant-rank subblock requires O(rrzvv) memory usage and
matrix entry computation and O(rg_v) ID cost. Thus, they require

> 2,0 (21720 Y) = 0 (1)) < 0 (1) memory usage (5.12)
1

and

Y r0 (2"*1'"'/2n1/4) =0 (n) complexity. (5.13)
1

Hence, we can still state that the memory usage and complexity of the IDBF for K €
COM*0M are O(nlog(n)). Due to the O(nlog(n)) nonzeros, we immediately conclude
that the complexity of the application of the IDBF matrix is O (n log(n)).

For HODBF of K (21, £21) € COMN*x0W), letting L = O (log(N)) denote the level of
the binary tree 77, we follow the DOFs analysis in [43] to sum up the complexity and memory
usage of the (L — I)-th level butterfly for all levels / and the 2° dense blocks at level L,

L
20 + ) 2'0(N/2'og(N/2') = O(N log*(N)). (5.14)
=1

That is, the memory usage and complexity of the construction and application of the HODBF
for K (£21, £21) € COMN*OMN) are O(N log?(N)).

5.4 Butterfly-Compressed Eulerian Hadamard Integrators

For Case 1, starting from Algorithm 1 and using IDBF and HODBF, we precompute the
low-rank representations of frequency-dependent kernels {Ul.w Y and corresponding time-
dependent kernels (U l.'[} and apply these compressed kernels in each time step, resulting in
the butterfly-compressed TFT Hadamard integrator (Algorithm 2) with quasi-linear memory
usage and computational complexity.

Algorithm 2: Butterfly-compressed TFT Eulerian Hadamard integrator for Case 1

1. Uniformly discretize the computational domain §2 into a wave-resolution-satisfying uni-
form grid; partition £2 into N; non-overlapping source regions {.Qg, £=1,2,---, Ny}
and designate the corresponding receiver regions to be {.Qfe, £=1,2,---, Ny}, set the
initial time Tp, the large time step AT < Tmin for updating the initial condition, the small
time step At = A—: for wave resolution, and an ending time 7, to ensure that the waves
do not reach the computational boundary; determine the bandwidth B according to the
initial conditions, set the frequency step Aw = N%, where N, = O(B), and generate
wp = (k+ %)Aw fork = 0,1,2,--- N, — 1; precompute and compress Hadamard
ingredients (4.2) in all sub-region pairs.
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2. For each source region ¢, divide the corresponding receiver region .Qfa into several
subregions that are similar in size to the source region, including a subregion that coincides
with the source region and several adjacent subregions; compute the IDBF and HODBF
representations of

U, s=1,2,3,41<k<N,—1 and U" s=1,23,4,1<n<Nr.

e

Initialize u(Ty, x) = u' (x), u; (T, x) = u?(x): settime T = Ty and loop variable p = 0.
4. For the current time step with 7 = To + pAT:

(a) compute finite-difference derivatives of u (7', x) and u;(T, x) and construct vectors
i, for s fe.

(b) determine a subregion §2,, of §2 that contains the region of influence of current data
by extending each direction of the non-zero region of the solution u(7, x) outward
by max cAT'; designate the source regions intersecting with £2,, as the regions to be
updated.

(c) for all the source regions .Qg to be updated:

i apply the IDBF matrices and HODBF matrices to obtain the corresponding
frequency- and time-sampling functions

di(wp), i=1,2,3,4,1<k<N,—1, and
uj(nAt),i =1,2,3,4, 1 <n < Ny.

ii update wavefields u(T + nAt, Qf) and u; (T + nAt, .Qg) via (4.33) and (4.34).
(d) set to zero the wave fields within the source regions that do not require updating.

5. Update T =To+ (p+ DAT.If T < T,pq, then p < p + 1 and go to Step 4; else, stop.

Equipped with butterfly representations, we construct the frequency-domain and time-
domain kernels in the precomputation step and recursively apply them during time marching.
The computational complexity and memory usage of constructing and applying each kernel
are reduced from O(B*) to O (B2 logz(B)), resulting in the Eulerian Hadamard integrator
with overall complexity and memory usage of O(B?log?(B)). Although we divide £2 into
Ny parts, N; = O(1) which only depends on the medium; consequently, such partition does
not affect the overall complexity estimate.

