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Memory profiling captures programs’ dynamic memory behavior, assisting programmers in debugging, tuning,
and enabling advanced compiler optimizations like speculation-based automatic parallelization. As each
use case demands its unique program trace summary, various memory profiler types have been developed.
Yet, designing practical memory profilers often requires extensive compiler expertise, adeptness in program
optimization, and significant implementation effort. This often results in a void where aspirations for fast and
robust profilers remain unfulfilled. To bridge this gap, this paper presents PROMPT, a framework for streamlined
development of fast memory profilers. With PROMPT, developers need only specify profiling events and
define the core profiling logic, bypassing the complexities of custom instrumentation and intricate memory
profiling components and optimizations. Two state-of-the-art memory profilers were ported with PROMPT
where all features preserved. By focusing on the core profiling logic, the code was reduced by more than 65%
and the profiling overhead was improved by 5.3× and 7.1× respectively. To further underscore PROMPT’s
impact, a tailored memory profiling workflow was constructed for a sophisticated compiler optimization client.
In 570 lines of code, this redesigned workflow satisfies the client’s memory profiling needs while achieving
more than 90% reduction in profiling overhead and improved robustness compared to the original profilers.

CCS Concepts: • Software and its engineering → Compilers; • Theory of computation → Program
analysis.
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1 INTRODUCTION

Profiling techniques summarize runtime information of a specific run of the program. Examples
of profile information include a summary of the hot regions of the program, edge weights on the
control flow, and the frequency of manifested memory dependences. Programmers use profiles to
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guide debugging and tuning of programs. Compilers use profiles to guide sophisticated program
optimizations [Chen et al. 2016; Panchenko et al. 2019]. Memory profiling focuses on memory-
related program behavior and is particularly useful in overcoming the limitations of compiler
memory analysis to unlock speculative transformations that can dramatically improve program
performance [Bridges et al. 2007; Connors 1997; Johnson et al. 2012; Liu et al. 2006; Peng Wu and
Cascaval 2008; Steffan et al. 2000; Thies et al. 2007]. These speculative transformations optimisti-
cally assume memory behaviors observed in profiling runs scale to production workloads. They
can also preserve correctness at runtime by executing recovery code when a specific dynamic
instance of an assumption is detected to be false. Since trends in profiled behavior tend to hold
regardless of program input, the cost of recovery code is low compared to the gains obtained by
the unlocked transformations. Performance is shown to improve by orders of magnitude for many
programs [Bridges et al. 2007; Liu et al. 2006; Peng Wu and Cascaval 2008; Steffan et al. 2000].

Many types of memory profiling have been proposed to address various needs, including mem-
ory dependence profiling [Chen et al. 2004; Larus 1993; Zhang et al. 2009], value pattern profil-
ing [Gabbay and Mendelson 1997], object lifetime profiling [Qiang Wu et al. 2004], and points-to
profiling [Johnson et al. 2012]. A memory profiler first tracks program events related to a program’s
memory behavior, like memory accesses, loop invocations, and function calls. Then, it uses the
events to summarize the memory behavior in some way. Both tracking and summarizing are usually
expensive. Thus, memory profilers must be heavily optimized to be practical. As a result, memory
profiler developers must master a range of skills, from methods of instrumenting programs to pro-
gram optimizations. To make memory profiling faster, researchers have proposed lossy techniques
to reduce the profiling overhead [Chen et al. 2004; Vanka and Tuck 2012]. However, such techniques
are often of limited utility due to the imprecision introduced by them. As one paper puts it, “the
difference in accuracy has a considerable impact on the effectiveness of the speculative optimizations
performed” [Vanka and Tuck 2012]. Thus, this work focuses on precise memory profiling. Prior
work also proposes optimizations without sacrificing precision, such as parallelizing the profiler to
reduce the cost [Kim et al. 2010], but these optimizations are often specific to a particular memory
profiler.
Without practical memory profilers, memory profiling and its clients like speculative opti-

mizations are less likely to be adopted. For example, Perspective is a state-of-the-art speculative
automatic parallelization system that requires memory profiling [Apostolakis et al. 2020a]. To
collect the memory profiles, it uses two memory profilers, LAMP and the Privateer profiler [Johnson
et al. 2012; Mason 2009]. Both are state-of-the-art for the memory profiles they produce. LAMP is a
loop-aware memory dependence profiler that tracks memory dependences and their loop distances.
The Privateer profiler (referred to as “Privateer” for short in this paper) gathers multiple types
of memory profiles, including points-to information, object lifetime, and value predictions. Both
profilers are based on LLVM, making them easy to integrate with modern compiler optimizations.
However, their implementation is quite complex, making them hard to adapt as needed. They
also have significant runtime overhead and fail on some complex benchmarks. These problems
significantly limit the applicability of Perspective.

This paper introduces a novel factorization of memory profiling to simplify the process, enabling
developers to focus solely on the core profiling logic. This approach first separates memory profiling
into two main phases: the frontend and the backend. The frontend is responsible for generating
memory profiling events. The backend processes these events to produce profiles. Generalization
is then applied to both phases. The frontend standardizes the instrumentation of common events
in memory profiling while the backend generalizes and provides commonly used memory profiling
components, such as data structures, algorithms, and optimizations.
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Building on this factorization, we present PROMPT, the first memory profiling framework for
streamlined development of fast memory profilers. PROMPT systematizes memory profiling events
and provides generalized implementations of both typical profiling components and optimizations.
Using PROMPT, developers can design and implement memory profilers more efficiently without
delving into compiler internals, parallel programming, or repeated implementation. This can shift
the perspective on memory profiling adoption. More developers can now easily craft tailored
memory profilers with low profiling overhead with PROMPT.
This paper offers the following main contributions:

• proposes a novel factorization of memory profiling to simplify the development of memory
profilers by separating the profiling frontend and backend and generalizing components and
optimizations (§3);

• introduces PROMPT, an open-source, fast, and extensible memory profiling framework, and
discusses its design and implementation (§4, §5);

• demonstrates the extensibility and performance of PROMPT by porting two state-of-the-
art memory profilers, LAMP and the Privater profiler, and achieving 65% reduction of the
codebase and 5.3× and 7.1× faster profiling time respectively (§6.2, §6.3);

• highlights PROMPT’s impact on memory profiling with a redesigned memory profiling
workflow for a sophisticated compiler optimization client, Perspective, which is succinct at
570 lines of code and reduces client profiling time by more than 90% (§6.4).

2 BACKGROUND

To build an understanding of the functionality and the overhead of memory profilers from the
ground up, first, we analyze a typical memory dependence profiler and discuss the causes of
slowdown. Then, we discuss the workflow of using memory profiling with existing systems and
the difficulties in each option and show how PROMPT changes the situation of adopting memory
profiling.

2.1 A Typical Memory Profiler

The memory dependence profiler is the most common type of memory profiler. This section
introduces the design of a typical memory profiler and shows sources of slowdown.

Design. Consider a vanilla memory dependence profiler that records the set of manifestedmemory
flow dependences. A memory flow (i.e., read-after-write) dependence occurs when a memory load
depends on the result of a memory store. The profiler first instruments the memory instruction
and corresponding memory location for all memory accesses. Subsequently, it identifies whether
a new memory access creates a memory dependence. To do so, the profiler remembers for each
memory address the store instruction that last touches it. When a load instruction is executed, a
dependence is found from the latest store with the same memory location as the load instruction.
Dependences, as pairs of load and store instructions, are then recorded in a data structure.

