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Abstract
ISPs routinely rate-limit user tra�c. In addition to correctly en-
forcing the desired rates, rate-limiting mechanisms must be able to
support rich rate-sharing policies within each tra�c aggregate (e.g.
per-�ow fairness, weighted fairness, and prioritization). This must
be done at scale to support the vast magnitude of users e�ciently.
There are two primary rate-limiting mechanisms – tra�c shaping
(that bu�ers packets in queues to enforce the desired rates and poli-
cies) and tra�c policing (that �lters packets as per the desired rates
without bu�ering them). Policers are lightweight and scalable but
don’t support rich policy enforcement and often provide poor rate
enforcement (being notoriously hard to con�gure). Shapers, on the
other hand, achieve desired rates and policies, but at the cost of high
system resource (memory andCPU) utilization impacting scalability.
This paper explores whether we can get the best of both worlds. We
present our system BC-PQP, which augments a policer with (i) mul-
tiple phantom queues that simulate bu�er occupancy using counters
and enable rich policy enforcement, and (ii) a novel burst-control
mechanism that enables auto-con�guration of the queues for correct
rate enforcement. Our system achieves the rate and policy enforce-
ment properties close to that of a shaper with 7⇥ higher e�ciency.
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1 Introduction
Rate limiting is prevalent among network operators and Internet
Service Providers (ISPs) [14, 21, 28, 33]. ISPs routinely rate-limit their
customers’ tra�c based on their plans and subscriptions. Cellular
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service providers also commonly rate limit bandwidth-hungry
video streaming tra�c for each user in the cellular core, before the
tra�c hits their radio access network (RAN), so as to not overwhelm
the limited RAN resources [1, 28, 33, 48]. Programs like T-Mobile’s
“Binge on” [48] andVerizon’s “Net�ix &Max” [52] provide unlimited
access to speci�c video streaming services but limit the subscribers’
network tra�c outside of those services.

The rate-limiting mechanismmust correctly enforce the desired
cumulative rate for each tra�c aggregate (e.g. set of �ows belonging
to a given user). In addition to that, it must satisfy two important re-
quirements. First, it should be able to support di�erent rate-sharing
policies among �ows within each aggregate. For example, enforcing
per-�ow fairness within an aggregate allows �ows using di�erent
congestion control algorithms (BBR [17], New Reno [53], Cubic [25],
Vegas [13], etc) to compete fairly with one another [36, 41, 42]. It is
also often desirable to enforceweighted fair sharing or prioritization
within a given user’s tra�c as per their preferences (e.g. prioritizing
video streams or web tra�c over bulk downloads). 1 Per-�ow
fairness is also desired when cellular operators rate limit video
streaming sessions, so as to ensure that audio chunks are not head-
of-the-line blocked by video chunks (based on our conversations
with a large US-based telecom company, this is a highly desirable
feature that is di�cult to implement for reasons we discuss below).

The second requirement is that the rate and policy enforcement
mechanism must be e�cient. This requirement stems from the
scale at which such systems operate, with a typical ISP supporting
thousands of customers.

Rate limiting can be done using two di�erent mechanisms (that
are typically implemented in a software middlebox): tra�c shaping
and tra�c policing. Tra�c shaping for a given aggregate involves
bu�ering packets in one or more queues, which can be served based
on desired policies (e.g. prioritization, round-robin for fairness,
weighted round-robin, etc). Tra�c shapers are thus able to enforce a
rich set of policies. However, as we detail in §2, doing so is costly as it
requires bu�eringpackets inmemory andpointer chasing at the time
of dequeues – this costmaterializes as increased utilization of system
resources (memory and CPU cycles), which impacts scalability.

Policers, in contrast, are much more lightweight and therefore
more scalable. They do not require storing packets, and instead
immediately determine whether an incoming packet should be
dropped or transmitted depending onwhether the incoming tra�c’s
rate exceeds the enforced rate. This is typically implemented using a
token-bucket �lter, where tokens are added to a �xed-size bucket at

1Commercial SD-WAN solutions [4, 5] already provide interfaces for enterprise
customers to express such preferences to their ISPs, and there are several research
proposals to enable this more broadly [12, 18, 24, 30, 54, 55].
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the speci�ed rate (by incrementing a counter) – a packet is allowed
to pass through only if there are enough tokens in the bucket (worth
the packet size).

By the virtue of being more e�cient, policers have emerged as
the more popular rate-limiting choice [21]. However, the scalability
provided by this choice has come along with notable downsides:
(1) Typical policers, by design, do not provide any mechanism for
enforcing desired rate-sharing policies within each rate-limited
tra�c aggregate. (2) Policers are notoriously hard to con�gure, often
leading to poor rate enforcement (with a trade-o� between meeting
the desired average rate limit vs reducing burstiness and packet drop
rates) [21, 28, 50]. Shapers can adequately address these downsides
of a policer, but at the cost of lower system e�ciency (and scalability).

