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A B S T R A C T

While machine learning (ML) interatomic potentials (IPs) are able to achieve accuracies nearing the level of
noise inherent in the first-principles data to which they are trained, it remains to be shown if their increased
complexities are strictly necessary for constructing high-quality IPs. In this work, we introduce a new MLIP
framework which blends the simplicity of spline-based MEAM (s-MEAM) potentials with the flexibility of a
neural network (NN) architecture. The proposed framework, which we call the spline-based neural network
potential (s-NNP), is a simplified version of the traditional NNP that can be used to describe complex datasets
in a computationally efficient manner. We demonstrate how this framework can be used to probe the boundary
between classical and ML IPs, highlighting the benefits of key architectural changes. Furthermore, we show that
using spline filters for encoding atomic environments results in a readily interpreted embedding layer which
can be coupled with modifications to the NN to incorporate expected physical behaviors and improve overall
interpretability. Finally, we test the flexibility of the spline filters, observing that they can be shared across
multiple chemical systems in order to provide a convenient reference point from which to begin performing
cross-system analyses.

1. Introduction and background

In the fields of computational materials science and chemistry,
machine learning interatomic potentials (MLIPs) are rapidly becoming
an essential tool for running high-fidelity atomic-scale simulations. No-
tably, major breakthroughs in the field have typically been marked by
the development of new methods for encoding the atomic environments
into machine-readable descriptors, or using architectures from other
fields of machine learning to improve regression from descriptors into
energies and atomic forces. The seminal work using atom-centered
symmetry functions (ACSFs) [1] as the encoder, followed by ‘‘smooth
overlap of atomic position’’ (SOAP) descriptors [2], and, most recently,
equivariant message-passing networks [3] being milestones of partic-
ular importance in the field. In parallel with these improvements to
the encoding functions of MLIPs has been the development of new
regression tools, favored either for the simplicity gained through the
use of linear combinations of basis functions (e.g., [4–6]) or the ac-
curacy gained by increasing the effective cutoff radius of the model
using message-passing neural networks (e.g., [7–9]). While countless
other models have been proposed using combinations or variations of
different methods (an incomplete list: [10–18]), the key insights remain
the same: interatomic potentials can be greatly improved by leveraging
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architectures and optimization strategies drawn from other machine
learning and deep learning applications.

Despite the success of these MLIPs, there has been a persistent need
in the community for the continued development of low-cost classical
IPs, particularly for use with large-scale simulations [19–23]. Some of
the major benefits that classical IPs [24–31] have over MLIPs are their
low computational costs, strong foundations in known physics, and a
history of scientific research analyzing their behaviors and theoretical
limitations. Although improvements are being made to the speeds of
MLIPs, the stark differences between classical and ML IPs in terms of
size, design, and overall complexity make it difficult to leverage the
well-established tools and knowledge from classical models in order to
further improve their ML counterparts.

In this work, we develop a new IP model whose hyper-parameters
can be tuned to transition smoothly between low-cost, low-complexity
classical models and full MLIPs. By basing the proposed model off of a
classical spline-based MEAM potential, then extending it using a basic
ML architecture, we enable direct comparisons to well-established clas-
sical forms as well as modern ML models. These results help to bridge
the gap between the two classes of models and highlight methods for
improving speeds, interpretability, and transferability of MLIPs.
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1.1. s-MEAM

The model developed in this paper builds heavily upon the spline-
based MEAM potential [32] (‘‘s-MEAM’’), which we describe here in
order to provide sufficient background to understand the new model
architecture proposed in this work. The s-MEAM potential is a spline-
based version of the popular analytical MEAM potential [31] that was
intended to provide additional flexibility to the model while maintain-
ing the same overall functional form. In the s-MEAM formalism, the
energy Ei of a given atom i is written as:
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…
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In Eq. (1) the energy of the ith atom, Ei, is composed of a pair term
(�) and an embedding energy contribution (U) for a given ‘‘electron
density’’ ni, where all five functions (�, U , ⇢, f , and g) are represented
using cubic Hermite splines. The pair term is calculated by summing
over pair distances rij = írj * íri between each atom i and its neighbors
j (with rij less than a chosen cutoff distance, rc). The electron density
ni is further decomposed into 2-body (⇢) and 3-body (products of f and
g) contributions. The 2-body term is similar to the summation over �,
while the 3-body term is computed by summing over the product of
three spline functions that take rij , rik, and cos(✓jik) as inputs, where
✓jik is the bond angle formed by atoms i, j, and k with i at the center.
The subscripts on the functions indicate that separate splines are used
for evaluation depending on the chemistries ci, cj , and ck of atoms i, j,
and k (e.g., gAA for A–A bonds, gAB for A–B bonds, etc.).

In order to facilitate comparisons between s-MEAM and the model
that will be proposed in this work, we will first define two new
functions
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then re-write Eq. (1) as
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where N2 = 1 and N3 = 1. We will henceforth refer to G↵
3,i and G�

2,i
as 3-body and 2-body ‘‘spline filters’’ respectively, in acknowledgment
of the fact that they can be thought of as filters that characterize the
local environment around atom i in order to produce a scalar atomic
environment descriptor ni. In Eq. (3) we have introduced summations
over the superscripts ↵ and � which currently only take on a single
value of 1, but will be used later to denote different filters.

1.2. NNP

Shown to be universal function approximators [33], neural net-
works (NNs) are provably more flexible than classical IPs which use
explicit analytical forms. Because of this, a sufficiently large NN would
be expected to be able to accurately reproduce an arbitrary potential
energy surface, assuming that it properly accounted for long-range
interactions, was provided with enough fitting data, and did not suffer
from limitations due to trainability. The original Behler–Parrinello

NNP [1] was one of the first successful applications of NNs towards
practical systems, where the atomic energy of atom i is written as

E =
…
i
Nci ( íDi)
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3,i ,D
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In Eq. (4), Nci is a neural network, ci is the element type of atom i,
and íDi is the atom-centered symmetry function (ACSF) descriptor [1]
of atom i. The ACSF local environment descriptor is comprised of radial
symmetry functions

D�
2,i(rij ) =

…
jëi

e*⌘� (rij*R
�
s )2vc (rij ), (5)

parameterized by ⌘� for changing the width of the Gaussian distribu-
tion, and R�

s to shift the distribution. A smooth cutoff function vc (rij )
is used with the form:
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T
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Angular contributions are accounted for using the angular symmetry
functions
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Multiple radial and angular symmetry functions are constructed by
making N2 choices for ⌘� and R�

s , and N3 choices for ⇣↵ , �↵ (= ±1),
and ⌘↵ . The evaluations of all of these symmetry functions are then
concatenated together into a single vector íDi which is passed through
a feed-forward neural network.

Obvious parallels can be drawn between the NNP form in Eq. (4)
and the re-written form of s-MEAM shown in Eq. (3). What differ-
entiates NNP from s-MEAM, however, are the details regarding the
construction of the local descriptors, and the form of the embedding
function. where s-MEAM uses trainable spline filters for both the de-
scriptor and the embedding function, NNP uses ACSFs and an NN
respectively. Although an NN would have an increased fitting capac-
ity over the Uci splines used in Eq. (3), there are many similarities
between the ACSF descriptors and the spline filters described in Eq. (2).
For example, the 2-body components of an ACSF descriptor, which
are constructed by evaluating D�

2,i with multiple radial shifts R�
s for

each neighboring atom j, can be viewed as basis functions used for
interpolating the desired range of atomic distances. This is conceptually
related to how the basis functions of cubic Hermite splines allow G�

2,i
to interpolate over its domain as well. A similar argument can be made
relating the angular components of ACSFs to the 3-body filters G↵

3,i,

where Eqs. (2) and (5) both multiply functions of pair distances (f↵
ck
(rij )

and f↵
ck
(rik)) by a function of the triplet angle (g↵cjk (cos (✓jik))). The

ANI model [34], which will be used in this work for comparison to
the model which we developed, is nearly identical to the NNP form
described above, with the modifications that only a single ⌘� is used,
and Eq. (7) is altered to introduce both radial (R↵

s ) and angular (✓
↵
s )

shifts:
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2. Methods

2.1. s-NNP

The main contribution of this work is the development of a spline-
based neural network potential, outlined in Fig. 1, which we call the
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Fig. 1. A diagram of the s-NNP model architecture. The spline knots parameterize individual 2-body (f↵
cj
, f↵

ck
, and ⇢�cj ) or 3-body (g↵cjk ) splines, which take as input the pair

distances rij , rik or triplet angles ✓jik for all neighboring atoms j and k within a cutoff around each atom i. The outputs of the splines are then summed (after multiplying f↵
cj
,

f↵
ck
, and g↵cjk together as described in Eq. (2)) over all pairs or triplets. N3 3-body and N2 2-body filters are used (each parameterized by their own sets of knots, and indexed

based upon the chemistries cj , ck, and cjk of each interaction), and the outputs are concatenated into a single vector which is propagated through a feed-forward neural network.
All radial splines are pinned to have a value of zero at their cutoff distance. Unless otherwise specified, the s-NNP uses a CELU activation layer after every linear layer in the
network except for the output layer.

