

STRCacheML: A Machine Learning-Assisted

Content Caching Policy for Streaming Services

Arpan Mahara, Jose Fuentes, Christian Poellabauer, Naphtali D. Rishe

Knight Foundation School of Computing and Information Sciences
Florida International University, Florida, USA

amaha038@fiu.edu, jfuen099@fiu.edu, cpoellab@fiu.edu, rishen@fiu.edu

ABSTRACT
Content caching is vital for enhancing web server efficiency and reducing network congestion, particularly in platforms predicting
user actions. Despite many studies conducted to improve cache replacement strategies, there remains space for improvement.
This paper introduces STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML leverages
available attributes within a platform to make intelligent cache replacement decisions offline. We have tested various Machine
Learning and Deep Learning algorithms to adapt the one with the highest accuracy; we have integrated that algorithm into our
cache replacement policy. This selected ML algorithm was employed to estimate the likelihood of cache objects being requested
again, an essential factor in cache eviction scenarios. The IMDb dataset, constituting numerous videos with corresponding
attributes, was utilized to conduct our experiment. The experimental section highlights our model’s efficacy, presenting
comparative results compared to the established approaches based on raw cache hits and cache hit rates.

KEYWORDS
Cache Hit, Cache Miss, Content Caching, Machine Learning (ML), Simulation.

1. INTRODUCTION
The rapidly evolving computing landscape has led to a significant efficiency mismatch between processors and
input/output (I/O) peripherals like hard drives, printers, and keyboards. This gap has induced demand for advanced
I/O architectures and efficient storage solutions to enhance communication between CPUs and storage devices. This
demand is high for a wide range of applications, including real-time applications, gaming, high-performance
computing, web services, and, notably, streaming services. These services require a highly efficient cache management
mechanism to prevent performance bottlenecks due to frequent read-and-write calls, an operational characteristic that
is quite prevalent in streaming services.

Video streaming services operate in a realm where many users frequently and concurrently access vast amounts of
data. In such platforms, content caching serves as temporary data storage and has become integral. This strategy
involves holding copies of content near where it is frequently requested, increasing data retrieval performance by
reducing data access latency. Fast and proficient storage mechanisms, such as Random Access Memory (RAM) and
cache memory, are essential to counteract the complexities brought about by these stringent prerequisites. RAM acts
as a transient principal memory during software execution, but the data it holds gets lost once the device is powered
off. On the other hand, cache memory, being a small and high-speed memory segment, stores data that is accessed
often, reducing the frequent need to access the hard disk.

Efficient cache memory management is paramount due to cache memory’s limited size and the performance penalty
associated with cache misses. A cache hit is when the requested data is available in the cache memory, assisting fast
data retrieval. In contrast, a cache miss arises when the system needs to identify and reallocate data by replacing
existing stored information, a comparatively slower process. Various cache replacement strategies strive to uphold a
high cache hit ratio, aiming to diminish the frequency of data replacements to the lowest possible extent. Therefore,
thorough planning and design are necessary to ensure high-efficiency performance in devices equipped with cache
memories.

Though efficient, established cache replacement policies, such as Most-Recently-Used (MRU), LRU, and LFU, are
not universally suitable due to their workload dependency and rigid design [9]. Machine Learning (ML) and Deep
Learning have proven to be versatile algorithms yielding promising results in various domains, from in-depth
biomedical data analysis [4] to financial forecasting [5] and even complex tasks such as satellite image classification
[19]. Given their wide range of successful applications, ML and Deep Learning have also been employed in the cache
replacement domain to design proficient and effective policies. By leveraging prior data, they can discover patterns
hidden in workloads, leading to improved decision-making and potentially a higher cache hit ratio. The rise of
powerful computing devices, such as GPUs [22] and Tensor Processor Units (TPUs) [11], has enabled better training
and execution rates for ML algorithms.

In this study, we present STRCacheML, an innovative, ML-driven cache replacement policy designed specifically to
increase the performance of content caching. STRCacheML harnesses the power of Machine Learning to learn
dynamically from access patterns, improving upon established replacement policies. Our approach aims to enhance
the performance of content caching, specifically in the context of streaming services, underlining how a well-calibrated
application of Machine Learning can optimize and transform cache management efficiency. Our contributions
presented here are:

• We have developed a method for feature construction that takes full advantage of the available parameters on the
platform to construct feature vectors for Machine Learning models.

