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Abstract—Forecasting behavioral patterns can help humans
comprehend their habits and tendencies, allowing them to inter-
vene before problems arise. Among the numerous techniques of
modeling human behavior, cyclic modeling can better identify
recurring patterns, providing regularity and predictability in
human behavior. However, existing approaches to cyclic modeling
ignore the effects of human characteristics, such as resilience
and coping abilities, which substantially influence the stability
of behavior. To explore the value of adding such information in
behavior modeling and prediction, we introduce a transformer-
based architecture with an advanced attention mechanism and
parallel operation that models regularity in human behavior from
multidimensional sensing signals and predicts future behavior
patterns. The architecture further transforms static human
characteristics metadata into dynamic time series that conform
to behavioral patterns and serve as covariates to assist prediction.

Our experiments with a wearable dataset indicate that our
architecture 1) is more accurate in forecasting human behavior
patterns than current time-series models and 2) enables us to
investigate the impact of human characteristics on behavior
patterns. Specifically, we analyze the influence of resilience and
coping strategies on behavioral regularity and predictability.
‘We show that supplementing bio-behavioral wearable data with
resilience and coping scores in the forecasting model increases
the convergence speed of the model and decreases prediction loss.

Index Terms—Resilience, Coping, Human Behavior, Cyclic
Time Series

[. INTRODUCTION

Numerous human behavior exhibit regularity, the most
prominent being the circadian rhythm or sleep-wake cycle,
based on a 24-hour interval. Investigating cyclic behavior is
beneficial for detecting and preventing various health condi-
tions, such as mood disorders [1] and cancer [2]. Modeling hu-
man behavior patterns can facilitate the regularization of future
trajectories and provide effective health interventions [3]. With
the advancement of mobile and wearable sensing technology,
more bio-behavioral signals have been utilized to capture daily
human behavior [4]. However, most studies have focused
on detecting abnormalities [5], such as sudden changes in
daily activities or in specific physical function data; and
their approaches to identifying and forecasting behavior issues
using mobile sensing technologies do not consider individuals’
subjective characteristics, such as resilience and coping, which
can greatly influence the way behaviors are performed.

In this paper, we introduce a transformer-based approach
to model regularity and predictability in human behavior that
considers human characteristics as covariates to enhance the
model’s performance. We design an architecture that uses
bio-behavioral data from wearable devices to generate cyclic
time series directly, i.e., data streams reflecting the regular-
ity of people’s activities. We then build a forecast model
with a convolutional transformer that uses a local attention
mechanism to focus on capturing changes and to implement
parallelism to increase the speed of execution substantially.
We run experiments with a wearable dataset and compare
several different time series models to predict human future
behavior patterns with circadian cycles. We find that the results
obtained from the transformer forecasting model most closely
approximate the real-world data.

In addition, we evaluate our behavior modeling approach by
incorporating resilience and coping scores in the transformer
model as covariates. A person’s resilience is a capacity to
withstand or bounce back from a significant threat to their
stability, viability, or development [6]. Coping is inherently a
behavior that serves as a conscious or unconscious strategy
used to lessen unpleasant feelings or handle difficult or es-
sential life situations [7]. Past literature [8] has confirmed that
regular activity is associated with human resilience and coping
strategies. They impact each other and can assist individuals
in adapting to changes or adversities that occur in their lives
to achieve stability in life.

To incorporate this static information into our behavior
forecasting architecture, we develop a transforming module
to convert those scores into dynamic time series. We show
that including this information as covariates improves our
transformer-based forecasting model, as evidenced by a de-
crease in the model’s loss value and a faster training conver-
gence. Overall, our contributions are as follows:

o We propose a cyclic time series forecasting architecture,
which is the first to forecast human behavior patterns
based on a Transformer. Results indicate that our ar-
chitecture significantly outperforms existing time series
forecasting models.

o We introduce a module that transforms static resilience
and coping into dynamic series that conform to be-
havioral tendencies. Incorporating the transformed series
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as covariates in the forecasting architecture allows the
predictions to accurately reflect the actual behavioral
patterns.

