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ABSTRACT 
Content caching is vital for enhancing web server efficiency and reducing network congestion, particularly in platforms predicting 
user actions. Despite many studies conducted to improve cache replacement strategies, there remains space for improvement. 
This paper introduces STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML leverages 
available attributes within a platform to make intelligent cache replacement decisions offline. We have tested various Machine 
Learning and Deep Learning algorithms to adapt the one with the highest accuracy; we have integrated that algorithm into our 
cache replacement policy. This selected ML algorithm was employed to estimate the likelihood of cache objects being requested 
again, an essential factor in cache eviction scenarios. The IMDb dataset, constituting numerous videos with corresponding 
attributes, was utilized to conduct our experiment. The experimental section highlights our model’s efficacy, presenting 
comparative results compared to the established approaches based on raw cache hits and cache hit rates. 
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1. INTRODUCTION 
The rapidly evolving computing landscape has led to a significant efficiency mismatch between processors and 
input/output (I/O) peripherals like hard drives, printers, and keyboards. This gap has induced demand for advanced 
I/O architectures and efficient storage solutions to enhance communication between CPUs and storage devices. This 
demand is high for a wide range of applications, including real-time applications, gaming, high-performance 
computing, web services, and, notably, streaming services. These services require a highly efficient cache management 
mechanism to prevent performance bottlenecks due to frequent read-and-write calls, an operational characteristic that 
is quite prevalent in streaming services. 

Video streaming services operate in a realm where many users frequently and concurrently access vast amounts of 
data. In such platforms, content caching serves as temporary data storage and has become integral. This strategy 
involves holding copies of content near where it is frequently requested, increasing data retrieval performance by 
reducing data access latency. Fast and proficient storage mechanisms, such as Random Access Memory (RAM) and 
cache memory, are essential to counteract the complexities brought about by these stringent prerequisites. RAM acts 
as a transient principal memory during software execution, but the data it holds gets lost once the device is powered 
off. On the other hand, cache memory, being a small and high-speed memory segment, stores data that is accessed 
often, reducing the frequent need to access the hard disk. 

Efficient cache memory management is paramount due to cache memory’s limited size and the performance penalty 
associated with cache misses. A cache hit is when the requested data is available in the cache memory, assisting fast 
data retrieval. In contrast, a cache miss arises when the system needs to identify and reallocate data by replacing 
existing stored information, a comparatively slower process. Various cache replacement strategies strive to uphold a 
high cache hit ratio, aiming to diminish the frequency of data replacements to the lowest possible extent. Therefore, 
thorough planning and design are necessary to ensure high-efficiency performance in devices equipped with cache 
memories. 



 

Though efficient, established cache replacement policies, such as Most-Recently-Used (MRU), LRU, and LFU, are 
not universally suitable due to their workload dependency and rigid design [9]. Machine Learning (ML) and Deep 
Learning have proven to be versatile algorithms yielding promising results in various domains, from in-depth 
biomedical data analysis [4] to financial forecasting [5] and even complex tasks such as satellite image classification 
[19]. Given their wide range of successful applications, ML and Deep Learning have also been employed in the cache 
replacement domain to design proficient and effective policies. By leveraging prior data, they can discover patterns 
hidden in workloads, leading to improved decision-making and potentially a higher cache hit ratio. The rise of 
powerful computing devices, such as GPUs [22] and Tensor Processor Units (TPUs) [11], has enabled better training 
and execution rates for ML algorithms. 

In this study, we present STRCacheML, an innovative, ML-driven cache replacement policy designed specifically to 
increase the performance of content caching. STRCacheML harnesses the power of Machine Learning to learn 
dynamically from access patterns, improving upon established replacement policies. Our approach aims to enhance 
the performance of content caching, specifically in the context of streaming services, underlining how a well-calibrated 
application of Machine Learning can optimize and transform cache management efficiency. Our contributions 
presented here are: 

• We have developed a method for feature construction that takes full advantage of the available parameters on the 
platform to construct feature vectors for Machine Learning models. 