Slowdown. The three steps, namely instrumentation, tracking the latest writes, and recording
dependences in a data structure, all add additional instructions to each execution of a memory
instruction in the original program. Depending on the instrumentation method, the added cycles
may have various sources, such as function calls and dynamic translation. A hash map can be used
for tracking the latest write to each memory address and a hash set for recording the profiling
results; each comes with additional overhead. Depending on the implementation, an additional
tens to thousands of CPU cycles can be added to each memory access, causing an overall slowdown
of several to hundreds of times.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 110. Publication date: April 2024.



110:4 Ziyang Xu, Yebin Chon, Yian Su, Zujun Tan, Sotiris Apostolakis, Simone Campanoni, and David I. August

Table 1. Systems for memory profiling.

Category Systems

Compiler LLVM [Lattner and Adve 2004]
GCC [GCC Team 2023]

Instru-
mentation
System

Pin [Wallace and Hazelwood 2007]
DynamoRio [Bruening et al. 2012]
Valgrind [Nethercote and Seward 2007b]

Memory
Tracing

drcachesim [DynamoRio Team 2023]
adept [Zhao et al. 2006]
mTrace [mTrace Team 2013]

Memory
Profilers

SD3 [Kim et al. 2010]
LAMP [Mason 2009]
Privateer [Johnson et al. 2012]

Memory
Profiling

Framework
PROMPT (this work)

Found matching
memory profilers?

Exact 
 match?

Yes

Implement
from scratch?

No

Directly use
profilers

Yes

Adapt existing
profilers

No No

Yes

Unsatisfactory
Performance

Implementation 
Effort

Optimization 
Skills

Compiler 
knowledge

Found matching
PROMPT modules?

Exact match?

Yes

Implement with
PROMPT

No

Yes

Adapt existing
modules

No

Satisfactory
Performance

In a few
lines

Core profiling
logic only

Without PROMPT With PROMPT

Implement with 
compilers

Implement with
frameworks

Directly use
modules

Fig. 1. Using memory profiling with and without PROMPT.

2.2 Different Ways to Use Memory Profiling

Figure 1 illustrates the workflow differences when using memory profiling with and without
PROMPT, based on the systems listed in Table 1.
Without PROMPT, when users wish to use memory profiling, the first step is to check if there

are existing profilers matching their requirements. SD3, LAMP, and Privateer are examples of such
existing memory profilers[Johnson et al. 2012; Kim et al. 2010; Mason 2009]. If the requirements
diverge even slightly, adapting the tool for a new purpose becomes challenging due to its legacy
codebase andmonolithic design. Furthermore, existingmemory profilers often have a high overhead,
rendering them impractical. If no suitable profiler exists, users must create their own memory
profiler. Instrumentation or memory tracing systems can aid in the development of memory
profilers. While specific compiler knowledge isn’t mandatory, significant implementation effort
and optimization skills remain essential. Instrumentation systems typically operate at the binary
level, such as Pin, DynamoRio, and Valgrind [Bruening et al. 2012; Luk et al. 2005; Nethercote and
Seward 2007b]. Dynamic injection of instrumentation code by binary instrumentation systems
leads to an overhead of around 1-10x, irrespective of the profiling logic’s complexity [Luk et al. 2005;
Nethercote and Seward 2007b]. Tracing systems, on the other hand, create and store execution traces,
processing them through online or offline analytical algorithms. For instance, drcachesim, adept,
and mTrace are memory tracing systems built atop DynamoRio or Pin [DynamoRio Team 2023;
mTrace Team 2013; Zhao et al. 2006]. While these systems mitigate some implementation effort,
merely gathering the trace incurs a 10–100× overhead. This does not account for the processing of
the acquired trace to derive profile information. An alternative approach to building a memory
profiler from the ground up is to leverage a compiler directly, instrumenting at the intermediate
representation (IR) level, as seen with LLVM and GCC [GCC Team 2023; Lattner and Adve 2004].
Efficient memory profiling can be achieved this way, as other instrumentation-based systems
have shown [Serebryany et al. 2012; Stepanov and Serebryany 2015]. However, users should be
well-acquainted with the compiler and adept at optimizing intricate systems.

The memory profiling workflow is simplified with PROMPT. The initial step involves searching
for appropriate modules within the PROMPT repository. If suitable modules are identified, they can
be used directly. If adaptation is necessary, it typically requires minimal code adjustments, thanks
to PROMPT’s modular design. If there is no match and a new implementation is needed, users can
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concentrate solely on the profiling logic and delegate the rest to PROMPT. PROMPT optimizes the
workflow and diminishes the challenges associated with adopting memory profiling.

3 OVERVIEW: THE PROMPT APPROACH

PROMPT ComponentsTasks for Developing
a Memory Profiler

Generalized
Instrumentation

for Memory Profiling

Event
Queue

Profiling Logic

Profiling Events
Specification

Profiling Frontend Profiling Backend

Program
Instrumentation

Profiling Logic

Profiling Results
Generation

Generalized Components
& Optimizations

for Memory Profiling

Performance 
Optimization

Without PROMPT With PROMPT

Fig. 2. The process of building a memory profiler, with and without PROMPT.

As discussed in Section 2.1, a memory profiling pipeline can be broken down into three steps
— instrumenting profiling events, the profiler-specific logic that generates profiling results, and
recording and storing profiling results. Thus, crafting a memory profiler necessitates an intricate
understanding and considerable effort in areas such as instrumentation, the formulation of profiling
logic, and storing the profiling results in certain data structures—all while ensuring expedient
performance, as illustrated on the left side of Figure 2. However, it is really the core profiling logic
a profiler developer is interested in. To allow developers to focus only on the core profiling logic,
this paper presents a novel factorization of the memory profiling pipeline, termed as the PROMPT
approach.

Separation. Inspired by the implementation of some existing profilers [Deiana et al. 2023; Johnson
et al. 2012; Ketterlin and Clauss 2012], the PROMPT approach first decouples the profiling into two
parts: the event generation (frontend) and the profile formulation (backend). The profiling frontend
instruments the program and tracks profiling events and the corresponding values. The profiling
backend consumes the events, runs the profiling logic, and generates the profiles. The frontend
and the backend are connected through an event queue. This clear separation has three main
benefits. First, it allows the profiler developer to separate the concerns of instrumentation from the
core profiling logic. Second, it reduces the interference of profiling logic with the program that is
being profiled. Finally, it makes it easier to have multiple profiling backends to enjoy parallelism
without rerunning the program. While the design of a separated frontend and backend has been
used in existing profilers, PROMPT is the first to generalize it as a unified framework that applies
to all memory profilers. The enforcement of a decoupled frontend and backend while easing the
connection between them is the key to PROMPT’s extensibility and performance.