Further, assume that we solve the wave equation with m different initial conditions
simultaneously. In this case, we only construct the O (B) kernels once, and the computational
cost is

O(B)O(B*log*(B)) = O(C1B*log*(B));

applying all these kernels to mj initial conditions, the computational cost is
O(m,C,B3 logz(B)); we use the fast Fourier transform to obtain the time-domain solu-
tions on O (B>) mesh points, with a cost of O (m1 B> log(B)). Since we only need to update
the initial conditions for % = O(1) times, the overall computational complexity is

0 ((cl + ﬁ’;?mlcz)# 1og2(B)> .
For the butterfly algorithm, C; depends on the accuracy of the representation and riv from
the IDs. In any case, C is far greater than C»; thus, when solving different Cauchy problems
in the same medium, the efficiency of the algorithm will be more significant. On the other
hand, even if IDBF and HODBF need to be recalculated at each step due to limited computing
resources, the overall computational complexity remains quasi-linear.
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The quasi-linear memory usage makes parallel computing feasible. Since there are O (B)
kernels to compress, we do not embed parallel computing into the decomposition of each
kernel matrix. Instead, we use the parallel toolbox in Matlab to simultaneously calculate the
butterfly representations of O (B) kernel matrices.

For Case 2, we first use (3.33) to approximate the time-domain solution in the interval
0 < t < AT and then apply Algorithm 2 to solve the wave equation (4.35)-(4.37) in
the interval AT < t < T,,q. Subsequently, we perform the Fourier transform (3.35) to
obtain the frequency-domain solution. This leads to the butterfly-compressed TFTF Eulerian
Hadamard integrator. Here, we only perform an additional Fourier transform, which means
that the computational complexity and memory usage of the butterfly-compressed TFTF
Eulerian Hadamard integrator remain O (C) B3 logz(B ).

Compared to the TFT method, which yields O(B3) unknowns in the time-space domain,
the TFTF method obtains O (B3) unknowns in the frequency-space domain. Namely, both
Eulerian Hadamard integrators achieve a quasi-linear computational complexity.

6 Numerical Examples

This section provides several numerical examples to demonstrate the accuracy and efficiency
of the proposed butterfly-compressed Hadamard integrators by solving wave equations in
time and frequency domains. All computations were performed on a computer equipped
with 512GB of RAM and two 28-core Intel Xeon 6258R processors.

Because exact solutions for the wave equations are not available in general, we solve the
wave equation using the FDTD method [54] for time-domain “reference” solutions and a
finite-difference based direct solver [20] for frequency-domain “reference” solutions, where
the perfectly-matched layer (PML) absorbing boundary conditions are imposed [9, 13, 16],
and we always keep the number of points per wavelength (PPW) greater than 40 to reduce
the dispersion error in the two direct methods. For the proposed Hadamard integrator, we set
PPW~ 5 with respect to the artificial bandwidth B.

6.1 Sinusoidal Model

We introduce a sinusoidal model with the following setup.

1
P = 025G (x 1 0.05) sin@57y)2 "~ | Svehthate=1+0.2sinGx(x +
0.05)) sin(0.57 y).
- B =647, h = 555, Aw = §, and At = 5.
- 2 =[—1,2] x [—1, 2]; the sizes of 22} and £2 are 0.2 x 0.2 and 0.6 x 0.6, respectively;
AT = §
g

— Orders of Chebyshev interpolations of Hadamard ingredients in the four variables xg, yo,
x,and y are 11, 11, 13, and 13, respectively.
— Tolerance used in the interpolative decomposition: tol = 1077,

‘We show the velocity model, some rays, and wavefronts in Fig. 2, where the rays and wave-
fronts are obtained by solving the eikonal equation using the method of characteristics.
Caustics occur when rays intersect and wavefronts fold. Note that in the current domain,
caustics develop only along the y direction. The frequency-domain fast Huygens sweeping
method developed in [37, 40] can also be used to compute the point-source wave field in this
medium by propagating waves layer by layer along the y direction.