• We have evaluated a variety of Machine Learning and deep learning methodologies on initially constructed 
features and have selected the most effective model for our application. 

• We propose and demonstrate STRCacheML, a new cache replacement policy. By integrating the selected Machine 
Learning model, STRCacheML makes intelligent cache eviction decisions, enhancing the overall performance of 
content caching in streaming services. 

While ML-based policies promise improved performance, they also introduce new concerns, including the 
computational complexity associated with the runtime of ML algorithms, the need for training data, and, sometimes, 
the lack of interpretability of their decisions. Addressing these challenges requires a balanced approach that optimizes 
cache management efficiency and computational costs. To this end, our work focuses on the application of 
computationally less expensive ML models such as Random Forest (RF), Decision Tree, K-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). While advanced deep learning models can offer 
powerful predictive capabilities, they also typically require more computational resources and larger datasets for 
effective training [14], which may not be feasible or necessary in all application scenarios. 

2. RELATED WORK 
The evolution of cache replacement policies has spanned from standard methods like LRU, LFU, MRU, etc., to 
advanced methodologies incorporating Machine Learning, Deep Learning, and Reinforcement Learning (RL) models. 
Our work, STRCacheML, builds upon these developments to introduce an ML-guided content caching policy. 

Established cache management strategies like LRU, MRU, and LFU form the foundation of cache management 
methodologies, primarily based on recency and frequency of data requests. There has been substantial exploration of 
these methods in literature. Simultaneously, attempts to apply Machine Learning techniques to augment these 
strategies have gained momentum. For instance, [3] enhanced the LRU policy using supervised ML Algorithms like 
SVM, naive Bayes Classifier, and decision tree. Their work involved training ML models to predict data reusability, 
effectively boosting the LRU policy’s performance. Popularity distribution has been a significant factor in cache 
management. Empirical-theoretical findings in web caching have shaped the understanding of content distribution 
based on popularity, essentially, the likelihood of being requested in cache memory [8]. This research highlights the 
empirical data related to the distribution probabilities of popularity events or demands, which are critical to effectively 
managing web caches. One such practical law, Zipf’s, initially proposed for word frequency distribution in a language, 
states that the n-th most popular item arises with a probability proportional to 1/nα, where α > 1 [34]. In our work, 
STRCacheML, we leverage these empirical laws, specifically Zipf’s law, and synthesize datasets for training and 
testing our model. 
Deep learning techniques have been increasingly applied in cache management domains. For example, Zhong et al. 
proposed an LSTM-based model designed to predict the properties of objects to be stored in cache memory, which led 





 

 
3. PROPOSED APPROACH 
We propose “STRCacheML”, an innovative content caching replacement policy guided by a Machine Learning (ML) 
algorithm. Our primary objective is to enhance content caching in streaming services by capitalizing on available 
attributes to construct feature vectors. The constructed feature vectors guide our ML model during the training and 
testing phases to make intelligent cache replacement decisions. 

While STRCacheML is designed to operate in a broad range of environments, it is worth noting that specific 
adaptations may be necessary to suit different datasets or settings. For instance, during our experiment with the IMDb 
dataset, we encountered a lack of real inquiry data. To overcome this, we introduced a simulation using a probability 
distribution to mimic a real-world environment. A detailed explanation of this adaptation and our experimental setup 
will be provided in a subsequent section. 
Our study examined a range of accessible and computationally efficient Machine Learning algorithms, including the 
Multilayer Perceptron (MLP) from the deep learning domain. This approach was motivated by our aim to explore and 
exploit the computational and performance characteristics of these models, which are both accessible and less 
computationally intensive, within a content caching platform. 
The components of our approach are listed in the following subsections: 

