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Abstract

Background: Biobehavioral rhythms are biological, behavioral, and psychosocial processes with repeating cycles. Abnormal
rhythms have been linked to various health issues, such as sleep disorders, obesity, and depression.

Objective: This study aims to identify links between productivity and biobehavioral rhythms modeled from passively collected
mobile data streams.

Methods: In this study, we used a multimodal mobile sensing data set consisting of data collected from smartphones and Fitbits
worn by 188 college students over a continuous period of 16 weeks. The participants reported their self-evaluated daily productivity
score (ranging from O to 4) during weeks 1, 6, and 15. To analyze the data, we modeled cyclic human behavior patterns based
on multimodal mobile sensing data gathered during weeks 1, 6, 15, and the adjacent weeks. Our methodology resulted in the
creation of a rhythm model for each sensor feature. Additionally, we developed a correlation-based approach to identify connections
between rhythm stability and high or low productivity levels.

Results: Differences exist in the biobehavioral rhythms of high- and low-productivity students, with those demonstrating greater
rhythm stability also exhibiting higher productivity levels. Notably, a negative correlation (C=-0.16) was observed between
productivity and the SE of the phase for the 24-hour period during week 1, with a higher SE indicative of lower rthythm stability.

Conclusions: Modeling biobehavioral rhythms has the potential to quantify and forecast productivity. The findings have
implications for building novel cyber-human systems that align with human beings’ biobehavioral rhythms to improve health,
well-being, and work performance.
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Introduction

Background

Biobehavioral rhythms—repeated cycles of biological,
behavioral, and psychological events—are indicative of different
life and health outcomes [1]. Chronobiology, which examines
periodic phenomena in living organisms, has demonstrated the
impact of circadian disruptions on people’s lives, including
physical and mental health as well as safety and work
performance in shift workers [2-6]. However, research in
chronobiology has primarily been conducted via manual
observations and subjective reports often restricted over a small
period of time. Advances in mobile and wearable devices
provide the possibility of automatic and rigorous collection of
longitudinal biobehavioral data from people’s personal devices
[7-9]. This longitudinal fine-grained data collected on a daily
basis have the potential to reveal micro- and macrolevel patterns
related to different biobehavioral outcomes.

In this study, we examine the relationship between cyclical
human behaviors and work efficiency using data from mobile
sensors. This analysis is based on data collected from the
smartphones and Fitbits of 166 college students, encompassing
patterns such as activity, communication, and sleep. Our main
objective is to determine variations in biobehavioral rhythms
across students of varying productivity levels and identify
particular rhythm traits associated with productivity.

Related Work
Modeling Biobehavioral Rhythms

Research in chronobiology that examines periodic phenomena
in living organisms is relatively mature, and existing studies
have confirmed that exploring human rhythms is an effective
way to diagnose and treat many illnesses such as cancer,
cardiovascular disease, and mental health problems [10-12].
For example, patients with depression, those with bipolar
disorder, and those with schizophrenia usually exhibit irregular
changes in circadian rhythm, and adjusting the circadian rhythm
is an efficient auxiliary method for treating these conditions
[13-15]. Disruption in biological rhythms is also caused by
changing lifestyles and environmental conditions such as travel
across time zones and shift work [16]. Night shift and morning
shift workers may be especially at risk of committing errors and
having accidents [17].

A few studies have used smartphone technology to track
circadian patterns. For example, Abdullah et al [18] used
patterns of phone usage to identify chronotypes of students
(early birds or night owls). Murnane et al [19] aggregated mobile
app usage features by body clock time and analyzed the
correlation between circadian rhythms in app usage and alertness
level. Doryab et al [ 1] demonstrated modeling of rhythms using
data from Fitbit devices in patients with cancer and showed that
disruption in circadian rhythms predicts readmission in patients
with cancer undergoing treatment. Yan et al [7] further
developed a computational framework for modeling
biobehavioral rhythms from multimodal sensor streams. While
our work leverages this framework to model biobehavioral
rhythms, we advance research in this domain by developing
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and applying algorithms to observe and measure changes in
multimodal biobehavioral rhythms across different periods and
between people with different productivity levels.