• We have evaluated a variety of Machine Learning and deep learning methodologies on initially constructed
features and have selected the most effective model for our application.

• We propose and demonstrate STRCacheML, a new cache replacement policy. By integrating the selected Machine
Learning model, STRCacheML makes intelligent cache eviction decisions, enhancing the overall performance of
content caching in streaming services.

While ML-based policies promise improved performance, they also introduce new concerns, including the
computational complexity associated with the runtime of ML algorithms, the need for training data, and, sometimes,
the lack of interpretability of their decisions. Addressing these challenges requires a balanced approach that optimizes
cache management efficiency and computational costs. To this end, our work focuses on the application of
computationally less expensive ML models such as Random Forest (RF), Decision Tree, K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). While advanced deep learning models can offer
powerful predictive capabilities, they also typically require more computational resources and larger datasets for
effective training [14], which may not be feasible or necessary in all application scenarios.

2. RELATED WORK
The evolution of cache replacement policies has spanned from standard methods like LRU, LFU, MRU, etc., to
advanced methodologies incorporating Machine Learning, Deep Learning, and Reinforcement Learning (RL) models.
Our work, STRCacheML, builds upon these developments to introduce an ML-guided content caching policy.

Established cache management strategies like LRU, MRU, and LFU form the foundation of cache management
methodologies, primarily based on recency and frequency of data requests. There has been substantial exploration of
these methods in literature. Simultaneously, attempts to apply Machine Learning techniques to augment these
strategies have gained momentum. For instance, [3] enhanced the LRU policy using supervised ML Algorithms like
SVM, naive Bayes Classifier, and decision tree. Their work involved training ML models to predict data reusability,
effectively boosting the LRU policy’s performance. Popularity distribution has been a significant factor in cache
management. Empirical-theoretical findings in web caching have shaped the understanding of content distribution
based on popularity, essentially, the likelihood of being requested in cache memory [8]. This research highlights the
empirical data related to the distribution probabilities of popularity events or demands, which are critical to effectively
managing web caches. One such practical law, Zipf’s, initially proposed for word frequency distribution in a language,
states that the n-th most popular item arises with a probability proportional to 1/nα, where α > 1 [34]. In our work,
STRCacheML, we leverage these empirical laws, specifically Zipf’s law, and synthesize datasets for training and
testing our model.
Deep learning techniques have been increasingly applied in cache management domains. For example, Zhong et al.
proposed an LSTM-based model designed to predict the properties of objects to be stored in cache memory, which led

3. PROPOSED APPROACH
We propose “STRCacheML”, an innovative content caching replacement policy guided by a Machine Learning (ML)
algorithm. Our primary objective is to enhance content caching in streaming services by capitalizing on available
attributes to construct feature vectors. The constructed feature vectors guide our ML model during the training and
testing phases to make intelligent cache replacement decisions.

While STRCacheML is designed to operate in a broad range of environments, it is worth noting that specific
adaptations may be necessary to suit different datasets or settings. For instance, during our experiment with the IMDb
dataset, we encountered a lack of real inquiry data. To overcome this, we introduced a simulation using a probability
distribution to mimic a real-world environment. A detailed explanation of this adaptation and our experimental setup
will be provided in a subsequent section.
Our study examined a range of accessible and computationally efficient Machine Learning algorithms, including the
Multilayer Perceptron (MLP) from the deep learning domain. This approach was motivated by our aim to explore and
exploit the computational and performance characteristics of these models, which are both accessible and less
computationally intensive, within a content caching platform.
The components of our approach are listed in the following subsections:

3.1. Feature Vector Construction
We consider 𝑂 = {𝑜1, 𝑜2, 𝑜3, . . . , 𝑜𝑛}, the set of all objects available on the platform. We represent all the objects, 𝑜 ∈
 𝑂, by a feature vector, 𝐹(𝑜), including attributes such as one-hot encoding of genres, the object’s popularity over a
specific period, historical inquiry data, object’s size, etc. We represent each object by a feature vector, 𝐹(𝑜), which
can be mathematically illustrated as follows:
For every object 𝑜 in the set of all objects 𝑂, let 𝐴 = {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑚} be the set of all possible attributes. The
features vector is built as,

 𝐹(𝑜) = 𝑎1 ⊕ 𝑎2 ⊕ ⋯ ⊕ 𝑎𝑚 (1)

where each ai represents an attribute of o written as a vector and ⊕ corresponds to vector concatenation.

