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Abstract—Forecasting behavioral patterns can help humans
comprehend their habits and tendencies, allowing them to inter-
vene before problems arise. Among the numerous techniques of
modeling human behavior, cyclic modeling can better identify
recurring patterns, providing regularity and predictability in
human behavior. However, existing approaches to cyclic modeling
ignore the effects of human characteristics, such as resilience
and coping abilities, which substantially influence the stability
of behavior. To explore the value of adding such information in
behavior modeling and prediction, we introduce a transformer-
based architecture with an advanced attention mechanism and
parallel operation that models regularity in human behavior from
multidimensional sensing signals and predicts future behavior
patterns. The architecture further transforms static human
characteristics metadata into dynamic time series that conform
to behavioral patterns and serve as covariates to assist prediction.

Our experiments with a wearable dataset indicate that our
architecture 1) is more accurate in forecasting human behavior
patterns than current time-series models and 2) enables us to
investigate the impact of human characteristics on behavior
patterns. Specifically, we analyze the influence of resilience and
coping strategies on behavioral regularity and predictability.
We show that supplementing bio-behavioral wearable data with
resilience and coping scores in the forecasting model increases
the convergence speed of the model and decreases prediction loss.

Index Terms—Resilience, Coping, Human Behavior, Cyclic
Time Series

I. INTRODUCTION

Numerous human behavior exhibit regularity, the most

prominent being the circadian rhythm or sleep-wake cycle,

based on a 24-hour interval. Investigating cyclic behavior is

beneficial for detecting and preventing various health condi-

tions, such as mood disorders [1] and cancer [2]. Modeling hu-

man behavior patterns can facilitate the regularization of future

trajectories and provide effective health interventions [3]. With

the advancement of mobile and wearable sensing technology,

more bio-behavioral signals have been utilized to capture daily

human behavior [4]. However, most studies have focused

on detecting abnormalities [5], such as sudden changes in

daily activities or in specific physical function data; and

their approaches to identifying and forecasting behavior issues

using mobile sensing technologies do not consider individuals’

subjective characteristics, such as resilience and coping, which

can greatly influence the way behaviors are performed.

In this paper, we introduce a transformer-based approach

to model regularity and predictability in human behavior that

considers human characteristics as covariates to enhance the

model’s performance. We design an architecture that uses

bio-behavioral data from wearable devices to generate cyclic

time series directly, i.e., data streams reflecting the regular-

ity of people’s activities. We then build a forecast model

with a convolutional transformer that uses a local attention

mechanism to focus on capturing changes and to implement

parallelism to increase the speed of execution substantially.

We run experiments with a wearable dataset and compare

several different time series models to predict human future

behavior patterns with circadian cycles. We find that the results

obtained from the transformer forecasting model most closely

approximate the real-world data.

In addition, we evaluate our behavior modeling approach by

incorporating resilience and coping scores in the transformer

model as covariates. A person’s resilience is a capacity to

withstand or bounce back from a significant threat to their

stability, viability, or development [6]. Coping is inherently a

behavior that serves as a conscious or unconscious strategy

used to lessen unpleasant feelings or handle difficult or es-

sential life situations [7]. Past literature [8] has confirmed that

regular activity is associated with human resilience and coping

strategies. They impact each other and can assist individuals

in adapting to changes or adversities that occur in their lives

to achieve stability in life.

To incorporate this static information into our behavior

forecasting architecture, we develop a transforming module

to convert those scores into dynamic time series. We show

that including this information as covariates improves our

transformer-based forecasting model, as evidenced by a de-

crease in the model’s loss value and a faster training conver-

gence. Overall, our contributions are as follows:

• We propose a cyclic time series forecasting architecture,

which is the first to forecast human behavior patterns

based on a Transformer. Results indicate that our ar-

chitecture significantly outperforms existing time series

forecasting models.

• We introduce a module that transforms static resilience

and coping into dynamic series that conform to be-

havioral tendencies. Incorporating the transformed series
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as covariates in the forecasting architecture allows the

predictions to accurately reflect the actual behavioral

patterns.