Generalization. Separation alone does not guarantee extensibility and performance. Another
observation is that existingmemory profilers havemany overlapping components and optimizations.
By generalizing these components and optimizations, a memory profiler can be built much more
easily and efficiently. The generalization process involves identifying common components with
similar functionalities and developing them with a flexible interface. The interface should be easily
specialized by the profiler developers for their specific needs. In the profiling frontend, the profiling
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Instrumented
Program
Bitcode

Profiling
Inputs

Program
LLVM

Bitcode
Shadow Memory

Context Manager

Insert Event Calls

LTO-enabled
Linker

Instrumentation
LLVM Pass

Profiles

Input/OutputsPROMPT Components Tasks for Developing a Memory Profiler

Profiling Event
Generation

Frontend
Library

Frontend
Binary

High-throughput Containers
with Insertion Logic

Event
Queue

Data Parallelism Wrapper

Compiler

Backend Driver

Backend
Binary

Memory Profiling Module

Core Profiling LogicProfiling Event
Specification

Profiling Frontend Profiling Backend

Backend Library

Fig. 3. The design of PROMPT.

events need to be generalized. The profiler developers should be able to choose from a set of
categorized and standardized events, and only the events and values the profiler requires will
be instrumented. Meanwhile, in the profiling backend, shared data structures, algorithms, and
optimizations should be made generic, serving as foundational elements for developers when
implementing their profiling logic.
With the PROMPT approach, the profiler developers only need to specify the profiling events

and implement the core profiling logic, as shown on the right side of Figure 2.

4 DESIGN

Figure 3 shows the design of PROMPT and the workflow of a memory profiler implemented on
top of it. PROMPT instruments the program with profiling events in the profiling frontend and
generates the frontend binary. To implement a memory profiler, one implements a profiling module
in the profiling backend with the help of PROMPT’s backend library, and compiles it to a backend
binary. A profiling process happens when we run the frontend and backend binaries with profiling
inputs. The frontend and backend processes communicate through the event queue. The backend
process will generate the profile.

4.1 Generalizing Memory Profiling Components

The profiler writer still needs to implement many functionalities to build a memory profiler, many
of which are common across different memory profilers. For example, many profilers need to keep
a map from the memory address to the metadata. PROMPT recognizes this and provides a set of
common components to ease the implementation of the logic of a memory profiler.

Profiling Frontend. PROMPT introduces a generic frontend designed to instrument the program,
thereby facilitating the generation of memory profiling events. A categorization and standardization
of profiling events, prevalent in existing memory profilers, is performed. Moreover, each event
encompasses a set of arguments. Section 5.1 discusses the event types and their respective arguments
in detail. Additionally, PROMPT instruments the source code with callback functions, which
sequentially push profiling events to the queue.

Profiling Backend. PROMPT provides an array of generic backend components to streamline
the development of memory profilers. Shadow memory profiling, previously employed in various
dynamic program analysis tools [Nethercote and Seward 2007a; Zhao et al. 2010], operates by storing
metadata in a distinct shadow memory location. PROMPT includes a versatile shadow memory
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that can be tailored to accommodate specific metadata requirements. Often, memory profilers
necessitate tracking context, such as the call stack and loop nest, with the context information of a
particular event potentially being encoded in the shadow memory for future retrieval. PROMPT
provides a generic context manager adept at encoding and decoding such contexts. Furthermore,
memory profilers frequently utilize containers, such as sets and maps, coupled with a certain
insertion logic to document profiling results — for instance, generating a new entry or incrementing
a count in a map of dependences. PROMPT offers various containers equipped with predefined
insertion logic to facilitate this process.

4.2 Generalizing Memory Profiling Optimizations

Optimizations are imperative for memory profilers to ensure viable performance and practical
utility. While numerous optimizations are prevalent across existing memory profilers, the task of
generalizing them is nontrivial. PROMPT facilitates a generalized approach to two main optimiza-
tions, specialization and parallelism, thereby enabling most memory profilers to use them with
minimal developmental effort.

Removing unnecessary instrumentation. Memory profilers may only care about a subset of events.
We use the specialization technique to remove unnecessary events and reduce overhead [Reps
and Turnidge 1996]. A way to do specialization can be at instrumentation time. We can configure
the LLVM pass to only instrument the necessary calls and arguments. However, this requires a
complicated way to communicate with the LLVM pass. Instead, PROMPT does specialization at
link-time. As shown in Figure 3, PROMPT gets the profile event specification from the module
implemented by each profiler. PROMPT then automatically specializes the frontend library that
generates profiling events to the queue based on the specification. For any irrelevant event, an
empty function body will be generated. For any information not required for an event, the argument
will not be pushed to the queue. At link time, we enable link-time optimization. The compiler will
automatically optimize away any dead instructions, empty functions, unused arguments, and all
instrumented code to produce them (see profiling frontend in Figure 2). In this way, PROMPT
removes the cost introduced by generic events without configuring the LLVM pass. We have verified
the validity of this approach by examining the generated binaries to confirm that the generic event
handling was removed. This link-time specialization makes the instrumentation LLVM pass easy
to implement and easy to maintain.

Data Parallelism. Another common optimization amongmemory profilers is parallelism. PROMPT
makes it easier to leverage parallelism. One form is address-based parallelism that state-of-the-art
memory profilers implement for their specific tasks [Kim et al. 2010]. Multiple profiling backends
can run in parallel to process profiling events to decoupled chunks of address space, as shown in
the profiling thread of Figure 2. PROMPT generalizes this to other types of data parallelism, such
as parallelism of tasks on different originating instructions instead of different addresses. It also
provides a wrapper to adopt data parallelism easily. A memory profiler built with PROMPT only
needs to mark that an operation is decoupled based on the address of other values and provide a
method for merging results. PROMPT will manage the parallelism at runtime.

4.3 Trading Latency for Throughput

PROMPT uses a pivotal insight to enhance performance: trading latency for throughput. Here,
throughput is defined as the number of events processed within a given time unit, while latency
represents the time interval between a memory event’s generation at the frontend and its processing
at the backend. Given that memory profilers only supply aggregated summaries—or profiles—upon
completion and do not necessitate real-time feedback, latency does not emerge as a critical aspect
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for memory profilers. However, due to the typically immense data volumes generated in memory
profiling, a system with high throughput becomes imperative to expediently process the memory
events. Any bottleneck in the queue, profiling logic, or result-storing containers will hamper the
entire process. Consequently, numerous components within PROMPT are intentionally crafted to
prioritize throughput over latency.
This optimization is primarily realized by incorporating buffers into bottleneck-inducing com-

ponents, thereby redistributing the load to other components which can harness parallelism or
alternative optimizations to boost throughput. One example is the queue situated between the
frontend and backend. We identified the main throughput bottleneck as the overhead of writing
events to the frontend queue. PROMPT counteracts this by employing a blend of a ping-pong buffer
design and streaming writes, ensuring the frontend can inscribe to the queue with minimal latency
(see Section 5.2 for further details). Another optimization involves the containers responsible for
storing profiling results. It is customary for these containers to experience a deluge of stores within
a brief window, interspersed with periods devoid of reads. Thus, PROMPT utilizes a buffer to
aggregate the stores, performing the reduction (typically in parallel) only when the buffer reaches
capacity or when a read is initiated (see Section 5.3 for additional details).

