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Abstract

Background: Biobehavioral rhythms are biological, behavioral, and psychosocial processes with repeating cycles. Abnormal

rhythms have been linked to various health issues, such as sleep disorders, obesity, and depression.

Objective: This study aims to identify links between productivity and biobehavioral rhythms modeled from passively collected

mobile data streams.

Methods: In this study, we used a multimodal mobile sensing data set consisting of data collected from smartphones and Fitbits

worn by 188 college students over a continuous period of 16 weeks. The participants reported their self-evaluated daily productivity

score (ranging from 0 to 4) during weeks 1, 6, and 15. To analyze the data, we modeled cyclic human behavior patterns based

on multimodal mobile sensing data gathered during weeks 1, 6, 15, and the adjacent weeks. Our methodology resulted in the

creation of a rhythm model for each sensor feature. Additionally, we developed a correlation-based approach to identify connections

between rhythm stability and high or low productivity levels.

Results: Differences exist in the biobehavioral rhythms of high- and low-productivity students, with those demonstrating greater

rhythm stability also exhibiting higher productivity levels. Notably, a negative correlation (C=–0.16) was observed between

productivity and the SE of the phase for the 24-hour period during week 1, with a higher SE indicative of lower rhythm stability.

Conclusions: Modeling biobehavioral rhythms has the potential to quantify and forecast productivity. The findings have

implications for building novel cyber-human systems that align with human beings’ biobehavioral rhythms to improve health,

well-being, and work performance.

(JMIR AI 2024;3:e47194) doi: 10.2196/47194
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Introduction

Background

Biobehavioral rhythms—repeated cycles of biological,

behavioral, and psychological events—are indicative of different

life and health outcomes [1]. Chronobiology, which examines

periodic phenomena in living organisms, has demonstrated the

impact of circadian disruptions on people’s lives, including

physical and mental health as well as safety and work

performance in shift workers [2-6]. However, research in

chronobiology has primarily been conducted via manual

observations and subjective reports often restricted over a small

period of time. Advances in mobile and wearable devices

provide the possibility of automatic and rigorous collection of

longitudinal biobehavioral data from people’s personal devices

[7-9]. This longitudinal fine-grained data collected on a daily

basis have the potential to reveal micro- and macrolevel patterns

related to different biobehavioral outcomes.

In this study, we examine the relationship between cyclical

human behaviors and work efficiency using data from mobile

sensors. This analysis is based on data collected from the

smartphones and Fitbits of 166 college students, encompassing

patterns such as activity, communication, and sleep. Our main

objective is to determine variations in biobehavioral rhythms

across students of varying productivity levels and identify

particular rhythm traits associated with productivity.

Related Work

Modeling Biobehavioral Rhythms

Research in chronobiology that examines periodic phenomena

in living organisms is relatively mature, and existing studies

have confirmed that exploring human rhythms is an effective

way to diagnose and treat many illnesses such as cancer,

cardiovascular disease, and mental health problems [10-12].

For example, patients with depression, those with bipolar

disorder, and those with schizophrenia usually exhibit irregular

changes in circadian rhythm, and adjusting the circadian rhythm

is an efficient auxiliary method for treating these conditions

[13-15]. Disruption in biological rhythms is also caused by

changing lifestyles and environmental conditions such as travel

across time zones and shift work [16]. Night shift and morning

shift workers may be especially at risk of committing errors and

having accidents [17].

A few studies have used smartphone technology to track

circadian patterns. For example, Abdullah et al [18] used

patterns of phone usage to identify chronotypes of students

(early birds or night owls). Murnane et al [19] aggregated mobile

app usage features by body clock time and analyzed the

correlation between circadian rhythms in app usage and alertness

level. Doryab et al [1] demonstrated modeling of rhythms using

data from Fitbit devices in patients with cancer and showed that

disruption in circadian rhythms predicts readmission in patients

with cancer undergoing treatment. Yan et al [7] further

developed a computational framework for modeling

biobehavioral rhythms from multimodal sensor streams. While

our work leverages this framework to model biobehavioral

rhythms, we advance research in this domain by developing

and applying algorithms to observe and measure changes in

multimodal biobehavioral rhythms across different periods and

between people with different productivity levels.

Productivity Assessment

Traditional productivity assessment approaches are typically

subjective, static evaluations administered as self-report surveys,

manager assessments, observations, or ability tests. Some studies

have used multitasking and interruptions, for example, checking

emails [20] and mental and physical fatigue as proxies for

productivity in workers and officers [21-24]. For example,

Gloria et al [20] tracked and analyzed email usage in affecting

workplace productivity and stress. Aryal et al [25] conducted

a simulated construction task for monitoring physical fatigue

by measuring changes in heart rate, skin temperature, and brain

signals. The study showed a direct relationship between physical

fatigue and heart rate metrics such as heart rate, heart rate

variability, and percentage of heart rate.

Recent studies on workplace productivity have used mobile,

wearable, and environmental sensors to track individuals’

behavior and environmental conditions to assess workers’ job

performance. For example, background noise, light, temperature,

and air quality have been shown as the 4 external factors

affecting productivity [26-29]. In a study by Mirjafari et al [30],

the analysis of phone usage, location, activity, sleep, and time

allocation of 554 participants indicated that the regularity of

behaviors distinguishes high and low performance. van Vugt

et al [31] suggested that eye-tracking could be used to measure

productivity. The hypothesis was that if the eyes of a person

remained at certain locations on the computer screen, they were

focused and thus productive. However, this theory has yet to

be evaluated in practice. In addition to external factors, research

studies have investigated the impact of internal factors and cues

in measuring productivity. For example, Das Swain et al [32]

demonstrated that static intrinsic personality can explain

workplace performance using data from 603 information

workers.

Our research is unique in measuring and assessing productivity

by leveraging cyclic biobehavioral patterns from passive data

streams to assess productivity. Our work is also the first to

measure daily productivity from multimodal mobile and

wearable data in college students.

Methods

Data Collection

We use a data set of smartphone and Fitbit logs collected from

188 students at an American university over the course of 1

semester. The data were collected as part of an extensive study

on students’ health and well-being. All participants were

first-year students, with their demographic details presented in

Table 1.