@ Springer



79  Page 26 of 42 Journal of Scientific Computing (2024) 100:79

-1
08 ' ' ' ' '
0

> 05

1

1.5

x x
@ (b)

Fig. 2 Sinusoidal model. (a) The velocity; (b) Rays and wavefronts with source xg = [0.5, 0.5]. The thick
blue lines represent equal-time wavefronts (traveltime contours) with the contour interval equal to 0.1, and
thin colored lines represent rays with different take-off angles

Table 1 The relative L2 and L®

errors of TFT solutions for B 8 16 2
Sinusoidal model at 1 = 0.5 Relative L2 error 322 -2 1.97¢ — 2 377 —2
Relative L°° error 3.08¢ — 2 1.88¢ — 2 3.64e — 2

6.1.1 TFT Method for Case 1

For Case 1, we take the initial conditions as

x+y—1

u(0, x, y)=sin (ﬂn 7

) exp (—100((x — 0.5)*+(y — 0.5)%),

u(0,x,y) =0,
6.1)

where B = 8, 16 and 32, respectively, and we utilize the Hadamard integrator to simulta-
neously solve these three Cauchy problems. Figure 3 shows the comparisons between the
TFT solutions and the reference solutions in [0, 1] x [0, 1] at # = 0.5. In Fig. 4, we further
compare the solutions along some lines. Table 1 shows the relative L? and L errors between
the TFT solutions and the reference solutions.

Here, we observe that compared with the case of 8 = 16, the TFT method shows larger
errors for the cases of § = 8 and f = 32. The reason for the case of 8 = 8 is that the
asymptotic error of the Hadamard integrator dominates in the low-frequency band, which
is typical of the error behavior for microlocal-analysis based asymptotic methods [34]; on
the other hand, as 8 gradually increases to reach or even exceed the Nyquist frequency
B/2, the time-domain solution reconstructed through frequency-domain samplings will no
longer be accurate, as indicated by the Shannon-Nyquist Sampling theorem. Similar error
performance will be observed in subsequent numerical examples. We will further discuss the
error behaviors and convergence results in detail in Sect. 6.4.
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(b)

y
(f)
Fig. 3 Sinusoidal model. u(z, x), t = 0.5: (a) TFT solution with B = 8; (b) TFT solution with 8 = 16;

(¢) TFT solution with 8 = 32; (d) reference solution with 8 = 8; (e) reference solution with 8 = 16; (f)
reference solution with g = 32

04 06
- o TFT
Reference

- o- TFT
Reference

-0.4
-0.6
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- o -TFT
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0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 08 1
y y y

(d) (e) (f)

Fig.4 Sinusoidal model. Slices of time-domain wave fields u (¢, x) when 1 = 0.5: (a) a slice at x = 0.2 with
B = 8; (b) aslice at x = 0.2 with 8 = 16; (¢) a slice at x = 0.2 with 8 = 24; (d) a slice at y = 0.85 with
B = 8; (e) aslice at y = 0.85 with 8 = 16; (f) aslice at y = 0.85 with 8 =24

@ Springer



79  Page 28 of 42 Journal of Scientific Computing (2024) 100:79

-.
-

-1 -05 0 05 1 15 2
y

©

05
x 05
15 i
2 s
-1 05 0 05 1 15 2
y

(d) (e) ()

Fig. 5 Sinusoidal model. Time-domain point-source wave fields u(z, x). (a) T = 0.25; (b) T = 0.5; (¢)
T=075d)T=1T=125ET=15
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y

(W)

Fig. 6 Sinusoidal model. ii(w, x). (a) TFTF solution with @ = 87; (b) TFTF solution with w = 167; (¢)
TFTF solution with w = 327; (d) reference solution with w = 87; (e) reference solution with w = 167; (f)
reference solution with w = 327

6.1.2 TFTF Method for Case 2

For Case 2, taking z = [0.5,0.5] and 7,,; = 1.5, we obtain the time-domain point-source
wave fields u(t, x). As shown in Fig. 5, we can clearly observe the occurrence of caustics.
Further applying Fourier transform in time, we obtain the frequency-domain point-source
wave fields i (w, x) with different angular frequencies w. In Fig. 6, we compare the TFTF
solution with the reference solution for @ = 8w, 16 and 32, respectively, where x €
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Table2 The L2 and L errors 8 67 307

of TFTF solutions for Sinusoidal

model Relative L2 error 321 -2 2.48¢ 2 5.88¢ — 2
Relative L error 3.8le—2 2.79¢ — 2 3.84¢ —2