The question we explore in this paper is whether we can get the
best of both worlds: can we have the system e�ciency and scalability
of a policer, along with the network-level properties (ability to enforce
desired rates and policies) of a shaper?

We answer this question in the a�rmative by implementing
policers using phantom queues. Phantom queues simulate the
occupancy of a bu�er without actually bu�ering packets, and have
been used before for active queue management [8, 31, 32]. We apply
a similar concept for policing. A phantom queue-based policer
immediately transmits a packet upon arrival if there is enough
capacity (worth the packet size) in the phantom queue, and drops it
otherwise. Every time it transmits a packet, it enqueues a phantom
packet of the same size in the phantom queue – these phantom pack-
ets are simply realized as byte counters. It dequeues the phantom
queue at the desired rate by decrementing the byte counters.

A policer implemented in the above manner using a single phan-
tom queue mimics the behavior of a token-bucket �lter. To enforce
di�erent rate-sharing policies, we extend such a policing system for
each tra�c aggregate to usemultiple phantom queues – we classify
incoming packets into one of these phantom queues (based on �ow
identi�ers in the packet header �elds), and immediately transmit
or discard the packet based on the queue’s occupancy as described
above. We dequeue the phantom packets in each of these phantom
queues (i.e. decrement the corresponding byte counters) based on
the desired policy, e.g. prioritization, round-robin, etc, analogous
to a shaper system.We refer to such a phantom queue-based policer
as PQP.We show (both analytically and empirically) how PQP can
correctly enforce the desired aggregate rate, as well as achieve the
desired rate-sharing policies on average, as long as the phantom
queues are su�ciently sized.

While a su�ciently sized PQP correctly enforces the desired
rates on average (over multiple round-trip times), the instantaneous
rates over smaller timescales can burst to much higher values, with
the burst increasing with queue size. The minimum queue size
required for enforcing correct average rates with phantom queues is
very large, to begin with:$ (⌫⇡%2) (in comparison to$ (⌫⇡%) sized
bu�ers required for shaper queues with real packets). The burstiness
caused by such a large queue is further aggravated in PQP – with #
active phantom queues, the worst-case burst can be # times larger!

We therefore need a mechanism to control the burst while still
ensuring correct average rate enforcement. For this, we design
a novel burst control mechanism for phantom queues, where
we start with sizing each phantom queue to a su�ciently large
value. However, if the enqueue rate of the queue exceeds a certain
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(a) Tra�c shapers are costly
whereas policers cannot enforce

policies like fairness.
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(b) Policers are challenging
to size – a liberally sized policer
does correct rate enforcement

but with large bursts and vice versa.

Figure 1: Drawbacks of tra�c shapers and policers
threshold, we vacuously �ll up the queue with magic phantom
packets (that do not correspond to real packets). Filling up the queue
in this manner prevents the �ow from bursting and induces early
drops. At the same time, keeping the queue large (but occupied
by the magic packets that drain at the desired dequeuing rate)
complies with the queue size requirement for correct average rate
enforcement. We refer to this extension of PQP as BC-PQP (for
burst-controlled PQP). The rate threshold for vacuously �lling up a
phantom queue in a BC-PQP system is governed by the rate at which
the queue is served (as per the rate-sharing policy). This enables
auto-tuning of the queue con�guration, as the set of active�ows (and
consequently the rate assigned to a given phantom queue) changes.

We implement our system on a testbed comprising three Linux
servers (a sender, a middlebox implementing BC-PQP, and a
receiver). The middlebox transparently rate-limits the tra�c sent by
the sender using a kernel-bypass stack based on Intel’s DPDK. Our
evaluation (using self-generated tra�c as well as real-world applica-
tions) shows how BC-PQP achieves the rate and policy enforcement
properties close to that of a shaper while being 7 ⇥more e�cient
(with the e�ciency within 1.5-2 ⇥ of a standard policer). Through
dynamic burst control, BC-PQP further achieves up to 2.5⇥ lower
drop rates and up to 18⇥ smaller burst (tail throughput deviation
from the desired value) than a policer. BC-PQP is able to enforce a
variety of rate-sharing policies including per-�ow fairness,weighted
fairness, prioritization, and nested combinations of these policies.

2 Background andMotivation
Today, there are two prevalent mechanisms to do rate enforcement:
tra�c shapers and tra�c policers. We describe both of them below.