The AWARE data collection app [33] and Fitbit were used for

the collection of audio, Bluetooth, Wi-Fi, location, phone usage,

calls, calories, sleep, and steps. AWARE is an open-source data

collection framework that works both on Android and iOS

platforms. All participants used their smartphones, and this

study’s team provided a Fitbit Flex 2 to collect data. Students’
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productivity assessments were collected via an evening survey

during weeks 1, 6 (midsemester), and 15 (last week of classes)

of the semesters to avoid overburdening participants. The

assessment question included a single question: “How

productive did you feel today?” The possible responses ranged

from 0 (not productive at all) to 4 (extremely productive). The

mean and SD of self-evaluated productivity scores were

consistent for different sexes and major groups with no

significant difference: female (mean 1.65, SD 0.92), male (mean

1.80, SD 0.97), engineering (mean 1.71, SD 0.96), business

(mean 1.70, SD 0.99), science (mean 1.69, SD 0.94), art (mean

1.76, SD 0.95), humanities (mean 1.68, SD 0.97), and undecided

(mean 1.67, SD 0.87).

Of the initial 188 first-year students, 166 produced subjective

assessments of their respective daily productivity. The response

rate fluctuated over the 3 weeks, with some students not

completing the surveys. The data set included 488 total

observations, represented as participant-week pairs. During the

introductory meeting, students were briefed about this study’s

objectives. This study’s goals were transparently communicated

without any deceit or exclusion.

Table 1. Demographic distribution of this study’s samples: a total of 188 first-year university students were enlisted as participants for this research.

Participants, n (%)Category and subcategory

Sex

111 (59)Male

77 (41)Female

Race

107 (57)Asian

9 (5)Black

17 (9)Hispanic

64 (34)White

Major

79 (42)Engineering

30 (16)Art

24 (13)Business

23 (12)Science

8 (4)Humanities

Data Processing

Measuring Productivity Levels

As mentioned previously, while sensor data were collected

continuously for 16 weeks, self-reported productivity (by study

design) was only collected in weeks 1, 6, and 15. We used

productivity scores (0-4) to categorize participants into high

and low-productivity groups. These categories were used as

ground truth labels in the later analysis of the relationship

between rhythms and productivity. To identify the cutoff

threshold, we calculated the mean and median of the daily

productivity scores for all participants across all 3 weeks. The

mean of 1.89 (SD 0.94) and a median of 2 (IQR 1) indicated a

normal distribution across scores (verified by the Shapiro-Wilk

test, P=.12). Therefore, we used 2 as the threshold for

categorizing productivity, with scores less than 2 indicating low

productivity and scores equal to or above 2 indicating high

productivity. Figure 1 shows the distribution of the mean and

variance of daily productivity scores within each week. The

mean productivity has decreased in week 6 compared with week

1. Since week 6 is the midterm, a high workload and pressure

may make some students work more productively, but the

pressure and stress may have the opposite effect on others. The

IQR of the mean of low productivity is wider than in week 1.

The mean and 75th percentile of variance are all less than one,

which is also the interval between the survey’s productivity

options. This indicates that the participants’ answers are

relatively stable each week. We, therefore, average the

productivity scores of all days in each week (including both

weekdays and weekends) as the weekly productivity score with

the same threshold to categorize each participant’s week average

into high or low productivity.

In addition to labeling each participant’s weekly data as high

or low productivity, we also need to further categorize

participants into high or low productivity to evaluate our rhythm

similarity methods described in the Methods section. We analyze

the combination of high and low productivity weeks for all

participants as shown in Table 2. We observe the number of

participants in different combinations is imbalanced and does

not create large enough groups for analyzing each combination

separately. We therefore categorize participants into high and

low productivity groups, where students with at least 2 weeks

of high productivity rates are categorized as high productivity

and the rest are placed into the low-productivity group.
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Figure 1. If the mean of 1 week’s daily productivity is above 2 (SD 0.21), the week will be labeled high productivity; otherwise, the week will be

labeled low productivity. Gray represents the mean and variance that come from weeks with high productivity, and orange represents the mean and

variance that come from weeks with low productivity. The medians of variance are all less than 0.5, and the 75 percentiles are within 1 no matter what

productivity the weeks have. The difference in productivity scores between the 2 adjacent options in the productivity survey is 1, so the low variance

indicates that most participants will keep the same productivity level during the whole week. The medians of the mean of both high and low productivity

are very close, but there are more small mean values in week 6 for low productivity and more large mean values in week 1 for high productivity.

Table 2. Participant productivitya.

Participants, nWeek 15Week 6Week 1

High productivity group

13HighHighHigh

14LowHighHigh

12HighLowHigh

10HighHighLow

Low productivity group

29LowLowHigh

4LowHighLow

17HighLowLow

62LowLowLow

aThe middle column lists all combinations of weekly productivity levels, and the right column shows the number of participants for each combination.

Many participants were inefficient for all 3 weeks. Participants were more likely to achieve high productivity in week 1 and had the most difficulty

achieving high productivity in week 6. Moreover, we aggregated the 8 combinations into 2 groups. Participants with at least 2 highly productive weeks

were assigned to the high-productivity group; otherwise, they were assigned to the low-productivity group.

Feature Extraction

We extracted features in 2 processing layers. First, we

aggregated the raw sensor data into more meaningful behavioral

features to capture students’ social interaction, physical activity,

sleep, and academic life. The raw sensor data we collect are just

a series of numbers without providing much information. For

example, screen data are a time series of values from 0 to 3 (eg,

0121023...), which does not provide any helpful information,

but we can process this time series to extract more meaningful

information about how often the user has been interacting with

the phone. We then divided each data stream into hourly

intervals and extracted behavioral features in each interval

following the descriptions documented by Doryab et al [34].

Typical features included statistical measures such as minimum,

maximum, mean, SD, length of the status in the hour, and more

complex behavioral features such as movement patterns and

type and duration of activities. Example features are shown in

Table 3. Finally, we modeled the cyclic pattern of each

behavioral feature using Cosinor, which provided a set of

parameters that describe the cyclic pattern. This process and

the list of rhythm parameters are detailed in the following

section.

JMIR AI 2024 | vol. 3 | e47194 | p. 4https://ai.jmir.org/2024/1/e47194

(page number not for citation purposes)

Yan et alJMIR AI

XSL•FO
RenderX



Table 3. Examples of sensor features.