3.1. Feature Vector Construction 
We consider 𝑂 = {𝑜1, 𝑜2, 𝑜3, . . . , 𝑜𝑛}, the set of all objects available on the platform. We represent all the objects, 𝑜 ∈
 𝑂, by a feature vector, 𝐹(𝑜), including attributes such as one-hot encoding of genres, the object’s popularity over a 
specific period, historical inquiry data, object’s size, etc. We represent each object by a feature vector, 𝐹(𝑜), which 
can be mathematically illustrated as follows: 
For every object 𝑜 in the set of all objects 𝑂, let 𝐴 = {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑚} be the set of all possible attributes. The 
features vector is built as, 

 𝐹(𝑜) = 𝑎1 ⊕ 𝑎2 ⊕ ⋯ ⊕ 𝑎𝑚 (1) 

where each ai represents an attribute of o written as a vector and ⊕ corresponds to vector concatenation. 

3.2. Cache Memory and Inquiry Simulation 
Let 𝐶 represent our cache with a limited size m, where each content, 𝑐 ∈ 𝐶, is an object o from our set 𝑂. We simulate 
object requests using a probability distribution, 𝑃(𝑜), defined on the set 𝑂 where the probability of being requested is 
proportional to the popularity of the given object o (See Figure 2). The simulation is modeled as follows: For all 
contents, 𝑐 ∈ 𝐶, where 𝐶 ⊆ 𝑂, draw samples 𝑜 to be processed on the cache 𝐶 by “STRCacheML”.  
Moreover, the cache has its probability distribution defined for the objects 𝑐 ∈ 𝐶, which is kept tracked during the 
execution let 𝑟𝑐 denote the number of inquiries made to object 𝑐 until the current date. The total number of inquiries 
for all objects is represented as ∑ 𝑟𝑜𝑜∈𝐶  and the probability distribution of requests is given by 

 𝑃𝐶(𝑐) =
𝑟𝑐

∑ 𝑟𝑜𝑜∈𝐶
 (2) 

3.3. Training and Selection of ML Algorithm 
A series of ML models, {M1, M2, ..., Mk}, (where k denotes the total number of ML algorithms selected) are trained on 
these feature vectors, F(o), obtained from each o ∈ O. After training, we evaluate the models’ performance using both 
the training and testing datasets, focusing on the accuracy metric. With this assessment, we identify the model that 
provides the highest accuracy, which will be selected as our preferred ML model, M⋆. This procedure can be illustrated 
as follows: 
A set of ML models, {𝑀1 , 𝑀2, . . . , 𝑀𝑘} are trained using the feature vector 𝐹(𝑜), as constructed in equation (1). Among 
all trained models, we identify the optimal ML model as 𝑀⋆ for our cache replacement policy. The selection criterion 
is given by the model’s accuracy, as formalized in the following equation: 

 𝑀⋆ = argmax𝑀𝑖∈{𝑀1 ,…,𝑀𝑘}  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑀𝑖) (3) 



 

3.4. Cache Eviction 
When cache C reaches its capacity (i.e., |𝐶|  =  𝑚 ) and a cache miss occurs, the ML model, 𝑀⋆ , is employed to 
determine the likelihood, 𝐿(𝑜), of each object o in cache C being requested again. The object with the least likelihood, 
𝐿(𝑜), as computed by 𝑀⋆(𝐹(𝑜)), is selected for eviction to make space for new content in the cache. 
Given a cache miss M and the cache memory is full, i.e., |𝐶|  =  𝑚, the likelihood of each object being requested again 
is computed as 𝐿(𝑜) =  𝑀⋆(𝐹(𝑜)) for each 𝑜 ∈ 𝐶. Finally, the object 𝑜̂ to be evicted is expressed as: 

  𝑜̂ = argmin𝑜∈𝐶  𝐿(𝑜) (4) 

3.5. STRCacheML 
By integrating equations (1), (2), (3), and (4), we formulate STRCacheML, our proposed cache replacement policy. 
This policy can be outlined as follows: 
Given an object inquiry (request) for any 𝑜 ∈ 𝑂: 

1) If 𝑜 ∈ 𝐶 (i.e., a cache hit), the inquired object is acquired from the cache without initiating the cache replacement 
procedure. 