5 IMPLEMENTATION

PROMPT’s frontend, backend, and profilingmodules are developed in C++, while its instrumentation
is built upon the LLVM compiler infrastructure. PROMPT’s instrumentation pass is currently built
on LLVM 9.0.1 in order to align with the latest versions of LAMP, Privateer, and Perspective [Liberty
Research Group 2022]. The frontend has around 3400 lines of code, with 2600 for the instrumentation
pass and 800 for the frontend library. The backend has around 3000 lines of code, with 900 for
the backend driver, 400 for the context manager, 200 for the shadow memory, 100 for the data
parallelism wrapper, 1000 for the high-throughput data structures, and some other utilities. The
queue has around 500 lines of code. PROMPT is open-source [PROMPT Team 2024].

Table 2. The profiling events provided by PROMPT.

Event Category Events Information

Memory Access
Load Instruction ID, address, value, size
Store Instruction ID, address, value, size

Pointer Creation Instruction ID, address, type

Allocation

Heap Allocation Instruction ID, address, size
Heap Deallocation Instruction ID, address
Stack Allocation Instruction ID, address, size
Stack Deallocation Instruction ID, address
Global Initialization Object ID, address, size

Context

Function Entry Function ID
Function Exit Function ID

Loop Invocation Loop ID
Loop Iteration Loop ID
Loop Exit Loop ID

Program Starts Process ID
Program Terminates Process ID
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5.1 Profiling Events

PROMPT provides three categories of profiling events — memory access, allocation, and context
events, as listed in Table 2. Most events are instrumented at the LLVM IR level by adding callback
functions right after the corresponding event with all the information through function arguments.
For example, a load event will be followed by an onLoad(instrId, address, value, size).
Heap allocation and deallocation events are tracked using library interposition, so allocations in
external functions can be tracked to provide a complete view of the memory space.

Adding Profiling Events. PROMPT provides a comprehensive set of profiling events, adequately
addressing the requirements of many existing memory profilers, yet the necessity for additional
events in future development is acknowledged. Although the addition of new events presents its
own challenges, the decoupled design of PROMPT facilitates a clearer and more straightforward
implementation process compared to current memory profilers. The procedure involves initially
specifying the event and its potential values, followed by crafting the instrumentation in the LLVM
pass, and finally integrating the corresponding callback function into the frontend library. It is
noteworthy that designing the instrumentation is the most complex part of this process, requiring
a solid understanding of the LLVM IR.

5.2 EventQueue

...

Unconsumed
Profiling Event

ready_to_read: 
ready_to_write:

last element
pointer

... ready_to_read: 
ready_to_write:

Profiling
Frontend

last element
pointer

Consumed
Profiling Event

Produce Profiling Event

Consume Profiling Event

1

2

3

1

2
3

Profiling
Backend 

check if
full/end

Fig. 4. High-throughput SPMCQueue

The event queue helps PROMPT break up the frontend and backend. PROMPT needs an SPMC
(single-producer-multiple-consumer) queue, where the producer is the profiling frontend, and the
consumers are multiple workers in the profiling backend. We observe that memory profilers do
not have latency requirements for the queue. The additional cycles introduced by the instructions
instrumented rather than the memory throughput bounds the queue performance [Jablin et al.
2010]. We implement a high-throughput SPMC queue specialized for the memory profiling task.
The queue uses a ping-pong buffer design [Swaminathan et al. 2012] as shown in Figure 4. The
advantage of a ping-pong buffer design lies in the fact that producers and consumers do not need
to communicate until one buffer reaches its capacity. Thus, the producer can keep writing to one
buffer, without communication, until that one is full. Then, it checks whether the other buffer is
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ready. The reverse is true for the consumer. This greatly reduces the communication overhead
between the producer and the consumer.
To reduce the wait time of the writes and reduce interfering with the program being profiled,

the queue uses streaming writes[Krishnaiyer et al. 2013]. Streaming write is a feature of the X86
architecture. It bypasses the cache hierarchy and improves the frontend code performance by
avoiding “contaminating” the cache. The writes are made very efficient by using a relatively large
buffer (more than 1MB).
The SPMC queue is bounded, thus the producer and consumers must communicate at the end

of one buffer by checking whether the other buffer is ready. We can reduce the frequency of
checking by making the buffer bigger, leveraging the latency-insensitive insight. A bigger buffer
also makes parallelism at the backend more efficient by amortizing the cost of parallel workers.
With streaming writes, the buffer already bypasses the cache hierarchy, so a bigger buffer size has
minimal performance drawbacks. The large buffer size also smooths out spikes in the producer.

5.3 Backend Components

Backend Driver. The backend driver consumes the events from the queue and calls the corre-
sponding call of the profiling modules. It manages profiling threads if data parallelism is used
(§4.2).

A Generic Shadow Memory. PROMPT provides a generic shadow memory that can be configured
to fit metadata of different sizes. It takes care of allocation and deallocation automatically. PROMPT
applies a direct mapping scheme that applies a shift and mask to all memory addresses to translate
from program to shadow addresses. It is an efficient implementation of the map from the memory
address to the metadata.

A Generic Context Manager. The context manager in PROMPT provides a generic way to manage
the context. It interacts with a profiler to transform, encode, and decode a context. It keeps track of
the current context through transform APIs (e.g., pushContext(type, ID), popContext(type,

ID)). It provides multiple ways to encode and decode a context. One way is through a map
of manifested context to a counter. Caching optimizations are used to reduce the lookup cost of
decoding the context. If the context is simple enough, the context manager will use the concatenation
of the context as the encoding. Note that due to synchronization, sharing one context manager can
be problematic, so PROMPT maintains a separate context manager for each backend thread.

Data Structures with Insertion Logic. To help memory profilers simplify the logic, PROMPT
provides data structures with built-in insertion logic, including checking for a constant, counting,
summing, or finding the minimum and maximum. htmap_constant is a map from a key to the
value if it is constant. htmap_count is a map from a key to its count. htmap_sum/min/max is a map
from a key to the sum, minimum, or maximum of all values corresponding to a key. htmap_set
is a map from a value to a set with an optional size limit. One thing in common with all these
data structures is that the insert operation is reducible. For example, for Map_Sum, which provides
a map from keys to the sum of values, inserting to this map translates to summing up values to
each key, which is a reducible operation. A reducible operation can be executed in any order in
parallel. With this observation, we provide parallelism as a part of these maps. As shown in Figure
5, all insertions to the map are buffered to a vector with a fixed reserved size, and once the buffer is
full, many workers will do the reduction in parallel. Each takes a chunk of the buffer and reduces
it to its local map. Only when any API other than insertion is called will the workers merge the
local map into the global one. This design works well with a memory profiler, where insertion is
almost always the only operation on the profiling data structure during profile time. To improve
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Fig. 5. A high-throughput hash map in action.

efficiency, PROMPT adopts a thread pool, where the reduction thread will stay in the background
waiting for tasks. In addition to the maps, PROMPT also provides drop-in replacements for set
and unordered_set(hash set) that provide the same optimization. These replacements do not
offer complete C++ STL support; however, they handle common APIs that adequately meet the
requirements of a memory profiling module.