Extracted featureDevice and sensor

Smartphone

Percentage of time with voice, noise, or silence; minimum, maximum, mean, or SD of voice energyAudio

Mean or total number of Bluetooth scansBluetooth

Number of unique Wi-Fi hotspots detectedWi-Fi

Location variance; percentage of time staying at home; number of visits; time spent at green areas, ath-

letic areas, academic areas, or outside campus

Location

Minutes interacting with phone; minimum, maximum, mean, or SD length of interaction periodsPhone usage

Fitbit

Minutes asleep, awake, or restless; minimum, maximum, or mean length of asleep, awake, or restless

periods

Sleep

Total number of steps; minimum, maximum, mean, and total length of active or sedentary periodsSteps

Minimum, maximum, mean, or total calories burned; minimum, maximum, mean, or total decrease in

5-minute calories burned

Calories

Handling Missing Values

As data sets collected in the wild are expected to include noise

and missing data, we developed strategies to handle missing

data. The missing values were filled separately for different

participants and weeks using the local moving average

commonly used in time series. For example, if the hourly values

of location variance were missing at 2 PM and 3 PM on day 1

of week 1 for participant A, then we imputed the values as

follows: v2pm = v1pm + (v4pm – v1pm) / (4 – 1) and v3pm = v1pm +

2 × (v4pm – v1pm) / (4 – 1). Moving average is the most suitable

interpolation method for rhythm modeling. Other methods such

as multiple interpolations and Expectation-Maximization

estimation introduce cross-correlation between features, and

regression estimation and k-nearest neighbor increase

auto-correlation of a single sensor feature [35,36]. However,

the moving average method is sensitive to the number of

continuous missing data. If the missing block is large, the

moving average will introduce high noise and bias, and the data

may need to be removed instead of imputed. We, therefore,

calculated the average length of continuous missing hour blocks

to decide the minimum threshold for removing data. The average

missing block was 1.7 (SD 0.41) data points in sensor streams

with less than 20% missing values. We, therefore, imputed the

behavioral feature streams with less than 20% missing values

and discarded the rest.

After cleaning the data, we ended up with a data set that included

101 sensor features related to location, calories, steps, and sleep.

The amount of weekly data we have for each feature changes

because some data from participants was removed during our

missing handling process. As an example, location features have

around 50 observations for week 1 and 15 and 22 observations

for week 6; calories and steps features have around 110

observations for weeks 1 and 6 and 80 observations for week

15.

Modeling Biobehavioral Rhythms

To model rhythms from longitudinal biobehavioral data

collected in the wild, we used the Cosinor method introduced

by Halberg [37]. The Cosinor method forms a linear

combination of cosine curves with known frequencies to fit

cyclic time-series rhythm data and calculates rhythm parameters

using least square regression [38]. The Cosinor function can

take multiple periods as input parameters and use those to

generate a cyclic model of provided time series data. The

generated model includes a series of parameters that characterize

the cyclic behavior in the data stream. Textbox 1 details the

parameters, and Figure 2 [39] visually represents them. The

Cosinor method is mathematically expressed by Fernández et

al [40] as:

where yi is the observation at time ti;    is the Midline Estimating

Statistic of Rhythm (MESOR); ti is the sampling time;    is the

number of input periods; Ac, Tc, and Øc represent the amplitude

(Amp), period, and acrophase (PHI), respectively; and is the

error. Cosinor also outputs the SE for MESOR, Amp, and PHI,

respectively.

We used Cosinor to build personal cyclic models per student

per sensor stream in weeks 1, 6, 15, and the weeks adjacent to

them (eg, for week 6, we use sensor data from weeks 5, 6, and

7 to build Cosinor models). We then used rhythm parameters

generated by those models in the correlation analysis. We

assumed all participants had normal daily rhythms and used the

input periods of 8, 12, and 24 hours in the Cosinor. The 8, 12,

and 24 hours reflect nocturnal, diurnal, and circadian duration,

respectively.
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Textbox 1. Definitions of rhythm parameters output from the Cosinor model [41].

Rhythm parameters and their definition

• Fundamental period: the fundamental period is the least common multiple (LCM) of all individual periods. We use 8-, 12-, and 24-hour periods

in our modeling approach.

• MESOR: estimating the midline of the rhythm curves.

• Amplitude (Amp): half the difference between the maximum and the minimum of the best-fitted curve in an individual period.

• Acrophase (PHI): lag from a defined reference time point to the maximum point within an individual period.

• Magnitude: half the difference between the maximum and the minimum of the best-fitted curve in the fundamental period.

• Bathyphase: lag from a defined reference time point to the minimum point within an individual period.

• Orthophase: lag from a defined reference time point to the maximum point within the fundamental period.

• P value (P): P value indicates the significance level of the model fitted by an individual period.

• Percent rhythm (PR): percent rhythm is the coefficient of determination (R2) for the model using an individual period.

• Integrated P value (IP): the integrated P value indicates the significance level (P value) of the model fitted by the fundamental period.

• Integrated percent rhythm (IPR): integrated percent rhythm is the (R2) for the model using the fundamental period.

Figure 2. The cyclic wave is formed by fundamental parameters described in Table 3 (adapted from Cornelissen [7]). MESOR: Midline Estimating

Statistic of Rhythm.

Measuring the Relationship Between Rhythms and

Productivity

We adopted the Pearson correlation analysis to identify

relationships between rhythms and productivity across time

windows (here weeks). Such a relationship, however, is

multidimensional, involving multiple sensors, features, and

rhythm parameters. To quantify this multidimensional

relationship, we developed a 2-step method. First, we calculated

the correlation coefficient between each rhythm parameter and

productivity score to understand how rhythm parameters

correlate with productivity and whether the correlation is

consistent across weeks. To account for the varied scales of

productivity and rhythm parameters, we initially applied

minimum-maximum normalization to both the productivity

scores and each rhythm parameter. Following this, we computed

the Pearson correlation coefficient and determined its

significance using a 2-tailed P value test. The first step resulted

in 1 correlation coefficient and 1 P value per behavioral feature,

per rhythm parameter, and per time window (week) as shown

in Figure 3 (step 1). The correlation coefficient indicates how

closely the rhythm parameter and productivity score are related,

and whether they move together or in opposite ways. The P

value helps us understand if this relationship is significant or

merely coincidental.