3.2. Cache Memory and Inquiry Simulation
Let 𝐶 represent our cache with a limited size m, where each content, 𝑐 ∈ 𝐶, is an object o from our set 𝑂. We simulate
object requests using a probability distribution, 𝑃(𝑜), defined on the set 𝑂 where the probability of being requested is
proportional to the popularity of the given object o (See Figure 2). The simulation is modeled as follows: For all
contents, 𝑐 ∈ 𝐶, where 𝐶 ⊆ 𝑂, draw samples 𝑜 to be processed on the cache 𝐶 by “STRCacheML”.
Moreover, the cache has its probability distribution defined for the objects 𝑐 ∈ 𝐶, which is kept tracked during the
execution let 𝑟𝑐 denote the number of inquiries made to object 𝑐 until the current date. The total number of inquiries
for all objects is represented as ∑ 𝑟𝑜𝑜∈𝐶 and the probability distribution of requests is given by

 𝑃𝐶(𝑐) =
𝑟𝑐

∑ 𝑟𝑜𝑜∈𝐶
 (2)

3.3. Training and Selection of ML Algorithm
A series of ML models, {M1, M2, ..., Mk}, (where k denotes the total number of ML algorithms selected) are trained on
these feature vectors, F(o), obtained from each o ∈ O. After training, we evaluate the models’ performance using both
the training and testing datasets, focusing on the accuracy metric. With this assessment, we identify the model that
provides the highest accuracy, which will be selected as our preferred ML model, M⋆. This procedure can be illustrated
as follows:
A set of ML models, {𝑀1 , 𝑀2, . . . , 𝑀𝑘} are trained using the feature vector 𝐹(𝑜), as constructed in equation (1). Among
all trained models, we identify the optimal ML model as 𝑀⋆ for our cache replacement policy. The selection criterion
is given by the model’s accuracy, as formalized in the following equation:

 𝑀⋆ = argmax𝑀𝑖∈{𝑀1 ,…,𝑀𝑘} 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑀𝑖) (3)

3.4. Cache Eviction
When cache C reaches its capacity (i.e., |𝐶| = 𝑚) and a cache miss occurs, the ML model, 𝑀⋆ , is employed to
determine the likelihood, 𝐿(𝑜), of each object o in cache C being requested again. The object with the least likelihood,
𝐿(𝑜), as computed by 𝑀⋆(𝐹(𝑜)), is selected for eviction to make space for new content in the cache.
Given a cache miss M and the cache memory is full, i.e., |𝐶| = 𝑚, the likelihood of each object being requested again
is computed as 𝐿(𝑜) = 𝑀⋆(𝐹(𝑜)) for each 𝑜 ∈ 𝐶. Finally, the object 𝑜̂ to be evicted is expressed as:

 𝑜̂ = argmin𝑜∈𝐶 𝐿(𝑜) (4)

3.5. STRCacheML
By integrating equations (1), (2), (3), and (4), we formulate STRCacheML, our proposed cache replacement policy.
This policy can be outlined as follows:
Given an object inquiry (request) for any 𝑜 ∈ 𝑂:

1) If 𝑜 ∈ 𝐶 (i.e., a cache hit), the inquired object is acquired from the cache without initiating the cache replacement
procedure.

2) If 𝑜 ∉ 𝐶 (i.e., a cache miss) and |𝐶| < 𝑚, the object is first fetched from the backend (main memory in the
platform) and added to the cache.

3) If 𝑜 ∉ 𝐶 (i.e., a cache miss) and |𝐶| = 𝑚 (i.e., the cache is full), we calculate the likelihood 𝐿(𝑜′) of each object
𝑜′ ∈ 𝐶 in the cache being requested again, as defined in equation (4) above. The object 𝑜̂ = argmin𝑜′∈𝐶 𝐿(𝑜′) is
evicted from the cache, and the requested object o is accessed from the main memory and added to the cache.

Through these steps, we introduce STRCacheML, an ML-based cache replacement policy that leverages rich feature
vectors and predictive modeling to make intelligent content caching decisions, potentially enhancing the cache
replacement performance in streaming services.

Figure 2. Video popularity distribution for the 500 most popular videos in IMDb. It is interesting how video

distribution follows Zipf’s law if they are sorted by some popularity attribute.