We investigate the relationship between resilience, cop-
ing, and the regularity of human behavior. We validate
that high resilience indicates more consistent behavior
patterns. However, we do not observe a consistent rela-
tionship between coping strategies and behavior regular-
ity.

We analyze the degree to which different scores of re-
silience and coping affect the predictive power of human
cyclical behavior. We report on the variable effect of these
factors and their impact on behavior forecasting.

II. RELATED WORK

Several research studies have improved standard machine
learning-based algorithms to address the human activity recog-
nition (HAR) challenge. Ordéiiez and Roggen [9] constructed
a CNN-LSTM framework that integrates homogeneous and
multimodal sensor modalities. Yin et al. [10] suggested a
two-phase anomaly detection approach using a single-class
SVM to filter out most regular activities, followed by Kernel
Nonlinear Regression (KNLR) detection of the remaining
abnormal activities to balance the detection rate and false
alarm rate. Duond et al. [11] proposed a switching hidden
semi-Markov model (S-HSMM), a two-layered version of the
hidden semi-Markov model (HSMM), to learn and recognize
human activities of daily living (ADL) while eliminating the
necessity for pre-segmented training data. A Hierarchical Con-
text Hidden Markov Model (HC-HMM) [12], another variation
of the HMM, has achieved a 100% true-positive alarm when
describing the behavior of the elderly. These earlier work
opened up good ideas, but some of the recent work is also very
powerful. Although these models can measure shifts in day-
to-day activity behaviors and parameters within the physical
body, they are limited in their ability to express and summarize
the regularity of human activity. Moreover, they disregard the
potential influence of time and period on human behavior.

Research studies have also modeled cyclic behavior to find
changes that cover general human trends. Huang et al. [13]
suggested a Hidden Markov Model combining circadian oscil-
lators to analyze and monitor participants’ circadian rhythms
in chronobiology and chronotherapeutic health research using
daily physical activity data. Pierson et al. [14] introduced
CyHMMs, a cyclic hidden Markov model that uses a set of
multivariate time series as input and extrapolates a discrete
latent cycle state from the measured time series. In addition
to these, Hadj-Amar et al. [15] proposed the Bayesian observa-
tion method of oscillatory behavior based on Reversible Jump
Markov Chain Monte Carlo (RIMCMC) algorithms and non-
smooth time series, which can use human skin temperature
data to detect sleep duration throughout the day and identify
nocturnal oscillatory behavior. Later, an RIMCMC sampler
developed by Taylor et al. [16] also further identified change-
point events with periodicity to ascertain daily patterns; it
performed well at longer cycle lengths. Even though each of
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the above studies deals with the periodicity and variability
of the data, they are focused on calculating the cycle length.
Our work is the first to concentrate on cyclic activity pattern
forecasting.

Transformer modelshave also been used for behavior model-
ing. For example, BEHRT [17], an advanced Bidirectional En-
coder Representations from Transformers (BERT)architecture
was introduced to predict future diagnoses based on electronic
health records (EHR). BEHRT is an interpretable personalized
model trained using clinic visit data, allowing for predicting
several diseases. Moreover, Zhang et al. [18] used the IMU
fusion block in combination with a convolutional transformer
to solve the problem of inadequate multi-sensor modal fusion
and achieved better performance in human activity recognition
and classification compared with other state-of-art methods.
In this paper, we utilize the self-attention mechanism in the
transformer model to help with time series forecasting, which
is a novel attempt to use Transformer in predicting behavioral
patterns.

III. ARCHITECTURE OF MODEL

The Transformer-based time series architecture consists of
three sub-components, including cyclic modeling, covariate
transformation, and Transformer prediction, which is visual-
ized in Figure 1. First, we use the Cosinor method to simulate
cyclic patterns with collected mobile sensing data in the cyclic
model generation component. Second, we convert the static
data into dynamic streams in the covariate transformation
component. Finally, we apply the transformer model to the
generated cyclic data with the time-dependent covariates to
forecast behavior in the Transformer prediction component.