Next, as presented in Figure 3, we adopt the Fisher method to

combine the correlation coefficient and its significance (P value)

of every combination of behavioral feature—rhythm

parameter—week. The Fisher method is a widely used

meta-analysis technique used for combining the results from

several independence tests [42,43]. These combinations provide

information about productivity-related variations of the rhythms

for each behavioral feature per week (2a in Figure 3) and

productivity-related variations of each rhythm parameter per

week (2b in Figure 3) regardless of behavior. While the

correlation coefficient represents the strength and direction of

the relationship, its significance reflects the reliability and
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generalizability of the relationship. We, therefore, aggregated

significant correlation coefficients for all rhythm parameters

per behavioral sensor feature (2a) as well as aggregated

significant correlation coefficients for all sensor features per

rhythm parameter per week (2b). In step 3 (3a and 3b), we

further combined correlation coefficients and significance scores

across all 3 weeks. The final step (4) summarizes the correlation

(and significance) values into 1 final score for each sensor

feature (4a) and for each rhythm feature (4b). The calculation

process is detailed in the Multimedia Appendices 1 and 2. Since

the number of observations is different for different rhythm

parameters, behavioral sensor features, and weeks due to missing

values, this analysis was only performed on the correlations

with more than 28 observations, which is the median value in

our data set.

Figure 3. The pipeline to aggregate the correlation for a multidimensional dataset with K sensor features, L rhythm parameters, and J time windows.

The pipeline can output the correlation between productivity and a single sensor, and the correlation between productivity and a single rhythm parameter.

In step 1, we got a correlation coefficient and a P value for each behavior, rhythm setting, and week. In step 2, we calculated how rhythms changed

related to productivity for each behavior sensor weekly (2a) and for each rhythm setting weekly (2b). In step 3, we combined the correlation and

importance scores from all 3 weeks. Finally, in step 4, we converted the correlation and importance values into 1 final score for each sensor behavior

(4a) and each rhythm setting (4b).

Ethical Considerations

All data collection procedures were approved by an American

university’s institutional review board (Carnegie Mellon

University; STUDY2016_00000421).

Results

Overview

While correlations between rhythm parameters and productivity

scores were moderate across all behavioral sensor features and

all 3 weeks (Figure 4), we observed more pronounced

relationships between parameters related to regularity in rhythm

models, including SE, that is, deviation of the fitted model

parameter from the actual values, percent rhythms (PR and

integrated percent rhythm [IPR]) or proportion of variation

accounted for by the fitted model, and the significance of the

fit (P value and integrated P value [IP]). In addition, the

aggregated negative correlation (indicated by the red line) in

the majority of these parameters across all 3 weeks indicates

lower rhythm irregularity in highly productive students. The

rhythm parameters for location features appeared to be dominant

in both aggregated correlation coefficients and significance

scores, followed by activity and sleep features (Figure 5). In

the following, we discuss our observations in detail.
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Figure 4. The heat map displays correlations between rhythm parameters and productivity by week. (A) Average correlation coefficients (C-RF) by

week (Week-C); (B) Average significance score (S-RF) by week (Week-S). AMP: amplitude; C: correlation coefficients; IP: integrated P value; IPR:

integrated percent rhythm; MESOR: Midline Statistic of Rhythm; P: P value; PHI: acrophase; PR: percent rhythm; RF: random forest; S: significance

score.

Figure 5. The heat map displays the correlation between sensor features and productivity by week. The left side shows the 10 sensor features with the

highest aggregated correlation over all 3 weeks, and the right side shows the 10 sensor features with the highest aggregated significance score over all

3 weeks. The blank cells shown in the figure mean that the relationship is not significant. (A) Average of correlation (C-SF); (B) Significance score of

correlation (S-SF). C: correlation coefficients; S: significance score; SF: sensor feature.
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Correlation Aggregation of Rhythm Parameters

Overview

The blue and red cells in Figure 4 show the correlation

aggregated by week for each rhythm parameter as calculated

using equations 8, 9, 11, and 13 in Multimedia Appendix 2.

Recall that these formulas aggregate correlation across all sensor

features for each rhythm parameter to measure the strength of

the correlation between productivity and the rhythm parameter.

Blue cells indicate a positive correlation while red cells indicate

a negative correlation.

The green cells in Figure 4 show the significance score by week

for each rhythm parameter as computed by equations 10 and

12 in Multimedia Appendix 2. These formulas calculate

correlation significance across all sensor features for each

rhythm parameter to measure the significance of the correlation

between productivity and the rhythm parameter. The higher the

significance score, the more significant the relationship is.

Week 1

In week 1, the majority of parameters that measure the

irregularity of the rhythm models correlate negatively with

productivity indicating more stable rhythms in the high

productivity group. For example, stronger correlations were

observed between productivity and the model fit for the

fundamental period (IP; C=–0.24), the 24-hour period (P-24;

C=–0.21), the 12-hour period (P-12; C=–0.22), the 8-hour period

(P-8; C=–0.21), the fundamental PR (IPR; C = 0.18), and SE

of phase fit for the 24-hour period (PHI_SE-24; C=–0.16).

The relationship between regularity in rhythms and productivity

is further reinforced by the negative aggregated correlation

coefficients for P-24, P-12, P-8, IP, and SE. Specifically, their

low values indicate that Cosinor was able to create close fits to

the actual data which means more regularity in the actual data

corresponds to high productivity. This further demonstrates a

lower rhythm variation in highly productive students.

The relationship between lower rhythm variability and higher

productivity is also observed in the correlation of MESOR_SE,

Amp_SE-8, Amp_SE-12, Amp_SE-24, and PHI_SE-24. The

values have a relatively high aggregated significance score

compared to other parameters. This means the SE has a more

significant relationship with productivity. Given that the SE is

also a metric reflecting the irregularity of rhythm models, its

negative correlation indicates less irregularity of the rhythm

models in high productivity.

The PR parameter also demonstrated a relationship between

low rhythm variability and high productivity. A higher PR

represents low variability in the actual data. Specifically, the

PR of the fundamental, 24-hour, 12-hour, and 8-hour periods

all have high positive aggregated correlation coefficients with

productivity, indicating lower variability in diurnal activities

for the highly productive students.