4. DATA PREPROCESSING, SIMULATION AND DATASET PREPARATION
Data preprocessing, a critical aspect of the Knowledge Discovery from Data (KDD) process, involves a set of
techniques employed before applying data mining methods. This technique handles inconsistencies, redundancies, and
other data imperfections, making the data suitable for the chosen Machine Learning algorithm.

In our study, we used a dataset sourced from IMDb [13] for experimental purposes, potentially showcasing the
efficiency of our policy in a video streaming platform. Since the data obtained from IMDb were raw and unprocessed,
preprocessing steps were required to prepare the dataset for Machine Learning applications. First, we utilized Python
libraries such as pandas and NumPy to handle null values, mostly deleting the data entries from the dataset. To remove
discrepancies in the dataset, we used the Scikit-learn library, specifically its preprocessing module, to maximize the
normalization of the data as needed. Lastly, we decided to disregard specific attributes that were deemed unsuitable
for training our ML models, focusing on five attributes: “Primary Title”, “Start Year”, “Run Time”, “Genres”,
“Average Rating,” and “Number of Votes”. In the absence of direct information on video sizes within our dataset, we
adapted the “Run Time” attribute available to act as a proxy. To the best of our knowledge, we believe this adaptation
presents a practical approximation for cache replacement policies often influenced by video sizes. Therefore, even
within the simplification and simulation, our model maintains a level of accuracy to a certain valuable extent in
representing the characteristics influential to real-world caching scenarios.

We created a virtual cache with predetermined memory limits to simulate a realistic environment for our cache
replacement policy, STRCacheML. In the absence of real-world inquiry data, we generated a series of 10000 cache
inquiries based on a probability distribution derived from the “Number of Votes” each video received on IMDb. These
votes were taken as a proxy for the videos' popularity, which suggested their likelihood of being requested (refer to
Figure 2, which illustrates the probability distribution across the videos). The outcome of each simulated inquiry was
determined by whether the requested video was present in our cache, resulting in either a cache hit or miss.

From the initial simulation of inquiries using the IMDb dataset, we constructed a comprehensive dataset comprising
19992 samples. Each sample was associated with a feature vector, denoted as 𝐹(𝑜), representing the attributes of the
requested video, including genre, run time, and calculated popularity. These feature vectors were then labeled with
binary values, assigning “1” for a cache hit and “0” for a cache miss. This labeling process was important for training
the Machine Learning models, enabling them to understand the feature vectors that contribute to cache hits or misses.
Such understanding is contributory in producing likelihood estimations that inform cache eviction decisions in
subsequent phases. Thus, our dataset comprised these feature vectors 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] along with their
corresponding binary labels, forming the foundation for training our Machine Learning models to learn from historical
cache performance under conventional policies and make predictive decisions for future cache management.

By integrating both static attributes of videos and dynamic user interaction data in a simulated environment, our
dataset provides Machine Learning models with a comprehensive understanding of video demand over time. By
incorporating historical usage data along with evolving trends in video popularity within a simulated environment,
our methodology ensures that STRCacheML adapts to changing user behaviors, enhancing the predictive accuracy
and practical applicability of our cache replacement policy.

4.1. Selection of ML Algorithms and Hyperparameter Tuning
Building upon the earlier discussion, feature selection and hyperparameter tuning play an instrumental role in
achieving accurate models [26]. The training parameters, model architecture, and features can significantly determine
model performance. During the selection of ML algorithms, observing each algorithm’s performance on both the test
and training sets is crucial to recognize if the model is overfitting, which memorizes training features rather than
learning the underlying patterns. Overfitting can lead to increased computational complexity, reduced accuracy, and
false confidence in the model’s predictions [32].

In our study, we conducted experiments divided into two phases. First, we trained different machine learning models
as described in building a query dataset based on the probability of being requested 𝑃(𝑜) where the object to be queried
next is predicted. For each model, 80% of the dataset was used as a training set, whereas the remaining 20% was used
to test the model’s capabilities. It is worth mentioning that this dataset setup provides a platform for training and
evaluating supervised ML algorithms. Second, we choose the best ML using equation (3) to build the cache
replacement policy. We initially selected the Random Forest (RF) algorithm to understand its potential usability in our
mechanism. Random Forest, developed by Leo Breiman and Adele Cutler, is a widely adopted ML algorithm. It
traverses multiple decision trees, each contributing to sub-decisions and aggregating their outcomes to make a final