Cyclic Bio-behavioral Modeling

(K= Numb: f S ; N = Number of Weeks
(6= Number of Sensors umber of Weeks) ‘Transformer Prediction

Cosinor

Non-st

Static
Metadata

Covariate Transformation

Fig. 1: Architecture of Transformer Cyclic Time Series Fore-
casting Model with Covariates

A. Cyclic Time Series Generation

This phase aims to fit a cosine model to the passive
time series data and represent participants’ overall behavior
regularity. Our experiment focuses on 24-hour circadian be-
havior, but the model is flexible to any periodic interval. We
adapt Population-Mean Cosinor method [19] to generate the
cyclic patterns for a series of sensor streams with fixed time
granularity. Population-Mean Cosinor is a statistical procedure
that implements sine regression to signal streams. The basic
Cosinor is modeled as [19]:

Y(t)=M + ACOS(? + ¢) +e(t) (1)
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for Y(¢) is time series, M is MESOR, A is amplitude, ¢ is
acrophase and 7 is period.

The population-mean Cosinor merges the pattern of multiple
data streams. Each sensor series is evaluated using a single-
component Cosinor to produce estimates of a vector @
{Mi7 /3117%17 5217;)/\217 EERR /Bpiafs/pi} for i = 17 27 B 7k and p
variates in regression.

Since the sample sizes for all sensors in this research are
the same, the population estimates are unweighted averages of
the individual sensor parameters [19]:

a*:Zﬂ
— k
J

for j =1,2,...,k. Thus the Equation 1 could be written as:

2

Y*(t) = M* + A cos(? + c/ﬁ\*) +e(t) 3)
where Y*(¢) is the generated population cyclic time series.

We aim to investigate the rhythmic changes in behavior
across weeks. Figure 2 shows our study’s cyclic time series
generation structure. For each series, we set 7" as a week (7
days), ¢t ranging from 1 to 168 hours, and 7 = 24h as the
circadian period. We then fit K different passive feature values
for each participant as input to model on N weeks. For each
week, the Population-Mean Cosinor method generates a cyclic
time series formed by all sensor data.

Thus we get a set of amplitudes {K*
AL A;, A§, ce .,AK}FVJ, a set of acrophases
{¢ $1.95.¢5,....¢x}, and a set of mesors
{M*: M7, M5, Mj,..., M4} for each person.

__ Finally, using Equation 1, the model generates {8?*
1.Y5,Y5, ..., YR}, atotal of N cyclic time series (one per
week) for each participant.
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Fig. 2: Cyclic Time Series Generation
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B. Dynamic Transformation of Static Metadata

Lim et al. [20] showed it is possible to use static covariate
directly to fuse and improve the transformer model for multi-
horizon forecasting. These findings motivate our efforts to
develop a dynamic mapping of covariate parameters (here,
static human characteristics) to the transformer model, which
could potentially boost the performance of our cyclic behavior
forecasting.

We observe some human characteristics are more stationary
and less varying than others. For example, although resilience
and coping are both internal to humans and resemble stability.
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However, while resilience may not change over time, coping
strategies may. Therefore, we develop a strict static metadata
transformation model and a non-strict static metadata transfor-
mation model. The common goal of both models is to convert
static data into a time series of a certain length, thus assisting
in predicting the periodic data generated in the main model.

1) Strict Static Metadata Transformation: As shown in
Figure 3, when the data introduced as covariates are stationary,
the transformation step only requires the expansion of the
static data into a sequence of the desired time length. To
maintain the balance with the primary data, normalization is
required.

dilation

normalization ~, ~,
—_—C,C, ... ,C ———

> C,C,...,C
(Transformed Metadata)

Strict Static Metadata C

Fig. 3: Strict-Static Transformation

2) Non-strict Metadata Transformation: If the data is not
stationary (the actual data is time-varying, but the input is
static), we can transform it into a time-varying form.