2.1 Tra�c Shapers
Tra�c shapers, conventionally implemented on network routers
and dedicated hardware appliances, are now often implemented
in software middleboxes as virtualized network functions for
�exibility. 2 They can support a large set of QoS (quality of service)
mechanisms such as prioritization [38], weighted fair queueing
(WFQ) [44, 46], etc.
Rate enforcement with tra�c shapers. Tra�c shapers maintain
a separate bu�er for each tra�c aggregate. An incoming packet gets

2Based on our conversation with a large US-based telecom company.
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Tra�c Shaper Tra�c Policer
Enqueue 29 28
Dequeue 293 -

Table 1: Breakdown of average number of CPU cycles spent
to process a packet with shaper and policer

enqueued into the bu�er corresponding to its tra�c class (e.g. based
on the end-user). If the bu�er is full, the packet is dropped. Each
such bu�er is dequeued at the required rate A (that is the rate that
we wish to enforce on that tra�c aggregate).
Policy enforcement with tra�c shapers. Tra�c shapers further
divide the bu�er for each tra�c aggregate into a set of # queues,
and dequeue packets from these queues as per the desired policy
at a cumulative rate A . For example, to enforce weighted fairness,
a de�cit round-robin scheduler is often used, which attempts to
dequeue F8"(( bytes from a queue 8 (if the queue is not empty),
before moving on to the next one. Since a packet can be dequeued
from the shaper only after"((/A time, a dequeue call is scheduled
periodically every "((/A . When doing such rate enforcement at
scale, typically a timer wheel [51] is used to schedule these dequeue
calls e�ciently for di�erent shapers.
Ine�ciency of shapers:While shapers can achieve very accurate
rates and policy enforcement, they can be computationally
ine�cient to implement. For starters, they require a large amount
of memory e.g. for a single tra�c shaper with 16 drop-tail queues of
size 48 MSS-sized packets, the memory that needs to be reserved is
at least 1 MB.When doing rate enforcement at scale for thousands
of shapers, memory bottlenecks start to arise.

In terms of CPU cycles, fewer cycles are spent when processing a
packet at the time of enqueue. This is because on modern x86 CPUs,
that feature Intel’s Data Direct IO (DDIO) technology, incoming
packets are DMAed to the CPU’s Last Level Cache (LLC) and the
CPU can classify them without incurring cache misses. However,
the dequeue operation is an order magnitude more expensive. Since
the packets cannot be dequeued immediately they are eventually
evicted to the main memory (DRAM). The CPU constantly polls
all available shapers (i.e., queues) and instructs the NIC to DMA
packets out when allowed. While this could be a relatively e�cient
operation if the shaper maintains a single FIFO queue and the
packets are bu�ered to contiguous memory, it is quite expensive
when enforcing policies like DRR or prioritization with multiple
queues: in such cases, packets are not necessarily dequeued in the
order that they were received and the CPU needs to lookup for
each packet individually from di�erent locations in memory before
instructing theNIC to transmit them.Hence this operation can cause
frequent CPU stalls manifesting as increased cycles spent per packet.

Table 1 breaks down the average number of CPU cycles spent to
process a packet at enqueue and dequeue with a shaper maintaining
16 queues served using a round-robin policy, when compared to a
policer. Throughout the paper, we use CPU e�ciency as a proxy for
scalability. If a rate-limiting mechanism consumes a higher number
of CPU cycles per packet, it will require a proportionally larger
number of cores (and servers) to meet the scalability requirements.

Figure 2a further compares shapers with policers in terms of
their e�ciency and degree of policy enforcement. While a shaper
is more e�ective at policy enforcement (it achieves higher fairness,
in this case), it spends far more CPU cycles per packet compared

to a policer. We discuss these bene�ts and limitations of a policer
in more details next.

2.2 Tra�c Policer
Unlike tra�c shapers that regulate tra�c by bu�ering and delaying
packets, policers enforce rate limiting by dropping packets when
a certain rate is exceeded. By avoiding packet bu�ering, policers
are quite lightweight and scale better than tra�c shapers on
conventional hardware. Tra�c policing is done using token bucket
�lters (TBF) [21]. Policers maintain a TBF for each tra�c aggregate.
In a TBF, tokens are added to a bucket of size ⌫ at the desired rate
A . For each packet of size B that arrives, if there are at least size B
worth of tokens in the bucket, the packet consumes those and is
immediately forwarded. Otherwise, it is dropped. This way, the
policer does not need to store any packets and hence eliminates the
overhead of memory management-related bottlenecks.

While providing an excellent option in terms of system-level
e�ciency, tra�c policers su�er from two key limitations:
1. Poor rate enforcement. Tra�c policers are notoriously hard
to con�gure [21]. An inappropriately small bucket size (⌫) can
result in an average rate lower than the desired one. Whereas,
an appropriately large bucket size can cause a large burst in the
instantaneous rates, which can be orders of magnitude higher
than the desired rate. Figure 2b illustrates the tradeo� between the
steady-state rate and peak rate due to bursts allowed by a policer.
This can be quite problematic: bursty behavior can result in packet
drops and unfairness which can severely impact the users’ quality
of experience. As per our analysis in §3.5 (and as per what prior
studies have reported [21, 50]), such a trade-o� is fundamental for
any TBF-based policer with a statically con�gured bucket size.
2. Lack of policy enforcement. By design, traditional tra�c
policers (that use TBFs) can only support simple rate enforcement
on a tra�c aggregate, without providing any means for controlling
how this aggregate rate is further subdivided between di�erent
�ows or applications within the aggregate.