‘‘s-NNP’’ (short for ‘‘spline-NNP’’). The s-NNP framework is intended
to extend the fitting capacity of the s-MEAM class of potentials while
maintaining the high interpretability and speed provided by the use
of splines. s-NNP can be thought of as an s-MEAM potential with two
critical changes: first, N3 and N2 in Eq. (3), the numbers of G↵

3,i and
G�
2,i spline filters, are taken to be hyper-parameters of the model; and

second, the ‘‘embedding’’ spline Ui in an s-MEAM model is replaced by
a fully-connected neural network. By including additional spline filters,
the s-NNP is able to describe the local environment around an atom
with increasingly fine resolution (since each spline can be thought of as
a basis function for interpolating the atomic energies). The introduction
of a neural network allows the model to achieve much more complex
mappings into atomic energies than would be possible with the cubic
splines Uci . In the s-NNP formalism, the energy Ei of a given atom i is
then written as

E =
…
i
N( íGi),

íGi = ÍG1
3,i,… ,GN3

3,i ,G
1
2,i,… ,GN2

2,i Î.
(9)

where N is a neural network, and íGi is a vector of length (N3 + N2).
Notice that each component of íGi is computed by evaluating a different
3- or 2-body spline filter for the local environment of atom i. The
parameters of an s-NNP that are trained during fitting are the positions
of the knots of the f↵ , g↵ , and ⇢� splines from Eq. (2), as well as the
weights and biases in the neural network N . The hyper-parameters of
the model are N3, N2, the number of knots in each spline, the number
of layers in N , and the number of hidden nodes in each of those layers.

One benefit of the s-NNP framework is that it is closely related
to both classical and machine learning interatomic potentials (see
Section 4.2 for more discussion), making it possible to easily probe
the performance gap between the two. For example, many classical
potentials (LJ [24], EAM [25], MEAM [31], Stillinger–Weber [35],
Tersoff [27], and Buckingham [26]) could be reformulated as s-NNP

potentials with very few filters (N3 À [0, 1], N2 À [1, 2]) and custom
embedding functions instead of a neural network (though given the
universal approximation theorem, these embedding functions could
be represented using an NN as well). Because of this, we can easily
construct spline-based ‘‘classical’’ models by adjusting N3 and N2, but
not including a neural network, then compare them directly to MLIPs
by subsequently attaching networks with varying depths and widths.
See Section 3 in the Results for details of such a study.

2.2. Interpretability improvements

A central tenet of constructing interpretable models is designing
the model architecture in a way that helps isolate the contributions
of specific parameter sets to the final model predictions. With this in
mind, we therefore propose the five modifications described in Fig. 2.
Although the modifications proposed here are only discussed in the
context of s-NNP, they can also be applied to many other existing MLIP
frameworks.

When applying all of the modifications described in Fig. 2, the full
form of s-NNP is written as:

E =
…
i
Ei =

…
i

4
Elin,i + Enet,i

5

Elin,i = Esc,i + Gshort2,i + b

Esc,i =
N3…
n=1

Gn
3,i +

N2…
n=1

Gn
2,i

Enet,i = �
⌅
Nno-bias( íGi)

⇧
,

(10)

where Esc,i as a ‘‘skip connection’’ term (as used in other DL fields [36]),
Gshort2,i is a short-range 2-body filter, b is a trainable isolated atom
energy, � is the Softplus activation function �(x) = log (1 + ex), and
Nno-bias is a neural network with no bias terms on any of its layers. Note
that Elin,i encompasses all of the terms which are linearly dependent
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Fig. 2. Modifications to the s-NNP form described in Fig. 1 for improving interpretabil-
ity. The four modifications are: (1) adding skip connections; (2) removing the internal
network bias, and adding an external bias, b; (3) wrapping the network outputs in a
Softplus activation function; and (4) introducing a single short-range pair term using a
2-body filter. The short-range pair term is only allowed to be non-zero up to a cutoff
of 2.5 Å.

upon the spline filters, and Enet,i captures the non-linear dependence.
While a more in-depth discussion of the effects of each of these mod-
ifications can be found in Section 4.1, the practical result of Eq. (10)
is that the spline filter visualizations like those shown in Fig. 3 can be
intuitively understood. For example, negative regions of the filters will
usually correspond to negative Ei, and positive regions of the filters
will always correspond to positive Ei. While Eq. (10) still suffers from
some drawbacks, predominantly associated with the non-linear effects
of Nno-bias( íGi), we believe that it strikes a good balance between the
accuracy achieved through a NN architecture, and the interpretability
characteristic of classical potentials.

2.3. Benchmarking dataset: Al

In order to test our framework, in Section 3.1 we fit s-NNP models
to the aluminum dataset from Smith et al. [37], which serves as a good
benchmarking dataset due to its size and configurational complexity.
This dataset was built using an active learning technique for generating
interatomic potential training data [38]. It has also been shown to
contain extremely diverse atomic environments, such that the ANI
model [39] which was originally trained to the dataset was tested
for use in shock simulations. After removing duplicate calculations
(identical atomic positions and computed energies/forces, generated
at different active learning steps), and one outlier configuration with
particularly high forces, the final dataset consisted of 5751 unique
configurations (744,356 atoms total) with their corresponding DFT-
computed energies and forces. A 90:10 train-test split was performed
to partition the dataset into training/testing data. This data can be
obtained from the original source [40].

2.4. Additional datasets: Cu, Ge, Mo

As a test of the flexibility of the spline filters, in Section 3.3 we
trained an s-NNP model simultaneously to the Al dataset described in
Section 2.3 and the Cu, Ge, and Mo datasets from Zuo et al. [41].
Each dataset from [41] was manually constructed and contains the

ground state structure for the given element, strained supercells, slab
structures, ab initio molecular dynamics (AIMD) sampling of supercells
at different temperatures (300 K and 0.5ù, 0.9ù, 1.5ù, and 2.0ù the
melting point), and AIMD sampling of supercells with single vacancies
at 300 K and 2.0ù the melting point. On average, each training dataset
includes approximately 250 structures for a total of 27,416 atoms (Cu),
14,072 atoms (Ge), and 10,087 atoms (Mo). A detailed summary of the
contents of the datasets can be found in [41]. This data can be obtained
from the original source [42].

In order to attempt to balance the combined dataset, we took a
random subset comprised of 20% of the Al dataset in addition to the full
Cu, Ge, and Mo datasets, resulting in a total training set size of 1271
Al configurations, 262 Cu, 228 Ge, and 194 Mo. Another logical choice
for constructing the multi-element training set would be to further
downsample the Al dataset to better balance the relative concentrations
of each element type. However, we observed that doing so resulted in
worse property predictions for Al, presumably due to the large number
of high-energy configurations in the original Al dataset making random
sampling of low-energy configurations relevant to the properties of
interest unlikely. In all cases, the atomic energies of each element type
were shifted by the average energy of that type before training.

3. Results

3.1. Benchmarking tests

Using the s-NNP framework, we fit a collection of models to the Al
dataset to probe the effects of increasing model capacity in two distinct
ways: first by increasing the number of spline filters, and second by
increasing the size of the network used for mapping filter outputs
to energies. Table 1 outlines the architectures and accuracies of the
trained models, grouped by key architectural changes and sorted by
total number of parameters. The trained s-NNP models can be con-
ceptually broken down into three main groups, each highlighting the
effects of specific architectural changes: (1) ‘‘(N2,N3) linear’’ models,
increasing the number of splines when no neural network is used; (2)
‘‘(N2,N3) l =*’’ models, increasing the number of splines and network
size; and (3) introducing the interpretability improvements described
in Section 2.2.