Productivity Assessment

Traditional productivity assessment approaches are typically
subjective, static evaluations administered as self-report surveys,
manager assessments, observations, or ability tests. Some studies
have used multitasking and interruptions, for example, checking
emails [20] and mental and physical fatigue as proxies for
productivity in workers and officers [21-24]. For example,
Gloria et al [20] tracked and analyzed email usage in affecting
workplace productivity and stress. Aryal et al [25] conducted
a simulated construction task for monitoring physical fatigue
by measuring changes in heart rate, skin temperature, and brain
signals. The study showed a direct relationship between physical
fatigue and heart rate metrics such as heart rate, heart rate
variability, and percentage of heart rate.

Recent studies on workplace productivity have used mobile,
wearable, and environmental sensors to track individuals’
behavior and environmental conditions to assess workers’ job
performance. For example, background noise, light, temperature,
and air quality have been shown as the 4 external factors
affecting productivity [26-29]. In a study by Mirjafari et al [30],
the analysis of phone usage, location, activity, sleep, and time
allocation of 554 participants indicated that the regularity of
behaviors distinguishes high and low performance. van Vugt
et al [31] suggested that eye-tracking could be used to measure
productivity. The hypothesis was that if the eyes of a person
remained at certain locations on the computer screen, they were
focused and thus productive. However, this theory has yet to
be evaluated in practice. In addition to external factors, research
studies have investigated the impact of internal factors and cues
in measuring productivity. For example, Das Swain et al [32]
demonstrated that static intrinsic personality can explain
workplace performance using data from 603 information
workers.

Our research is unique in measuring and assessing productivity
by leveraging cyclic biobehavioral patterns from passive data
streams to assess productivity. Our work is also the first to
measure daily productivity from multimodal mobile and
wearable data in college students.

Methods

Data Collection

We use a data set of smartphone and Fitbit logs collected from
188 students at an American university over the course of 1
semester. The data were collected as part of an extensive study
on students’ health and well-being. All participants were
first-year students, with their demographic details presented in
Table 1.

The AWARE data collection app [33] and Fitbit were used for
the collection of audio, Bluetooth, Wi-Fi, location, phone usage,
calls, calories, sleep, and steps. AWARE is an open-source data
collection framework that works both on Android and iOS
platforms. All participants used their smartphones, and this
study’s team provided a Fitbit Flex 2 to collect data. Students’
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productivity assessments were collected via an evening survey
during weeks 1, 6 (midsemester), and 15 (last week of classes)
of the semesters to avoid overburdening participants. The
assessment question included a single question: “How
productive did you feel today?” The possible responses ranged
from O (not productive at all) to 4 (extremely productive). The
mean and SD of self-evaluated productivity scores were
consistent for different sexes and major groups with no
significant difference: female (mean 1.65, SD 0.92), male (mean
1.80, SD 0.97), engineering (mean 1.71, SD 0.96), business
(mean 1.70, SD 0.99), science (mean 1.69, SD 0.94), art (mean
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1.76, SD 0.95), humanities (mean 1.68, SD 0.97), and undecided
(mean 1.67, SD 0.87).

Of the initial 188 first-year students, 166 produced subjective
assessments of their respective daily productivity. The response
rate fluctuated over the 3 weeks, with some students not
completing the surveys. The data set included 488 total
observations, represented as participant-week pairs. During the
introductory meeting, students were briefed about this study’s
objectives. This study’s goals were transparently communicated
without any deceit or exclusion.

Table 1. Demographic distribution of this study’s samples: a total of 188 first-year university students were enlisted as participants for this research.

Category and subcategory

Participants, n (%)

Sex
Male 111 (59)
Female 77 (41)
Race
Asian 107 (57)
Black 95
Hispanic 17 (9)
White 64 (34)
Major
Engineering 79 (42)
Art 30 (16)
Business 24 (13)
Science 23 (12)
Humanities 8(4)

Data Processing

Measuring Productivity Levels

As mentioned previously, while sensor data were collected
continuously for 16 weeks, self-reported productivity (by study
design) was only collected in weeks 1, 6, and 15. We used
productivity scores (0-4) to categorize participants into high
and low-productivity groups. These categories were used as
ground truth labels in the later analysis of the relationship
between rhythms and productivity. To identify the cutoff
threshold, we calculated the mean and median of the daily
productivity scores for all participants across all 3 weeks. The
mean of 1.89 (SD 0.94) and a median of 2 (IQR 1) indicated a
normal distribution across scores (verified by the Shapiro-Wilk
test, P=.12). Therefore, we used 2 as the threshold for
categorizing productivity, with scores less than 2 indicating low
productivity and scores equal to or above 2 indicating high
productivity. Figure 1 shows the distribution of the mean and
variance of daily productivity scores within each week. The
mean productivity has decreased in week 6 compared with week
1. Since week 6 is the midterm, a high workload and pressure
may make some students work more productively, but the
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pressure and stress may have the opposite effect on others. The
IQR of the mean of low productivity is wider than in week 1.
The mean and 75th percentile of variance are all less than one,
which is also the interval between the survey’s productivity
options. This indicates that the participants’ answers are
relatively stable each week. We, therefore, average the
productivity scores of all days in each week (including both
weekdays and weekends) as the weekly productivity score with
the same threshold to categorize each participant’s week average
into high or low productivity.