.

the time complexity of the model while the accuracy plateaued. GridSearchCV allowed us to navigate through multiple
combinations of parameters and revealed that a model with two hidden layers of 256 and 128 nodes, respectively,
provided an optimal balance between accuracy and computational efficiency for our dataset. Consequently, we
decided to adhere to this model structure. Upon comparison of accuracy and time complexities among above
mentioned ML models, the MLP model concluded as the most efficient with an impressive testing accuracy of 0.97
on the dataset, surpassing the accuracy levels of SVM, GBM (around 0.60), and RF (around 0.84) and KNN (around
0.84) as shown in Figure 3. Hence, MLP was chosen as the final ML model for our cache replacement policy.

5. SIMULATIONS, COMPARISONS, AND EVALUATION
We conducted our experiments in a Python 3.10.12 environment, utilizing the TensorFlow framework for machine
learning computations. The computational workload was managed by an NVIDIA T4 GPU with 15GB of GPU RAM.
Throughout our study, we conduct experiments using a fundamental cache structure, divided into individual slots
capable of storing one video each. Our reference for cache capacity is its cache size, the number of slots. We evaluate
the performance of our proposed model, STRCacheML, by comparing it with established caching policies like LRU,
LFU, and Least Recently Frequently Used (LRFU). We utilize raw cache hit and cache hit rate as our key
computational and comparison metrics. The raw cache hit measures the instances where the requested object is
available in the cache. On the other hand, the cache hit rate provides a more insightful metric, indicating the proportion
of total requests resulting in a cache hit. It is derived from the formula:

 Cache Hit Rate =
Cache Hits

Cache Hits + Cache Misses
 (5)

For STRCacheML, we implement a predictive and adaptive approach assisted by a trained MLP model, which
sequentially updates based on inquiries and cache hits during the simulations. The MLP model, trained on historical
video access data, predicts the popularity trend of videos, aiding dynamic cache management. When a video request
occurs and the video is absent in the cache, STRCacheML utilizes its core predictive principle and assigns each
video in the cache a score corresponding to its predicted future popularity. During the eviction procedure, the video
least likely to be requested again is removed from the cache to accommodate new content. This approach inherently
considers user preferences, as it is driven by user behavior and inquiry patterns. Therefore, it allows STRCacheML
to adapt to changing user preferences, an important aspect in content caching.

We carefully applied STRCacheML along with the established cache policies to the final phase of simulated cache
inquires and virtual cache memory to accurately measure the cache hits and cache hit rates. For established caching
policies like LRU, LFU, and LRFU, we thoroughly simulated their principle on the dataset. For LRU, we keep track
of the timestamp for each video, reflecting the time an inquiry was made for the given video. Also, for LFU, we
applied its principles by computing a frequency count for each video in the cache, recording the total number of
requests made, and evicting the video based on frequency. For LRFU, we designed a function to dynamically update
each video’s Combined Recency and Frequency (CRF) value upon each inquiry. Eviction from the cache was based
on the CRF values calculated for each video.

We conducted experiments on two different simulations, Simulation1 and Simulation2, designed to represent different
usage scenarios. In Simulation1, we constructed a scheme that involved 10000 video queries and a cache size of 25
slots. This scenario was chosen to simulate a lower to moderate level of user demand, where the cache size and number
of queries were small compared to Simulation2. The selected cache replacement policies, including LRU, LFU, LRFU,
and STRCacheML, were sequentially implemented and the count of cache hits along with the cache hit rates were
recorded

For the second simulation, Simulation2, we escalated the volume of video queries and cache size to 20000 queries and
50 slots, respectively. This simulation was designed to represent a situation of high demand, with significantly more
queries and a larger cache size than the first simulation. Just as in Simulation1, the same cache replacement strategies
were utilized, the record of cache hits was noted, and the cache hit rate was consequently computed.

overloading through improved data handling. Expanding beyond streaming, this approach proves beneficial in various
domains such as e-commerce, content delivery networks (CDNs), and social media platforms. This is because our
approach’s scalability relies on available object parameters, a common aspect across different content delivery
systems. In these contexts, a cohesive interplay between user-generated data and the design, training, and development
of ML cache policies becomes helpful for improving content delivery and user experience. Another notable concern
arises with user data privacy. It is important to note that approaches relying on training from user data involve learning
patterns from potentially sensitive information. Various established techniques, including anonymization and more
robust cryptographic methods, such as differential privacy or direct data encoding, can be utilized to address this issue.
In the latter case, methods like Multi-Party Computation can be integrated to enable computation on encrypted data,
ensuring that the data remains private. These alternatives present diverse options for tackling the challenge of
preserving privacy in our methodology, STRCacheML, while extracting learnable patterns from user data.