In this model, we need to rely on the bio-behavioral cyclic
time series to help our non-strict static metadata to find the
moments which can reflect the change in its actual form.
We use Penalized change-point detection [21] to calculate
the exact number of alterations in cyclic data for individuals
through the entire time series. Let the set {A¥} and {¢%}
be two signals each containing n samples. We assume that
{A%} and {¢%} are not stationary and are composed of
several successive regimes. Let P be the set of partitions
of {1,...,n} that consist solely of integer intervals. For a
2711 € P,z1,..., 2y represent
different regimes. The number of regimes in Z is |Z|, and the
number of change points is |Z| — 1. Change-point detection
aims to retrieve the various signal regimes and moments of
signal transitions from one to the other. Since the number of
change points is unknown in the data, we use a penalized
empirical quadratic risk here [22]:

partition Z = §zq,..

~ =\ 2
angergm ZeZZ ZEZZ (Aﬂ — ATE) + pen(Z) 4)
~ * 2

where ;‘:; and ‘Em are the mean value of A* and q?* on
segment z; pen(-) denotes a suitable non-negative function
defined on P and pen(Z) := S|Z| with 8 > 0. We choose
Z to satisfy both conditions 4 and 5, and we set 5 as
our penalty parameter, which controls the trade-off between
model complexity and goodness of fit. Low values of beta
favor partition with many regimes, and high values of beta
discard most change points. The whole penalty term allows
controlling the balance between signal approximation and
model complexity.

After getting Z, we can calculate the unchanged periods;
let’s denote it as £, which is a set containing all time lengths
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in Z. Since this model aims to find the dynamic response of
individuals to change based on the static ¢, once we obtain the
generated cyclic series Y*(¢) for each period, we can compute
the change of the data between consecutive periods. It can be
denoted as:

27 27
D, = |/ Y (b s )da| — |/ Y*(t)ds|  (6)
0 0

Because £ is the set of periods that one would keep
relatively stable, the total change through the participant’s
stable periods could be represented as D,, - £. Therefore, we
can get the individual dynamic time series by multiplying the

non-strict static metadata c:
¢c=D,-L-c (7

The structure of the non-strict static metadata transformation
is shown in Figure 4.

Non-strict Static Metadata

Change-point Periods in
Biohavioral Behavior(L)
Change Magnitude in

Behavior(D,)

C1,C25.005 Gt
(Transformed Metadata)

Biobehaviral Cylic Time
Penalized Change-Point
Detection

Fig. 4: Non-strict-Static Transformation

C. Transformer-Based Prediction

As shown in Figure 1, the part of the transformer in the
architecture consists of a position embedding layer, followed
by three stacked encoder layers and three stacked decoder
layers. The positional embedding here encodes sequential
information in time series data to let the subsequent encoder
distinguish every time position in data.

Inside the encoder block, three identical encoder layers are
stacked on top of one another. Each stacked encoder layer
has a multi-head self-attention sub-layer and a fully-connected
feed-forward sub-layer. In particular, inspired by [23], we use
causal convolution self-attention based on the traditional self-
attention to transform the cyclic time series input data into
queries and keys, thereby fully leveraging local context to
capture long-term dependencies. Every sub-layer has residual
connections between each other, and a normalization operation
follows the connections.

The decoder architecture is comparable to the encoder
architecture, which contains three identical decoder layers.
However, the difference is that each decoder layer has an
additional encoder-decoder attention sub-layer, which takes
input from the convolution self-attention and all moments
output from the encoder’s last layer. Finally, an output layer
transfers the output of the previous decoder layer to the
target time sequence. To ensure that the prediction of a time
series data point will only depend on the previous data, we
use look-ahead masking and a one-position offset between
the decoder input and target output in the decoder. Utilizing
Transformer has better parallel performance in more complex
neural networks.
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IV. EXPERIMENTAL EVALUATION

We evaluate our architecture using a wearable dataset
containing subjective assessments of human characteristics,
including resilience and coping strategies. Specifically, we
investigate the following:

« RQI1: How well does the transformer-based time series
architecture perform in modeling cyclic behavior and
predicting future trajectories compared to existing time-
series methods? We obtain cyclic behavioral change
curves from wearable data and train different time se-
ries forecasting methods. By comparing with the actual
curves, we evaluate the performance of each prediction
model.