In addition to labeling each participant’s weekly data as high
or low productivity, we also need to further categorize
participants into high or low productivity to evaluate our rhythm
similarity methods described in the Methods section. We analyze
the combination of high and low productivity weeks for all
participants as shown in Table 2. We observe the number of
participants in different combinations is imbalanced and does
not create large enough groups for analyzing each combination
separately. We therefore categorize participants into high and
low productivity groups, where students with at least 2 weeks
of high productivity rates are categorized as high productivity
and the rest are placed into the low-productivity group.
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Figure 1. If the mean of 1 week’s daily productivity is above 2 (SD 0.21), the week will be labeled high productivity; otherwise, the week will be
labeled low productivity. Gray represents the mean and variance that come from weeks with high productivity, and orange represents the mean and
variance that come from weeks with low productivity. The medians of variance are all less than 0.5, and the 75 percentiles are within 1 no matter what
productivity the weeks have. The difference in productivity scores between the 2 adjacent options in the productivity survey is 1, so the low variance
indicates that most participants will keep the same productivity level during the whole week. The medians of the mean of both high and low productivity
are very close, but there are more small mean values in week 6 for low productivity and more large mean values in week 1 for high productivity.
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Table 2. Participant productivity®.

Week 1 Week 6 Week 15 Participants, n
High productivity group

High High High 13

High High Low 14

High Low High 12

Low High High 10
Low productivity group

High Low Low 29

Low High Low 4

Low Low High 17

Low Low Low 62

*The middle column lists all combinations of weekly productivity levels, and the right column shows the number of participants for each combination.
Many participants were inefficient for all 3 weeks. Participants were more likely to achieve high productivity in week 1 and had the most difficulty
achieving high productivity in week 6. Moreover, we aggregated the 8 combinations into 2 groups. Participants with at least 2 highly productive weeks
were assigned to the high-productivity group; otherwise, they were assigned to the low-productivity group.

intervals and extracted behavioral features in each interval

Feature Extraction following the descriptions documented by Doryab et al [34].

We extracted features in 2 processing layers. First, we
aggregated the raw sensor data into more meaningful behavioral
features to capture students’ social interaction, physical activity,
sleep, and academic life. The raw sensor data we collect are just
a series of numbers without providing much information. For
example, screen data are a time series of values from 0O to 3 (eg,
0121023...), which does not provide any helpful information,
but we can process this time series to extract more meaningful
information about how often the user has been interacting with
the phone. We then divided each data stream into hourly
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Typical features included statistical measures such as minimum,
maximum, mean, SD, length of the status in the hour, and more
complex behavioral features such as movement patterns and
type and duration of activities. Example features are shown in
Table 3. Finally, we modeled the cyclic pattern of each
behavioral feature using Cosinor, which provided a set of
parameters that describe the cyclic pattern. This process and
the list of rhythm parameters are detailed in the following
section.
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Table 3. Examples of sensor features.

Yan et al

Device and sensor Extracted feature

Percentage of time with voice, noise, or silence; minimum, maximum, mean, or SD of voice energy

Smartphone
Audio
Bluetooth Mean or total number of Bluetooth scans
Wi-Fi Number of unique Wi-Fi hotspots detected
Location

Location variance; percentage of time staying at home; number of visits; time spent at green areas, ath-

letic areas, academic areas, or outside campus

Phone usage
Fitbit

Sleep
periods

Steps

Calories
5-minute calories burned

Minutes interacting with phone; minimum, maximum, mean, or SD length of interaction periods

Minutes asleep, awake, or restless; minimum, maximum, or mean length of asleep, awake, or restless

Total number of steps; minimum, maximum, mean, and total length of active or sedentary periods

Minimum, maximum, mean, or total calories burned; minimum, maximum, mean, or total decrease in