- o- TFTF
——— Reference

O o TFTe
Reference

o 05 1 15
y

(a)

—o—TFTF
wl A

0 05 1 5 0 05 1 15
x x x

(d) (e) (f)

Fig.7 Sinusoidal model. Slices of frequency-domain point source wave fields i(w, x). (a) a slice at x = 0.4
with w = 87; (b) aslice at x = 0.4 with w = 167; (¢) a slice at x = 0.4 withw = 327; (d) asliceaty = 1.4
with w = 87; (e) aslice at y = 1.4 with v = 167; (f) aslice at y = 1.4 with v = 327

[0, 1.5] x [0, 1.5]. Table 2 shows the relative L? and L> errors between the TFTF solutions
and the reference solutions.

Figure 7 shows the comparisons of the two solutions along lines that traverse through the
caustic region for various w. Although they match well, it can be observed that the errors
at w = 8w and 32x are slightly larger than those at @ = 167, and we will explain this
phenomenon in Sect. 6.4.

6.2 Smoothed Heaviside Model

‘We introduce a y-dependent velocity model ¢, which is analogous to a scaled, smoothed, and
shifted Heaviside function.

1+ e 20(y=1)
~ \ 1.25 4 0.8¢—200-1)

- B=487,h = 15, Aw=Z,and At = 1.
2 =[-3,3]x[—1, 4]; the sizes of Qg and .Qf; are 0.2 x 0.2 and 0.6 x 0.6, respectively;
AT = 1.
Orders of Chebysheyv interpolations of Hadamard ingredients in the four variables xg, yo,
x,and y are 11, 11, 13, and 13, respectively.
Tolerance used in interpolative decomposition: tol = 10~°.

2
+e 20(y D
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Fig.8 Heaviside model. (a) The velocity; (b) Rays and wavefronts with source xg = [0, 0.8]. The thick blue
lines represent equal-time wavefronts (traveltime contours) with the contour interval equal to 0.1, and thin
colored lines represent rays with different take-off angles

Table3 The relative L2 and L®

errors of TFT solutions for the B 8 16 32
Heaviside model at £ = 0.5 Relative L2 error 2.76¢ — 2 238¢ 2 4.62e —2
Relative L error 4.05¢ — 2 2.8le —2 4.92¢ — 2

We show the velocity model, some rays, and wavefronts in Fig. 8. The rapid change in velocity
near y = | results in overturning rays and caustics. The FHS method, which propagates the
wave field along a specific spatial direction, is no longer valid due to these overturning rays.
However, the proposed Hadamard integrator, which propagates the wave field along the time
direction, can naturally handle such caustics.

6.2.1 TFT Method for Case 1

For Case 1, we take the initial conditions as
x+y—1
V2
where B = 8, 16, 24, respectively, and we utilize the Hadamard integrator to simultaneously
solve these three Cauchy problems. Figure 9 shows the comparisons between the TFT solu-
tions and the reference solutions at ¢+ = 0.5. Figure 10 further compares the solutions along

some lines. Table 3 shows the relative L2 and L™ errors between the TFT solutions and the
reference solutions.

u(0, x, y) = sin <,8n ) exp(—100(x> + (y — 0.8)%)), u:(0,x,y) = 0,(6.2)

6.2.2 TFTF Method for Case 2

For Case 2, taking z = [0, 0.8] and T,,4 = 2, we obtain the time-domain point-source
wave fields u(t, x). As shown in Fig. 11, we can clearly observe the caustics induced by the
overturning rays.