The results in Table 1 show multiple avenues for systematically
improving the performance of an s-NNP model, though each method
appears to experience a saturation point beyond which the model
suffers from diminishing returns as complexity increases. Using the
‘‘(1, 1) linear’’ model as a baseline, we see that increasing N3 from 1
to 8 can monotonically decrease both the energy and the force errors.
Increasing N2 has no significant effect on the accuracy of the linear
models, which is consistent with the notion that a linear combination
of cubic Hermite splines can be represented using a single spline.

The introduction of a neural network enables the model to better
utilize the additional spline filters, leading to significant improvement
of the ‘‘(1, 2) l = 3’’ model over any of the linear models. Increasing
the number of spline filters, and subsequently increasing the network
width and depth to maintain a ‘‘funnel-like’’ structure (decreasing layer
width with increasing depth) can also lead to steady improvements.
However, with increasing model size we began to see a commensurate
increase in training difficulty, often resulting in larger models with
higher errors than what might be expected based on the performance of
their smaller counterparts (e.g., ‘‘(2,4) l = 6’’ compared to ‘‘(2,4) l = 5’’,
or ‘‘(1,8) l = 5, int. wide’’ compared to ‘‘(1,8) l = 5, int. all’’). Notably,
the interpretability improvements from Section 2.2 did not hurt model
performance, demonstrating that accuracy and interpretability are not
strictly opposing attributes of a model. Based on the results shown in
Table 1, we will use the ‘‘(1,8) l = 5, int. all’’ for all experiments and
analyses in the remainder of this paper.



Computational Materials Science 232 (2024) 112655

5

J.A. Vita and D.R. Trinkle

Table 1
Fitting results comparing linear s-NNP models, ‘‘(N2 ,N3) linear’’, s-NNP models with neural networks, ‘‘(N2 ,N3) l =*’’, s-NNP
with interpretability improvements ‘‘(1, 8) l = 5, int. *’’, and the ANI model from [37], ‘‘ANI’’. The (N2 ,N3) notation for
the spline layers indicates that N2 2-body and N3 3-body spline filters were used. Network architectures are denoted as
a tuple of integers (‘‘Network’’ column) specifying the number of nodes in each hidden layer of the model. Although the
training/testing errors decrease significantly when adding additional splines to the linear models, their performance appears
to begin to saturate with the ‘‘(1,8) linear’’ model. Model performance only begins to be competitive with the ANI results
upon the inclusion of a neural network with sufficient depth, which allows for non-linear combinations of spline outputs.
While the ‘‘(1,8) l = 5, int. skip’’ model only adds the use of skip connections, the ‘‘(1,8) l = 5, int. all’’ and ‘‘(1,8) l = 5,
int. wide’’ use all of the interpretability improvements discussed in Sections 2.2 and 4.1. Note that this means that the single
2-body filter specified using the ‘‘(1,8)’’ notation is the short-range pair term described in Fig. 2, and that there are therefore
no 2-body filters being passed through the network. Testing errors for the ‘‘ANI’’ model were taken directly from [37], which
did not report training errors. Note that the ANI model uses ensemble-averaging over 8 networks, which they report yields
energy and force errors that are ‘‘20% and 40% smaller, respectively, compared to a single ANI model’’.
Model name (N2 ,N3) Network Parameters ERMSE FRMSE

(splines, network) (meV/atom) (eV/Å)

Train Test Train Test

(1, 1) linear (1, 1) – (66, 0) 74 78 0.76 0.82
(1, 2) linear (1, 2) – (110, 0) 56 56 0.54 0.58
(1, 4) linear (1, 4) – (198, 0) 40 41 0.46 0.49
(2, 4) linear (2, 4) – (220, 0) 38 36 0.46 0.50
(1, 8) linear (1, 8) – (374, 0) 32 34 0.42 0.46

(1, 2) l = 3 (1, 2) (3, 2, 1) (110, 23) 44 44 0.33 0.35
(1, 4) l = 5 (1, 4) (5, 4, 3, 2, 1) (198, 80) 10 11 0.22 0.23
(2, 4) l = 4 (2, 4) (6, 3, 2, 1) (220, 74) 22 21 0.21 0.21
(2, 4) l = 5 (2, 4) (6, 4, 3, 2, 1) (220, 96) 8.7 9.0 0.19 0.20
(2, 4) l = 6 (2, 4) (6, 5, 4, 3, 2, 1) (220, 127) 10 12 0.24 0.25
(1, 8) l = 5 (1, 8) (9, 8, 4, 2, 1) (374, 219) 7.5 6.5 0.13 0.13

(1, 8) l = 5, int. skip (1, 8) (9, 8, 4, 2, 1) (374, 219) 5.5 4.6 0.15 0.15
(1, 8) l = 5, int. all (1, 8) (9, 8, 4, 2, 1) (374, 219) 5.5 5.9 0.12 0.12
(1, 8) l = 5, int. wide (1, 8) (128, 64, 32, 16, 1) (374, 11,793) 5.9 5.1 0.13 0.14

ANI [37] – (96, 96, 64, 1) (–, 15,585) – 1.9 – 0.06

Fig. 3. Visualizations of spline filters of the ‘‘(1,8) final’’ model from Table 1 for atomic distances in the range [2.5 Å, 7 Å]. (a) Plots of the individual G↵
3,i filters, where integer

labels above each plot indicate the index ↵. (b) The average of all G↵
3,i 3-body filters. (c) The short-range pair term, as described in Section 2.2. Note that the radial splines f

↵
cj
, f↵

ck
,

and ⇢�cj use linear extrapolation for distances outside of the domain defined by their knots. Dashed gray lines in the polar plots correspond to the first and second nearest-neighbor
distances (2.86 Å and 4.05 Å respectively) for FCC Al at room temperature [43]. Each point in the polar plots is computed by fixing atom i at the origin, fixing atom j at the
given (r, ✓), fixing atom k along the ✓ = 0 axis, then integrating G↵

3 over rk À [1.5, 7.0]. Note that there is a forced symmetry in the polar plots since the g↵cjk splines in Eq. (2) take
cos (✓) as input. All polar plots use the same color scale, where values are clipped to fall within a chosen range to optimize for visibility while avoiding information loss. Values
for r < 1.5 Å, which was the smallest distance sampled in the Al dataset as shown in Fig. B.6, are omitted to ensure that high signals at small atomic distances would not wash
out the rest of the colors in the plots. Though all plots in this figure are technically in units of eV, this would not be true if skip connections were not used.

3.2. Model visualization

A major advantage of s-NNP over many other MLIPs, especially
when coupled with the modifications from Section 2.2, is that the spline
filters G↵

3,i and G�
2,i lend themselves to easy visualization. This can be

valuable for helping model developers and users to better understand

how their model is interacting with the data or influencing simulation
results. The polar plots in Fig. 3a, corresponding to the ‘‘(1,8) l = 5, int.
all’’ model, represent the total activation of the 3-body filters induced
by placing an atom at a given (r, ✓). These visualizations make it easy
to recognize aspects of the local environments around an atom that
are learned during training to have lower energy. For example, the
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Fig. 4. Property predictions of the lattice constant (a), cubic elastic constants (Cij ),
bulk modulus (B), and vacancy formation and migration energies (Evf and Em) for s-
NNP models compared to existing MLIPs. s-NNP results are from this work, ANI results
from [37], and all others from [41]. All properties have been normalized with respect
to the DFT-predicted values. Note that [37] did not compute Em for ANI. The ‘‘(1,8)
l = 5, int. all’’ model (solid black line), which was trained only to Al, predicts all seven
properties well, with the exception of C44, which has a relatively small magnitude
compared to the other elastic constants. The performance of the multi-element s-NNP
model (dashed black lines) is within the range of the other single-element MLIPs,
though s-NNP’s predictions for Ge are somewhat distorted. The ‘‘fine-tuned’’ s-NNP
model was manually adjusted after training was completed in order improve the
property predictions, as described in Section 3.3.

averaged filter shown in Fig. 3b has an attractive behavior of the model
for bond angles 60˝ f ✓jik f 90˝ in addition to repulsion for angles
larger than approximately 120˝. Many of the individual filters in Fig. 3a
also show characteristic features at various bond angles, especially for
bond lengths near the first and second nearest neighbor distances in
FCC aluminum. Fig. 3c shows the short-range pair term, which was
learned to have a strongly repulsive contribution, as would be expected
based on the Pauli exclusion principle.