Handling Missing Values

As data sets collected in the wild are expected to include noise
and missing data, we developed strategies to handle missing
data. The missing values were filled separately for different
participants and weeks using the local moving average
commonly used in time series. For example, if the hourly values
of location variance were missing at 2 PM and 3 PM on day 1
of week 1 for participant A, then we imputed the values as
follows: vy, = Vipm + Vgpm — Vipm) / (4= 1) and v3,, = vy, +
2 X (Vgp = Vipm) / (4 = 1). Moving average is the most suitable
interpolation method for rhythm modeling. Other methods such
as multiple interpolations and Expectation-Maximization
estimation introduce cross-correlation between features, and
regression estimation and k-nearest neighbor increase
auto-correlation of a single sensor feature [35,36]. However,
the moving average method is sensitive to the number of
continuous missing data. If the missing block is large, the
moving average will introduce high noise and bias, and the data
may need to be removed instead of imputed. We, therefore,
calculated the average length of continuous missing hour blocks
to decide the minimum threshold for removing data. The average
missing block was 1.7 (SD 0.41) data points in sensor streams
with less than 20% missing values. We, therefore, imputed the
behavioral feature streams with less than 20% missing values
and discarded the rest.

After cleaning the data, we ended up with a data set that included
101 sensor features related to location, calories, steps, and sleep.
The amount of weekly data we have for each feature changes
because some data from participants was removed during our
missing handling process. As an example, location features have
around 50 observations for week 1 and 15 and 22 observations
for week 6; calories and steps features have around 110
observations for weeks 1 and 6 and 80 observations for week
15.
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Modeling Biobehavioral Rhythms

To model rhythms from longitudinal biobehavioral data
collected in the wild, we used the Cosinor method introduced
by Halberg [37]. The Cosinor method forms a linear
combination of cosine curves with known frequencies to fit
cyclic time-series rhythm data and calculates rhythm parameters
using least square regression [38]. The Cosinor function can
take multiple periods as input parameters and use those to
generate a cyclic model of provided time series data. The
generated model includes a series of parameters that characterize
the cyclic behavior in the data stream. Textbox 1 details the
parameters, and Figure 2 [39] visually represents them. The
Cosinor method is mathematically expressed by Fernandez et
al [40] as:

C
2n(t; + B.)
Vi =M+ Accos< )+e (€))]

Te

where y; is the observation at time #;;  is the Midline Estimating
Statistic of Rhythm (MESOR); #; is the sampling time; is the
number of input periods; A,, T,, and @, represent the amplitude
(Amp), period, and acrophase (PHI), respectively; and is the
error. Cosinor also outputs the SE for MESOR, Amp, and PHI,
respectively.

We used Cosinor to build personal cyclic models per student
per sensor stream in weeks 1, 6, 15, and the weeks adjacent to
them (eg, for week 6, we use sensor data from weeks 5, 6, and
7 to build Cosinor models). We then used rhythm parameters
generated by those models in the correlation analysis. We
assumed all participants had normal daily rthythms and used the
input periods of 8, 12, and 24 hours in the Cosinor. The 8, 12,
and 24 hours reflect nocturnal, diurnal, and circadian duration,
respectively.
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Textbox 1. Definitions of rhythm parameters output from the Cosinor model [41].

Rhythm parameters and their definition

in our modeling approach.

e  MESOR: estimating the midline of the rhythm curves.

e  Fundamental period: the fundamental period is the least common multiple (LCM) of all individual periods. We use 8-, 12-, and 24-hour periods

e  Amplitude (Amp): half the difference between the maximum and the minimum of the best-fitted curve in an individual period.
e Acrophase (PHI): lag from a defined reference time point to the maximum point within an individual period.

e  Magnitude: half the difference between the maximum and the minimum of the best-fitted curve in the fundamental period.

e  Bathyphase: lag from a defined reference time point to the minimum point within an individual period.

e Orthophase: lag from a defined reference time point to the maximum point within the fundamental period.

e  Pvalue (P): P value indicates the significance level of the model fitted by an individual period.

Percent rhythm (PR): percent rhythm is the coefficient of determination (RZ) for the model using an individual period.

e Integrated P value (IP): the integrated P value indicates the significance level (P value) of the model fitted by the fundamental period.

Integrated percent rhythm (IPR): integrated percent rhythm is the (Rz) for the model using the fundamental period.