Further applying the Fourier transform, we obtain the frequency-domain point-source
wave fields i (w, x) with different angular frequencies w. In Fig. 12, we compare the TFTF
solution with the reference solution for @ = 8, 167, and 24w, respectively, where x €
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Fig.9 Heaviside model. u (7, x), 1 = 0.5: (a) TFT solution with 8 = 8; (b) TFT solution with 8 = 16; (¢) TFT
solution with 8 = 32; (d) reference solution with 8 = 8; (e) reference solution with 8 = 16; (f) reference
solution with 8 = 32
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Fig. 10 Heaviside model. Slices of time-domain wave fields u(z, x) when 1 = 0.5: (a) a slice at x = —0.3

with 8 = 8; (b) a slice at x = —0.3 with 8 = 16; (¢) a slice at x = —0.3 with 8 = 24; (d) asliceat y =1
with 8 = 8; (e) aslice at y = 1 with 8 = 16; (f) aslice at y = 1 with g = 24
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Fig. 11 Heaviside model. Time-domain point source wave fields u(z,x). (a) T = 0.75; (b) T = 1; (¢)
T=125d)T=15)T=175)T =2
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Fig. 12 Heaviside model. ii(w, x). (a) TFTF solution with w = 8; (b) TFTF solution with w = 167; (¢)
TFTF solution with w = 24 ; (d) reference solution with w = 87; (e) reference solution with w = 16s; (f)
reference solution with w = 247

[—0.6, 1.4] x [0.5, 2.5]. We then show in Table 4 the relative L2 and L™ errors of the TFTF
solutions compared with the reference solutions.

Figure 13 shows the comparisons of the two solutions along lines that traverse through
the caustics region for various frequencies . The TFTF solutions match with the reference
solutions well.
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Table4 The L2 and L errors

of TFTF solutions for Heaviside 8 167 247
model Relative L error 433¢ 2 2.98¢ 2 534 2
Relative L error 3.47e -2 3.07e —2 4.9le—2
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~——— Reference
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-0.04

() (e) (f)

Fig. 13 Heaviside model. Slices of frequency-domain point source wave fields ii(w, x). (a) aslice at y = 0.75
with @ = 87; (b) a slice at y = 0.75 with @ = 167; (¢) a slice at y = 0.75 with v = 247; (d) a slice at
x = 1.3 with w = 87; (e) a slice at x = 1.3 with w = 167; (f) a slice at x = 1.3 with v = 247

6.3 Complexity Validation

In this subsection, we validate the CPU and memory complexities of the proposed Eulerian
Hadamard integrators. Here we use the Sinusoidal model, and we set the source region
21 = [-0.1,0.1] x [—0.1, 0.1] and one of the corresponding adjacent receiver subregions
§£2, =[-0.3, —0.1] x [-0.1, 0.1].

Since there exist singularities in our kernels, the compression error will increase as the grid
becomes finer; however, we can choose proper tolerance tol and oversampling parameters
x1 and x> so that, even for an extremely fine mesh, such as 4 = Tloo’ the maximum relative
error is controlled to be smaller than 10~*, which can be neglected in comparison to other
erTors.

We set tol = 1072 and X1 = x2 = 3, and we vary the frequency and cell count from
® = 10m and N = 812 to w = 1607 and N = 12812, respectively. We sequentially
construct the IDBF matrices of the kernels U’ (£21, £22), U5 (£21, §22), U5 (821, £22) and
Uy (£21, £22) and HODBF matrices of the kernels U{’(£21, £221), U3y (£21, £1), U (£21, £21)
and U (£21, £21). And we record the total CPU time and total memory usage of IDBF and
HODBEF, respectively. The CPU time and memory usage for constructing the IDBF and
HODBF matrices are plotted, respectively, in Figs. 14 and 15, which validate our complexity
estimates. Thus, we can state that for given tolerance tol and oversampling parameters x| and
X2, the computational complexity and the CPU memory usage of the butterfly compression
grow as O (N log(N)) for IDBF and O(N logz(N )) for HODBEF, respectively.
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Fig. 14 CPU time and memory usage of IDBF without parallel implementation
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Fig.15 CPU time and memory usage of HODBF without parallel implementation

Due to its quasi-linear memory usage, the computations of IDBF and HODBF can be
parallelized quite directly. Although there are O (B) kernels to compress, we will not embed
parallelism into the algorithm so that we will only show the computational time of a sequential
implementation of the algorithm. Nevertheless, simply using “parfor” with respect to wy and
ty reduces the computational time of each kernel by roughly O(N,) times, where N, is the
number of cores of the computer, and parallel implementation on the 56-core computer that
we used here can improve the efficiency of the IDBF and HODBF in our numerical examples
by roughly about 25 times.