Week 6

Week 6 (midterm) projected a relatively different pattern. For

example, we found positive correlations between productivity

and MESOR_SE, Amp_SE-8, Amp_SE-12, and Amp_SE-24.

Since Amp and MESOR are indicative of the intensity and

volume of activities, we see that highly productive students

performed more intense activity during week 6.

We also found Amp and MESOR have higher SE in the fitted

models. This implies higher variability in the intensity of regular

patterns during this week. This can be expected due to midterm

pressure.

Despite this increased variability of intensity of regular

activities, as demonstrated by the positive aggregated

correlations of IPR (C=0.24) and PR-24 (C=0.26) with

productivity, we see less irregularity in activity patterns during

this week for the highly productive students.

Finally, as in week 1, we see positive correlations between PR

and productivity. However, the correlation became more stable

in week 6 compared to week 1 with larger aggregated

significance scores.

Week 15

Week 15 (the week before finals) showed the strongest

correlations. For example, parameters that reflect irregularity

in rhythms such as SE (eg, MESOR_SE, Amp_SE, and PHI_SE)

show high (mostly positive) correlations with productivity.

Parameters characterizing the fitted cyclic model such as

MESOR, phase, and Amp also show high (mostly positive)

correlations with productivity indicating higher intensity and

duration of behavioral activities during this week.

The value of some correlations, however, decreased from weeks

1 and 6 to week 15. For example, the correlation between PRs

(eg, IPR, PR_8, and PR_ 12) and productivity. Given the

increased workload activities close to final examinations, the

observed irregularity and divergence from the routine patterns

are expected.

Despite the decline in the value of some correlations,

observations across all 3 weeks still suggest an overall lower

irregularity in rhythms among the high-productivity group. For

example, there is a consistent negative correlation of the

regularity indicators such as P-24, P-12, P-8, PHI-SE-24,

PHI-SE-12, PHI-SE-8, and IP. Moreover, parameters

representing the phase’s characteristics in rhythms including

orthophase, bathyphase, PHI-24, PHI-12, and PHI-8 exhibit

relatively high aggregated significance scores in all 3 weeks.

This means more regularity in phase is more significantly

correlated with high productivity. Thus, while further

explorations are needed, these observations indicate the

importance of rhythm stability in students’ productivity.

Correlation Aggregation of Sensor Features

Overview

Figure 5 shows the aggregated correlation and significance

scores by week for the top 10 sensor features calculated through

equations 2, 3, 4, 5, 6, and 7 in Multimedia Appendix 1. These

formulas calculate the aggregated correlation coefficients and

significance scores across all rhythm parameters for each sensor

feature to measure the strength of the correlation between

productivity and behavioral sensor features. Features with higher

significance scores have a more significant correlation with
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productivity. Overall, location features had a stronger aggregated

correlation and significance. The rhythm model for each sensor

feature was not consistently associated with productivity in all

3 weeks.

Week 1

In week 1, rhythm parameters for both the time spent in

frequently visited places and the frequency of visits in fraternity

or sorority houses (places for socializing) showed the highest

average positive correlations with productivity. A negative

correlation between productivity and off-campus duration was

also observed in the rhythm models. Finally, we found patterns

of asleep and burned calories to have high significance scores.

Week 6

In week 6, the variance of the length or number of stays in

academic areas, halls, and apartments showed high negative

aggregated correlations with productivity (the left side of Figure

5), indicating that highly productive students had a stable living

and studying environment at home and school. Conversely, the

SD of duration in athletic areas was positively correlated with

productivity. This indicates higher variability in exercise

associated with high productivity. A similar conclusion can be

drawn with the data from the aggregated significance score data

(the right side of Figure 5).

Week 15

In week 15, we observed the highest aggregated significance

scores for rhythms of restless sleep duration, awake sleep

duration, time spent at greens, and sedentary duration. On the

left side of Figure 5, we see the time spent at greens was

positively correlated with productivity, whereas the radius of

the visited areas was negatively correlated with productivity.

This finding suggests that high-efficiency students reduced their

range of activities and spent time outdoors more frequently in

week 15.

We further select the “restless sleep” feature to visualize how

changes in rhythm parameters reflect the change in productivity

for 2 individual students in our sample (Figure 6). The left and

right columns in the figure show changes in rhythm parameters

between weeks for 1 high- and 1 low-productivity student,

respectively. While both students’ productivity levels lowered

in week 6, their rhythm parameters of MESOR (SE), Amp (SE),

and phase increased from week 1 to 6 with substantially higher

variations in the parameters of the low-productive student. After

week 6, the student’s productivity in the left column went back

to high while MESOR and Amp of their restless sleep rhythm

substantially lowered. However, the pattern for the student on

the right remained relatively unchanged. As the values of these

parameters reflect intensity (Amp and MESOR), duration

(phase), and variation (SE), the figure shows that an increase

in intensity, duration, and irregularity of restless sleep may be

indicative of lower productivity in both students. Although we

only look at 2 random participants, the positive and negative

changes in rhythm parameters and their accordance with changes

in productivity pose an interesting observation and call for

further exploration.

Figure 6. Change in restless sleep and productivity patterns of 2 sample students. Orange and gray represent high and low productivity, respectively.

The direction of the arrows indicates an increase or decrease of the rhythm parameter values between weeks. AMP: amplitude; MESOR: Midline

Estimating Statistic of Rhythm; PHI: acrophase.
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Discussion

Principal Findings

In this paper, we analyze cyclic human behavior using passive

multimodal mobile sensing data to understand its correlation

with work productivity. By creating rhythmic models for each

sensor type and employing a multidimensional correlation-based

algorithm, we examine the links between biobehavioral rhythms

and daily work performance evaluations. Our data are sourced

from smartphones and Fitbits of 166 college students, capturing

behaviors such as activity, communication, and sleep patterns.

The main aim of our analysis is to identify variations in

biobehavioral rhythms based on productivity levels and identify

specific rhythmic traits associated with them.

To the best of our knowledge, this study pioneers the modeling

relationships between daily productivity and biobehavioral

rhythms derived from passive sensor data. Notably, we evaluate

the capability to model cyclic behavior from detailed phone and

Fitbit data. Additionally, we introduce a novel method to

measure the correlation and importance of various sensors and

rhythms to productivity, which illuminates the connection

between rhythmic consistency and different levels of

productivity.