2) If 𝑜 ∉ 𝐶 (i.e., a cache miss) and |𝐶|  <  𝑚, the object is first fetched from the backend (main memory in the 
platform) and added to the cache. 

3) If 𝑜 ∉ 𝐶 (i.e., a cache miss) and |𝐶|  =  𝑚 (i.e., the cache is full), we calculate the likelihood 𝐿(𝑜′) of each object 
𝑜′ ∈ 𝐶 in the cache being requested again, as defined in equation (4) above. The object 𝑜̂ = argmin𝑜′∈𝐶 𝐿(𝑜′) is 
evicted from the cache, and the requested object o is accessed from the main memory and added to the cache. 

Through these steps, we introduce STRCacheML, an ML-based cache replacement policy that leverages rich feature 
vectors and predictive modeling to make intelligent content caching decisions, potentially enhancing the cache 
replacement performance in streaming services. 
 

 
Figure 2. Video popularity distribution for the 500 most popular videos in IMDb. It is interesting how video 

distribution follows Zipf’s law if they are sorted by some popularity attribute. 

 

4. DATA PREPROCESSING, SIMULATION AND DATASET PREPARATION 
Data preprocessing, a critical aspect of the Knowledge Discovery from Data (KDD) process, involves a set of 
techniques employed before applying data mining methods. This technique handles inconsistencies, redundancies, and 
other data imperfections, making the data suitable for the chosen Machine Learning algorithm. 



 

In our study, we used a dataset sourced from IMDb [13] for experimental purposes, potentially showcasing the 
efficiency of our policy in a video streaming platform. Since the data obtained from IMDb were raw and unprocessed, 
preprocessing steps were required to prepare the dataset for Machine Learning applications. First, we utilized Python 
libraries such as pandas and NumPy to handle null values, mostly deleting the data entries from the dataset. To remove 
discrepancies in the dataset, we used the Scikit-learn library, specifically its preprocessing module, to maximize the 
normalization of the data as needed. Lastly, we decided to disregard specific attributes that were deemed unsuitable 
for training our ML models, focusing on five attributes: “Primary Title”, “Start Year”, “Run Time”, “Genres”, 
“Average Rating,” and “Number of Votes”.  In the absence of direct information on video sizes within our dataset, we 
adapted the “Run Time” attribute available to act as a proxy. To the best of our knowledge, we believe this adaptation 
presents a practical approximation for cache replacement policies often influenced by video sizes. Therefore, even 
within the simplification and simulation, our model maintains a level of accuracy to a certain valuable extent in 
representing the characteristics influential to real-world caching scenarios. 

We created a virtual cache with predetermined memory limits to simulate a realistic environment for our cache 
replacement policy, STRCacheML. In the absence of real-world inquiry data, we generated a series of 10000 cache 
inquiries based on a probability distribution derived from the “Number of Votes” each video received on IMDb. These 
votes were taken as a proxy for the videos' popularity, which suggested their likelihood of being requested (refer to 
Figure 2, which illustrates the probability distribution across the videos). The outcome of each simulated inquiry was 
determined by whether the requested video was present in our cache, resulting in either a cache hit or miss. 

From the initial simulation of inquiries using the IMDb dataset, we constructed a comprehensive dataset comprising 
19992 samples. Each sample was associated with a feature vector, denoted as 𝐹(𝑜), representing the attributes of the 
requested video, including genre, run time, and calculated popularity. These feature vectors were then labeled with 
binary values, assigning “1” for a cache hit and “0” for a cache miss. This labeling process was important for training 
the Machine Learning models, enabling them to understand the feature vectors that contribute to cache hits or misses. 
Such understanding is contributory in producing likelihood estimations that inform cache eviction decisions in 
subsequent phases. Thus, our dataset comprised these feature vectors 𝑋 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛]  along with their 
corresponding binary labels, forming the foundation for training our Machine Learning models to learn from historical 
cache performance under conventional policies and make predictive decisions for future cache management. 
 