5.4 Implementing a Memory Profiler with PROMPT

To implement a new memory profiler with PROMPT, one only needs to declare the subset of
relevant events listed in Table 2 and implement the core profiling logic in the callback functions of
events. The components defined in Section 4.1 and 4.2 are available to ease the implementation and
provide good performance out of the box. Listing 1 shows how a value pattern profiler works. It
tracks all loads and records those that have constant loaded values.
Here are several example memory profilers implemented with PROMPT and the core logic.

A Memory Dependence Profiler tracks the source and destination of a memory dependence,
optionally the related loops, contexts, and counts. A profiler can use shadowmemory to track the last
load/store instruction and additional information to each memory address, the record dependence
if discovered. Figure 2 shows a memory-dependence profiler. A Value Pattern Profiler tracks
whether the value of a memory access follows some patterns, such as always a constant. A profiler
can use PROMPT’s components to automatically check for a constant pattern. The module in
Listing 1 shows such a profiler. A Points-to Profiler maps each pointer to the set of memory
objects that it points to. A profiler can first uniquely identify memory objects at allocation time using
the instruction ID and the context tracked by the context manager, track the object information in
the shadow memory, and record the object associated with the specific address at pointer creation
time. AnObject-Lifetime Profiler tracks the lifetime of each object and checks if it is dynamically
local to a scope such as a loop. A profiler can track the uniquely identified memory objects similar
to the points-to profiler, check the shared context of allocation and deallocation, and record the
object and the shared context.
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# Profiling events specified in YAML

module: ValuePatternConstantLoadModule

events: # and the corresponding values

load: [instruction_id, value]

finished: []

// Core profiling logic

class ValuePatternConstantLoadModule : public DataParallelismModule,

public ProfilingModule {

private:

// High throughput map provided by PROMPT that checks if the value is constant

HTMap_Constant<InstrId, LoadedValue> constmap_value;

public:

// The `num_threads` and thread id (`tid`) are used to control the data parallelism.

// They are automatically set by the driver on initialization.

LoadedValueModule(uint32_t num_threads, uint32_t tid) :

DataParallelismModule(num_threads, tid) {}

// On every Load event, the instruction ID and value are passed in.

void load(uint32_t instrId, uint64_t value) override {

// A wrapper by DataParallelismModule:

// This will only execute if the worker is in charge of the instruction ID.

execute_if_mine(instrId, [&]() {

// insert the ID and value to the map

constmap_value.insert({instrId, value});

});

}

void finish(string filename) override {

// Dump the constmap_value in a format required by the client

}

// When using data parallelism, need to implement how modules are merged.

void merge(LoadedValueModule &other) override {

// merge the map from instruction ID to value

constmap_value.merge(other.constmap_value);

}

};

Listing 1. The implementation of a value pattern profiler that checks for constant loaded values.

6 EVALUATION

PROMPT is designed for extensibility, seamlessly supporting a wide array of applications. As
Section 6.2 illustrates, porting LAMP and Perspective, two state-of-the-art LLVM-based profilers,
to PROMPT reduces code size by more than half and makes the code easier to understand. Many
variants of memory dependence profilers can also be adapted from a basic profiling module with a
few lines of code.
In terms of speed, evaluations in Section 6.3 compare the PROMPT implementations against

LAMP and the Privateer profiler on SPEC CPU 2017 benchmarks, showing that PROMPT is 5×
faster than LAMP and 6× faster than Privateer profiler on average. Moreover, across a myriad of
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memory dependence profilers with diverse goals and technologies, PROMPT’s speed is consistently
equivalent or superior (§6.3.2).

Section 6.4 underscores the impact of PROMPT by redesigning the memory profiling workflow for
Perspective [Apostolakis et al. 2020a]. In 570 lines of code, the new workflow satisfies Perspective’s
memory profiling needs while reducing profiling overhead by 95%. The new workflow is also more
applicable to complex applications. The design elements of PROMPT are evaluated separately to
understand how they drive PROMPT’s performance in Section 6.5, where PROMPT’s memory and
binary size overheads are also discussed.

6.1 Experiment Context

All performance experiments are run on a machine with two Intel Xeon E52697 v3 processors with
252 GB of memory. The operating system is 64-bit Ubuntu 20.04 LTS.
PROMPT is evaluated with the SPEC CPU 2017 suite when comparing against LAMP and

Privateer. Each benchmark is first compiled and linked into one LLVM bitcode file, which is the
same preprocessing workflow as LAMP and Privateer, and required by Perspective. Due to the
limitation of this pipeline, FORTRAN benchmarks (lack of flang for the LLVM version) and
502.gcc (muldefs not supported with llvm-link) from SPEC 2017 are excluded. The evaluation
contains 15 C/C++ benchmarks from the SPEC CPU 2017 suite with 3.6 million lines of code
combined [Bucek et al. 2018], In the case study (§6.4), benchmarks from the Perspective paper
are also used to do the performance comparison [Apostolakis et al. 2020a]. All evaluation uses
the training inputs since reference inputs would be more appropriate for evaluating the clients’
performance with the profiling information.

6.2 PROMPT’s Extensibility

Section 5.4 shows concretely how easily the memory profilers are implemented. Memory profilers
can be implemented with PROMPT by expressing only the core logic. Adaptation of existing
memory profilers is also much easier with PROMPT.

Table 3. The comparison of lines of code (LOC) of LAMP and the ported version with PROMPT. ∗Original
LAMP does not use the frontend-backend design, so the event generation directly calls other functions in the
core profiler logic. Thus, the core profiling logic in the ported LAMP subsumes part of the event generation.

Components
LOC

Original LAMP Ported with PROMPT

Instrumentation 713 N/A (provided by PROMPT)
Event Generation 803 N/A ∗ (provided by PROMPT)
Event Specification N/A 13
Core Profiling Logic 668 898∗

Memory Map (Shadow Memory) 691 N/A (provided by PROMPT)

Total LOC 2875 911

PROMPT allows developers to focus on the core profiling logic only. Two existing memory profilers,
LAMP and the Privateer profiler are ported to PROMPT. Table 3 and Table 4 show the LOC of the
original and the ported version of them. The cloc tool is used to count the lines of code (LOC) Blank
lines and comments are excluded [Danial 2021]. For both profilers, porting to PROMPT reduces the
LOC by around 70% by focusing on the core profiling logic. The instrumentation with LLVM alone
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Table 4. The comparison of lines of code (LOC) of the Privateer Profiler and the ported version with PROMPT.
∗The core profiling logic in the ported version includes some additional interfacing with the backend driver.

Components
LOC

Privateer Profiler Ported with PROMPT

Instrumentation 3161 N/A (provided by PROMPT)
Event Generation 464 N/A (provided by PROMPT)
Event Specification N/A 19

Queue 227 N/A (provied by PROMPT)
Core Profiling Logic 1401 1486 ∗

Total LOC 5253 1505

requires thousands of lines. Other shared components like the event generation, shadow memory,
and the queue are also provided by PROMPT to reduce the implementation effort.

Table 5. The comparison of different variants of the memory dependence profilers. We incrementally extend
the memory dependence profiler built with PROMPT and present the LOC delta between every two variants.