Overall, our results showed more rhythm stability in the

high-productivity group of students in our sample despite

changes in students’ workload in different weeks. This

observation was especially projected by lower variation

accounted for in fitted rhythm models (indicated by PRs and

SE parameters) and more significant fit levels (indicated by P

parameters) across the weeks. In addition, our correlation

analysis of rhythms for each sensor feature showed the

significance of consistent patterns in location and sleep to

productivity. While encouraging, these results call for more

data and analyses to replicate and improve.

Limitations

However, this study was not devoid of limitations. A notable

constraint was data quality and its lack of completeness. Inherent

issues such as device malfunctions, device misplacement, and

time zone travels are usual and expected in mobile and sensor

data collection studies. These issues were frequently observed

in our data set and contributed to different lengths of time series

data for each sensor feature in the modeling step. To address

this, we employed data imputation and elimination strategies.

The longitudinal repeated-measures design of our study helps

mitigate the influence of transient noise or anomalies in the

data. By modeling everyone’s rhythms across multiple weeks,

we reduced the influence of random confounding events.

However, we acknowledge that the persistent confounds

affecting multiple weeks of data for a given participant could

bias their overall rhythms models. We plan to further evaluate

our methods on other similar data sets of human behavior such

as Tesserae [44], TILES [45], and RAAMPS [46]. We also plan

to extend our study to other groups such as construction workers

and office staff in the future.

Few other limitations were imposed by the data set we used in

this paper, notably its inclusion of only 3 weeks of

noncontinuous self-reported productivity covering the beginning,

middle, and end of a semester despite continuous sensor data.

Although this was deliberately designed to reduce the burden

of frequent self-reports, it limited our ability to model the

relationship between productivity and rhythms continuously

and throughout the semester. In this study, we incorporated the

subjective assessments of daily productivity provided by

students through evening surveys. Such survey-based methods

are widely recognized in academic research as a standard

approach to measure productivity, as evidenced by studies such

as Tesserae [44], TILES [45], and RAAMPS [46]. It is worth

noting that while subjective measurements might introduce

biases, our data indicated that students maintained consistency

in their responses over several weeks. Furthermore, by creating

individual models for each student’s rhythms, we successfully

accounted for week-to-week variations, allowing us to assess

the relationship between these rhythms and the reported

productivity, even considering potential biases. Overall, we

were able to test our methods on this data. However, a larger

and more longitudinal data set is needed to fully characterize

biobehavioral rhythms from mobile data streams and model

their relationship with different outcomes.

Given the observational nature of collecting sensor data

unobtrusively “in the wild,” it is impossible to account for all

variables that may impact the data. However, we have taken

steps to qualify the potential limitations and strengthen the

validity of our digital phenotyping approach within reason. We

also suggest further research incorporating both subjective

self-reports and sensor data to better characterize confounding

contexts. With these caveats articulated, we believe our study

maintains substantial value in demonstrating the promise of

modeling multidimensional digital phenotypes through passively

collected mobile sensor data to advance biobehavioral research.

Conclusion

We explored the feasibility of modeling biobehavioral rhythms

from longitudinal multimodal mobile data streams, focusing on

college students to identify the relationship between these

rhythms and productivity levels. We introduced a

multidimensional correlation method to analyze connections

between variations in biobehavioral rhythms and productivity.

This approach enabled us to observe differences in the

longitudinal behavior of high and low-productive students and

highlighted that highly productive students encompass more

rhythm stability throughout the semester despite variations in

workload during different periods. We plan to further evaluate

by testing the applicability and adaptability of our methods with

diverse data sets. This research paves the way for novel

cyber-human systems that align with human beings’

biobehavioral rhythms to improve health, well-being, and work

performance.

JMIR AI 2024 | vol. 3 | e47194 | p. 11https://ai.jmir.org/2024/1/e47194

(page number not for citation purposes)

Yan et alJMIR AI

XSL•FO
RenderX



Acknowledgments

This research was supported by the National Science Foundation (NSF) under grant number IIS-1816687.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Correlation between productivity and each sensor feature.

[DOCX File , 24 KB-Multimedia Appendix 1]

Multimedia Appendix 2

Correlation between productivity and each rhythm parameter.

[DOCX File , 23 KB-Multimedia Appendix 2]

References

1. Doryab A, Dey AK, Kao G, Low C. Modeling biobehavioral rhythms with passive sensing in the wild: a case study to

predict readmission risk after pancreatic surgery. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019;3(1):1-21.

[doi: 10.1145/3314395]

2. Babkoff H, Mikulincer M, Caspy T, Carasso RL, Sing H. The implications of sleep loss for circadian performance accuracy.

Work Stress. 1989;3(1):3-14. [doi: 10.1080/02678378908256875]

3. Folkard S. Circadian performance rhythms: some practical and theoretical implications. Philos Trans R Soc Lond B Biol

Sci. 1990;327(1241):543-553. [FREE Full text] [doi: 10.1098/rstb.1990.0097] [Medline: 1970900]

4. Pope NG. How the time of day affects productivity: evidence from school schedules. Rev Econ Stat. 2016;98(1):1-11. [doi:

10.1162/rest_a_00525]

5. Smith MR, Eastman CI. Shift work: health, performance and safety problems, traditional countermeasures, and innovative

management strategies to reduce circadian misalignment. Nat Sci Sleep. 2012;4:111-132. [FREE Full text] [doi:

10.2147/NSS.S10372] [Medline: 23620685]

6. Vidacek S, Kaliterna L, Radosević-Vidacek B, Folkard S. Productivity on a weekly rotating shift system: circadian adjustment

and sleep deprivation effects? Ergonomics. 1986;29(12):1583-1590. [doi: 10.1080/00140138608967271] [Medline: 3816750]

7. Yan R, Liu X, Dutcher J, Tumminia M, Villalba D, Cohen S, et al. A computational framework for modeling biobehavioral

rhythms from mobile and wearable data streams. ACM Trans Intell Syst Technol. 2022;13(3):1-27. [FREE Full text] [doi:

10.1145/3510029]

8. Yan R, Ringwald WR, Hernandez JV, Kehl M, Bae SW, Dey AK, et al. Exploratory machine learning modeling of adaptive

and maladaptive personality traits from passively sensed behavior. Future Gener Comput Syst. 2022;132:266-281. [FREE

Full text] [doi: 10.1016/j.future.2022.02.010] [Medline: 35342213]

9. Yan R, Doryab A. Towards a computational framework for automated discovery and modeling of biological rhythms from

wearable data streams. In: Arai K, editor. Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems

Conference (IntelliSys) Volume 3. Cham. Springer International Publishing; 2021;643-661.