In conclusion, STRCacheML, by integrating Machine Learning techniques with content caching, demonstrates an
advancement in the domain of Machine Learning Applications, particularly in information retrieval and intelligent
cache management systems, leading to improved efficiency and adaptability in streaming services. With its potential
to extend benefits to CDN platforms beyond content caching in streaming services, STRCacheML may encounter
some limitations within specific scopes. These limitations can be addressed through broader experimentation and
dataset expansion, areas we identify as opportunities for future research.

Future work will explore more advanced ML and Deep Learning techniques, such as Recurrent Neural Networks and
Transformers, to be integrated into STRCacheML, also maintaining computational efficiency and user privacy. There
could be a potential benefit of incorporating a hybrid method into the cache replacement policy. Additionally,
investigating other possible attributes and sophisticated feature engineering strategies by generalizing the applicability
could enhance model performance while maintaining computational efficiency.

ACKNOWLEDGEMENTS
This material is based in part upon work supported by the National Science Foundation under Grant Nos. CNS-

2018611 and CNS-1920182, FDEP grant C-2104, and DHS grant E2055778.

REFERENCES
[1] Mart´ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-scale machine learning. In Osdi, volume 16, pages 265–
283. Savannah, GA, USA, 2016.

[2] Tanay Agrawal and Tanay Agrawal. Hyperparameter optimization using scikit-learn. Hyperparameter optimization in
machine learning: make your machine learning and deep learning models more efficient, pages 31–51, 2021.

[3] Waleed Ali, Sarina Sulaiman, and Norbahiah Ahmad. Performance improvement of least-recently-used policy in web proxy
cache replacement using supervised machine learning. International Journal of Advances in Soft Computing & Its
Applications, 6(1), 2014.

[4] Pierre Baldi. Deep learning in biomedical data science. Annual review of biomedical data science, 1:181–205, 2018.

[5] Alessandro Baldo, Alfredo Cuzzocrea, Edoardo Fadda, and Pablo G Bringas. Financial forecasting via deep-learning and
machine-learning tools over two-dimensional objects transformed from time series. In Hybrid Artificial Intelligent Systems:
16th International Conference, HAIS 2021, Bilbao, Spain, September 22–24, 2021, Proceedings 16, pages 550–563. Springer,
2021.

[6] Leon Bottou. Large-scale machine learning with stochastic gradient descent. In´ Proceedings of COMPSTAT’2010:
19th International Conference on Computational StatisticsParis France, August 22-27, 2010 Keynote, Invited and
Contributed Papers, pages 177–186. Springer, 2010.

[7] Richard G Brereton and Gavin R Lloyd. Support vector machines for classification and regression. Analyst, 135(2):230–267,
2010.

[8] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and zipf-like distributions: Evidence and
implications. In IEEE INFOCOM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No. 99CH36320), volume 1,
pages 126–134. IEEE, 1999.

[9] Kai Cheng and Yahiko Kambayashi. Lru-sp: a size-adjusted and popularity-aware lru replacement algorithm for web caching.
In Proceedings 24th Annual International Computer Software and Applications Conference. COMPSAC2000, pages 48–53.
IEEE, 2000.

[10] Hong-Tai Chou and David J DeWitt. An evaluation of buffer management strategies for relational database systems.
Algorithmica, 1(1-4):311–336, 1986.

[11] Google Cloud. An in-depth look at google’s first tensor processing unit (tpu), 2017.

[12] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and Zhi-Li Zhang. Raven: belady-guided, predictive (deep) learning for in-
memory and content caching. In Proceedings of the 18th International Conference on emerging Networking EXperiments
and Technologies, pages 72–90, 2022.

[13] IMDb. Imdb datsasets. https://www.imdb.com/interfaces/, February 2023. Accessed: 2023-02-25.

[14] Christian Janiesch, Patrick Zschech, and Kai Heinrich. Machine learning and deep learning. Electronic Markets, 31(3):685–
695, 2021.