RQ2: To what extent does additional (relatively static)
information about human characteristics (e.g., resilience
and coping abilities) contribute to more accurate mod-
eling of dynamic behavior? We first examine the rela-
tionship between resilience, coping scores, and behavior
regularity. We then use those scores as covariates in the
forecasting model to measure their impact on predicting
future behavior trajectories.

A. Dataset

We use a passive biobehavioral dataset gathered from 99
student participants at an American University; Each partic-
ipant received a Fitbit Sense, which they wore 24/7 (except
for showering, swimming, and charging times) for at least 14
weeks to collect behavioral and physiological data. The dataset
includes steps, heart rate, calories burned, and movement
activity data collected in one-minute samples. Table I provides
a summary of features.

Data Description Data Type
Heart Rate Average heart rate each hour Numerical
Steps Step count each hour Numerical
Calories Calories burned each hour. Numerical
Sedentary Minutes Sedentary minutes each hour Binary
Lightly Active Minutes  Lightly active minutes each hour  Binary
Fairly Active Minutes Fairly active minutes each hour Binary
Very Active Minutes Very active minutes each hour Binary

TABLE I: Passive Sensing Features and Description

We also use data from Brief COPE [24] and Brief Resilience
Scale (BRS) [25] surveys that participants filled out once at
the beginning of the study. BRS contains six questions graded
on a scale of 1 to 5. A higher score indicates a greater ability
to bounce back after difficult situations. Brief COPE contains
24 questions, each scored from 1 to 4, and higher scores for
each question represent more frequent use of the described
method. Details about the questions which can be divided into
four coping strategies/factors:

o The Social support category contains eight questions
and represents emotional support, instrumental support,
venting, and religion.

o Problem-solving category contains four questions and
represents active coping and planning.
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« Avoidance category contains ten questions and represents
self-distraction, denial, substance use, behavioral disen-
gagement, and self-blame.

o Positive thinking category contains six questions and
represents positive re-framing, humor, and acceptance.

B. Baseline Models

We use five time-series prediction models to predict future
values of the generated cyclic time series, including ARIMA,
Orbit, LSTM, NeuralProphet, and DeepAR as our baseline
models. ARIMA [26] is the most fundamental time series
forecasting model that uses lagged moving averages to smooth
time series and make predictions. Orbit [27] is a modeling ap-
proach for the Bayesian processing of time series tasks. We use
the Damped Local Trend exponential smoothing model in Or-
bit. Long-short term memory (LSTM) [28], is an improved
version of recurrent neural networks (RNN) that can learn
over long input series. NeuralProphet [29], based on Neural
Networks and developed in Facebook Prophet, is a forecasting
framework that supports autoregression. DeepAR [30] pro-
posed by Amazon, has a structure of autoregressive recurrent
networks. Instead of training a model for each input series,
DeepAR fits a global model using all time-series to make
accurate probabilistic forecasts of future series.

C. Experimental Setup

As previously stated, this study includes continuous data
for a relatively large sample size and an extended 14 weeks
for 99 participants. Since seven different sensor signals are
represented in the continuous data, we denote K 7.
During the cyclic generating process, we normalize these
multidimensional signals from -1 to 1 to manage them. In
addition, to minimize the risk of overfitting, we use leave-
one-participant-out cross-validation in all forecasting models
to train on the data of 98 participants and test the data of the
remaining participant.

D. The forecasting performance of Transformer-based time
series behavior model (RQ1)

We compare baseline models with the transformer [23] one
using the Cosinor-generated cyclic time series for the first 13
weeks. We choose L1 loss as the evaluation metric since it is
a relatively common calculation method and provides a better
understanding of the error magnitude. Table II displays the
values of the five forecasting models for the 0.25 quantile, the
median, the 0.75 quantile, and the mean of the participant loss
data to provide different perspectives on the distribution of the
loss values . According to the results, the transformer-based
forecasting model has the lowest loss values in all dimensions.
Specifically, the transformer-based model has an average loss
value of 0.036, which is 0.02 points lower than the second
best-performing model, orbit. We obtain its significant p-value
of 1.74e~° using a t-test, verifying that our transformer-based
model is significantly better than other models to enhance the
predictive capacity.
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Models Ql Median Q3 Avg