10. Antoniadis EA, Ko CH, Ralph MR, McDonald RJ. Circadian rhythms, aging and memory. Behav Brain Res.

2000;111(1-2):25-37. [doi: 10.1016/s0166-4328(00)00145-5] [Medline: 10840129]

11. Gale JE, Cox HI, Qian J, Block GD, Colwell CS, Matveyenko AV. Disruption of circadian rhythms accelerates development

of diabetes through pancreatic beta-cell loss and dysfunction. J Biol Rhythms. 2011;26(5):423-433. [FREE Full text] [doi:

10.1177/0748730411416341] [Medline: 21921296]

12. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci.

2019;20(1):49-65. [FREE Full text] [doi: 10.1038/s41583-018-0088-y] [Medline: 30459365]

13. Bellivier F, Geoffroy PA, Etain B, Scott J. Sleep- and circadian rhythm-associated pathways as therapeutic targets in bipolar

disorder. Expert Opin Ther Targets. 2015;19(6):747-763. [doi: 10.1517/14728222.2015.1018822] [Medline: 25726988]

14. Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol. 2008;23(7):571-585. [FREE

Full text] [doi: 10.1002/hup.964] [Medline: 18680211]

15. Wulff K, Dijk DJ, Middleton B, Foster RG, Joyce EM. Sleep and circadian rhythm disruption in schizophrenia. Br J

Psychiatry. 2012;200(4):308-316. [FREE Full text] [doi: 10.1192/bjp.bp.111.096321] [Medline: 22194182]

16. Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP, Vitiello MV, et al. Circadian rhythm sleep disorders: part I,

basic principles, shift work and jet lag disorders. Sleep. 2007;30(11):1460-1483. [FREE Full text] [doi:

10.1093/sleep/30.11.1460] [Medline: 18041480]

17. Valdez P. Circadian rhythms in attention. Yale J Biol Med. 2019;92(1):81-92. [FREE Full text] [Medline: 30923475]

JMIR AI 2024 | vol. 3 | e47194 | p. 12https://ai.jmir.org/2024/1/e47194

(page number not for citation purposes)

Yan et alJMIR AI

XSL•FO
RenderX



18. Abdullah S, Matthews M, Murnane EL, Gay G, Choudhury T. Towards circadian computing: "early to bed and early to

rise" makes some of us unhealthy and sleep deprived. 2014. Presented at: UbiComp '14: Proceedings of the 2014 ACM

International Joint Conference on Pervasive and Ubiquitous Computing; September 13-17, 2014;673-684; Seattle, Washington.

[doi: 10.1145/2632048.2632100]

19. Murnane EL, Abdullah S, Matthews M, Kay M, Kientz JA, Choudhury T, et al. Mobile manifestations of alertness: connecting

biological rhythms with patterns of smartphone app use. 2016. Presented at: MobileHCI '16: Proceedings of the 18th

International Conference on Human-Computer Interaction with Mobile Devices and Services; September 6-9, 2016;465-477;

Florence, Italy. [doi: 10.1145/2935334.2935383]

20. Gloria M, Shamsi TI, Mary C, Paul J, Akane S, Yuliya L. Email duration, batching and self-interruption: patterns of email

use on productivity and stress. 2016. Presented at: CHI '16: Proceedings of the 2016 CHI Conference on Human Factors

in Computing Systems; May 7-12, 2016;1717-1728; San Jose, California, USA. [doi: 10.1145/2858036.2858262]

21. Garza JL, Cavallari JM, Eijckelhof BHW, Huysmans MA, Thamsuwan O, Johnson PW, et al. Office workers with high

effort-reward imbalance and overcommitment have greater decreases in heart rate variability over a 2-h working period.

Int Arch Occup Environ Health. 2015;88(5):565-575. [doi: 10.1007/s00420-014-0983-0] [Medline: 25249418]

22. Gatti UC, Migliaccio GC, Bogus SM, Schneider S. Using wearable physiological status monitors for analyzing the physical

strain-productivity relationship for construction tasks. Comput Civ Eng. 2012.:577-585. [doi: 10.1061/9780784412343.0073]

23. Lee W, Lin KY, Seto E, Migliaccio GC. Wearable sensors for monitoring on-duty and off-duty worker physiological status

and activities in construction. Autom Constr. 2017;83:341-353. [doi: 10.1016/j.autcon.2017.06.012]

24. Punait S, Lewis GF. Theory informed framework for integrating environmental and physiologic data in applications targeting

productivity and well-being in workplace. 2019. Presented at: UbiComp/ISWC '19 Adjunct: Adjunct Proceedings of the

2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM

International Symposium on Wearable Computers; September 9-13, 2019;179-182; London, United Kingdom. [doi:

10.1145/3341162.3343829]

25. Aryal A, Ghahramani A, Becerik-Gerber B. Monitoring fatigue in construction workers using physiological measurements.

Autom Constr. 2017;82:154-165. [doi: 10.1016/j.autcon.2017.03.003]

26. Mak CM, Lui YP. The effect of sound on office productivity. Build Serv Eng Res Technol. 2012;33(3):339-345. [doi:

10.1177/0143624411412253]

27. Seppanen O, Fisk WJ, Faulkner D. Control of temperature for health and productivity in offices. Lawrence Berkeley National

Laboratory. 2004. URL: https://escholarship.org/content/qt39s1m92c/qt39s1m92c.pdf [accessed 2024-02-23]

28. Tanabe SI, Nishihara N, Haneda M. Indoor temperature, productivity, and fatigue in office tasks. HVACR Res.

2007;13(4):623-633. [doi: 10.1080/10789669.2007.10390975]

29. Wargocki P, Wyon DP, Sundell J, Clausen G, Fanger PO. The effects of outdoor air supply rate in an office on perceived

air quality, Sick Building Syndrome (SBS) symptoms and productivity. Indoor Air. 2000;10(4):222-236. [FREE Full text]

[doi: 10.1034/j.1600-0668.2000.010004222.x] [Medline: 11089327]

30. Mirjafari S, Masaba K, Grover T, Wang W, Audia P, Campbell AT, et al. Differentiating higher and lower job performers

in the workplace using mobile sensing. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019;3(2):1-24. [doi:

10.1145/3328908]

31. van Vugt M. Using biometric sensors to measure productivity. In: Sadowski C, Zimmermann T, editors. Rethinking

Productivity in Software Engineering. Berkeley, CA. Apress; 2019;159-167.