Recent work, called FairPolicer, has explored the idea of augment-
ingTBF-based policerswith per-�ow fairness across# �ows [41, 42].
It achieves this by e�ectively dividing the bucket ⌫ equally across
the # �ows, and distributing the tokens equally between buckets of
active �ows. However, it is not immediately clear how to extend the
point solution provided by FairPolicer to support more general rate-
sharing policies (e.g. weighted or hierarchical fairness). Moreover,
due to a statically con�gured bucket size, it su�ers from large bursts
and poor rate and policy enforcement under many scenarios. Our
evaluation in §6 provides a detailed comparison with FairPolicer.

2.3 Our Goals
Based on the applications and use cases we have discussed so far,
we need a rate enforcement mechanism that:

• Does rate enforcement correctly without large bursts.
• Allows arbitrary rate-sharing policies within the aggregate.
• Is scalable, e�cient, and lightweight.

Shapers satisfy the �rst two goals but fail on the third goal.
Policers satisfy the third goal but fail on the �rst two.

In the next few sections, we present our system that augments
policerwithphantomqueues tomeet all of the abovegoals.As shown
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in Figure1, our systemhas e�ciencycomparable to apolicer, and rate
and policy enforcement capabilities comparable to a tra�c shaper.

3 Policers with PhantomQueues
We augment a policer with phantom queues to realize di�erent
rate-sharing policies. Prior work has used the concept of phantom
(or virtual) queues for active queue management [8, 31, 32] – these
queues simulate the occupancy of the link with lower utilization
using packet counters (without actually bu�ering the packets), en-
abling early signaling (via ECN or packet drops) when the simulated
bu�er is full. We apply a similar concept for policing as follows.

3.1 Policing with a Single PhantomQueue
Wecan realize such a policing systemusing a phantomqueue by con-
sidering a (simulated) bu�er of size⌫, served at rate A .When a packet
of size B arrives, we �rst check if there is su�cient capacity in the
phantom queue’s simulated bu�er. If the remaining capacity in the
phantomqueue is at leastB ,we immediately transmit the (real) packet
and enqueue a “phantom” packet of size B in the phantom queue on
its behalf. If the phantom queue is full (or its remaining capacity is
less than B), we drop the (real) packet.We dequeue the phantompack-
ets in the phantom queue at rate A . Notice howwe do not bu�er any
real packets – we either transmit or drop the real packets right away
upon arrival. The phantom packets in the phantom queue are simply
maintained as byte counters that get incremented and decremented
upon phantom enqueue and dequeue events respectively. Moreover,
unlike a shaper, where we need to regularly dequeue packets based
on rate A , phantom dequeues can be batched and done onlywhen the
phantom queue becomes full. Such a policing system, implemented
using a single phantom queue, essentially works in the same way as
a token bucket �lter of size ⌫ with rate A , as described in section 2.2.

3.2 Policing withMultiple PhantomQueues
Once we realize a policer as a phantom queue, we can extend it
to a system of # phantom queues (analogous to a shaper with #
queues) to realize di�erent rate-sharing policies. Figure 2 compares
such a system with an analogous tra�c shaper. When a packet of
size B arrives, we classify it into one of the # queues (say&8 with
a bu�er size of ⌫8 ) based on packet header �elds (e.g. �ow ID, a
hash of source-destination addresses, etc). If the remaining bu�er
capacity in&8 is at least B , we transmit the real packet and enqueue
the corresponding phantom packet in&8 by incrementing its byte
counter by B . If the remaining bu�er capacity in&8 is less than B (after
accounting for any pending phantom dequeues), we drop the packet.

We dequeue the phantom packets from the phantom queues (by
decrementing the corresponding byte counters) as per the desired
policy. For example, to enforce per-�ow fairness, we maintain a
phantom queue for each �ow (or approximate it by hashing the �ow
identi�ers in the packet header �elds into one of the # queues), and
dequeue phantom packets from the occupied phantom queues in a
round-robin manner at a cumulative rate of A . This phantom system
(maintained via counters) is exactly analogous to a shaper system
that enforces fairness via per-�owqueues storing real packets served
in a round-robin manner at a cumulative rate of A . We can similarly
emulate other policies – weighted fairness (doing weighted round-
robin between occupied phantom queues with di�ering weights),

prioritization (dequeuing from lower priority phantom queue only
when the higher priority queue is unoccupied), or hierarchical
combinations of these (e.g. dividing the queues into two classes, with
the �rst class of queues having 2⇥ the weight of the second class,
and enforcing per-�ow fairness across the queues within each class).

We refer to such a policing systemwithmultiple phantom queues
as PQP. We further use the term “analogous shaper system” to refer
to a hypothetical shaper system that applies the same enqueuing and
dequeuing policies on real packets as PQP does on phantom packets.