Extensions (incremental) LOC Delta

+ Dependence count [Ketterlin and Clauss 2012; Mason 2009] 1
+ All dependence types [Morew et al. 2020] 10

+ Dependence distance [Kim et al. 2010; Yu and Li 2012a] 7
+ Context-aware [Chen et al. 2004; Kim et al. 2017; Sato et al. 2012] 16

PROMPT is easy to adapt. The memory dependence profiler is the most well-studied memory
profiler. A memory dependence profiler can track the sources and sinks of memory dependences,
the frequencies, loop-carried or loop-independent, distances, and contexts, for all types of memory
dependences (flow, anti, and output) [Chen et al. 2004; Kim et al. 2010]. In Table 5, we start from a
basic memory flow-dependence profiler and incrementally adapt it to other variants of memory-
dependence profilers by changing a few lines.

6.3 PROMPT’s Speed

6.3.1 Comparing Against LAMP and Privateer Profiler. To ensure a direct and meaningful compari-
son, LAMP and Privateer, both of which target LLVM IR—precisely where PROMPT operates, are
evaluated. PROMPT is set to generate equivalent profiling information as the original profilers and
is evaluated on the same set of benchmarks. We ran each benchmark for the original LAMP and
Privateer profiler once due to long profiling time (more than 10 hours for a few benchmarks). For
all ported versions, the data represents the average (mean) of five runs. The error bars indicate the
99% confidence interval. Given that the error bars for all other versions are visually negligible, we
only display the error bars for the ported LAMP with 16 backend threads. As shown in Figure 6,
the ported version of LAMP running with 16 threads on the backend runs 5.3× faster than the
original on average. The performance improvement first comes from the pipeline parallelism from
the decoupled design. As shown with the ported LAMP with one backend thread, the performance
almost doubles. The second source of performance improvement is the parallelism wrapper added
in a few lines of code (§4.2). In this experiment, we used up to 16 backend threads to consume the
profiling events which brings an additional three times speedup.
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Fig. 6. The performance comparison of the original profilers and the versions ported with PROMPT.

Due to the design limitations, the Privateer profiler fails to run or times out after 24 hours on ten
out of the 15 SPEC 2017 benchmarks. Thus, we compare the performance on rest five benchmarks
in Figure 6. The ported version is 7.1× faster on average. Due to the complex design of the Privateer
profiler, we did not apply data-level parallelism to it. Moreover, because the original profiler also
has a frontend-backend design, the algorithms for the original and the ported Privateer profiler are
essentially the same. Upon close inspection, we found that the performance improvement comes
from the optimizations in PROMPT’s event queue. The original Privateer profiler’s bottleneck is in
the frontend, during event generation to the queue. PROMPT significantly reduces the overhead of
generating events to the queue using the high-throughput queue (§5.2).
Note that for both ported profilers, we did not alter the core logic or the profiling needs to

achieve the performance improvement. The performance improvement comes from the generalized
optimizations in PROMPT. In Section 6.4, we show how to further improve the performance by
redesigning the memory profilers with PROMPT, where we tailor the memory profiling workflow
to the client’s needs.

6.3.2 Comparing Against Other Memory-Dependence Profilers. Evaluating PROMPT’s performance
against existing memory dependence profilers, as shown in Table 5, is important. However, direct
comparison is difficult due to differences in implementation technologies, benchmarks, and test
environments.We compare PROMPT’s slowdown, calculated as the geometric mean across the SPEC
2017 benchmarks with the slowdown numbers reported in other memory-dependence profilers. It is
critical to note that this comparison should not be viewed as a precise one-to-one comparison but
rather serves to illustrate that PROMPT’s overhead is consistent with existing memory-dependence
profilers. For tracking only the dependence count of flow dependence, PROMPT experiences a
slowdown of 7.5×, in contrast to the 88-118× range reported in prior studies. When considering
all types of dependences, PROMPT’s slowdown is 10.2×, compared to 28-36×. In assessing the
distance for all dependence types, PROMPT’s slowdown is 10.8×, compared to 5-29×. Finally, for
context-aware profiling, PROMPT demonstrates a slowdown of 13.1×, compared to 39-132×.
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6.4 Redesigned Memory Profiling for Perspective

In the current implementation, Perspective uses LAMP and Privateer Profiler. In Section 6.3.1,
PROMPT is evaluated against LAMP and the Privateer profiler while reproducing their profiling
output. However, not all profiling functionalities and configurations are necessary to fulfill the
profiling needs of Perspective. With PROMPT, we redesigned the memory profilers to exactly match
Perspective’s needs and show the benefits of PROMPT in this case study.

Table 6. The lines of code (LOC) of the PROMPT profilers for each profiling need of Perspective.

Profiling Needs PROMPT Profiling Module LOC

Memory Flow Dependence Speculation Memory Dependence 136
Value Speculation Value Pattern 69

Short-lived Object Speculation Object Lifetime 117
Points-to Speculation Points-to 248

Total LOC 570

Streamlined Development. We first identify the four memory profiling needs of Perspective as
shown in Table 6. Because Perspective works on a per-loop basis, the memory profilers are only
needed for the hottest loop identified by the compiler. We implement four memory profiling
modules, memory-dependence profiler, value-pattern, object-lifetime, and points-to profiling to
cover Perspective’s needs. The four memory profilers with PROMPT only require 570 lines of code,
a dramatic reduction of the required implementation effort.
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Fig. 7. The profiling slowdowns of the existing memory profilers and the PROMPT ones on benchmarks from
the Perspective paper.

Faster Profiling. We compare the profiling time overhead with PROMPT and the existing profilers
used in Perspective. The critical path of the profiling workflow is the longest-running profiler
because independent profilers can be executed in parallel with the same input. We show the critical
path of both workflows and also the sum of all profilers in each workflow in Figure 7. PROMPT
reduces the critical path slowdown from 217.2× to only 5.9× and the sum of profiling time from
201.2× to 15.3×. All results are the average (mean) of five runs. In our experiments, the maximum
coefficient of variation (the ratio of the standard deviation to the mean) over all benchmarks and all
runs is 0.13, thus the error bar is omitted from the visualization due to the small variance compared
to the performance difference shown. Regardless of the metric, PROMPT reduces the profiling
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time by more than 90%. One source of the slowdowns in LAMP and Privateer is from building
multiple functionalities in one monolithic profiler. This introduces unnecessary functionality and
the corresponding overhead. PROMPT breaks down the profiling tasks into modules each focusing
on a single task. Note that targeting the hottest loop, as in PROMPT’s profilers, is another way of
reducing the unnecessary overhead. PROMPT further optimizes the performance using parallelism
in both the address-based and the one built in the data structures like hash maps.