• We investigate the relationship between resilience, cop-

ing, and the regularity of human behavior. We validate

that high resilience indicates more consistent behavior

patterns. However, we do not observe a consistent rela-

tionship between coping strategies and behavior regular-

ity.

• We analyze the degree to which different scores of re-

silience and coping affect the predictive power of human

cyclical behavior. We report on the variable effect of these

factors and their impact on behavior forecasting.

II. RELATED WORK

Several research studies have improved standard machine

learning-based algorithms to address the human activity recog-

nition (HAR) challenge. Ordóñez and Roggen [9] constructed

a CNN-LSTM framework that integrates homogeneous and

multimodal sensor modalities. Yin et al. [10] suggested a

two-phase anomaly detection approach using a single-class

SVM to filter out most regular activities, followed by Kernel

Nonlinear Regression (KNLR) detection of the remaining

abnormal activities to balance the detection rate and false

alarm rate. Duond et al. [11] proposed a switching hidden

semi-Markov model (S-HSMM), a two-layered version of the

hidden semi-Markov model (HSMM), to learn and recognize

human activities of daily living (ADL) while eliminating the

necessity for pre-segmented training data. A Hierarchical Con-

text Hidden Markov Model (HC-HMM) [12], another variation

of the HMM, has achieved a 100% true-positive alarm when

describing the behavior of the elderly. These earlier work

opened up good ideas, but some of the recent work is also very

powerful. Although these models can measure shifts in day-

to-day activity behaviors and parameters within the physical

body, they are limited in their ability to express and summarize

the regularity of human activity. Moreover, they disregard the

potential influence of time and period on human behavior.

Research studies have also modeled cyclic behavior to find

changes that cover general human trends. Huang et al. [13]

suggested a Hidden Markov Model combining circadian oscil-

lators to analyze and monitor participants’ circadian rhythms

in chronobiology and chronotherapeutic health research using

daily physical activity data. Pierson et al. [14] introduced

CyHMMs, a cyclic hidden Markov model that uses a set of

multivariate time series as input and extrapolates a discrete

latent cycle state from the measured time series. In addition

to these, Hadj-Amar et al. [15] proposed the Bayesian observa-

tion method of oscillatory behavior based on Reversible Jump

Markov Chain Monte Carlo (RJMCMC) algorithms and non-

smooth time series, which can use human skin temperature

data to detect sleep duration throughout the day and identify

nocturnal oscillatory behavior. Later, an RJMCMC sampler

developed by Taylor et al. [16] also further identified change-

point events with periodicity to ascertain daily patterns; it

performed well at longer cycle lengths. Even though each of

the above studies deals with the periodicity and variability

of the data, they are focused on calculating the cycle length.

Our work is the first to concentrate on cyclic activity pattern

forecasting.

Transformer modelshave also been used for behavior model-

ing. For example, BEHRT [17], an advanced Bidirectional En-

coder Representations from Transformers (BERT)architecture

was introduced to predict future diagnoses based on electronic

health records (EHR). BEHRT is an interpretable personalized

model trained using clinic visit data, allowing for predicting

several diseases. Moreover, Zhang et al. [18] used the IMU

fusion block in combination with a convolutional transformer

to solve the problem of inadequate multi-sensor modal fusion

and achieved better performance in human activity recognition

and classification compared with other state-of-art methods.

In this paper, we utilize the self-attention mechanism in the

transformer model to help with time series forecasting, which

is a novel attempt to use Transformer in predicting behavioral

patterns.

III. ARCHITECTURE OF MODEL

The Transformer-based time series architecture consists of

three sub-components, including cyclic modeling, covariate

transformation, and Transformer prediction, which is visual-

ized in Figure 1. First, we use the Cosinor method to simulate

cyclic patterns with collected mobile sensing data in the cyclic

model generation component. Second, we convert the static

data into dynamic streams in the covariate transformation

component. Finally, we apply the transformer model to the

generated cyclic data with the time-dependent covariates to

forecast behavior in the Transformer prediction component.