3.3 Scope and Properties of PQP
Notice how PQP directly enforces the desired policies on phantom
packets (that are maintained as counters). These policies indirectly
in�uence real packets by changing the phantom queue occupancy,
thereby determining whether the real packets must be transmitted
or dropped. This discrepancy between real and phantom behavior
imposes certain restrictions on the kind of policies PQP can realize.
Restriction #1: No drop after enqueue. The �rst restriction
stems from the fact that PQP decides whether a packet should
be transmitted or dropped upon its arrival. If the corresponding
phantom queue occupancy allows the packet to be transmitted,
that is done right-away, and its phantom copy is enqueued (with
the assumption that it will eventually be dequeued). By design,
such a system cannot emulate policies where the fate of the packet
(whether it should be dropped or transmitted) changes after the
packet has been enqueued. An example of such a policy is priority
dropping –where a queue enqueues packetswith di�ering priorities,
dropping the lowest priority packet when it is full.

We, therefore, restrict PQP to emulate a set of # drop-tail queues,
whereeachqueue&8 hasa�xedsize⌫8 – if theoccupancyof&8 allows
the packet to be transmitted (and its phantom copy to be enqueued)
upon arrival, then the corresponding phantom packet is guaranteed
to be eventually dequeued (with the dequeue time governed by the
policy as described in §3.2). This restriction complies with howmost
policy-rich shaper systems are implemented [2, 44]. Note thatwe use
the term drop-tail rather generously – the only requirement being
thata (phantom)packet cannotbedroppedafter ithasbeenenqueued.
We need not necessarily wait for&8 to become full before we drop
a packet upon its arrival; we can apply active queue management
policies (as we do in §4) or even apply access control-based �lters
that drop packets upon arrival based on other criteria.
Restriction #2: Rate-sharing Policies. The second restriction
stems from the fact that real and phantom packets in PQP are de-
queued at di�erent times. So while PQP enforces the desired policies
(that an analogous shaper system applies on real packets) on phan-
tom packets, the speci�c timings do not translate to real packets. As
a result, PQP cannot enforce policies pertaining to packet timings
or scheduling order – a packet arriving at PQP at time C will either
be dropped or transmitted at time C . For example, a shaper served
at rate A can ensure that high-priority packets never experience any
queuing delay from low priority if all downstream hops have a ca-
pacity greater than A . In contrast, PQP can transmit a burst of (real)
low-priority packets before transmitting high-priority packets that
arrive later (while the phantom low-priority packets wait behind
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Figure 2: PhantomQueue Policer (PQP) serviced at rate A using a rate sharing policy, and an equivalent tra�c shaper.

phantom high-priority ones) – this can cause the high-priority pack-
ets towait behind the burst of low-priority ones at a downstreamhop
whose link capacity, while greater than A , is lower than the burst rate.

While we cannot control �ne-grained packet timings with PQP,
we can enforce di�erent rate-sharing policies on an average (over
longer timescales), in terms of how the cumulative rate A is divided
between individual queues. For example, a per-�ow fairness policy
(implemented as round-robin dequeue from per-�ow phantom
queues) will serve&8 roughly at rate A8 =<0G (A/# 0), where # 0 is
the number of non-empty queues. A weighted fairness policy will
serve&8 at rate A8 = F8AÕ

&9 not emptyF9
, whereF8 is the weight of&8 . A

prioritization policy will serve a lower priority queue at the rate
of A minus the rate at which the higher priority queues are served
(as driven by their packet arrival rates). 3

PQP, by design, guarantees the following properties, that allow
it to enforce such rate-sharing policies on average:
Property 1.Assuming the set of packets that arrive at a PQP system
is exactly the same as the set of packets that arrive at the analogous
shaper system, if a packet gets dequeued at time C3 in the shaper
system, its phantom copy will also be dequeued at the same time C3
in the PQP system.
Property 2. If a (real) packet is transmitted by a PQP, then its
phantom copy is eventually dequeued by the PQP.
Property 3. If a PQP transmits a (real) packet at time C4 , its phantom
copy will be enqueued in phantom queue &8 at time C4 and will be
dequeued at time C3 = C4 + ⇡ (8, C4 ), where ⇡ (8, C4 ) is the phantom
queuing delay i.e. the time needed to drain the phantom queue build
up until time C4 at&8 .

We can combine these properties to see how PQP can e�ectively
enforce rate-sharing policies. As per Property 1, if an analogous
shaper system divides the rate A between # queues such that&8 is
served at rate A8 (e.g. as dictated by weighted round-robin schedul-
ing, priority scheduling, or their hierarchical combination), then the
corresponding PQP systemwill serve the phantom packets in&8 at
rate A8 . As per Properties 2 and 3, if the phantom packets in&8 are
dequeued at rate A8 , then, on an average (over a longer timescale), the
corresponding real packets also get served at rate A8 . Howmuch the
instantaneous rates of real packets deviate from their ideal phantom
counterparts is dictated by the phantomqueuing delay,which in turn
is governed by the phantom queue size (that controls the amount

3The precise rates at which each queue is served would depend on the rate at which
packets get enqueued in each queue, which dictates the max-min weighted fair share
rates as well as the spare capacity (in case of prioritization).
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Figure 3: Enforced rate as a function of �C
(for a Reno�owwith ⌫=1000 ⌫ at 10Mbps).

of burst allowed the PQP system) – we analyze this more formally
in §3.4 and devise a mechanism to e�ectively limit the burst in §4.
Further, note that Property 1 holds under the assumption that the
set of input packets is the same in the PQP system and the analogous
shaper system. However, timing deviations in when a packet actu-
ally gets transmitted impact the feedback loop of congestion control
algorithms, thereby a�ecting the packet arrival rates. Our evaluation
in §6 shows how the rate and policy enforcement with PQP, in spite
of this e�ect, closely matches the analogous shaper system.