It is worth mentioning that similar plots to the ones shown in Fig. 3
could also be generated for other NNP-like models, for example by
visualizing each of the components of the vector output of the first
hidden layer in an ANI model. However, most other neural network-
based architectures would have significantly more filters to visualize
given the size of their hidden layers. For example, the ANI model in
Table 1 has 96 nodes in its first hidden layer, thus making it more
difficult to interpret the results. Furthermore, since ANI (and most
other models) does not use skip connections summing the hidden layer
directly into the output, any resultant visualization will not necessarily
be in units of energy, meaning it may undergo significant non-linear
transformations as it passes through the network.

3.3. Flexibility tests

The high interpretability of the s-NNP spline filters, as discussed in
Section 3.2, is particularly valuable when the filters can be applied to
different chemical systems in order to enable cross-system comparisons.
For example, if multiple s-NNP models using the same spline filters

were trained to different chemical systems, then the networks of each
model could be analyzed in order to understand how differences in
chemistries result in different sensitivities to the local environment
embeddings defined by the spline filters. The multi-element model
trained to the datasets described in Section 2.4 uses the same spline
filters for all of the data, but separate NNs for each element type. The
network architecture maintained a funnel-like structure of (12, 8, 4, 2, 1).
It also used four additional 3-body filters in order to increase its fitting
capacity, for a total of one short-range pair filter and 12 3-body filters,
though without the use of skip connections or the Softplus activation
function. In the case of the multi-element model, the use of skip con-
nections would imply a ‘‘background’’ energy that is consistent across
all four element types and is augmented by the network contributions
for each element. While this assumption sounds plausible in theory,
we found that in practice a model using skip connections resulted in
poorer property predictions than one which did not. This decreased
performance when using skip connections can likely be attributed to
a lack of universality of the background energy learned by the splines,
possibly due to the larger concentration of Al data dominating the fit-
ting and causing the filters to learn a background energy which is only
applicable to Al. While it is possible that re-weighting the dataset could
help alleviate this issue, it also seems likely that there is simply not a
background energy that is valid for all four elements simultaneously.
If this is the case, then it would be valuable to explore in future work
how the s-NNP architecture could be modified to allow the model to
utilize skip connections without using the same skip connections for
each elemental network (for example, by only connecting a subset of
the splines to each network’s output).

The property predictions of the multi-element model plotted in
Fig. 4 show that a model using shared filters for multiple datasets can
learn to make reasonable property predictions for all four elements
studied in this work. While the initial predictions for most of the
elements were relatively good, the cubic elastic constants and bulk
modulus for Mo were noticeably under-predicted, and the vacancy
migration energy was far too large to be considered acceptable (dotted
line in Fig. 4). Due to the relatively few number of spline filters used,
and their high degree of interpretability, we were able to fine-tune the
model by zeroing out the network weights of hand-chosen filters in
order to remove their contribution to the Mo energy predictions. For
example, the contributions of each spline filter can be visualized indi-
vidually in order to isolate the influence of each filter on the properties
of interest (see Fig. C.8). Following this approach, we were able to
improve the Mo predictions to bring them within an acceptable range
without altering the predictions for the other three elements (dashed
lines in Fig. 4). However, we note that the original training errors of the
model (before fine-tuning) as shown in Fig. C.10 were comparable to
those of the NNIPs from [41], suggesting that the property predictions
of the multi-element s-NNP model may have been able to have been
improved by re-balancing the dataset. Similar to what was described in
Section 2.4, a possible explanation for this is that the Mo dataset did not
fully constrain the portions of the spline filters relevant to computing
the properties of interest, and their shapes were therefore dictated by
the Al dataset, leading to corrupted Mo property predictions. Further
research into methods for preventing this type of ‘‘cross-pollution’’
of information would be valuable for constructing more flexible and
generalizable models.

In order to gain additional insights into the differences in energetics
between the Al, Cu, Ge, and Mo systems, we compute the sensitivities
of the energies predicted by the multi-element model with respect to
each of the 3-body spline filters. The sensitivity of the total energy, E,
for all configurations N with respect to a given 3-body spline filter G↵

3
can be computed as:

s ↵E =
N…
i=1

)Es-NNP_)G↵
3,i_EDFT, (11)

which can be easily computed via back-propagation.
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Fig. 5. Analysis of sensitivities s↵E (Eq. (11)) of the predicted energies with respect
to the 3-body spline filters, G↵

3 , for each elemental model. We compute the sensitivity
by calculating the derivative of the predicted energy with respect to the spline filter
outputs, normalized by the DFT reference value, then summing over all atoms in the
training set. Note that these sensitivities are computed with respect to the total energy
E, which includes the network contributions. The left panel plots the raw values, while
the right panel shows the correlation between the sensitivities of each element. The
empty bars for Mo correspond to the filters which were removed from the Mo energy
predictions during fine-tuning as described in Section 3.3. The corresponding spline
filters are visualized in Fig. C.7.

Calculation and comparison of these sensitivities for each dataset,
as shown in Fig. 5, highlight the learned similarities and differences
between the four elemental datasets. Examination of the correlation
between the sensitivities (right panel of Fig. 5) shows that the Cu and
Mo datasets have similar filter sensitivities, while Ge is the only element
to have a negative correlation with any of the other elements. The Al
dataset appears to be uniformly similar to all three remaining elements,
reflecting the fact that most of the geometric configurations of the
Cu/Ge/Mo datasets are well-sampled by the Al dataset (see Fig. C.9).
We hypothesize that the negative correlation of the Ge sensitivities is
due to an attempt by the model to encode the large cluster of outlying
Ge points in the UMAP visualizations shown in Fig. C.9.

4. Discussion

4.1. Understanding model behavior

The main purpose behind the modifications proposed in Fig. 2 and
Section 2.2 is to simplify the process of understanding the behavior of
s-NNP models. This not only improves the usefulness of visualizations
like those shown in Figs. 3 and C.7, but can also aid in debugging
model predictions in practice. In this section, we will discuss each
modification from Section 2.2 in greater detail in order to highlight
how they improve the interpretability of the model.

The first of these modifications is the use of skip connections,
which result in strong theoretical changes that can not only lead to
improved trainability as seen in Table 1 and other deep learning
applications [44], but also greatly increase the interpretability of the
model. Modifying íGi to have units of energy seemingly contrasts with
the notion of the atomic ‘‘density’’, ni, from Eq. (1) and the local
environment descriptor, íDi, from Eq. (4), both of which are considered
to be intermediate representations which will only become energies
once they have been transformed by a regression function (Uci or Nci
respectively). However, we emphasize that these three quantities (ni,
íDi, and íGi) remain closely related even when íGi is in units of energy
while the others are not. Although local environment descriptors are
usually seen as quantifying the geometry within a local neighborhood,
there is no reason that the environment descriptor may not itself also
be an energy. An energy-based descriptor could then be thought of as
a type of energy partitioning scheme, where in the case of s-NNP with
skip connections the atomic energies contribute both linearly to the
total energy (through the skip connection) and non-linearly (through
the network). In fact, in our previous work [45] we observed that
Uci was often learned to be a nearly linear function, meaning that
it essentially served the purpose of a simple unit conversion for ni.

This linearity is essential to model interpretability, and is the main
motivator for the use of skip connections in s-NNP, as it is a step
towards simplifying the process of understanding how the spline filters
contribute to the total energy.

Nevertheless, care must still be taken when interpreting the filter
visualizations when the other modifications discussed in Section 2.2
are not also employed. For example, skip connections alone do not
guarantee that a negative filter value means Ei will also be negative,
since the network contribution N( íGi) may outweigh the skip connec-
tion term. Similarly, adjusting the filter outputs (e.g., by tuning the knot
positions) may have unexpected results due to the non-linear behavior
of the network. These issues are also present with all non energy-based
descriptors like ni and íDi, but can be further improved upon using the
remaining techniques discussed in this section.

In order to further facilitate straightforward interpretation of spline
visualizations, we also choose to pin the knots of the radial splines to be
0 at the cutoff distance rc , and we remove bias terms from the layers of
the NN. As a result of this, both N( íGi) and Esc,i will smoothly decay to
0 at the cutoff distance, thus incorporating the desired behavior which
is enforced in the Behler–Parrinello NNP using the cutoff function vc
in Eq. (6). In order to account for the fact that some datasets may
have non-zero energy at the cutoff distance, an external bias term, b
is added so that the atomic energy converges to b at rc . In this sense,
b corresponds to the learned energy of the isolated atom. We note that
this external bias term is preferable to using internal network bias or
un-pinning the radial splines because it ensures that N( íGi) and Esc,i
behave similarly as rij approaches rc .