Fig. 1: Architecture of Transformer Cyclic Time Series Fore-

casting Model with Covariates

A. Cyclic Time Series Generation

This phase aims to fit a cosine model to the passive

time series data and represent participants’ overall behavior

regularity. Our experiment focuses on 24-hour circadian be-

havior, but the model is flexible to any periodic interval. We

adapt Population-Mean Cosinor method [19] to generate the

cyclic patterns for a series of sensor streams with fixed time

granularity. Population-Mean Cosinor is a statistical procedure

that implements sine regression to signal streams. The basic

Cosinor is modeled as [19]:

Y (t) = M +Acos(
2πt

τ
+ φ) + e(t) (1)
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for Y (t) is time series, M is MESOR, A is amplitude, φ is

acrophase and τ is period.

The population-mean Cosinor merges the pattern of multiple

data streams. Each sensor series is evaluated using a single-

component Cosinor to produce estimates of a vector û =

{M̂i, β̂1i, γ̂1i, β̂2i, γ̂2i, . . . , β̂pi, γ̂pi} for i = 1, 2, . . . , k and p

variates in regression.

Since the sample sizes for all sensors in this research are

the same, the population estimates are unweighted averages of

the individual sensor parameters [19]:

û∗ =
∑

j

ûj

k
(2)

for j = 1, 2, . . . , k. Thus the Equation 1 could be written as:

Y ∗(t) = M̂∗ + Â∗ cos(
2πt

τ
+ φ̂∗) + e(t) (3)

where Y ∗(t) is the generated population cyclic time series.

We aim to investigate the rhythmic changes in behavior

across weeks. Figure 2 shows our study’s cyclic time series

generation structure. For each series, we set T as a week (7

days), t ranging from 1 to 168 hours, and τ = 24h as the

circadian period. We then fit K different passive feature values

for each participant as input to model on N weeks. For each

week, the Population-Mean Cosinor method generates a cyclic

time series formed by all sensor data.

Thus we get a set of amplitudes {Â∗ :
Â∗

1, Â
∗
2, Â

∗
3, . . . , Â

∗
N}, a set of acrophases

{φ̂∗ : φ̂∗
1, φ̂

∗
2, φ̂

∗
3, . . . , φ̂

∗
N}, and a set of mesors

{M̂∗ : M̂∗
1, M̂

∗
2, M̂

∗
3, . . . , M̂

∗
N} for each person.

Finally, using Equation 1, the model generates {Ŷ∗ :
Ŷ∗

1 , Ŷ
∗
2 , Ŷ

∗
3 , . . . , Ŷ

∗
N}, a total of N cyclic time series (one per

week) for each participant.

Fig. 2: Cyclic Time Series Generation

B. Dynamic Transformation of Static Metadata

Lim et al. [20] showed it is possible to use static covariate

directly to fuse and improve the transformer model for multi-

horizon forecasting. These findings motivate our efforts to

develop a dynamic mapping of covariate parameters (here,

static human characteristics) to the transformer model, which

could potentially boost the performance of our cyclic behavior

forecasting.

We observe some human characteristics are more stationary

and less varying than others. For example, although resilience

and coping are both internal to humans and resemble stability.

However, while resilience may not change over time, coping

strategies may. Therefore, we develop a strict static metadata

transformation model and a non-strict static metadata transfor-

mation model. The common goal of both models is to convert

static data into a time series of a certain length, thus assisting

in predicting the periodic data generated in the main model.

1) Strict Static Metadata Transformation: As shown in

Figure 3, when the data introduced as covariates are stationary,

the transformation step only requires the expansion of the

static data into a sequence of the desired time length. To

maintain the balance with the primary data, normalization is

required.

Fig. 3: Strict-Static Transformation

2) Non-strict Metadata Transformation: If the data is not

stationary (the actual data is time-varying, but the input is

static), we can transform it into a time-varying form.

In this model, we need to rely on the bio-behavioral cyclic

time series to help our non-strict static metadata to find the

moments which can reflect the change in its actual form.