6.4 Convergence Test

As mentioned earlier, B is an artificial frequency bandwidth, and w or B is the frequency
parameter from the problem, both of which affect the accuracy of the Hadamard integrator.

In the TFT method for Case 1, we have assumed that the time-domain solution u(z, x)
decays rapidly in the frequency domain, which means that increasing B will not improve the
accuracy of the TFT solution. On the other hand, we regard § as a frequency parameter, but
as f — 0, the frequency-domain bandwidth of the solution does not tend to zero, due to the
influence of components in the initial conditions ensuring compact support. Consequently,
it is non-trivial to discuss the asymptotic behavior of the TFT method in terms of B or S,
and thus we will not do that here. However, we need to choose an appropriately large B in
conjunction with § to ensure the rapid decay beyond the bandwidth.

@ Springer



Journal of Scientific Computing (2024) 100:79 Page350f42 79
-3
5210
—e— L’-error Bm=327r
1
O(g) 25 - o--B_=48r
102 - +- B, =647
2
& a
315 .
N . ©-9
- DRI ,D
1 o R_e-o "
’_*‘4'*'*”"-*\""’
05
103 o
27 4 8r 167 8 12 16 20 24 28 32 36
w wlT
(a) (b)

Fig. 16 Convergence. (a): L2-error with B = 647 and different w; (b): L2-error with different B and w

In the TFTF method for Case 2, generating the time-domain Green’s function from the
Fourier summation of frequency-domain Green’s functions yields an O(ﬁ) asymptotic
error according to (4.8). However, when using these time-domain solutions to generate the
final frequency-domain solution, we observe an asymptotic behavior of 0(%), which we
believe is due to the fact that the TFTF method is somewhat analogous to reconstruct-
ing a signal using the Fourier transform. Additionally, the angular frequency also affects
the accuracy. According to [34], taking the one-term Babich’s ansatz éo(w, X0; X) as the
frequency-domain Green’s function introduces an O(wflls) asymptotic error.

To verify the asymptotic behavior with respect to w, we take the angular frequency w = 2,
4,8, and 167, respectively, and evaluate the L2 -error with respect to the reference solution.
As shown in Fig. 16a, when o is small, the asymptotic error of the one-term Babich’s ansatz
dominates, resulting in O(ﬁ) convergence.

To verify the asymptotic behavior with respect to B, we consider the following setups in
the Sinusoidal model:

1 .
1. B=32n,h=@,andAt=¥,
2. B:48n,h:@,andAt:@,
3. B:64n,h:m,andAt:lg—2.

We further set 7,,4 = 1 and compute the frequency-domain solution in [0.2, 1.2] x
[0.2, 1.2]. The L? errors for different B and w are shown in Fig. 16b.

For a fixed B, as w increases, the error initially decreases due to the dominance of the
asymptotic error from Babich’s ansatz. Subsequently, the error saturates due to the dominance
of the asymptotic error caused by truncation of the frequency domain and the fixed B. Finally,
after o > g, the error increases as the artificial bandwidth B can no longer guarantee a
sufficient sampling of the frequency domain. According to the Shannon-Nyquist Sampling
theorem, we set B > 2w. By comparing the errors for different bandwidths B in the interval
where the errors do not vary much, we observe an asymptotic behavior of %. Therefore, we
can conclude that when solving the Helmholtz equation, the Hadamard integrator enjoys a

frequency-dependent asymptotic convergence in the form of O (#) + 0 (ﬁ)
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7 Conclusion

Based on the Kirchhoff-Huygens representation, Hadamard’s ansatz and Babich’s ansatz,
we developed novel butterfly-compressed Eulerian Hadamard integrators for solving the
high-frequency wave equation in time and frequency domains. We derive the Eulerian formu-
lations via the Fourier transform and utilize the butterfly algorithm to accelerate the resulting
matrix—vector multiplication. The proposed integrators propagate wave fields beyond caustics
implicitly and advance spatially overturning waves naturally, with quasi-linear computa-
tional complexity and memory usage. Once constructed, the integrators can simultaneously
solve the time-domain wave equations with different initial conditions or the frequency-
domain wave equations with different point sources in the computational domain. Numerical
examples illustrate the accuracy and efficiency of the new integrators.