Wrapping the network output Nno-bias( íGi) in the Softplus activation
function guarantees that the NN contributions to the total energy are
strictly non-negative. This ensures that any attractive behavior of the
model arises solely from the spline filters through the skip connection
term, Esc,i, thus helping to isolate certain model behaviors to specific
parameter sets. It is important to note, however, that the Softplus
activation should only be used in conjunction with skip connections
in order to ensure that the model can predict negative energies.

A common challenge for many MLIPs is ensuring a repulsive be-
havior at small values of rij . This difficulty is not reflected in classical
potentials, however, as classical models often include explicit repulsive
terms. While a data-driven solution to this problem is possible, by
explicitly adding short-range dimers into the training dataset, many
MLIP developers choose instead to adjust the form of their IP. One such
method used in the literature is to augment the model by introducing
an auxiliary potential designed to capture the repulsive behavior of
a pair potential. For example, in [46] a ‘‘composite potential’’ was
constructed by first fitting a repulsive ‘‘auxiliary potential’’ to DFT data,
then fitting a ‘‘main potential’’ to the residuals of the pair potential
using a Gaussian Approximation Potential [2]. We incorporate a similar
idea by including a short-range 2-body filter, G2,i, which is summed
directly into the total energy without ever passing through the NN.
Note that this is different from the skip connections, which are summed
directly into the energy and passed through the NN. Having a spline
filter which only contributes linearly to the total energy means that it is
free of any of the interpretability issues described for the spline filters
which are used as input to the NN. While this short-range pair term
does not necessarily guarantee a repulsive behavior at small distances,
we observe empirically that it is often learned during training to have
a strongly repulsive shape. A similar technique is used by the SNAP
interatomic potential [47], where the repulsive ZBL pair potential is
added to the potential form as a ‘‘reference potential’’.

We note that the auxiliary potential from [46] (or the short-range 2-
body filter used here) and the skip connections serve related purposes:
to have a linear portion of the model in the hope that it will serve
as a type of interpretable background energy to which the non-linear
part of the model can then apply a correction. While the possible
existence of a background energy is relatively easy to believe (take,
for example, a simple repulsive potential that decays at large atomic



Computational Materials Science 232 (2024) 112655

8

J.A. Vita and D.R. Trinkle

distances), it is not obvious that the correction term should be a function
of this background energy, as is assumed to be the case with the skip
connections used here. In fact, it is much more intuitive that the back-
ground energy and non-linear correction terms be entirely decoupled
from each other—such a model could be implemented within the s-NNP
framework by summing a subset of the spline filters into the output
energy without also passing them through the network. Although we
experimented with such an architecture, we found that this type of
‘‘decoupled’’ model resulted in higher errors than the optimal model
used in this work. However, these results are not sufficient on their
own to draw any significant conclusions about the validity of cou-
pling/decoupling the background energy and correction term, and we
believe that this should be explored further in future work.

4.2. s-NNP’s relation to other models

The s-NNP architecture shown in Fig. 1 can be further understood
by drawing relationships between itself and other models from the
literature, particularly the UF3 model [48] and the original Behler–
Parrinello NNP [1]. s-NNP can be compared to UF3 and NNP by
analyzing the differences between the two key components of each
model: the embedding function for encoding local atomic environments
into a descriptor, and the regression function for mapping the descrip-
tor into an energy. Although it can be difficult to clearly distinguish
between the embedding/regression portions of most MLIPs due to the
inability to definitively establish the roles of all parameters in a deep
model, we will attempt to break each model down in intuitive ways
to facilitate comparison. One can view the vector íGi from Eq. (9) as a
descriptor generated by an embedding function defined by the spline
filters G↵

3,i and G�
2,i. This embedding technique is most similar to the

UF3 method, which also decomposes the energy into two-body and
three-body terms described by spline basis functions. Though there
are some differences in the exact details of the UF3 and s-NNP spline
functions, for example UF3’s use of tricubic B-splines instead of the
1D cubic Hermite splines of s-NNP, the general principle is the same.
While s-NNP’s embedding function is most similar to that of UF3, its
regression function is identical to that of the Behler–Parrinello NNP [1].
Therefore, in order to help analyze the performance of s-NNP with
respect to other models in the literature, it is suitable to think of s-
NNP as a combination of a UF3-like embedding function with an NNP
regressor. Or, equivalently, as an NNP using a spline-based embedding
function instead of atom-centered symmetry functions [1]. However,
neither UF3 nor NNP utilize all of the interpretability improvements
discussed in Section 2.2.

The recently-proposed EAM-R model [49] is the most closely related
model to s-NNP in the literature, as it also incorporates components
of both a classical model (EAM) and an MLIP (an NNP). EAM-R is a
composite potential (using the terminology described in Section 4.1)
where the auxiliary potential is an EAM model, and the main poten-
tial is an RANN (an NNP with descriptors inspired by the analytical
MEAM equations [31]). Similar to this work, the developers of EAM-R
observed that combining a classical model with an MLIP resulted in
both improved stability relative to an MLIP and improved accuracy to
a classical potential alone. Despite s-NNP’s similarity to EAM-R, s-NNP
has some key differences, namely the use of spline filters (instead of
analytical MEAM-inspired descriptors) and some of the interpretability
improvements discussed in Section 2.2. In particular, the spline filters
may be expected to be more flexible than the RANN descriptors (similar
to how s-MEAM is more flexible than analytical MEAM) for a given
computational cost, and benefit from the ability to enforce smooth-
ness and convergence through curvature penalties and knot pinning.
Furthermore, s-NNP’s use of skip connections and the removal of the
internal network bias greatly improve the interpretability of the model,
as discussed in Section 2.2. Although EAM-R does not include these
modifications, it is an excellent example of an MLIP which could easily
incorporate these same interpretability improvements.

4.3. Computational costs

The computational cost of s-NNP is dominated by the evaluation
of íGi, and is particularly dependent upon the choice of N3. In fact,
basic profiling tests revealed that the filter evaluations accounted for
approximately 95% of the total CPU and GPU time. This behavior
can be understood heuristically by the fact that Eq. (2) involves ap-
proximately O(N2

n ) spline evaluations for each filter where Nn is the
average number of neighbors within the cutoff distance (due to the
summation over triplets of atoms), as opposed to the relatively few
matrix multiplications associated with the evaluation of the neural
network. In general, the computational cost of inference with an s-NNP
potential will scale sub-linearly withN3 (some speedup can be achieved
by performing batched spline evaluations for the filters in Eq. (2)). An
important practical implication of this is that in order to improve the
accuracy of a given s-NNP model (and other NNP-based MLIPs as well),
it is much more computationally efficient to increase the size of the
network rather than the size of the embedding function. On the other
hand, increasing N3 may lead to larger increases in accuracy (up to a
point) than what is achievable by only increasing the network size

Given the performances of the s-NNP models in Table 1 and the
timing comparisons observed in our previous work between s-MEAM
and a NNP [45], it may be expected that an s-NNP could be con-
structed that achieves identical errors to ANI while maintaining a
higher speed. The ‘‘(1,8) l = 5, int. all’’ model is already nearing
this threshold, especially taking into account that the values for ANI
reported in Table 1 use ensemble-averages over 8 models, as reported
by the original authors [37], which they say can make the energy and
force errors ‘‘20% and 40% smaller, respectively’’ and may account
for the differences in performance as compared to ‘‘(1,8) l = 5, int.
all’’. However, given that the major difference between ANI and s-
NNP is in their choice of descriptors (an ACSF variant, as opposed to
spline embeddings), further research analyzing the relative amount of
information that can be embedded within each descriptor would be
valuable to help explain the discrepancies in errors.

5. Conclusion

In this work we developed a novel framework using spline-based
filters coupled with a neural network regressor in order to blend the
strengths of both classical and ML IPs. We use this framework to
probe the gap between these two classes of models, observing perfor-
mance limits of linear (‘‘classical’’) models that can be overcome using
even small neural networks. We then show that this improved perfor-
mance can be maintained while incorporating architectural changes
which improve the interpretability of the model, such as the use of
skip connections, an external bias term, a Softplus activation func-
tion, and a short-range pair term. Finally, we demonstrate that the
information-rich filter layer can be used as a reference point for per-
forming cross-system analyses, and correlate well enough with model
behavior to enable manual tuning to improve property predictions.
Future studies applying the visualization techniques shown here to
practical applications, and exploring methods of isolating contributions
of specific elements to subsets of the model parameters would be
valuable for continuing to refine the interpretability improvements ex-
plored in this work. Furthermore, efforts building upon this work could
continue to improve the s-NNP design by incorporating equivariance or
a message-passing network, which may lead to better performance and
improved scaling of model size with number of elements.
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Appendix A. Training details

All s-NNP models in this work were trained using the code provided
at https://github.com/TrinkleGroup/snnp on a single GPU from the
HAL computing cluster [50]. The energy and force terms in the loss
function were given weights of 10 and 1 respectively. L2 regularization
was applied to the network parameters with a weight of 0.01. The
AMSGrad variant of the Adam optimizer was used, with an initial
learning rate of 0.001 and a MultiStepLR scheduler. Inner and outer
cutoff radii of 2.5 and 7.0 were used, as specified in the main text.