We use Penalized change-point detection [21] to calculate

the exact number of alterations in cyclic data for individuals

through the entire time series. Let the set {Â∗
τ} and {φ̂∗

τ}
be two signals each containing n samples. We assume that

{Â∗
τ} and {φ̂∗

τ} are not stationary and are composed of

several successive regimes. Let P be the set of partitions

of {1, . . . , n} that consist solely of integer intervals. For a

partition Z =
{
z1, . . . , z|Z|

}
∈ P, z1, . . . , z|Z| represent

different regimes. The number of regimes in Z is |Z|, and the

number of change points is |Z| − 1. Change-point detection

aims to retrieve the various signal regimes and moments of

signal transitions from one to the other. Since the number of

change points is unknown in the data, we use a penalized

empirical quadratic risk here [22]:

argmin
Z∈P

∑

z∈Z

∑

i∈z

(
Â∗

τi −
¯̂
A

∗

τz

)2

+ pen(Z) (4)

argmin
Z∈P

∑

z∈Z

∑

i∈z

(
φ̂∗
τi −

¯̂
φ
∗

τz

)2

+ pen(Z) (5)

where
¯̂
A

∗

τz and
¯̂
φ
∗

τz are the mean value of Â∗ and φ̂∗ on

segment z; pen(·) denotes a suitable non-negative function

defined on P and pen(Z) := β|Z| with β > 0. We choose

Z to satisfy both conditions 4 and 5, and we set β as

our penalty parameter, which controls the trade-off between

model complexity and goodness of fit. Low values of beta

favor partition with many regimes, and high values of beta

discard most change points. The whole penalty term allows

controlling the balance between signal approximation and

model complexity.

After getting Z, we can calculate the unchanged periods;

let’s denote it as L, which is a set containing all time lengths
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in Z. Since this model aims to find the dynamic response of

individuals to change based on the static c, once we obtain the

generated cyclic series Y ∗(t) for each period, we can compute

the change of the data between consecutive periods. It can be

denoted as:

Dn = |

∫ 2π

0

Y ∗(tn+τ )dx| − |

∫ 2π

0

Y ∗(tn)dx| (6)

Because L is the set of periods that one would keep

relatively stable, the total change through the participant’s

stable periods could be represented as Dn · L. Therefore, we

can get the individual dynamic time series by multiplying the

non-strict static metadata c:

c̃ = Dn · L · c (7)

The structure of the non-strict static metadata transformation

is shown in Figure 4.

Fig. 4: Non-strict-Static Transformation

C. Transformer-Based Prediction

As shown in Figure 1, the part of the transformer in the

architecture consists of a position embedding layer, followed

by three stacked encoder layers and three stacked decoder

layers. The positional embedding here encodes sequential

information in time series data to let the subsequent encoder

distinguish every time position in data.

Inside the encoder block, three identical encoder layers are

stacked on top of one another. Each stacked encoder layer

has a multi-head self-attention sub-layer and a fully-connected

feed-forward sub-layer. In particular, inspired by [23], we use

causal convolution self-attention based on the traditional self-

attention to transform the cyclic time series input data into

queries and keys, thereby fully leveraging local context to

capture long-term dependencies. Every sub-layer has residual

connections between each other, and a normalization operation

follows the connections.

The decoder architecture is comparable to the encoder

architecture, which contains three identical decoder layers.

However, the difference is that each decoder layer has an

additional encoder-decoder attention sub-layer, which takes

input from the convolution self-attention and all moments

output from the encoder’s last layer. Finally, an output layer

transfers the output of the previous decoder layer to the

target time sequence. To ensure that the prediction of a time

series data point will only depend on the previous data, we

use look-ahead masking and a one-position offset between

the decoder input and target output in the decoder. Utilizing

Transformer has better parallel performance in more complex

neural networks.

IV. EXPERIMENTAL EVALUATION

We evaluate our architecture using a wearable dataset

containing subjective assessments of human characteristics,

including resilience and coping strategies. Specifically, we

investigate the following:

• RQ1: How well does the transformer-based time series

architecture perform in modeling cyclic behavior and

predicting future trajectories compared to existing time-

series methods? We obtain cyclic behavioral change

curves from wearable data and train different time se-

ries forecasting methods. By comparing with the actual

curves, we evaluate the performance of each prediction

model.