NeuralProphet 02133 0.2991  0.4649  0.3765
ARIMA 0.0260  0.2152  0.5431 0.3551
LSTM 0.0645  0.0792  0.1013  0.0801
DeepAR 0.0442  0.0611  0.0866  0.0675
Orbit 0.0321  0.0477  0.0685 0.0570
Transformer 0.0191  0.0310  0.0460  0.0356

TABLE II: L1 Loss Results for Models Forecasting
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Fig. 5: L1 Loss Comparison between Orbit and Transformer
Individually

To further highlight the superiority of the transformer-based
model over the orbit model, we plot Figure 5. The red and
blue curves depict the L1 loss for all 99 participants using
the transformer and orbit model, respectively. The more stable
and higher the prediction performance, the fewer variations
in the curves and the closer the loss values are to zero.
In most participant data, the orbit model has higher loss
values than the transformer-based model and abnormally large
loss values for a few people. These observations imply that
our Transformer-based method can model cyclic behavioral
patterns more closely than other methods.

E. The Impact of Supplementing Resilience and Coping Scores
with Biobehavioral Data on Behavior Prediction Accuracy
(RQ2)

To investigate the impact of adding static behavioral infor-
mation (here, resilience and coping scores) on the model’s
performance, we first examine the strength of the relationship
between resilience and coping scores with behavior regularity.

Given that regularity can have a measurable impact on
prediction, a comprehensive analysis of the interplay between
resilience/coping and behavioral regularity can serve as a
critical tool for improving the prediction process. In essence,
this exploration of these two fundamental characteristics can
provide valuable insights into the predictability of a person’s
behavior.

1) Measuring Behavior Regularity: We measure behavior
regularity by calculating frequency and intensity change in
each person’s time series. The frequency and intensity change
with which people perform their daily activities are common
indicators of the regularity of human behavior.

Frequency refers to the regular occurrence of behavioral
patterns repeated over time in this study. Our architecture
utilizes the Cosinor method to calculate losses, which evaluate
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the degree to which participants’ behavioral patterns align
with the 24 hours. By investigating the relationship between
resilience, coping, and loss, we aim to understand how these
characteristics interact and contribute to participants’ ability
to maintain regular behavioral routines over time. The errors
generated from the Cosinor method when fitting passive sens-
ing data streams to periodic curves based on the 24 hours can
provide the frequency information. Different sensors collect
signals with varying regularities, which influences the degree
of fit of the Cosinor model to the original data. Cosinor
measures the model’s fit by computing the residual sum of
squares (RSS), which is the sum of the squared discrepancies
between the measured value Y; and the estimated value of the
model at time t. Therefore, the smaller the RSS, the better
model fits the passive signal in the original data.

Intensity change in this study refers to the weekly behavior
trend variations; it includes the value of shift of the amplitude
and phase in our bio-behavioral time series. Our architecture
generates cyclic behavioral time series in which we can com-
pute participants’ week-to-week trend consistency. By investi-
gating the relationship between resilience, coping, and shift in
trend, we aim to understand how these human characteristics
interact and contribute to participants’ ability to maintain
stable behavioral intensity. To assess intensity changes, i.e.,
the changes in behavioral trends of participants over weeks,
we use the Dynamic Time Warping (DTW) algorithm [31] and
calculate the point-by-point distance between two consecutive
two-week cyclic time series. A shorter distance indicates a
more stable tendency in the cyclic time series throughout the
weeks and, thus, more regular behavior.

Dynamic Time Warping between Week4 and Week5

—— week 4
0.3 == week5

Dynoaznsnc Time Warping between Week9 and Week10

— week9 4
~-= week 10

-0.40

-0.45

Cyclic Value
iR
9 o
I
G &

Cyclic Value

-0.60

~0.65

DTW distance = 0.5310

[ 5 10 15 20 0 5 10 15 20
Hours Hours

Cyclic Value
L

Fig. 6: Similarity of Behavior Patterns from Dynamic Time
Warping

For instance, in Figure 6, the blue cyclic curve in the center
displays the 14-week behavior pattern of a participant. By
computing the DTW distance between two weeks for this
participant, we find that the DTW distance between week 4
and week 5 is 0.53, and between week 9 and week 10 is 0.06.
The lower the DTW distance, the more alike the behavior
patterns are between the two weeks. Hence, we can conclude
that the participant’s behavior pattern fluctuated more between
week 4 and week 5, indicating a more irregular behavior

pattern compared to week 9 and week 10.