Improved Applicability to Complex Benchmarks. As mentioned in Section 6.3, the Privateer profiler
fails or times out on ten out of the 15 SPEC 2017 benchmarks. This is not a coincidence. In
fact, the clients using these memory profilers are constrained by them, so they cannot evaluate
on bigger benchmarks. SCAF, a system that shares the same memory profilers as Perspective,
identifies that the memory profilers are “implemented in-house, lacking industrial-level robustness in
implementation” [Apostolakis et al. 2020b]. Thus, it was limited to only three SPEC 2017 benchmarks.
Even for LAMP, which works for all SPEC 2017 benchmarks, or the Privateer, when it works, the
overhead is still significant as shown in Section 6.3. The robustness and the performance of the
memory profilers are critical to the applicability of memory profiling to more complex benchmarks.
The four memory profiling modules redesigned for Perspective exhibit greater robustness and
performance than their original counterparts. Three modules (memory dependence, value pattern,
and object lifetime) can run on all SPEC 2017 benchmarks. The points-to profiling module, which
follows the same logic of the parts of the original Privateer profiler which have design limitations,
fails on eight benchmarks. Two additional benchmarks work compared to Privateer due to the
memory allocation event hook in PROMPT which allow external calls with memory allocation to
be captured. With the much-isolated codebase, we can also identify the root causes of the failed
benchmarks. The primary constraints include a lack of support for longjump/setjump and the
handling of non-null pointers to memory that should not be dereferenced. We are working on
addressing these issues in a future version of the module.

Performance-wise, themaximum slowdown for all modules is less than 35×, andmost benchmarks
are either below or around 10×, a huge improvement over the original profilers discussed in
Section 6.3. These overheads, which translate to less than an hour of profiling time for benchmarks
that typically run for a few minutes, are sufficiently practical for users to test clients using them.
By enhancing the memory profiling workflow for more complex benchmarks, PROMPT simplifies
the adoption of systems like Perspective that rely on memory profiling.

6.5 Performance Analysis

Table 7. Performance improvements with optimizations.

PROMPT
Optimizations

Geomean
Slowdown

Improvement

Baseline 21.89× N/A

Specialization 14.48× 51%

High-throughput Queue 12.29× 18%

Data Parallelism 7.84× 57%

High-throughput Data Structure 7.26× 8%

The performance improvement of PROMPT comes from designs discussed in Section 4 and
Section 5. In Table 7, we use the redesigned memory dependence profiler in Table 6 to show
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the effect of each technique. All results are evaluated on SPEC 2017 benchmarks. The baseline
is the memory dependence profiler without any optimization and we incrementally apply each
optimization to the baseline. Note that these improvement numbers are specific to this profiler.
Different memory profilers may benefit differently from each technique.

Table 8. The geomean reduction of profiling events with specialization for each memory profiler.

Profiler
Memory

Dependence
Value
Pattern

Object
Lifetime

Points-
to

Geomean Reduction (%) 17.19 54.04 71.86 52.89

Specialization. Table 8 shows the reduction of the number of events with specialization for
different profilers. With specialization, the reduction of the profiling events is significant, ranging
from 17% to 72%.

Table 9. The performance comparison of the queue.

Queue Type Time (ms)

boost::lockfree[Szuppe 2016]
queue 4603.7

spsc_queue 555.1

Liberty Queue [Jablin et al. 2010] 48.6

PROMPT Queue
1 Consumer 26.8
8 Consumers 32.2

High-Throughput Queue. We compare the performance of our queue implementation against
others (two from Boost [Szuppe 2016] and the Liberty queue [Jablin et al. 2010]). We run it with a
benchmark where two processes communicate tenmillion events from the trace of 544.nab through
a shared-memory queue. The boost::lockfree::spsc_queue, Liberty queue, and PROMPT queue
are configured with the same queue size (2MB). The boost::lockfree::queue is set to its max
queue size of 65534. We repeat the runs 50 times and take the average. As shown in Table 9, the
PROMPT’s queue outperforms other queues by at least 81%. The performance improvement comes
from optimizations in Section 5.2 that reduce the overhead of event production. The throughput
difference from one consumer to eight consumers is only 20%, a small cost to enable generic data
parallelism.

Table 10. The slowdown with different parallel workers with data parallelism wrapper for the memory
dependence profiler.

Parallel Workers 1 2 4 8 16 32

Geomean Slowdown (×) 12.3 10.4 8.3 7.8 7.6 9.0

Data Parallelism Wrapper. Table 10 shows the slowdowns of the memory dependence profiler
with different numbers of workers for data parallelism. The numbers are the geomean slowdowns
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of all SPEC CPU 2017 benchmarks and the high-throughput data structures are turned off for this
evaluation. On the machine we tested on, data parallelism improves the performance till 16 workers
then starts to drop.

High-throughput Data Structures. We evaluate the performance with a benchmark that inserts
ten million dependences to htmap_count that keeps the count of the dependence (§5.3). The depen-
dences are collected from the trace of 544.nab. We run it ten times and take the average. We com-
pare the performance against two maps from C++ standard library, and phmap::flat_hash_map, a
more efficient open-source hash map implementation from parallel-hashmap library based on
Abseil[Abseil Team 2023; Gregory Popovitch 2023]. The high-throughput map outperforms the
standard library maps significantly; and it outperforms flat_hash_map starting from two threads;
with 32 threads, the performance almost doubles. The time of the baseline shows if the insertion to
the map is completely gone and is the upper limit of our map.

Table 11. The performance comparison of different implementations of maps to achieve a key to the count.
The baseline of PROMPT htmap_count only inserts to the buffer instead of inserting to the map.

Implementation Time (ms)

libstdc++ (6.0.28)
map 319

unordered_map 264

Parallel Hashmap (1.3.8)[Gregory Popovitch 2023] flat_hash_map 102

PROMPT Data Structure
htmap_count

1 126
2 91
4 75
8 70
16 60
32 53

Baseline 33

Memory and Binary Size Overhead. Thememory overhead of the profiling frontend is the constant
size oversize introduced by the buffer of the queue. The memory overhead of the backend comes
from the constant size from the backend code and data sections, the data structures to store the
profiling information, and auxiliary data structure during runtime. Due to the reduction nature of the
profiling process, the memory overhead of the profiling information data structures is usually small.
The auxiliary ones depend on the implementation of the profiler. A most significant and common
cost comes from the shadow memory that enables mapping from the address to the metadata.
The overhead of the shadow memory is bounded by 𝑃 × heap memory size +

∑
profile size + 𝐶 ,

where P is the shadow memory ratio (number of bytes of metadata per byte of memory) and C
is the constant cost including the queue and other auxiliary data structures. The data parallelism
does not increase the memory overhead because the workers share the same memory space. We
measured the peak memory overhead of the memory dependence profiler running on all SPEC
2017 benchmarks. When the fixed queue is excluded, the backend memory overhead ranges from
20% to 9.7×. The instrumented binary size is 17% to 231% larger than the original.

7 DISCUSSION

Potential Applications. The most important application of PROMPT is speculative optimization.
While speculative optimizations, including automatic parallelization, have been shown to be

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 110. Publication date: April 2024.



110:20 Ziyang Xu, Yebin Chon, Yian Su, Zujun Tan, Sotiris Apostolakis, Simone Campanoni, and David I. August

effective and broadly applicable [Apostolakis et al. 2020a; Bridges et al. 2007; Johnson et al. 2012;
Thies et al. 2007], these systems have not been widely adopted largely because of problems with
memory profiling. By reducing the runtime and engineering costs, PROMPT can greatly help
speculative optimization clients. PROMPT also has the potential to attract a diverse range of users
to build various profilers on top of it or use it for different clients. Multiple use cases beyond
speculative optimization can be addressed using the existing profilers in PROMPT, such as memory
prefetching, memory object layout optimization, and security analysis.