Appendix B. Distributions of rij and ✓jik

Fig. B.6 shows that the Al dataset well samples the range of rij
and cos ✓jik values present in the Cu, Ge, and Mo datasets. Notably,
the Al dataset has a much more uniform sampling of both of these
values, likely due to both its large size and more diverse sampling
technique (active learning). These results suggest that the Al dataset
may help to constrain regions of the 2-body and 3-body splines that
are under-sampled by the other three datasets. The inner cutoff radius
of 2.5 Å(below which the short-range pair term becomes non-zero) was
chosen to be slightly larger than the smallest atomic distances sampled
by the datasets in order to ensure that the inner knots of the splines
would be well constrained by the data.

Appendix C. Multi-element model

Fig. C.7 shows the spline filter visualizations corresponding to the
12 splines used by the multi-element model. As described in Sec-
tion 3.3, the multi-element model does not use skip connections, which
means that the filters in Fig. C.7 are not necessarily in units of energy
and may be drastically transformed before being mapped into the
output of the model. Although this greatly reduces the utility of the
spline visualizations, the filters can still be understood in the context
of the model sensitivities reported in Fig. 5. It can be seen that filters
1 and 9 (which were removed during the manual fine-tuning process)
both have negative activations for short bond lengths and bond angles
less than 30˝. The filters can be further analyzed by plotting their
activations over a range of lattice constants, as shown in Fig. C.8, which
reveals that filters 1 and 9 both yield strongly repulsive contributions
for small lattice constants. The removal of these filters for the Mo
predictions drastically lowered the predicted Em, which is consistent

Fig. B.6. Histograms of rij and cos ✓jik values sampled from the Al, Cu, Ge, and Mo
datasets used in this work.

Fig. C.7. Polar plot visualizations of the 3-body spline filters for the multi-element
s-NNP. Gray dashed lines mark 2 Å and 5 Å for reference.

with our intuition that removal of filters 1 and 9 should result in a
softer potential.

Fig. C.9 supports the expectation from Appendix B that the Al
dataset encompasses a majority of the data from the Cu/Ge/Mo
datasets. As can be seen from Fig. C.9, this statement appears to be
generally true, with the exceptions of some small outlying clusters of
Cu and Ge points. The small isolated clusters surrounding the main

https://github.com/TrinkleGroup/snnp
https://github.com/TrinkleGroup/snnp
https://github.com/TrinkleGroup/snnp
https://github.com/TrinkleGroup/snnp
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Fig. C.8. Spline filter activations, G↵
3,i, for the multi-element model from Section 3.3

on the E vs. a curve for BCC Mo. Filter numbers 1 and 9 were removed from the Mo
property predictions during the fine-tuning process by zeroing out the corresponding
network weights as described in Section 3.3.

Fig. C.9. UMAP plots of the vectors íGi generated by applying the spline filters from
the multi-element s-NNP model from Section 3.3, colored by element type.

manifold correspond to the strained configurations from the Cu/Ge/Mo
datasets, while the larger outlying cluster of Ge points correspond to
a subset of the Ge configurations which were sampled by low- and
high-temperature MD simulations.

Fig. C.10 provides a breakdown of the errors of the multi-element
model (prior to fine-tuning) for each elemental datasets. The appar-
ent contradiction between the low RMSE values (compared to those
from [41]) shown in Fig. C.10 and the unacceptably high errors in
property predictions for Mo reported in Fig. 4 suggests that the config-
urations in the Mo dataset were not sufficiently representative of the
properties of interest. While it is possible that the property predictions
of the multi-element s-NNP may have been able to be improved if
even lower Mo RMSE values could have been obtained, the fact that
many models with similar errors [41,45] had good property predictions
suggests some kind of deficiency in the dataset which would require
further analysis in order understand fully.

Fig. C.10. Parity plots for energy and force predictions of the multi-element model
described in Section 3.3 before manual fine-tuning of the model. The computed RMSE
values match the expected errors for NN-based MLIPs on the Cu/Ge/Mo dataset based
on the results from [41], though the s-NNP model here uses a larger cutoff distance.
Note that the RMSE value for Al should not be compared directly to those in Table 1,
since the results here use only the 20% of the Al dataset as described in Section 2.4.

References

[1] Jörg Behler, Michele Parrinello, Generalized neural-network representation of
high-dimensional potential-energy surfaces, Phys. Rev. Lett. 98 (14) (2007)
http://dx.doi.org/10.1103/physrevlett.98.146401.

[2] Albert P. Bartók, Mike C. Payne, Risi Kondor, Gábor Csányi, Gaussian approx-
imation potentials: The accuracy of quantum mechanics, without the electrons,
Phys. Rev. Lett. 104 (2010) 136403, http://dx.doi.org/10.1103/PhysRevLett.104.
136403.

[3] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P.
Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, Boris Kozinsky,
E(3)-equivariant graph neural networks for data-efficient and accurate inter-
atomic potentials, Nature Commun. (ISSN: 2041-1723) 13 (1) (2022) 2453,
http://dx.doi.org/10.1038/s41467-022-29939-5, URL https://www.nature.com/
articles/s41467-022-29939-5.

[4] A.P Thompson, L.P Swiler, C.R Trott, S.M Foiles, G.J. Tucker, Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic
potentials, J. Comput. Phys. 285 (2015) 316–330, http://dx.doi.org/10.1016/
j.jcp.2014.12.018.

[5] Alexander V. Shapeev, Moment tensor potentials: A class of systematically
improvable interatomic potentials, Multiscale Model. Simul. 14 (3) (2016)
1153–1173, http://dx.doi.org/10.1137/15m1054183.

[6] Ralf Drautz, Atomic cluster expansion for accurate and transferable interatomic
potentials, Phys. Rev. B 99 (1) (2019) http://dx.doi.org/10.1103/physrevb.99.
014104.

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E.
Dahl, Neural message passing for quantum chemistry, 2017, URL http://arxiv.
org/abs/1704.01212 arXiv:1704.01212.

[8] K.T Schütt, H.E Sauceda, P.-J Kindermans, A Tkatchenko, K.-R. Müller, SchNet –
A deep learning architecture for molecules and materials, J. Chem. Phys. (ISSN:
0021-9606) 148 (24) (2018) 241722, http://dx.doi.org/10.1063/1.5019779, URL
http://aip.scitation.org/doi/10.1063/1.5019779.

[9] Ilyes Batatia, Simon Batzner, Dávid Péter Kovács, Albert Musaelian, Gregor N.C.
Simm, Ralf Drautz, Christoph Ortner, Boris Kozinsky, Gábor Csányi, The design
space of e(3)-equivariant atom-centered interatomic potentials, arXiv (2022) URL
http://arxiv.org/abs/2205.06643.

http://dx.doi.org/10.1103/physrevlett.98.146401
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1038/s41467-022-29939-5
https://www.nature.com/articles/s41467-022-29939-5
https://www.nature.com/articles/s41467-022-29939-5
https://www.nature.com/articles/s41467-022-29939-5
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1137/15m1054183
http://dx.doi.org/10.1103/physrevb.99.014104
http://dx.doi.org/10.1103/physrevb.99.014104
http://dx.doi.org/10.1103/physrevb.99.014104
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://dx.doi.org/10.1063/1.5019779
http://aip.scitation.org/doi/10.1063/1.5019779
http://arxiv.org/abs/2205.06643


Computational Materials Science 232 (2024) 112655

11

J.A. Vita and D.R. Trinkle

[10] Tim Mueller, Alberto Hernandez, Chuhong Wang, Machine learning for inter-
atomic potential models, J. Chem. Phys. (ISSN: 0021-9606) 152 (5) (2020)
050902, http://dx.doi.org/10.1063/1.5126336, URL http://aip.scitation.org/doi/
10.1063/1.5126336.