3.4 Bounds on Rate and Policy Enforcement
Consider a phantom queue& of size ⌫ that is serviced at rate A . Let
the length of the phantom queue (the number of bytes in the queue’s
simulated bu�er) at time C be given by !(&,C). This queue length
governs the phantom queuing delay of a packet transmitted at time C .
Theorem 1:Over any time interval �C =C2�C1, as long as phantom
queue& occupancy does not go to zero i.e. !(&,C)>0, 8C 2 (C1,C2), then
the rate enforced over duration �C is bounded by (A±⌫/�C)+.
Proof: Given, !(&, C) > 0 over C1 < C < C2, & continues to drain
phantom packets at rate A . Over time �C , it drains A�C bytes.
Therefore, the amount of data, �(C1, C2), that & accepts during
duration (C1,C2) can be given as:
�(C1,C2)= (!(&,C2)�!(&,C1)+A�C)+
Here, (E)+=max(0,E).
Since 0< !(&,C)  ⌫, we can �nd upper and lower limits on the

number of accepted packets as follows:
Upper Limit: !(&,C1)=0 and !(&,C2)=⌫

�<0G (C1,C2)+=A�C+⌫
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Lower Limit: !(&,C1)=⌫ and !(&,C2)=0

�<8= (C1,C2)= (A�C�⌫)+

Thus, number of accepted packets over duration �C is given as:

�(C1,C2)= (A�C±⌫)+

Dividing the above equation by �C gives the actual enforced rate,
A 0 over duration �C . As �C grows, the actual enforced rate comes
closer to the phantom queue draining rate of A :

A 0= lim
�C!1

�(C1,C2)
�C

= lim
�C!1

(A± ⌫

�C
)+=A

This can be seen in Figure 3 for a Reno �ow throttled to 10 Mbps.
The dotted lines represent the theoretical error in rate from theorem
1,whereas theshadedregion is theactual error inenforcedrate.Aswe
increase �C , the error in enforced rate becomes smaller and smaller.

The above result is provably achieved only as long as the phantom
queue remains non-empty over the duration �C . If the phantom
queue is empty over some time duration, the enforced rate will
accordingly be lower than A . This can happen if the packet arrival
rate (tra�c demand) is itself lower than A . It can also happen if the
tra�c demand is higher than A , but the queue is not su�ciently
sized, causing it to empty out under a typical �ow’s congestion
control behavior – we discuss this further in §3.5.

Nowconsider a set of# phantomqueues, serviced at a cumulative
rate A , where A is divided across individual phantom queues&8 , each
serviced at rate A8 as per the desired policy (as discussed in §3.3).
If each queue is sized by ⌫8 , we can use the above theorem to show
the following bounds on such a system: If any phantom queue&8 ,
whose occupancy does not go to zero over a duration�C , has a phantom
dequeue rate of A8 , it has an enforced rate of A 08 = (A8 ± ⌫8

�C )+ over
duration of�C .Moreover, if we sum this for all queues, we get bounds
on the overall rate enforced for the aggregate as: A 0 = (A ±

Õ=
8 ⌫8
�C )+.

So, if each phantom queue is sized to be ⌫, the overall rate enforced
is A 0= (A±# ⌫

�C )+
Takeaways.We have the following two key takeaways from these
theorems: (i) The average rate that PQP enforces on real packets will
match the desired rates (enforced on phantom packets) over long
enough timescales, as long as the phantom queue remains occupied.
(ii) The discrepancies in these two rates over a smaller timescale is
bounded by the size of the phantom queues. Very large queue sizes
can cause instantaneous enforced rates to be much higher than the
desiredphantomrates (i.e. cause large bursts). Very small queue sizes,
on the other hand, will result in lower than desired instantaneous
(and average) rates as this may lead to phantom queue going empty
at times. We discuss how phantom queues should be sized next.

3.5 Sizing the PhantomQueues
Guidelines on how to size the phantom queue depend on factors
like rate A , RTT, and congestion control protocol used by the �ow.
We now analyze how phantom queues should be sized for correct
average rate enforcement.