Types of memory profiling not supported by PROMPT. Memory profilers that alter the behavior
of the program being profiled, such as simulating the behavior of a hypothetical load instruction
not present in the original program (perhaps for prefetching), are not ideally suited for PROMPT.
While it is feasible to add new events to the frontend, as elaborated in Section 5.1, it is crucial that
these added events do not modify the behavior of the program being profiled. They should only
report such events, in line with the design principles of PROMPT. We believe that most memory
profiling use cases can be addressed by solely implementing the profiling logic on the backend,
using existing profiling events.

Multi-threaded programs. At present, PROMPT solely supports single-threaded programs, as its
primary motivation lies in speculative automatic parallelization clients that only necessitate this
level of support. To expand its capabilities for multi-threaded workloads, events produced from
multiple threads can either be combined into a single queue or assigned to individual SPMC queues
for each thread. The most suitable approach depends on the requirements of the memory profiling
modules.

Profiling without source code available. PROMPT provides full precision when the source code
is available at compile time. Functions from libraries that do not have source code available at
compile time are detected during compilation and reported to the client, who can then decide
how to proceed with the profiling results. In many cases, the profiling results are still helpful but
need to be conservative in cases involving external calls. A potential enhancement for PROMPT
could involve incorporating binary profiling. The decoupled design of PROMPT simplifies the
implementation process for such an addition.

Beyond memory profiling. A memory profiler tracks memory-related events as listed in Table 2.
Other types of profilers can be implemented with this framework, as the list of possible events
encompasses more than just memory events. However, PROMPT’s design is highly optimized for
memory profiling. Other profilers may not have as high a throughput as memory profiling and
thus may not benefit from PROMPT’s queue and other optimizations. The factorization process of
memory profiling used in PROMPT, namely the separation and generalization, may inspire other
software systems. The separation helps to reduce the complexity, while the generalization helps to
reduce the cost of development. Both help with building a more efficient system.

8 RELATEDWORK

Memory Profilers. Many memory profilers have been proposed for various use cases [Apostolakis
et al. 2020a; Johnson et al. 2012; Kim et al. 2010; Mason 2009; Vanka and Tuck 2012; Yu and Li
2012a; Zhao et al. 2006]. They are different in terms of the profiling events they gather and the
summarization method. They can collect memory dependence [Kim et al. 2010; Mason 2009; Yu
and Li 2012a; Zhao et al. 2006], value pattern [Gabbay and Mendelson 1997], object lifetime [Qiang
Wu et al. 2004], and points-to relation [Johnson et al. 2012]. There are sub-variants for collecting
memory dependence – loop-aware, context-aware, tracking distance, or tracking counts[Chen et al.
2004; Kim et al. 2017; Mason 2009; Zhang et al. 2009]. The growing number of different profilers
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also suggests new client profiling needs. PROMPT is an extensible memory profiling framework
that can easily implement all these memory profilers.
Many directions have been explored to reduce the overhead of memory profiling. Prior work

has shown that shadow memory is particularly effective at improving run-time analysis of pro-
grams [Nethercote and Seward 2007a; Zhao et al. 2010]. Parallelism is also used in many memory
profilers to optimize for speed [Kim et al. 2010; Moseley et al. 2007; Wallace and Hazelwood 2007; Yu
and Li 2012b]. We leverage their findings and generalize their optimization in PROMPT. Lossy tech-
niques can reduce overhead [Chen et al. 2004; Vanka and Tuck 2012]. Vanka et al. combine sampling
with a signature-based approach to achieve 3.0× overhead [Vanka and Tuck 2012]. However, such
techniques suffer from imprecise results and some clients are very sensitive to precision. PROMPT
achieves low overhead without resorting to sampling. Augmenting PROMPT with sampling for
clients that tolerate imprecision is straightforward.
The LLVM address and memory sanitizer can be considered memory profilers with custom

allocators [Serebryany et al. 2012; Stepanov and Serebryany 2015]. They achieve low overhead – the
address sanitizer reports less than 2.75x slowdown in the worst case and the memory sanitizer less
than 7x. However, their optimizations are very specialized for the given task and do not generalize
to other memory profiling tasks considered in this paper. PROMPT provides a framework on which
various memory profilers can be built with generalized components and optimizations.

Implementing Memory Profilers. Pin and DynamoRio can instrument programs at the binary
level [Bruening et al. 2012; Wallace and Hazelwood 2007]. LLVM and GCC have more freedom
to instrument programs at the intermediate representation level [GCC Team 2023; Lattner and
Adve 2004]. Tracing systems, sometimes built on top of instrumentation systems, collect program
traces that can be used for online or offline analysis [DynamoRio Team 2023; Tallam and Gupta
2007; Xiangyu Zhang and Gupta 2004; Zhao et al. 2006]. These systems help with building memory
profilers. However, even with these systems, building a memory profiler is hard. In addition, some
tracing and binary instrumentation systems introduce baseline overheads for generating the trace
or dynamic binary instrumentation. PROMPT does not strive to replace instrumentation or tracing
systems. Instead, it focuses on memory profiling, providing components and optimizations to make
building fast memory profilers much easier.

Optimization Techniques. Program specialization to reduce cost has been proposed for many use
cases [Reps and Turnidge 1996; Schultz et al. 2003; Wang et al. 2022]. PROMPT uses a specialization
technique where unnecessary events are not instrumented depending on the needs of the client.
PROMPT does it automatically at link time to remove the need to communicate with the LLVM
pass.

The Liberty queue is the most related to the queue design [Jablin et al. 2010; Rangan and August
2006]. It is a lock-free implementation designed for fast core-to-core communication and shifts
communication overhead to the more idle end of the queue. The PROMPT high-throughput queue
design is influenced by the Liberty queue but leverages the latency-insensitive aspect of memory
profiling to get more performance. PROMPT uses a ping-pong buffer to reduce the cost of checking
and communication and outperforms the Liberty queue by 81%.

Different techniques have been developed to make use of parallelism in memory profilers [Kim
et al. 2010; Moseley et al. 2007; Wallace and Hazelwood 2007; Yu and Li 2012b]. PROMPT generalizes
them as different forms of data parallelism and provides a generic data parallelismwrapper. PROMPT
automatically manages parallel workers and the interaction with shadow memory. This makes it
much easier to integrate data parallelism with any memory profiler.
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The optimization used for the high throughput containers in PROMPT is parallel reduction [Rauch-
werger and Padua 1999]. However, PROMPT wraps the parallelism in containers with insertion
logic, so users can use them with ease and get parallelism for free.

9 CONCLUSION

This paper presents a novel factorization of memory profiling, emphasizing the significance of
core profiling logic. This emphasis is achieved by first separating the front and backend, then
by generalizing shared components and optimizations. Based on this factorization, the paper
introduces PROMPT, an open-sourced, fast, and extensible memory profiling framework. Two
existing LLVM-based memory profilers have been seamlessly ported to PROMPT, resulting in
simpler implementations and improved performance. Furthermore, a tailored memory profiling
workflow was redesigned for Perspective, a state-of-the-art speculative parallelization framework.
This workflow is encapsulated in a concise 570 lines of code and reduces client profiling time by
more than 90%. Such outcomes emphasize PROMPT’s role in enhancing the practicality and broader
application of memory profiling techniques.
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