By integrating both static attributes of videos and dynamic user interaction data in a simulated environment, our 
dataset provides Machine Learning models with a comprehensive understanding of video demand over time. By 
incorporating historical usage data along with evolving trends in video popularity within a simulated environment, 
our methodology ensures that STRCacheML adapts to changing user behaviors, enhancing the predictive accuracy 
and practical applicability of our cache replacement policy. 

 

4.1. Selection of ML Algorithms and Hyperparameter Tuning 
Building upon the earlier discussion, feature selection and hyperparameter tuning play an instrumental role in 
achieving accurate models [26]. The training parameters, model architecture, and features can significantly determine 
model performance. During the selection of ML algorithms, observing each algorithm’s performance on both the test 
and training sets is crucial to recognize if the model is overfitting, which memorizes training features rather than 
learning the underlying patterns. Overfitting can lead to increased computational complexity, reduced accuracy, and 
false confidence in the model’s predictions [32]. 

In our study, we conducted experiments divided into two phases. First, we trained different machine learning models 
as described in building a query dataset based on the probability of being requested 𝑃(𝑜) where the object to be queried 
next is predicted. For each model, 80% of the dataset was used as a training set, whereas the remaining 20% was used 
to test the model’s capabilities. It is worth mentioning that this dataset setup provides a platform for training and 
evaluating supervised ML algorithms. Second, we choose the best ML using equation (3) to build the cache 
replacement policy. We initially selected the Random Forest (RF) algorithm to understand its potential usability in our 
mechanism. Random Forest, developed by Leo Breiman and Adele Cutler, is a widely adopted ML algorithm. It 
traverses multiple decision trees, each contributing to sub-decisions and aggregating their outcomes to make a final 
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the time complexity of the model while the accuracy plateaued. GridSearchCV allowed us to navigate through multiple 
combinations of parameters and revealed that a model with two hidden layers of 256 and 128 nodes, respectively, 
provided an optimal balance between accuracy and computational efficiency for our dataset. Consequently, we 
decided to adhere to this model structure. Upon comparison of accuracy and time complexities among above 
mentioned ML models, the MLP model concluded as the most efficient with an impressive testing accuracy of 0.97 
on the dataset, surpassing the accuracy levels of SVM, GBM (around 0.60), and RF (around 0.84) and KNN (around 
0.84) as shown in Figure 3. Hence, MLP was chosen as the final ML model for our cache replacement policy. 
 
 
5. SIMULATIONS, COMPARISONS, AND EVALUATION 
We conducted our experiments in a Python 3.10.12 environment, utilizing the TensorFlow framework for machine 
learning computations. The computational workload was managed by an NVIDIA T4 GPU with 15GB of GPU RAM. 
Throughout our study, we conduct experiments using a fundamental cache structure, divided into individual slots 
capable of storing one video each. Our reference for cache capacity is its cache size, the number of slots. We evaluate 
the performance of our proposed model, STRCacheML, by comparing it with established caching policies like LRU, 
LFU, and Least Recently Frequently Used (LRFU). We utilize raw cache hit and cache hit rate as our key 
computational and comparison metrics. The raw cache hit measures the instances where the requested object is 
available in the cache. On the other hand, the cache hit rate provides a more insightful metric, indicating the proportion 
of total requests resulting in a cache hit. It is derived from the formula: 

  Cache Hit Rate =
Cache Hits

Cache Hits +  Cache Misses
 (5) 

For STRCacheML, we implement a predictive and adaptive approach assisted by a trained MLP model, which 
sequentially updates based on inquiries and cache hits during the simulations. The MLP model, trained on historical 
video access data, predicts the popularity trend of videos, aiding dynamic cache management. When a video request 
occurs and the video is absent in the cache, STRCacheML utilizes its core predictive principle and assigns each 
video in the cache a score corresponding to its predicted future popularity. During the eviction procedure, the video 
least likely to be requested again is removed from the cache to accommodate new content. This approach inherently 
considers user preferences, as it is driven by user behavior and inquiry patterns. Therefore, it allows STRCacheML 
to adapt to changing user preferences, an important aspect in content caching. 
 