Figure 2. The cyclic wave is formed by fundamental parameters described in Table 3 (adapted from Cornelissen [7]). MESOR: Midline Estimating

Statistic of Rhythm.

e = = o = - - e m - -
| Orthophase

- —
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Magnitude

Measuring the Relationship Between Rhythms and
Productivity

We adopted the Pearson correlation analysis to identify
relationships between rhythms and productivity across time
windows (here weeks). Such a relationship, however, is
multidimensional, involving multiple sensors, features, and
rhythm parameters. To quantify this multidimensional
relationship, we developed a 2-step method. First, we calculated
the correlation coefficient between each rhythm parameter and
productivity score to understand how rhythm parameters
correlate with productivity and whether the correlation is
consistent across weeks. To account for the varied scales of
productivity and rhythm parameters, we initially applied
minimum-maximum normalization to both the productivity
scores and each rhythm parameter. Following this, we computed
the Pearson correlation coefficient and determined its
significance using a 2-tailed P value test. The first step resulted
in 1 correlation coefficient and 1 P value per behavioral feature,
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per rhythm parameter, and per time window (week) as shown
in Figure 3 (step 1). The correlation coefficient indicates how
closely the rhythm parameter and productivity score are related,
and whether they move together or in opposite ways. The P
value helps us understand if this relationship is significant or
merely coincidental.

Next, as presented in Figure 3, we adopt the Fisher method to
combine the correlation coefficient and its significance (P value)
of every combination of behavioral feature—rhythm
parameter—week. The Fisher method is a widely used
meta-analysis technique used for combining the results from
several independence tests [42,43]. These combinations provide
information about productivity-related variations of the rhythms
for each behavioral feature per week (2a in Figure 3) and
productivity-related variations of each rhythm parameter per
week (2b in Figure 3) regardless of behavior. While the
correlation coefficient represents the strength and direction of
the relationship, its significance reflects the reliability and
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generalizability of the relationship. We, therefore, aggregated
significant correlation coefficients for all rhythm parameters
per behavioral sensor feature (2a) as well as aggregated
significant correlation coefficients for all sensor features per
rhythm parameter per week (2b). In step 3 (3a and 3b), we
further combined correlation coefficients and significance scores
across all 3 weeks. The final step (4) summarizes the correlation
(and significance) values into 1 final score for each sensor

Yan et al

feature (4a) and for each rhythm feature (4b). The calculation
process is detailed in the Multimedia Appendices 1 and 2. Since
the number of observations is different for different rhythm
parameters, behavioral sensor features, and weeks due to missing
values, this analysis was only performed on the correlations
with more than 28 observations, which is the median value in
our data set.

Figure 3. The pipeline to aggregate the correlation for a multidimensional dataset with K sensor features, L rhythm parameters, and J time windows.
The pipeline can output the correlation between productivity and a single sensor, and the correlation between productivity and a single rhythm parameter.
In step 1, we got a correlation coefficient and a P value for each behavior, rhythm setting, and week. In step 2, we calculated how rhythms changed
related to productivity for each behavior sensor weekly (2a) and for each rhythm setting weekly (2b). In step 3, we combined the correlation and
importance scores from all 3 weeks. Finally, in step 4, we converted the correlation and importance values into 1 final score for each sensor behavior

(4a) and each rhythm setting (4b).
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Ethical Considerations

All data collection procedures were approved by an American
university’s institutional review board (Carnegie Mellon
University; STUDY2016_00000421).

Results

Overview

While correlations between rhythm parameters and productivity
scores were moderate across all behavioral sensor features and
all 3 weeks (Figure 4), we observed more pronounced
relationships between parameters related to regularity in thythm
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models, including SE, that is, deviation of the fitted model
parameter from the actual values, percent rhythms (PR and
integrated percent thythm [IPR]) or proportion of variation
accounted for by the fitted model, and the significance of the
fit (P value and integrated P value [IP]). In addition, the
aggregated negative correlation (indicated by the red line) in
the majority of these parameters across all 3 weeks indicates
lower rhythm irregularity in highly productive students. The
rhythm parameters for location features appeared to be dominant
in both aggregated correlation coefficients and significance
scores, followed by activity and sleep features (Figure 5). In
the following, we discuss our observations in detail.
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Figure 4. The heat map displays correlations between rhythm parameters and productivity by week. (A) Average correlation coefficients (C-RF) by
week (Week-C); (B) Average significance score (S-RF) by week (Week-S). AMP: amplitude; C: correlation coefficients; IP: integrated P value; IPR:
integrated percent rhythm; MESOR: Midline Statistic of Rhythm; P: P value; PHI: acrophase; PR: percent rhythm; RF: random forest; S: significance
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Figure 5. The heat map displays the correlation between sensor features and productivity by week. The left side shows the 10 sensor features with the
highest aggregated correlation over all 3 weeks, and the right side shows the 10 sensor features with the highest aggregated significance score over all
3 weeks. The blank cells shown in the figure mean that the relationship is not significant. (A) Average of correlation (C-SF); (B) Significance score of
correlation (S-SF). C: correlation coefficients; S: significance score; SF: sensor feature.
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Correlation Aggregation of Rhythm Parameters