Our bounds on enforced rates in §3.4 were conditioned on the
queue remaining occupied over the given time duration. Therefore,
in order to achieve these bounds, the phantom queue must be sized
such that the congestion control protocol of a backlogged sender

(that generates data at a rate higher than the policed rate of A ) is
able to keep it occupied 4. This is analogous to how we reason
about sizing shaper queues (that manage real packets) [9]. However,
the outcome (i.e. the required queue size) is very di�erent for
phantom queues, due to the discrepancy between timings in when
the phantom packet is dequeued and the real packet is transmitted,
and how that a�ects the congestion control loop.

We consider congestion control protocols frequently used in
production today: Cubic (default for most users [19]), New Reno
(used by Net�ix[47]), and BBR (used by Google and YouTube [3, 10]).
The phantom queue size ⌫ should be large enough to support any
of these protocols. Reno has the largest queue size requirements
amongst these protocols (we use the term Reno to refer to both Reno
and New Reno protocols, that share the same core logic, other than
fast recovery). This means that if we size the phantom queues as
per Reno’s requirements, we can ensure correct rate enforcement
for other protocols too.
Need $ (⌫⇡%2) sized phantom queues. The rule-of-thumb for
shaper queues (with real packets) requires$ (⌫⇡%) size to ensure
that they remain occupied by a backlogged Reno sender [9], where
BDP is the bandwidth-delay product of the network. In contrast, we
�nd that in order to keep a phantom queue occupied with a back-
logged Reno �ow,we need to size it at$ (⌫⇡%2). Speci�cally, we�nd
that for correct rate enforcement for a Reno �ow, the phantomqueue
size should be at least ⌫⇡%2

18 ⇥"(( bytes, where ⌫⇡% =A⇥')) , with
A being the desired rate (at which the phantom queue is dequeued)
and ')) is the �ow’s round-trip time. This comes from our analysis
(detailed in Appendix A) that shows that in order to maintain an
average enforced rate of A , the instantaneous rate of the Reno �ow
shouldvarybetween 2A

3 and 4A
3 in the steadyAIMD(additive increase

multiplicative decrease) phase, and a phantomqueuewith bu�er size
at least ⌫⇡%2

18 ⇥"(( bytes is needed to support this rate variation. It
should also be noted that, in the steady state, the upper limit on the
size of the bu�er is not important. Once the phantom queue becomes
full, it automatically makes room for more packets at the rate of A .
Why not BDP-sized queues? The reason for the larger bu�er
size requirement with the phantom queue (when compared to the
rule-of-thumb for regular queues with real packets) stems from the
fact that phantom queue does not have any queuing delay for real
packets. In a real queue, when the �ow’s congestion window (2F=3)
exceeds ⌫⇡% , additional packets are queued and dequeued at rate
A , thus incurring a queuing delay additional to the base RTT. Only
when the acknowledgments for all packets has reached the sender,
2F=3 is incremented by 1. By the time this additional packet due
to the 2F=3 update arrives, all the packets for the previous 2F=3
had already been transmitted, thus the standing queue increases
by only 1 packet after every 2F=3 update. In the phantom queue,
however, acknowledgment for all 2F=3 amount of packets reaches
within the base ')) time (irrespective of however long it takes
the phantom queue to drain). With the shorter feedback loop that
excludes any queuing delay, by the time packets for the next 2F=3
arrive, (2F=3�⌫⇡%)+ phantom packets from the previous round
are also present. So, where in a physical queue, queue build-up
increases by 1 packet after each 2F=3 update, in phantom queues

4Senders that generate data at a rate lower than A are app-limited, and not a�ected by
policing.
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(d) Packet drops

Figure 4: A Reno�ow’s behavior with phantom queues of di�erent sizes (⌫).

it increases by (2F=3�⌫⇡%)+ packets. A phantom queue therefore
must be sized such that it can hold all of these additional packets.
Drawbacks of$ (⌫⇡%2) sized queues. If queues are sized by the
$ (⌫⇡%2) rule, they result in good rate enforcement in a steady state
for all congestion control protocols. However, it can cause many
other problems. To begin with, it will cause a very large burst in rate
during the �ow’s slow start phase. For example, consider a phantom
queue sized for enforcing a rate of 15 Mbps. Suppose the queue is
sized assuming the maximum RTT of 100 ms at 1.4MBs, using the
$ (⌫⇡%2) rule. If a�owwith 10msRTTpasses through this phantom
queue, it canburstup toa rateof143Mbpsovera100msperiodduring
its slow start phase, assuming a starting 2F=3 of 10 MSS packets
(default in Linux). This also results in a high drop rate – the slow start
phase endswith such a high2F=3 value, that it takesmultiple rounds
of packet losses (and 2F=3 halving) before the 2F=3 comes down to
an average value comparable to ⌫⇡% for correct rate enforcement.
Empirical results. Figure 4 shows the impact of howwe size the
phantom queue bu�er (⌫) on a Reno �ow.We have a Reno �owwith
')) of 100 ms and we want to enforce rate A of 10 Mbps. For such
a �ow, ⌫ needs to be at least 1000 KB. When ⌫ is set to a smaller
size of 130 KB, queue occupancy often ends up going to 0, as shown
in Figure 4b. This results in the Reno 2F=3 not being able to reach
the required peak, thus causing the enforced rate to be lower than
A (Figure 4c). When ⌫ is large enough (1000KB or 4000KB), we have
correct rate enforcement in the steady state, but we have a very
large bursts (Figure 4a) and higher drop rates (Figure 4d). Also, as
long as the queue remains occupied, its size does not matter in the
steady state, e.g. a 4000 KB sized phantom queue does as good a rate
enforcement as a 1000 KB one.