[15] Jobin Jose and N Ramasubramanian. Applying machine learning to enhance the cache performance using reuse distance.
Evolutionary Intelligence, pages 1–22, 2022.

[16] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. Basic linear algebra subprograms for fortran
usage. ACM Transactions on Mathematical Software (TOMS), 5(3):308–323, 1979.

[17] Chunlin Li, Yong Zhang, Mingyang Song, Xin Yan, and Youlong Luo. An optimized content caching strategy for video stream
in edge-cloud environment. Journal of Network and Computer Applications, 191:103158, 2021.

[18] Tian Luo, Siyuan Ma, Rubao Lee, Xiaodong Zhang, Deng Liu, and Li Zhou. S-cave: Effective ssd caching to improve virtual
machine storage performance. In Proceedings of the 22nd international conference on Parallel architectures and compilation
techniques, pages 103–112. IEEE, 2013.

[19] Arpan Mahara and Naphtali Rishe. Integrating location information as geohash codes in convolutional neural network-based
satellite image classification. IPSI Transactions on Internet Research, 19(2):pp.24–30, 2023.

[20] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li Zhang. Deepcache: A deep learning based
framework for content caching. In Proceedings of the 2018 Workshop on Network Meets AI & ML, pages 48–53, 2018.

[21] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In International
conference on machine learning, pages 1310–1318. Pmlr, 2013.

[22] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised learning using graphics processors. In
Proceedings of the 26th annual international conference on machine learning, pages 873–880, 2009.

[23] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 2135–2135, 2016.

[24] Subhash Sethumurugan, Jieming Yin, and John Sartori. Designing a cost-effective cache replacement policy using machine
learning. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 291–303.
IEEE, 2021.

[25] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning to the cache replacement problem. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 413–425, 2019.

[26] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25, 2012.

[27] Debabala Swain, Bijay Paikaray, and Debabrata Swain. Awrp: adaptive weight ranking policy for improving cache
performance. arXiv preprint arXiv:1107.4851, 2011.

[28] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A survey on
distributed machine learning. Acm computing surveys (csur), 53(2):1–33, 2020.

[29] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri
Narasimhan. Driving cache replacement with ml-based lecar. In HotStorage, pages 928–936, 2018.

[30] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C Steely Jr, and Joel Emer. Ship: Signature-
based hit predictor for high performance caching. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 430–441, 2011.

[31] Carole-Jean Wu, Aamer Jaleel, Margaret Martonosi, Simon C Steely Jr, and Joel Emer. Pacman: prefetch-aware cache
management for high performance caching. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 442–453, 2011.

[32] Xue Ying. An overview of overfitting and its solutions. In Journal of physics: Conference series, volume 1168, page 022022.
IOP Publishing, 2019.

[33] Chen Zhong, M Cenk Gursoy, and Senem Velipasalar. A deep reinforcement learning-based framework for content caching.
In 2018 52nd Annual Conference on Information Sciences and Systems (CISS), pages 1–6. IEEE, 2018.

[34] George Kingsley Zipf. Human behaviour and the principle of least-effort. cambridge ma edn. Reading: Addison-Wesley, 24,
1949.

[35] Leo Breiman. "Random forests." Machine learning 45 (2001): 5-32.

[36] Jerome H. Friedman. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232.

	1. INTRODUCTION
	2. RELATED WORK
	3. PROPOSED APPROACH
	3.1. Feature Vector Construction
	3.2. Cache Memory and Inquiry Simulation
	3.3. Training and Selection of ML Algorithm
	3.4. Cache Eviction
	3.5. STRCacheML

	4. DATA PREPROCESSING, SIMULATION AND DATASET PREPARATION
	By integrating both static attributes of videos and dynamic user interaction data in a simulated environment, our dataset provides Machine Learning models with a comprehensive understanding of video demand over time. By incorporating historical usage ...
	4.1. Selection of ML Algorithms and Hyperparameter Tuning

	5. SIMULATIONS, COMPARISONS, AND EVALUATION
	TABLE I. CACHE HITS AND HIT RATES FOR DIFFERENT MODELS IN SIMULATION1 AND SIMULATION2
	6. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	This material is based in part upon work supported by the National Science Foundation under Grant Nos. CNS-
	2018611 and CNS-1920182, FDEP grant C-2104, and DHS grant E2055778.
	REFERENCES