[11] Sergei Manzhos, Tucker Carrington, Neural Network Potential Energy Surfaces
for Small Molecules and Reactions, Chem. Rev. (ISSN: 0009-2665) 121 (16)
(2021) 10187–10217, http://dx.doi.org/10.1021/acs.chemrev.0c00665, https://
pubs.acs.org/doi/10.1021/acs.chemrev.0c00665.

[12] Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, O. Anatole von Lilienfeld,
FCHL revisited: Faster and more accurate quantum machine learning, J. Chem.
Phys. (ISSN: 0021-9606) 152 (4) (2020) 044107, http://dx.doi.org/10.1063/1.
5126701, URL http://aip.scitation.org/doi/10.1063/1.5126701.

[13] Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J.
Owen, Mordechai Kornbluth, Boris Kozinsky, Learning local equivariant repre-
sentations for large-scale atomistic dynamics, 2022, URL http://arxiv.org/abs/
2204.05249, arXiv:2204.05249.

[14] Johannes Gasteiger, Florian Becker, Stephan Günnemann, GemNet: Universal
directional graph neural networks for molecules, 2021, URL http://arxiv.org/
abs/2106.08903 arXiv:2106.08903.

[15] Mojtaba Haghighatlari, Jie Li, Xingyi Guan, Oufan Zhang, Akshaya Das, Christo-
pher J. Stein, Farnaz Heidar-Zadeh, Meili Liu, Martin Head-Gordon, Luke Bertels,
Hongxia Hao, Itai Leven, Teresa Head-Gordon, NewtonNet: A Newtonian message
passing network for deep learning of interatomic potentials and forces, 2021,
URL http://arxiv.org/abs/2108.02913. arXiv:2108.02913.

[16] Nicholas Lubbers, Justin S. Smith, Kipton Barros, Hierarchical modeling of
molecular energies using a deep neural network, J. Chem. Phys. (ISSN: 0021-
9606) 148 (24) (2018) 241715, http://dx.doi.org/10.1063/1.5011181, URL http:
//aip.scitation.org/doi/10.1063/1.5011181.

[17] Weihua Hu, Muhammed Shuaibi, Abhishek Das, Siddharth Goyal, Anuroop
Sriram, Jure Leskovec, Devi Parikh, C. Lawrence Zitnick, ForceNet: A graph
neural network for large-scale quantum calculations, 2021, arXiv:2103.01436.

[18] Ilyes Batatia, Simon Batzner, Dávid.Péter Kovács, Albert Musaelian, Gregor N.C.
Simm, Ralf Drautz, Christoph Ortner, Boris Kozinsky, Gábor Csányi, The design
space of E(3)-equivariant atom-centered interatomic potentials, 2022, URL http:
//arxiv.org/abs/2205.06643, arXiv:2205.06643.

[19] Gabriele C. Sosso, Ji Chen, Stephen J. Cox, Martin Fitzner, Philipp Pedevilla,
Andrea Zen, Angelos Michaelides, Crystal nucleation in liquids: Open questions
and future challenges in molecular dynamics simulations, Chem. Rev. 116 (12)
(2016) 7078–7116, http://dx.doi.org/10.1021/acs.chemrev.5b00744.

[20] R Ravelo, T.C Germann, O Guerrero, Q An, B.L. Holian, Shock-induced plasticity
in tantalum single crystals: Interatomic potentials and large-scale molecular-
dynamics simulations, Phys. Rev. B 88 (13) (2013) http://dx.doi.org/10.1103/
physrevb.88.134101.

[21] Jürg Diemand, Raymond Angélil, Kyoko K. Tanaka, Hidekazu Tanaka, Large scale
molecular dynamics simulations of homogeneous nucleation, J. Chem. Phys. 139
(7) (2013) 074309, http://dx.doi.org/10.1063/1.4818639.

[22] James C. Phillips, David J. Hardy, Julio D.C. Maia, John E. Stone, João V.
Ribeiro, Rafael C. Bernardi, Ronak Buch, Giacomo Fiorin, Jérôme Hénin,
Wei Jiang, Ryan McGreevy, Marcelo C.R. Melo, Brian K. Radak, Robert D.
Skeel, Abhishek Singharoy, Yi Wang, Benoît Roux, Aleksei Aksimentiev, Zaida
Luthey-Schulten, Laxmikant V. Kalé, Klaus Schulten, Christophe Chipot, Emad
Tajkhorshid, Scalable molecular dynamics on CPU and GPU architectures with
NAMD, J. Chem. Phys. 153 (4) (2020) 044130, http://dx.doi.org/10.1063/5.
0014475.

[23] Luis A. Zepeda-Ruiz, Alexander Stukowski, Tomas Oppelstrup, Vasily V. Bulatov,
Probing the limits of metal plasticity with molecular dynamics simulations,
Nature 550 (7677) (2017) 492–495, http://dx.doi.org/10.1038/nature23472.

[24] J.E. Jones, On the determination of molecular fields. —II. from the equation
of state of a gas, Proc. R. Soc. Lond. Ser. A 106 (738) (1924) 463–477,
http://dx.doi.org/10.1098/rspa.1924.0082.

[25] Murray S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application
to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (12) (1984)
6443–6453, http://dx.doi.org/10.1103/physrevb.29.6443.

[26] R.A. Buckingham, The classical equation of state of gaseous helium, neon and
argon, Proc. R. Soc. Lond. Ser. A 168 (933) (1938) 264–283, http://dx.doi.org/
10.1098/rspa.1938.0173.

[27] J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev.
Lett. 56 (6) (1986) 632–635, http://dx.doi.org/10.1103/physrevlett.56.632.

[28] Donald W Brenner, Olga A Shenderova, Judith A Harrison, Steven J Stuart, Boris
Ni, Susan B. Sinnott, A second-generation reactive empirical bond order (REBO)
potential energy expression for hydrocarbons, J. Phys.: Condens. Matter 14 (4)
(2002) 783–802, http://dx.doi.org/10.1088/0953-8984/14/4/312.

[29] Tzu-Ray Shan, Bryce D. Devine, Travis W. Kemper, Susan B. Sinnott, Simon R.
Phillpot, Charge-optimized many-body potential for the hafnium/hafnium oxide
system, Phys. Rev. B 81 (12) (2010) http://dx.doi.org/10.1103/physrevb.81.
125328.

[30] Adri C.T. van Duin, Siddharth Dasgupta, Francois Lorant, William A. Goddard,
ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A 105 (41) (2001)
9396–9409, http://dx.doi.org/10.1021/jp004368u.

[31] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impuri-
ties, Phys. Rev. B 46 (5) (1992) 2727–2742, http://dx.doi.org/10.1103/physrevb.
46.2727.

[32] T.J Lenosky, B Sadigh, E Alonso, V.V Bulatov, T.D de la Rubia, J Kim, A.F Voter,
J.D. Kress, Highly optimized empirical potential model of silicon, Modelling
Simul. Mater. Sci. Eng. 8 (6) (2000) 825–841, http://dx.doi.org/10.1088/0965-
0393/8/6/305.

[33] Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward
networks are universal approximators, Neural Netw. 2 (5) (1989) 359–366,
http://dx.doi.org/10.1016/0893-6080(89)90020-8.

[34] J.S Smith, O Isayev, A.E. Roitberg, ANI-1: an extensible neural network potential
with DFT accuracy at force field computational cost, Chem. Sci. 8 (4) (2017)
3192–3203, http://dx.doi.org/10.1039/c6sc05720a.

[35] Frank H. Stillinger, Thomas A. Weber, Computer simulation of local order in
condensed phases of silicon, Phys. Rev. B 31 (8) (1985) 5262–5271, http:
//dx.doi.org/10.1103/physrevb.31.5262.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for
image recognition, 2015, URL https://arxiv.org/abs/1512.03385.

[37] Justin S. Smith, Benjamin Nebgen, Nithin Mathew, Jie Chen, Nicholas Lubbers,
Leonid Burakovsky, Sergei Tretiak, Hai Ah Nam, Timothy Germann, Saryu
Fensin, Kipton Barros, Automated discovery of a robust interatomic potential for
aluminum, Nature Commun. 12 (1) (2021) http://dx.doi.org/10.1038/s41467-
021-21376-0.

[38] Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, Adrian E.
Roitberg, Less is more: Sampling chemical space with active learning, J. Chem.
Phys. 148 (24) (2018) 241733, http://dx.doi.org/10.1063/1.5023802.