2) Examining Relationship between Resilience, Coping, and
Behavior Regularity: Figure 7 shows the Pearson correlation
coefficients regarding the scores of resilience and four cop-
ing strategies with RSS (the loss of frequency-matching in
Cosinor), respectively. We observe a relatively significant(p =
0.018) association between resilience and RSS for » = —0.24,
suggesting more regular behavior patterns among more re-
silient people. However, the Pearson correlations between
the four coping strategy scores and the RSS are near zero,
indicating that people’s coping abilities are not substantially
connected to their behavior regularity.

RSS

Positive Thinking

Problem Solving " Avoidance

Resilience Social Support

Fig. 7: Correlation Between Resilience, Coping Strategies, and
RSS

We compute each participant’s average inter-weekly DTW
distances(the intensity change of behavioral patterns) and per-
form correlation tests with resilience and coping as presented
in Figure 8. The results indicate that resilience is negatively
correlated with DTW distance for » = —0.22, showing that
high resilience leads to a reduction in week-to-week behavioral
change and demonstrating that resilience is significantly(p =
0.030) associated with behavioral regularity from another
perspective. Our results also show a weak negative correlation
between DTW distance and problem-solving (r = —0.11),
and avoidance (r = —0.12), respectively. Therefore, the more
frequently these two coping strategies are used, the less the
week-to-week behavioral change on behalf of the participants
is existed.

DTW

Problem Solving Avoidance

Resilience Social Support Positive Thinking

Fig. 8: Correlation Between Resilience, Coping Strategies, and
DTW Distance.

3) Transforming Static Resilience and Coping scores to
Dynamic Time Series:

a) Converting coping strategy scores as non-static meta-
data: Coping evolves as human behavior changes [32]; how-
ever, the subjective reported coping assessments are usually
static scores. Therefore, we must map the static coping strategy
scores into a dynamic series that varies as behavior changes
over time. In our architecture, we apply coping strategy scores
as the non-strict static metadata in the transformation module.
Considering the variability of the time series, we use penalized
change-point detection method to find the moments when
participants’ behavior shifts in the actual data.
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In the first step, we sum and average the 24 questions in the
brief COPE survey according to the categories they belonged
to, thus representing the degree to which each participant
scored on each coping type. In the second step, we reuse
the sets of {A%} and {¢%} from Section III-A, and double
check the significance of the sets to ensure that the p-value
in the zero-amplitude test less than 0.05. Then, we apply the
penalized change-point detection with these sets; we evaluate
many [ values before settling on 8 = 0.01 for it to reach
the lowest BIC (Bayesian information criterion) among other
values of beta. In the last step, we follow the procedure in
Section III-B, substituting the average coping score as the non-
strict static metadata c.

b) Converting resilience scores as static metadata: In
contrast to coping, resilience is a human trait that remains
stationary over long periods, so we only need to convert it to
an invariant time series. In our architecture, we apply resilience
scores as the strict static metadata in the transformation mod-
ule. For the Brief Resilience Scale, we sum and average each
individual’s scores on six questions from that questionnaire
and then bring the average resilience score as the strict static
metadata c.

4) Forecasting Performance of Resilience and Coping
Strategies as Covariates: In this section, we illustrate the
process of adding transformed static resilience and coping
scores as covariates to the prediction model and discuss
how they improve the model’s performance. Figure 1 shows
the overall forecasting process, including the transformation
model component. First, we transform the participants’ bio-
behavioral data into cyclic time series. Then, for each fold of
the leave-one-participant-out cross-validation, we concatenate
the participants’ bio-behavioral cyclic time series with the
transformed covariate series to train. In Section IV-D, we
demonstrated that the transformer-based forecasting model is
more accurate than other baseline models in predicting future
human behavior patterns. Therefore, we use this model as a
baseline to compare the performance of the model built with
covariates.