• RQ2: To what extent does additional (relatively static)

information about human characteristics (e.g., resilience

and coping abilities) contribute to more accurate mod-

eling of dynamic behavior? We first examine the rela-

tionship between resilience, coping scores, and behavior

regularity. We then use those scores as covariates in the

forecasting model to measure their impact on predicting

future behavior trajectories.

A. Dataset

We use a passive biobehavioral dataset gathered from 99

student participants at an American University; Each partic-

ipant received a Fitbit Sense, which they wore 24/7 (except

for showering, swimming, and charging times) for at least 14

weeks to collect behavioral and physiological data. The dataset

includes steps, heart rate, calories burned, and movement

activity data collected in one-minute samples. Table I provides

a summary of features.

Data Description Data Type

Heart Rate Average heart rate each hour Numerical
Steps Step count each hour Numerical
Calories Calories burned each hour. Numerical
Sedentary Minutes Sedentary minutes each hour Binary
Lightly Active Minutes Lightly active minutes each hour Binary
Fairly Active Minutes Fairly active minutes each hour Binary
Very Active Minutes Very active minutes each hour Binary

TABLE I: Passive Sensing Features and Description

We also use data from Brief COPE [24] and Brief Resilience

Scale (BRS) [25] surveys that participants filled out once at

the beginning of the study. BRS contains six questions graded

on a scale of 1 to 5. A higher score indicates a greater ability

to bounce back after difficult situations. Brief COPE contains

24 questions, each scored from 1 to 4, and higher scores for

each question represent more frequent use of the described

method. Details about the questions which can be divided into

four coping strategies/factors:

• The Social support category contains eight questions

and represents emotional support, instrumental support,

venting, and religion.

• Problem-solving category contains four questions and

represents active coping and planning.
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• Avoidance category contains ten questions and represents

self-distraction, denial, substance use, behavioral disen-

gagement, and self-blame.

• Positive thinking category contains six questions and

represents positive re-framing, humor, and acceptance.

B. Baseline Models

We use five time-series prediction models to predict future

values of the generated cyclic time series, including ARIMA,

Orbit, LSTM, NeuralProphet, and DeepAR as our baseline

models. ARIMA [26] is the most fundamental time series

forecasting model that uses lagged moving averages to smooth

time series and make predictions. Orbit [27] is a modeling ap-

proach for the Bayesian processing of time series tasks. We use

the Damped Local Trend exponential smoothing model in Or-

bit. Long-short term memory (LSTM) [28], is an improved

version of recurrent neural networks (RNN) that can learn

over long input series. NeuralProphet [29], based on Neural

Networks and developed in Facebook Prophet, is a forecasting

framework that supports autoregression. DeepAR [30] pro-

posed by Amazon, has a structure of autoregressive recurrent

networks. Instead of training a model for each input series,

DeepAR fits a global model using all time-series to make

accurate probabilistic forecasts of future series.

C. Experimental Setup

As previously stated, this study includes continuous data

for a relatively large sample size and an extended 14 weeks

for 99 participants. Since seven different sensor signals are

represented in the continuous data, we denote K = 7.

During the cyclic generating process, we normalize these

multidimensional signals from -1 to 1 to manage them. In

addition, to minimize the risk of overfitting, we use leave-

one-participant-out cross-validation in all forecasting models

to train on the data of 98 participants and test the data of the

remaining participant.

D. The forecasting performance of Transformer-based time

series behavior model (RQ1)

We compare baseline models with the transformer [23] one

using the Cosinor-generated cyclic time series for the first 13

weeks. We choose L1 loss as the evaluation metric since it is

a relatively common calculation method and provides a better

understanding of the error magnitude. Table II displays the

values of the five forecasting models for the 0.25 quantile, the

median, the 0.75 quantile, and the mean of the participant loss

data to provide different perspectives on the distribution of the

loss values . According to the results, the transformer-based

forecasting model has the lowest loss values in all dimensions.