Overview

The blue and red cells in Figure 4 show the correlation
aggregated by week for each rhythm parameter as calculated
using equations 8, 9, 11, and 13 in Multimedia Appendix 2.
Recall that these formulas aggregate correlation across all sensor
features for each rhythm parameter to measure the strength of
the correlation between productivity and the rhythm parameter.
Blue cells indicate a positive correlation while red cells indicate
a negative correlation.

The green cells in Figure 4 show the significance score by week
for each rhythm parameter as computed by equations 10 and
12 in Multimedia Appendix 2. These formulas calculate
correlation significance across all sensor features for each
rhythm parameter to measure the significance of the correlation
between productivity and the rhythm parameter. The higher the
significance score, the more significant the relationship is.

Week 1

In week 1, the majority of parameters that measure the
irregularity of the rhythm models correlate negatively with
productivity indicating more stable rhythms in the high
productivity group. For example, stronger correlations were
observed between productivity and the model fit for the
fundamental period (IP; C=-0.24), the 24-hour period (P-24;
C=-0.21), the 12-hour period (P-12; C=-0.22), the 8-hour period
(P-8; C=-0.21), the fundamental PR (IPR; C = 0.18), and SE
of phase fit for the 24-hour period (PHI_SE-24; C=-0.16).

The relationship between regularity in rhythms and productivity
is further reinforced by the negative aggregated correlation
coefficients for P-24, P-12, P-8, IP, and SE. Specifically, their
low values indicate that Cosinor was able to create close fits to
the actual data which means more regularity in the actual data
corresponds to high productivity. This further demonstrates a
lower rhythm variation in highly productive students.

The relationship between lower rhythm variability and higher
productivity is also observed in the correlation of MESOR_SE,
Amp_SE-8, Amp_SE-12, Amp_SE-24, and PHI_SE-24. The
values have a relatively high aggregated significance score
compared to other parameters. This means the SE has a more
significant relationship with productivity. Given that the SE is
also a metric reflecting the irregularity of rhythm models, its
negative correlation indicates less irregularity of the rhythm
models in high productivity.

The PR parameter also demonstrated a relationship between
low rhythm variability and high productivity. A higher PR
represents low variability in the actual data. Specifically, the
PR of the fundamental, 24-hour, 12-hour, and 8-hour periods
all have high positive aggregated correlation coefficients with
productivity, indicating lower variability in diurnal activities
for the highly productive students.

Week 6

Week 6 (midterm) projected a relatively different pattern. For
example, we found positive correlations between productivity
and MESOR_SE, Amp_SE-8, Amp_SE-12, and Amp_SE-24.
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Since Amp and MESOR are indicative of the intensity and
volume of activities, we see that highly productive students
performed more intense activity during week 6.

We also found Amp and MESOR have higher SE in the fitted
models. This implies higher variability in the intensity of regular
patterns during this week. This can be expected due to midterm
pressure.

Despite this increased variability of intensity of regular
activities, as demonstrated by the positive aggregated
correlations of IPR (C=0.24) and PR-24 (C=0.26) with
productivity, we see less irregularity in activity patterns during
this week for the highly productive students.

Finally, as in week 1, we see positive correlations between PR
and productivity. However, the correlation became more stable
in week 6 compared to week 1 with larger aggregated
significance scores.

Week 15

Week 15 (the week before finals) showed the strongest
correlations. For example, parameters that reflect irregularity
in thythms such as SE (eg, MESOR_SE, Amp_SE, and PHI_SE)
show high (mostly positive) correlations with productivity.
Parameters characterizing the fitted cyclic model such as
MESOR, phase, and Amp also show high (mostly positive)
correlations with productivity indicating higher intensity and
duration of behavioral activities during this week.