The results of the transformer forecasting models with
resilience and different coping strategies are shown separately
in Table III. We can see that regardless of which covariate is
used, it has a lower value of forecast loss than the model
without covariates. It shows that the resilience and coping
strategies scores can be covariates to help predict human cyclic
behavioral trends. In addition, the transformer-based model
with avoidance as a covariate predicted the lowest loss values
among all covariates in data distributions Q2, Q3, and the
average, implying that scores on avoidance coping strategies
would be more helpful in predicting accuracy overall.

Figure 9 shows the box-plot of the number of epochs
obtained by these models. If the number of training epochs
decreases in the model after using the covariates, adding the
covariates can make the prediction results converge faster.

The average number of epochs for the original transformer
model without covariates is 78, the highest number of training
epochs and, thus, the slowest convergence among all models

277

Covariates Ql Q2 Q3 Avg

None (Baseline) 0.0191  0.0310  0.046 0.0355
Social Support Coping 0.0152  0.0268 0.0419 0.0318
Problem Solving Coping 0.0178  0.0272  0.0415  0.0324
Avoidance Coping 0.0160  0.0263  0.0409 0.0316
Positive Thinking Coping ~ 0.0171 ~ 0.0287  0.0420  0.0323
Resilience 0.0179  0.0277 0.0424  0.0323

TABLE III: L1 Loss for Transformer Models with Covariates
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n
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S Problem Solving Coping | I—‘:l:’—|
o
"
[}
g Positive Thinking Coping A I—_—|
Resilience - |—_—|
N 20 »O «© 0 RN

Number of Epochs

Fig. 9: Number of Epochs for Transformer Models with
Covariates

with covariates. In addition, although the general distribution
of the number of training epochs is quite similar across all
five covariate models, the transformer-based model constructed
for the positive thinking covariate yields a lower average
number of training epochs, indicating that positive thinking
can achieve faster convergence. It gives us some insight that
faster convergence from positive thinking coping strategy will
provide a competitive advantage in terms of time efficiency
in the future if larger sample sizes and longer-term observa-
tions are used. It is one criterion for assessing the model’s
predictive performance. In summary, it further illustrates that
incorporating resilience and coping strategies can improve the
predictive power of the entire structure and help reproduce the
cyclical behavioral trends of the real situation.

V. DISCUSSION

Our research demonstrates that the use of the Transformer
models for predicting human behavior from wearable sensing
data outperforms existing state-of-the-art approaches. More-
over, the integration of human characteristics such as resilience
and coping enhances the prediction of future behavior. While
our model is currently configured with resilience and cop-
ing, it is expandable to include other characteristics such as
emotional stability, thereby capturing the intricacy of human
behavior and allowing for more accurate predictions. This
adaptability enables the model to be trained on new dataset,
handling diverse events and personal characteristics more
effectively. Also, our methodology reduces the necessity for
frequent subjective assessments, replacing daily questionnaires
with only once or twice surveys and enabling more objective
modeling.

Our study, first in incorporating underlying human behavior
characteristics for modeling, underscores the potential for ac-
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curate future behavior predictions, thereby informing preven-
tative technology for timely intervention. However, limitations
exist; our participant pool is limited to students from a single
local university, leading to regional biases and less visible
behavioral variability. In the future, we will investigate more
diverse demographic and behavioral samples and consider
adding more types of sensors and bringing more flexible time
windows.

VI. CONCLUSION

In our research, we utilize personal characteristics like
resilience and coping strategies to analyze the regularity and
predictability of human behavior patterns from sensor data,
leveraging a custom transformer-based architecture for cyclic
time series forecasting. Compared to conventional methods,
our approach more accurately replicates behavior patterns
and effectively transforms static characteristics into dynamic
time series consistent with behavioral changes. Moreover,
integrating resilience and coping data enhances the model’s
predictive capability, demonstrated by a reduction in loss and
expedited convergence. Future endeavors aim to refine our
models for detailed behavioral analysis, potentially facilitating
personalized, timely interventions in critical situations marked
by rapid behavioral changes.
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