32. Das Swain V, Saha K, Rajvanshy H, Sirigiri A, Gregg JM, Lin S, et al. A multisensor person-centered approach to understand

the role of daily activities in job performance with organizational personas. Proc ACM Interact Mob Wearable Ubiquitous

Technol. 2020;3(4):1-27. [doi: 10.1145/3369828]

33. Ferreira D, Kostakos V, Dey AK. AWARE: mobile context instrumentation framework. Front ICT. 2015;2:6. [FREE Full

text] [doi: 10.3389/fict.2015.00006]

34. Doryab A, Chikarsel P, Liu X, Dey AK. Extraction of behavioral features from smartphone and wearable data. ArXiv.

Preprint posted online on December 18, 2018. [FREE Full text] [doi: 10.48550/arXiv.1812.10394]

35. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduction to imputation of missing

values. J Clin Epidemiol. 2006;59(10):1087-1091. [FREE Full text] [doi: 10.1016/j.jclinepi.2006.01.014] [Medline:

16980149]

36. Lin WC, Tsai CF. Missing value imputation: a review and analysis of the literature (2006–2017). Artif Intell Rev.

2020;53(2):1487-1509. [doi: 10.1007/s10462-019-09709-4]

37. Halberg F. Chronobiology. Annu Rev Physiol. 1969;31:675-726. [doi: 10.1146/annurev.ph.31.030169.003331] [Medline:

4885778]

38. Halberg F, Engeli M, Hamburger C, Hillman D. Spectral resolution of low-frequency, small-amplitude rhythms in excreted

17-ketosteroids; probable androgen-induced circaseptan desynchronization. Acta Endocrinol (Copenh).

1965;50(4_Suppl):S5-S54. [doi: 10.1530/acta.0.050s0005] [Medline: 5898281]

39. Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model. 2014;11(1):16. [FREE Full text] [doi:

10.1186/1742-4682-11-16] [Medline: 24725531]

JMIR AI 2024 | vol. 3 | e47194 | p. 13https://ai.jmir.org/2024/1/e47194

(page number not for citation purposes)

Yan et alJMIR AI

XSL•FO
RenderX



40. Fernández JR, Hermida RC, Mojón A. Chronobiological analysis techniques. Application to blood pressure. Philos Trans

A Math Phys Eng Sci. 2009;367(1887):431-445. [FREE Full text] [doi: 10.1098/rsta.2008.0231] [Medline: 18940774]

41. Gierke CL, Cornelissen G. Chronomics Analysis Toolkit (CATkit). Biol Rhythm Res. 2016;47(2):163-181. [doi:

10.1080/09291016.2015.1094965]

42. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis, 2nd Edition. Hoboken, NJ. John

Wiley & Sons; 2021.

43. Fisher RA. Statistical methods for research workers. In: Kotz S, Johnson NL, editors. Breakthroughs in Statistics. Springer

Series in Statistics. New York, NY. Springer; 1992;66-70.

44. Mattingly SM, Gregg JM, Audia P, Bayraktaroglu AE, Campbell AT, Chawla NV, et al. The Tesserae project: large-scale,

longitudinal, in situ, multimodal sensing of information workers. 2019. Presented at: CHI EA '19: Extended Abstracts of

the 2019 CHI Conference on Human Factors in Computing Systems; May 4-9, 2019;1-8; Glasgow, Scotland, UK. [doi:

10.1145/3290607.3299041]

45. Mundnich K, Booth BM, L'Hommedieu M, Feng T, Girault B, L'Hommedieu J, et al. TILES-2018, a longitudinal physiologic

and behavioral data set of hospital workers. Sci Data. 2020;7(1):354. [doi: 10.1038/s41597-020-00655-3] [Medline:

33067468]

46. Danvers A, Notaro G, Kraft A, Baraniecki L, Baranski E, Alexander W, et al. Rapid Automatic and Adaptive Models for

Performance Prediction (RAAMP2) Dataset. Center for Open Science. 2020. URL: https://osf.io/9e86j/ [accessed 2024-02-23]

Abbreviations

Amp: amplitude

IP: integrated P value

IPR: integrated percent rhythm

MESOR: Midline Estimating Statistic of Rhythm

PHI: acrophase

PR: percent rhythm

Edited by J Sun; submitted 12.03.23; peer-reviewed by J Wang, PB Chandrashekar, E Sükei; comments to author 31.07.23; revised

version received 31.10.23; accepted 15.02.24; published 18.04.24

Please cite as:

Yan R, Liu X, Dutcher JM, Tumminia MJ, Villalba D, Cohen S, Creswell JD, Creswell K, Mankoff J, Dey AK, Doryab A

Identifying Links Between Productivity and Biobehavioral Rhythms Modeled From Multimodal Sensor Streams: Exploratory Quantitative

Study

JMIR AI 2024;3:e47194

URL: https://ai.jmir.org/2024/1/e47194

doi: 10.2196/47194

PMID:

©Runze Yan, Xinwen Liu, Janine M Dutcher, Michael J Tumminia, Daniella Villalba, Sheldon Cohen, John D Creswell, Kasey

Creswell, Jennifer Mankoff, Anind K Dey, Afsaneh Doryab. Originally published in JMIR AI (https://ai.jmir.org), 18.04.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work, first published in JMIR AI, is properly cited. The complete bibliographic information, a link to the

original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

JMIR AI 2024 | vol. 3 | e47194 | p. 14https://ai.jmir.org/2024/1/e47194

(page number not for citation purposes)

Yan et alJMIR AI

XSL•FO
RenderX