The value of some correlations, however, decreased from weeks
1 and 6 to week 15. For example, the correlation between PRs
(eg, IPR, PR_8, and PR_ 12) and productivity. Given the
increased workload activities close to final examinations, the
observed irregularity and divergence from the routine patterns
are expected.

Despite the decline in the value of some correlations,
observations across all 3 weeks still suggest an overall lower
irregularity in thythms among the high-productivity group. For
example, there is a consistent negative correlation of the
regularity indicators such as P-24, P-12, P-8, PHI-SE-24,
PHI-SE-12, PHI-SE-8, and IP. Moreover, parameters
representing the phase’s characteristics in rhythms including
orthophase, bathyphase, PHI-24, PHI-12, and PHI-8 exhibit
relatively high aggregated significance scores in all 3 weeks.
This means more regularity in phase is more significantly
correlated with high productivity. Thus, while further
explorations are needed, these observations indicate the
importance of rhythm stability in students’ productivity.

Correlation Aggregation of Sensor Features

Overview

Figure 5 shows the aggregated correlation and significance
scores by week for the top 10 sensor features calculated through
equations 2, 3, 4, 5, 6, and 7 in Multimedia Appendix 1. These
formulas calculate the aggregated correlation coefficients and
significance scores across all rhythm parameters for each sensor
feature to measure the strength of the correlation between
productivity and behavioral sensor features. Features with higher
significance scores have a more significant correlation with
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productivity. Overall, location features had a stronger aggregated
correlation and significance. The rhythm model for each sensor
feature was not consistently associated with productivity in all
3 weeks.

Week 1

In week 1, rhythm parameters for both the time spent in
frequently visited places and the frequency of visits in fraternity
or sorority houses (places for socializing) showed the highest
average positive correlations with productivity. A negative
correlation between productivity and off-campus duration was
also observed in the thythm models. Finally, we found patterns
of asleep and burned calories to have high significance scores.

Week 6

In week 6, the variance of the length or number of stays in
academic areas, halls, and apartments showed high negative
aggregated correlations with productivity (the left side of Figure
5), indicating that highly productive students had a stable living
and studying environment at home and school. Conversely, the
SD of duration in athletic areas was positively correlated with
productivity. This indicates higher variability in exercise
associated with high productivity. A similar conclusion can be
drawn with the data from the aggregated significance score data
(the right side of Figure 5).

Week 15

In week 15, we observed the highest aggregated significance
scores for rhythms of restless sleep duration, awake sleep

Yan et al

duration, time spent at greens, and sedentary duration. On the
left side of Figure 5, we see the time spent at greens was
positively correlated with productivity, whereas the radius of
the visited areas was negatively correlated with productivity.
This finding suggests that high-efficiency students reduced their
range of activities and spent time outdoors more frequently in
week 15.

We further select the “restless sleep” feature to visualize how
changes in rhythm parameters reflect the change in productivity
for 2 individual students in our sample (Figure 6). The left and
right columns in the figure show changes in rhythm parameters
between weeks for 1 high- and 1 low-productivity student,
respectively. While both students’ productivity levels lowered
in week 6, their rhythm parameters of MESOR (SE), Amp (SE),
and phase increased from week 1 to 6 with substantially higher
variations in the parameters of the low-productive student. After
week 6, the student’s productivity in the left column went back
to high while MESOR and Amp of their restless sleep rhythm
substantially lowered. However, the pattern for the student on
the right remained relatively unchanged. As the values of these
parameters reflect intensity (Amp and MESOR), duration
(phase), and variation (SE), the figure shows that an increase
in intensity, duration, and irregularity of restless sleep may be
indicative of lower productivity in both students. Although we
only look at 2 random participants, the positive and negative
changes in rhythm parameters and their accordance with changes
in productivity pose an interesting observation and call for
further exploration.

Figure 6. Change in restless sleep and productivity patterns of 2 sample students. Orange and gray represent high and low productivity, respectively.
The direction of the arrows indicates an increase or decrease of the rhythm parameter values between weeks. AMP: amplitude; MESOR: Midline

Estimating Statistic of Rhythm; PHI: acrophase.
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Discussion

Principal Findings

In this paper, we analyze cyclic human behavior using passive
multimodal mobile sensing data to understand its correlation
with work productivity. By creating rhythmic models for each
sensor type and employing a multidimensional correlation-based
algorithm, we examine the links between biobehavioral rhythms
and daily work performance evaluations. Our data are sourced
from smartphones and Fitbits of 166 college students, capturing
behaviors such as activity, communication, and sleep patterns.
The main aim of our analysis is to identify variations in
biobehavioral rhythms based on productivity levels and identify
specific rhythmic traits associated with them.