[39] Justin S. Smith, Benjamin T. Nebgen, Roman Zubatyuk, Nicholas Lubbers,
Christian Devereux, Kipton Barros, Sergei Tretiak, Olexandr Isayev, Adrian E.
Roitberg, Approaching coupled cluster accuracy with a general-purpose neural
network potential through transfer learning, Nature Commun. 10 (1) (2019)
http://dx.doi.org/10.1038/s41467-019-10827-4.

[40] Atomistic-ml/ani-al repository, 2010, https://github.com/atomistic-ml/ani-al,
Accessed: 2010-09-30.

[41] Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming Chen, Jörg Behler, Gábor
Csányi, Alexander V. Shapeev, Aidan P. Thompson, Mitchell A. Wood, Shyue Ping
Ong, Performance and cost assessment of machine learning interatomic poten-
tials, J. Phys. Chem. A 124 (4) (2020) 731–745, http://dx.doi.org/10.1021/acs.
jpca.9b08723.

[42] Materialsvirtuallab/mlearn repository, 2010, https://github.com/
materialsvirtuallab/mlearn, Accessed: 2010-09-30.

[43] Philip N.H. Nakashima, The crystallography of aluminum and its alloys,
2020, http://dx.doi.org/10.48550/ARXIV.2002.01562, URL https://arxiv.org/
abs/2002.01562.

[44] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein, Visualizing
the loss landscape of neural nets, 2017, URL https://arxiv.org/abs/1712.09913.

[45] Joshua A. Vita, Dallas R. Trinkle, Exploring the necessary complexity of inter-
atomic potentials, Comput. Mater. Sci. 200 (2021) 110752, http://dx.doi.org/10.
1016/j.commatsci.2021.110752.

[46] Diego Milardovich, Dominic Waldhoer, Markus Jech, Al-Moatasem Bellah El-
Sayed, Tibor Grasser, Building robust machine learning force fields by composite
gaussian approximation potentials, Solid-State Electron. 200 (2023) 108529,
http://dx.doi.org/10.1016/j.sse.2022.108529.

[47] Mitchell A. Wood, Aidan P. Thompson, Extending the accuracy of the SNAP
interatomic potential form, J. Chem. Phys. 148 (24) (2018) http://dx.doi.org/
10.1063/1.5017641.

[48] Stephen R. Xie, Matthias Rupp, Richard G. Hennig, Ultra-fast interpretable
machine-learning potentials, 2021, URL https://arxiv.org/abs/2110.00624.

[49] Mashroor S. Nitol, Khanh Dang, Saryu J. Fensin, Michael I. Baskes, Doyl E.
Dickel, Christopher D. Barrett, Hybrid interatomic potential for sn, Phys. Rev.
Mater. 7 (4) (2023) http://dx.doi.org/10.1103/physrevmaterials.7.043601.

[50] Volodymyr Kindratenko, Dawei Mu, Yan Zhan, John Maloney, Sayed.Hadi
Hashemi, Benjamin Rabe, Ke Xu, Roy Campbell, Jian Peng, William. Gropp,
HAL: Computer system for scalable deep learning, in: Practice and Experience in
Advanced Research Computing, ACM, 2020, http://dx.doi.org/10.1145/3311790.
3396649.

http://dx.doi.org/10.1063/1.5126336
http://aip.scitation.org/doi/10.1063/1.5126336
http://aip.scitation.org/doi/10.1063/1.5126336
http://aip.scitation.org/doi/10.1063/1.5126336
http://dx.doi.org/10.1021/acs.chemrev.0c00665
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00665
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00665
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00665
http://dx.doi.org/10.1063/1.5126701
http://dx.doi.org/10.1063/1.5126701
http://dx.doi.org/10.1063/1.5126701
http://aip.scitation.org/doi/10.1063/1.5126701
http://arxiv.org/abs/2204.05249
http://arxiv.org/abs/2204.05249
http://arxiv.org/abs/2204.05249
http://arxiv.org/abs/2204.05249
http://arxiv.org/abs/2106.08903
http://arxiv.org/abs/2106.08903
http://arxiv.org/abs/2106.08903
http://arxiv.org/abs/2106.08903
http://arxiv.org/abs/2108.02913
http://arxiv.org/abs/2108.02913
http://dx.doi.org/10.1063/1.5011181
http://aip.scitation.org/doi/10.1063/1.5011181
http://aip.scitation.org/doi/10.1063/1.5011181
http://aip.scitation.org/doi/10.1063/1.5011181
http://arxiv.org/abs/2103.01436
http://arxiv.org/abs/2205.06643
http://arxiv.org/abs/2205.06643
http://arxiv.org/abs/2205.06643
http://arxiv.org/abs/2205.06643
http://dx.doi.org/10.1021/acs.chemrev.5b00744
http://dx.doi.org/10.1103/physrevb.88.134101
http://dx.doi.org/10.1103/physrevb.88.134101
http://dx.doi.org/10.1103/physrevb.88.134101
http://dx.doi.org/10.1063/1.4818639
http://dx.doi.org/10.1063/5.0014475
http://dx.doi.org/10.1063/5.0014475
http://dx.doi.org/10.1063/5.0014475
http://dx.doi.org/10.1038/nature23472
http://dx.doi.org/10.1098/rspa.1924.0082
http://dx.doi.org/10.1103/physrevb.29.6443
http://dx.doi.org/10.1098/rspa.1938.0173
http://dx.doi.org/10.1098/rspa.1938.0173
http://dx.doi.org/10.1098/rspa.1938.0173
http://dx.doi.org/10.1103/physrevlett.56.632
http://dx.doi.org/10.1088/0953-8984/14/4/312
http://dx.doi.org/10.1103/physrevb.81.125328
http://dx.doi.org/10.1103/physrevb.81.125328
http://dx.doi.org/10.1103/physrevb.81.125328
http://dx.doi.org/10.1021/jp004368u
http://dx.doi.org/10.1103/physrevb.46.2727
http://dx.doi.org/10.1103/physrevb.46.2727
http://dx.doi.org/10.1103/physrevb.46.2727
http://dx.doi.org/10.1088/0965-0393/8/6/305
http://dx.doi.org/10.1088/0965-0393/8/6/305
http://dx.doi.org/10.1088/0965-0393/8/6/305
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1039/c6sc05720a
http://dx.doi.org/10.1103/physrevb.31.5262
http://dx.doi.org/10.1103/physrevb.31.5262
http://dx.doi.org/10.1103/physrevb.31.5262
https://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1038/s41467-021-21376-0
http://dx.doi.org/10.1038/s41467-021-21376-0
http://dx.doi.org/10.1038/s41467-021-21376-0
http://dx.doi.org/10.1063/1.5023802
http://dx.doi.org/10.1038/s41467-019-10827-4
https://github.com/atomistic-ml/ani-al
http://dx.doi.org/10.1021/acs.jpca.9b08723
http://dx.doi.org/10.1021/acs.jpca.9b08723
http://dx.doi.org/10.1021/acs.jpca.9b08723
https://github.com/materialsvirtuallab/mlearn
https://github.com/materialsvirtuallab/mlearn
https://github.com/materialsvirtuallab/mlearn
http://dx.doi.org/10.48550/ARXIV.2002.01562
https://arxiv.org/abs/2002.01562
https://arxiv.org/abs/2002.01562
https://arxiv.org/abs/2002.01562
https://arxiv.org/abs/1712.09913
http://dx.doi.org/10.1016/j.commatsci.2021.110752
http://dx.doi.org/10.1016/j.commatsci.2021.110752
http://dx.doi.org/10.1016/j.commatsci.2021.110752
http://dx.doi.org/10.1016/j.sse.2022.108529
http://dx.doi.org/10.1063/1.5017641
http://dx.doi.org/10.1063/1.5017641
http://dx.doi.org/10.1063/1.5017641
https://arxiv.org/abs/2110.00624
http://dx.doi.org/10.1103/physrevmaterials.7.043601
http://dx.doi.org/10.1145/3311790.3396649
http://dx.doi.org/10.1145/3311790.3396649
http://dx.doi.org/10.1145/3311790.3396649

	Spline-based neural network interatomic potentials: Blending classical and machine learning models
	Introduction and Background
	s-MEAM
	NNP

	Methods
	s-NNP
	Interpretability improvements
	Benchmarking dataset: Al
	Additional datasets: Cu, Ge, Mo

	Results
	Benchmarking tests
	Model visualization
	Flexibility tests

	Discussion
	Understanding model behavior
	s-NNP's relation to other models
	Computational costs

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Code and Data Availability
	Appendix A. Training details
	Appendix B. Distributions of rij and θjik
	Appendix C. Multi-element model
	References