Specifically, the transformer-based model has an average loss

value of 0.036, which is 0.02 points lower than the second

best-performing model, orbit. We obtain its significant p-value

of 1.74e−5 using a t-test, verifying that our transformer-based

model is significantly better than other models to enhance the

predictive capacity.

Models Q1 Median Q3 Avg

NeuralProphet 0.2133 0.2991 0.4649 0.3765
ARIMA 0.0260 0.2152 0.5431 0.3551
LSTM 0.0645 0.0792 0.1013 0.0801
DeepAR 0.0442 0.0611 0.0866 0.0675
Orbit 0.0321 0.0477 0.0685 0.0570
Transformer 0.0191 0.0310 0.0460 0.0356

TABLE II: L1 Loss Results for Models Forecasting

Fig. 5: L1 Loss Comparison between Orbit and Transformer

Individually

To further highlight the superiority of the transformer-based

model over the orbit model, we plot Figure 5. The red and

blue curves depict the L1 loss for all 99 participants using

the transformer and orbit model, respectively. The more stable

and higher the prediction performance, the fewer variations

in the curves and the closer the loss values are to zero.

In most participant data, the orbit model has higher loss

values than the transformer-based model and abnormally large

loss values for a few people. These observations imply that

our Transformer-based method can model cyclic behavioral

patterns more closely than other methods.

E. The Impact of Supplementing Resilience and Coping Scores

with Biobehavioral Data on Behavior Prediction Accuracy

(RQ2)

To investigate the impact of adding static behavioral infor-

mation (here, resilience and coping scores) on the model’s

performance, we first examine the strength of the relationship

between resilience and coping scores with behavior regularity.

Given that regularity can have a measurable impact on

prediction, a comprehensive analysis of the interplay between

resilience/coping and behavioral regularity can serve as a

critical tool for improving the prediction process. In essence,

this exploration of these two fundamental characteristics can

provide valuable insights into the predictability of a person’s

behavior.

1) Measuring Behavior Regularity: We measure behavior

regularity by calculating frequency and intensity change in

each person’s time series. The frequency and intensity change

with which people perform their daily activities are common

indicators of the regularity of human behavior.

Frequency refers to the regular occurrence of behavioral

patterns repeated over time in this study. Our architecture

utilizes the Cosinor method to calculate losses, which evaluate
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the degree to which participants’ behavioral patterns align

with the 24 hours. By investigating the relationship between

resilience, coping, and loss, we aim to understand how these

characteristics interact and contribute to participants’ ability

to maintain regular behavioral routines over time. The errors

generated from the Cosinor method when fitting passive sens-

ing data streams to periodic curves based on the 24 hours can

provide the frequency information. Different sensors collect

signals with varying regularities, which influences the degree

of fit of the Cosinor model to the original data. Cosinor

measures the model’s fit by computing the residual sum of

squares (RSS), which is the sum of the squared discrepancies

between the measured value Yi and the estimated value of the

model at time t. Therefore, the smaller the RSS, the better

model fits the passive signal in the original data.

Intensity change in this study refers to the weekly behavior

trend variations; it includes the value of shift of the amplitude

and phase in our bio-behavioral time series. Our architecture

generates cyclic behavioral time series in which we can com-

pute participants’ week-to-week trend consistency. By investi-

gating the relationship between resilience, coping, and shift in

trend, we aim to understand how these human characteristics

interact and contribute to participants’ ability to maintain

stable behavioral intensity. To assess intensity changes, i.e.,

the changes in behavioral trends of participants over weeks,

we use the Dynamic Time Warping (DTW) algorithm [31] and

calculate the point-by-point distance between two consecutive

two-week cyclic time series. A shorter distance indicates a

more stable tendency in the cyclic time series throughout the

weeks and, thus, more regular behavior.