Appendix A Computation of Singular Terms

A.1 Frequency-Space Integral

Consider
Aw i .
I(t,x0;x) = f e '“"Go(w, xp; x)dw, (8.1)
0

which is a frequency-space integral. Since the HKH propagator is short-time valid, both ¢
and t are bounded by a sufficiently small AT. In the numerical examples, we take Aw =
7. AT = é. The small arguments et and wt allow us to use the Taylor expansion of e ¢!
and polynomial approximation of Bessel functions. According to [1], we have the following
polynomial approximations of Bessel functions Jy(x) and Yp(x) when 0 < x < 3,

B =1-a(?+aG  +e ld=0(3). (82)
and
2
Yor) = Z (o) +b1 + 5237 —ba(DP e 1l =0(5°). 83
where

ay =2.2499997, ap = 1.2656208, by = 0.36746691, by = 0.60559366, b3 = 0.74350384.

Using the Taylor expansion of e/, we obtain
. _,-thl( )~ i(l + ot *t? i’ n a)4t4)[(1 n 2i 1 (a)r))(l (a)r)2
ie oT) A iwt — — — In(— —ai(—=
0 2 6 24 b4 2 "3 (8.4)

wT 4 . ., WT 5 . WT 4
+a2(?) )+ ib +lb2(?) +lb3(?) ].

Dropping fifth- and higher-order terms as well as the imaginary parts, and calculating the
definite integral over [0, Aw], we obtain

Aw
/ e Go(w, x0; ¥)do ~ gUO(Ll - Ly), (8.5)
0
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where
[~ (2402 4 2[(Aa))4(72t2 +16a172)]  (Aw)S(541* + 72411772 + 16a;7%)
(Aw)m 648 16200
(Aw)f (Aw)® In(YA2% ) (541% + 72411272 + 16art%)
+ (Aw)? In( )+
3240 8.6)
(Aw)* ln(mTwﬁ)(216t2+48a1r2) b A
- A8 }—( )[— 1(Aw)
N (Aw)*(108b112 — 24b2t2) (Aw)®(=27b11* + 36by 1272 + 8bgt4)]
648 3240
and
Aw 5.5
w" [ w 't wT wT
Ly ~ f— Z )1 = N2 4 d
2 /0 (o 5 +120)( a1(3)+a2(3))w
Aw w3 3 5t5
~ [ ert—a P+ ah - TR - + S dw
0 120 87
/Aw e tr2+t3) e T4+ PR 2+ t5) 5 ’
= a| —— — a) aj)—— a)|—— —)w aw
0 ! 281 M54 T 120
_ (Aw)t (@ 112 +t3)(Aw)4+( it ta 312 N )(Aa))6
) 281 TN 5 T 0

A.2 Diagonal Term of I(t, xo; x)

As shown in the appendix of [34], the integral of self-intersection term inside source cell ¢

. j 1 Th h
/ Go(wy, xo; x)dx ~ lﬁvo(xo;xo) 3 8/ A Hl(l) ( ngwk) do + 4i
¢ 2 (nowr) 0o 2cosé 2cosf
j Th h
S — 8/ RO gy () < "Ow">d9 +4i, (8.8)
4vg (nowy) o 2cosé 2cosf

where ng = n(xg), vo = v(xp), and we use the initial condition (3.10).
Now we consider a self-intersection term of 7(z, xo; x). Starting from (8.8), we have

Aw it z h h
/ I(t,x0; x)dx :/ l6’72 8/4 no® Hl(l) ( 10w )d@ +4i |dw
¢j 0 4vg (now) 0 2cosf 2cosf
/% wa 2ie7 " [ hngw 5 ((mow Jodd
= [
o Jo vomow)? L2cos® 1 \2cos

T rdo jp—iotp2 /o e 2 h h
:/ / ie ! cos now Hl(l) now dodo
o Jo 2vgcosc6 \ hngw 2cos6 2cos6

= 51.