To the best of our knowledge, this study pioneers the modeling
relationships between daily productivity and biobehavioral
rhythms derived from passive sensor data. Notably, we evaluate
the capability to model cyclic behavior from detailed phone and
Fitbit data. Additionally, we introduce a novel method to
measure the correlation and importance of various sensors and
rhythms to productivity, which illuminates the connection
between rhythmic consistency and different levels of
productivity.

Overall, our results showed more rhythm stability in the
high-productivity group of students in our sample despite
changes in students’ workload in different weeks. This
observation was especially projected by lower variation
accounted for in fitted rhythm models (indicated by PRs and
SE parameters) and more significant fit levels (indicated by P
parameters) across the weeks. In addition, our correlation
analysis of rhythms for each sensor feature showed the
significance of consistent patterns in location and sleep to
productivity. While encouraging, these results call for more
data and analyses to replicate and improve.

Limitations

However, this study was not devoid of limitations. A notable
constraint was data quality and its lack of completeness. Inherent
issues such as device malfunctions, device misplacement, and
time zone travels are usual and expected in mobile and sensor
data collection studies. These issues were frequently observed
in our data set and contributed to different lengths of time series
data for each sensor feature in the modeling step. To address
this, we employed data imputation and elimination strategies.
The longitudinal repeated-measures design of our study helps
mitigate the influence of transient noise or anomalies in the
data. By modeling everyone’s rhythms across multiple weeks,
we reduced the influence of random confounding events.
However, we acknowledge that the persistent confounds
affecting multiple weeks of data for a given participant could
bias their overall rhythms models. We plan to further evaluate
our methods on other similar data sets of human behavior such
as Tesserae [44], TILES [45], and RAAMPS [46]. We also plan
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to extend our study to other groups such as construction workers
and office staff in the future.

Few other limitations were imposed by the data set we used in
this paper, notably its inclusion of only 3 weeks of
noncontinuous self-reported productivity covering the beginning,
middle, and end of a semester despite continuous sensor data.
Although this was deliberately designed to reduce the burden
of frequent self-reports, it limited our ability to model the
relationship between productivity and rhythms continuously
and throughout the semester. In this study, we incorporated the
subjective assessments of daily productivity provided by
students through evening surveys. Such survey-based methods
are widely recognized in academic research as a standard
approach to measure productivity, as evidenced by studies such
as Tesserae [44], TILES [45], and RAAMPS [46]. It is worth
noting that while subjective measurements might introduce
biases, our data indicated that students maintained consistency
in their responses over several weeks. Furthermore, by creating
individual models for each student’s rhythms, we successfully
accounted for week-to-week variations, allowing us to assess
the relationship between these rhythms and the reported
productivity, even considering potential biases. Overall, we
were able to test our methods on this data. However, a larger
and more longitudinal data set is needed to fully characterize
biobehavioral rhythms from mobile data streams and model
their relationship with different outcomes.

Given the observational nature of collecting sensor data
unobtrusively “in the wild,” it is impossible to account for all
variables that may impact the data. However, we have taken
steps to qualify the potential limitations and strengthen the
validity of our digital phenotyping approach within reason. We
also suggest further research incorporating both subjective
self-reports and sensor data to better characterize confounding
contexts. With these caveats articulated, we believe our study
maintains substantial value in demonstrating the promise of
modeling multidimensional digital phenotypes through passively
collected mobile sensor data to advance biobehavioral research.

Conclusion

We explored the feasibility of modeling biobehavioral rhythms
from longitudinal multimodal mobile data streams, focusing on
college students to identify the relationship between these
rhythms and productivity levels. We introduced a
multidimensional correlation method to analyze connections
between variations in biobehavioral rhythms and productivity.
This approach enabled us to observe differences in the
longitudinal behavior of high and low-productive students and
highlighted that highly productive students encompass more
rhythm stability throughout the semester despite variations in
workload during different periods. We plan to further evaluate
by testing the applicability and adaptability of our methods with
diverse data sets. This research paves the way for novel
cyber-human systems that align with human beings’
biobehavioral rhythms to improve health, well-being, and work
performance.
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