Fig. 6: Similarity of Behavior Patterns from Dynamic Time

Warping

For instance, in Figure 6, the blue cyclic curve in the center

displays the 14-week behavior pattern of a participant. By

computing the DTW distance between two weeks for this

participant, we find that the DTW distance between week 4

and week 5 is 0.53, and between week 9 and week 10 is 0.06.

The lower the DTW distance, the more alike the behavior

patterns are between the two weeks. Hence, we can conclude

that the participant’s behavior pattern fluctuated more between

week 4 and week 5, indicating a more irregular behavior

pattern compared to week 9 and week 10.
2) Examining Relationship between Resilience, Coping, and

Behavior Regularity: Figure 7 shows the Pearson correlation

coefficients regarding the scores of resilience and four cop-

ing strategies with RSS (the loss of frequency-matching in

Cosinor), respectively. We observe a relatively significant(p =
0.018) association between resilience and RSS for r = −0.24,

suggesting more regular behavior patterns among more re-

silient people. However, the Pearson correlations between

the four coping strategy scores and the RSS are near zero,

indicating that people’s coping abilities are not substantially

connected to their behavior regularity.

Fig. 7: Correlation Between Resilience, Coping Strategies, and

RSS

We compute each participant’s average inter-weekly DTW

distances(the intensity change of behavioral patterns) and per-

form correlation tests with resilience and coping as presented

in Figure 8. The results indicate that resilience is negatively

correlated with DTW distance for r = −0.22, showing that

high resilience leads to a reduction in week-to-week behavioral

change and demonstrating that resilience is significantly(p =
0.030) associated with behavioral regularity from another

perspective. Our results also show a weak negative correlation

between DTW distance and problem-solving (r = −0.11),

and avoidance (r = −0.12), respectively. Therefore, the more

frequently these two coping strategies are used, the less the

week-to-week behavioral change on behalf of the participants

is existed.

Fig. 8: Correlation Between Resilience, Coping Strategies, and

DTW Distance.

3) Transforming Static Resilience and Coping scores to

Dynamic Time Series:

a) Converting coping strategy scores as non-static meta-

data: Coping evolves as human behavior changes [32]; how-

ever, the subjective reported coping assessments are usually

static scores. Therefore, we must map the static coping strategy

scores into a dynamic series that varies as behavior changes

over time. In our architecture, we apply coping strategy scores

as the non-strict static metadata in the transformation module.

Considering the variability of the time series, we use penalized

change-point detection method to find the moments when

participants’ behavior shifts in the actual data.
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In the first step, we sum and average the 24 questions in the

brief COPE survey according to the categories they belonged

to, thus representing the degree to which each participant

scored on each coping type. In the second step, we reuse

the sets of {Â∗
τ} and {φ̂∗

τ} from Section III-A, and double

check the significance of the sets to ensure that the p-value

in the zero-amplitude test less than 0.05. Then, we apply the

penalized change-point detection with these sets; we evaluate

many β values before settling on β = 0.01 for it to reach

the lowest BIC (Bayesian information criterion) among other

values of beta. In the last step, we follow the procedure in

Section III-B, substituting the average coping score as the non-

strict static metadata c.

b) Converting resilience scores as static metadata: In

contrast to coping, resilience is a human trait that remains

stationary over long periods, so we only need to convert it to

an invariant time series. In our architecture, we apply resilience

scores as the strict static metadata in the transformation mod-

ule. For the Brief Resilience Scale, we sum and average each

individual’s scores on six questions from that questionnaire

and then bring the average resilience score as the strict static

metadata c.

4) Forecasting Performance of Resilience and Coping

Strategies as Covariates: In this section, we illustrate the

process of adding transformed static resilience and coping

scores as covariates to the prediction model and discuss

how they improve the model’s performance. Figure 1 shows

the overall forecasting process, including the transformation

model component. First, we transform the participants’ bio-

behavioral data into cyclic time series. Then, for each fold of

the leave-one-participant-out cross-validation, we concatenate

the participants’ bio-behavioral cyclic time series with the

transformed covariate series to train. In Section IV-D, we

demonstrated that the transformer-based forecasting model is

more accurate than other baseline models in predicting future

human behavior patterns. Therefore, we use this model as a

baseline to compare the performance of the model built with

covariates.