We carefully applied STRCacheML along with the established cache policies to the final phase of simulated cache 
inquires and virtual cache memory to accurately measure the cache hits and cache hit rates. For established caching 
policies like LRU, LFU, and LRFU, we thoroughly simulated their principle on the dataset. For LRU, we keep track 
of the timestamp for each video, reflecting the time an inquiry was made for the given video. Also, for LFU, we 
applied its principles by computing a frequency count for each video in the cache, recording the total number of 
requests made, and evicting the video based on frequency. For LRFU, we designed a function to dynamically update 
each video’s Combined Recency and Frequency (CRF) value upon each inquiry. Eviction from the cache was based 
on the CRF values calculated for each video. 

We conducted experiments on two different simulations, Simulation1 and Simulation2, designed to represent different 
usage scenarios. In Simulation1, we constructed a scheme that involved 10000 video queries and a cache size of 25 
slots. This scenario was chosen to simulate a lower to moderate level of user demand, where the cache size and number 
of queries were small compared to Simulation2. The selected cache replacement policies, including LRU, LFU, LRFU, 
and STRCacheML, were sequentially implemented and the count of cache hits along with the cache hit rates were 
recorded 

For the second simulation, Simulation2, we escalated the volume of video queries and cache size to 20000 queries and 
50 slots, respectively. This simulation was designed to represent a situation of high demand, with significantly more 
queries and a larger cache size than the first simulation. Just as in Simulation1, the same cache replacement strategies 
were utilized, the record of cache hits was noted, and the cache hit rate was consequently computed. 



 
 

 
 

 



 
 
 



 

overloading through improved data handling. Expanding beyond streaming, this approach proves beneficial in various 
domains such as e-commerce, content delivery networks (CDNs), and social media platforms. This is because our 
approach’s scalability relies on available object parameters, a common aspect across different content delivery 
systems. In these contexts, a cohesive interplay between user-generated data and the design, training, and development 
of ML cache policies becomes helpful for improving content delivery and user experience. Another notable concern 
arises with user data privacy. It is important to note that approaches relying on training from user data involve learning 
patterns from potentially sensitive information. Various established techniques, including anonymization and more 
robust cryptographic methods, such as differential privacy or direct data encoding, can be utilized to address this issue. 
In the latter case, methods like Multi-Party Computation can be integrated to enable computation on encrypted data, 
ensuring that the data remains private. These alternatives present diverse options for tackling the challenge of 
preserving privacy in our methodology, STRCacheML, while extracting learnable patterns from user data.  

In conclusion, STRCacheML, by integrating Machine Learning techniques with content caching, demonstrates an 
advancement in the domain of Machine Learning Applications, particularly in information retrieval and intelligent 
cache management systems, leading to improved efficiency and adaptability in streaming services. With its potential 
to extend benefits to CDN platforms beyond content caching in streaming services, STRCacheML may encounter 
some limitations within specific scopes. These limitations can be addressed through broader experimentation and 
dataset expansion, areas we identify as opportunities for future research. 

Future work will explore more advanced ML and Deep Learning techniques, such as Recurrent Neural Networks and 
Transformers, to be integrated into STRCacheML, also maintaining computational efficiency and user privacy. There 
could be a potential benefit of incorporating a hybrid method into the cache replacement policy. Additionally, 
investigating other possible attributes and sophisticated feature engineering strategies by generalizing the applicability 
could enhance model performance while maintaining computational efficiency.  
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