(8.9)

To handle Hl( l)(s) = Ji(s) + iYi(s), we introduce the polynomial approximation of
Bessel functions J; and Y} [1] when 0 < s < 3,
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s~ Gs) = 1 - 0562499855 2 4o 210935735 Sy 0.03954289(%)6 + 0.00443319(2)8
—0.0003176l(§)10 + 0.00001109(5)12 +e el <13x 1078, (8.10)
and
sYi(s) = %s ln(%)]l (s) — % + 0.2212091(%)2 + 2.1682709(%)4 - 1.3164827(%)6

+0.3123951(§)8 —0.0400976(%)‘0+0.0027873(§)‘2 +e lel<1.1x1077.

8.11)
Thus as s = zhgo"s“;) — 0, we obtain
1 . 2i 1 . 2i
S (sH®+ 2 ) = 5 [s(hi©) +inie) + =
T T
1 1 2
=-Ji(s) +i(=) (SYI(S)+*) (8.12)
s s b4
1 1 1
~ E —+ l; ln(is).
Dropping higher order terms, we have
sTUhs) == —o0. 56249985 (3 22 +o. 21093573(3 %4 (8.13)
for the real part and
1 2 2 s 1 s
SV + 2) = 2 I 0 + = (0.2212001(2)?
\) b b 2 § 3 (814)

+2.1682709(§)4 - 0.03954289(%)6)

for the imaginary part. The singularity appearing in the first term of (8.14) can be removed
in the following way,

T Ao (2cosO\* [ h h 2i
S = / - / emion (2507 | 20 pn (20D ) 2L g
o 2vpcos=8 Jy hnow 2cos6 2cosf b4
B /ﬁ ih? /A”’ —iwt [ 2c0s6 2 hnow 7O hnow 4 2i (8.15)
" Jo 2vgcos?6 Jy ¢ hnow 2cosf ! 2cosf b4 '

T Ao 252 1 hpgo
— In( Ydwd§,
o Jo 2ugcos28m  “4cosh

where the last singular term in (8.15) can be handled as

i Aw 2272
h 1 h
f ! / ! = (0% )dawdo
2ugcos2Omw 4co

2/’12 Aw
= In(
TV / / cos2 6

&

(8.16)
2h2 Aw
= / / —In(4cosb)]dwdb
m)o
2h? 1 hngAw
= —— 7[Aw(ln( ) —1)]do
v Jo cos?é 4cos 6
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. ~ o uk
A.3 Diagonal Term of Go (@, x¢o; x) { — —
107 Vo
Consider the self-intersection terms (4.19) with non-zero w in cell c¢;, where n and non-
singular ingredients are taken to be constant. We state that

. 3 k
S, = / Go(w, x0; x) (—) <u—> dx =0, k=1,2, (8.17)
c: 7T )

J

which implies that the self-intersection term is zero.
To see this, we note that, when n = ny,

0 1
— =’V -V = —(cosb,sinb) -V, (8.18)
ot no
where 6 is the take-off angle, which is consistent with that in the polar coordinate
transformation when n = ng. And
i

Go(w, x0; x) = — Hy (wng|x — xol), (8.19)

4y

which is a radial function. Then we can obtain (8.17) by symmetry. Actually, we can divide
the cell ¢; into four parts

| T
0 €e[——,—1, 0, ———1,
ciroelg ghreld 7@
2 w 3w h
CJZGG[Z,T],”G[O,Z‘.*],
sin(0) (8.20)
3 96[371 Sn] <o h | ’
it — I, r e I
J 47 4 2 cos(0)
4.96[571 77r] [0 h 1
€ PRI N

Now we use the polar coordinate transformation in (8.17), yielding

vg ) nolx — xol

i | , uk (8.21)
=—( +[_+ .+ | YHy(wnglx —xpl)(cosd,sind) -V | — | drdf
4pj cj'. c? 03 cj. vo

=8$H1+92+853+84.

. 1 k 1
Sy = / / I—Hé (wnglx — xg|)—(cosH,sinf) - V (u) ———|x — xq|drdo
4y no

Substituting & = 6 + 7, it is easy to verify that
$1+853=0, $2+84=0.
That is, S» = 0.
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