The results of the transformer forecasting models with

resilience and different coping strategies are shown separately

in Table III. We can see that regardless of which covariate is

used, it has a lower value of forecast loss than the model

without covariates. It shows that the resilience and coping

strategies scores can be covariates to help predict human cyclic

behavioral trends. In addition, the transformer-based model

with avoidance as a covariate predicted the lowest loss values

among all covariates in data distributions Q2, Q3, and the

average, implying that scores on avoidance coping strategies

would be more helpful in predicting accuracy overall.

Figure 9 shows the box-plot of the number of epochs

obtained by these models. If the number of training epochs

decreases in the model after using the covariates, adding the

covariates can make the prediction results converge faster.

The average number of epochs for the original transformer

model without covariates is 78, the highest number of training

epochs and, thus, the slowest convergence among all models

Covariates Q1 Q2 Q3 Avg

None (Baseline) 0.0191 0.0310 0.046 0.0355
Social Support Coping 0.0152 0.0268 0.0419 0.0318
Problem Solving Coping 0.0178 0.0272 0.0415 0.0324
Avoidance Coping 0.0160 0.0263 0.0409 0.0316
Positive Thinking Coping 0.0171 0.0287 0.0420 0.0323
Resilience 0.0179 0.0277 0.0424 0.0323

TABLE III: L1 Loss for Transformer Models with Covariates

Fig. 9: Number of Epochs for Transformer Models with

Covariates

with covariates. In addition, although the general distribution

of the number of training epochs is quite similar across all

five covariate models, the transformer-based model constructed

for the positive thinking covariate yields a lower average

number of training epochs, indicating that positive thinking

can achieve faster convergence. It gives us some insight that

faster convergence from positive thinking coping strategy will

provide a competitive advantage in terms of time efficiency

in the future if larger sample sizes and longer-term observa-

tions are used. It is one criterion for assessing the model’s

predictive performance. In summary, it further illustrates that

incorporating resilience and coping strategies can improve the

predictive power of the entire structure and help reproduce the

cyclical behavioral trends of the real situation.

V. DISCUSSION

Our research demonstrates that the use of the Transformer

models for predicting human behavior from wearable sensing

data outperforms existing state-of-the-art approaches. More-

over, the integration of human characteristics such as resilience

and coping enhances the prediction of future behavior. While

our model is currently configured with resilience and cop-

ing, it is expandable to include other characteristics such as

emotional stability, thereby capturing the intricacy of human

behavior and allowing for more accurate predictions. This

adaptability enables the model to be trained on new dataset,

handling diverse events and personal characteristics more

effectively. Also, our methodology reduces the necessity for

frequent subjective assessments, replacing daily questionnaires

with only once or twice surveys and enabling more objective

modeling.

Our study, first in incorporating underlying human behavior

characteristics for modeling, underscores the potential for ac-

277

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on August 09,2024 at 14:31:21 UTC from IEEE Xplore.  Restrictions apply. 



curate future behavior predictions, thereby informing preven-

tative technology for timely intervention. However, limitations

exist; our participant pool is limited to students from a single

local university, leading to regional biases and less visible

behavioral variability. In the future, we will investigate more

diverse demographic and behavioral samples and consider

adding more types of sensors and bringing more flexible time

windows.

VI. CONCLUSION

In our research, we utilize personal characteristics like

resilience and coping strategies to analyze the regularity and

predictability of human behavior patterns from sensor data,

leveraging a custom transformer-based architecture for cyclic

time series forecasting. Compared to conventional methods,

our approach more accurately replicates behavior patterns

and effectively transforms static characteristics into dynamic

time series consistent with behavioral changes. Moreover,

integrating resilience and coping data enhances the model’s

predictive capability, demonstrated by a reduction in loss and

expedited convergence. Future endeavors aim to refine our

models for detailed behavioral analysis, potentially facilitating

personalized, timely interventions in critical situations marked

by rapid behavioral changes.
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