The issue of sizing gets worse when we have multiple queues
instead of one, where each queuemust be sized by the$ (⌫⇡%2) rule
to ensure correct rate enforcement. The burst caused by this would
be much larger and it can further lead to poor policy enforcement
if we have a secondary bottleneck after the phantom queue. Figure
5a shows a scenario where we use phantom queues to enforce
fair sharing of 7.5 Mbps between 4 �ows. We have a secondary
bottleneck of 8.5 Mbps after phantom queues5. Since phantom
queues allow such a large burst to go through, the packets are really

5This can occur when service providers rate-limit the �ows before they hit the RAN
which may have bandwidth comparable to the enforced rate.
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(b) BC-PQP

Figure 5: A =7.5Mbps shared across 4�ows with di�erent CC
protocols with a secondary bottleneck of 8.5Mbps afterward.

bottlenecked at the secondary bottleneck which results in poor
policy enforcement i.e. fairness in this case.

We need the phantom queue bu�ers to be large enough for
correct rate enforcement in the steady state, but we would still
like to avoid the large transient burst. How do we achieve such a
behavior?We address this in the next section.

4 Burst Controlled PQP
We saw in the previous section that once a queue becomes full, irre-
spective of how big it is (albeit it is larger than Reno’s requirements),
it does correct average rate enforcement. In other words, there is
no upper limit on how the queue should be sized for it to do correct
rate enforcement in the steady state of a �ow. Thus, instead of
asking a more complicated question of how to dynamically size the
queues, the answer to which depends on various factors like �ow’s
congestion control protocol, RTT, enforced rate A , and demands of
other �ows, we ask howwe can put �ows in the steady state without
letting them burst.

We have seen in the previous section that to enforce a rate of A , we
need to allow some rate variation e.g. between 2

3A and
4
3A for Reno.

However, any burst larger than this is undesirable. We now develop
an active phantom queuemanagement scheme that allows us tomin-
imize this burst while still doing correct rate and policy enforcement.

Our idea is based on the observation that once an appropriately
sized phantom queue becomes full, a saturating �ow (with demand
greater than the desired rate A ) tries to keep it full in the steady state
(e.g. the AIMD state for TCP Reno), and that results correct average
rate enforcement. However, during the starting (slow-start) phase,
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the�owcanburst up to a very large ratewhile it is�lling up an empty
phantom queue, exiting the slow-start phase only when the queue
is full. Our key insight is thatwe do not need to wait until the queue
becomes full to exit the starting phase. Instead, we can ‘magically’
�ll the queue when the �ow’s sending rate exceeds a certain upper
threshold (e.g. 4

3A , which is the upper bound on Reno’s rate in a
steady state). Similarly, we can drain these ‘magic packets’ once the
�ow is �nishing up i.e. its sending rate falls below a lower threshold
(e.g. 23A , which is the lower bound on Reno’s rate in steady state).

Our algorithm achieves this in the following way.Wemaintain
the following additional parameters to con�gure a PQP system with
# queues: (i) an upper threshold multiplier \+, (ii) a lower threshold
multiplier \� , and (iii) a time period length) .

On enqueueof anypacket into phantomqueue&8 ,we estimate the
dequeue rate A⇤8 for this phantom queue and calculate the expected
number of bytes thatmay be dequeued from&8 over time period) as
-8 =A⇤8 ) . A

⇤
8 can be calculated simply based onwhat queues are active

and the rate sharing policy 6. For example, in the case of fairness, A⇤8
is simply A divided by the number of active queues. For prioritization,
A⇤8 =A if&8 is the highest priority queue that is active, and 0 otherwise.

Based on this, we compute the upper and lower thresholds
on how many bytes each phantom queue is allowed to dequeue
before we �ll it up with magic packets. Speci�cally, if the number
of packets accepted by a phantom queue&8 over the current time
window of length) is greater than-+

8 =\+-8 , we �ll up the queue
with magic packet by magically incrementing its byte counter by
"8 = ⌫ � !(&8 ,C) (where C is the current time). We keep track of
magic packets added for each queue and when the accepted bytes
over time) is less than- �

8 =\�-8 , we remove all"8 ‘magic packets’
from this phantom queue 7. We refer to a PQP system that adopts
such an algorithm as burst-controlled PQP (BC-PQP).

With this, any phantom queue&8 bursts at most-+
8 bytes, where

-+
8 is proportional to BDP if) is set to a value comparable to RTT.

Across all �ows in an aggregate, burst is at most #\+- for any arbi-
trary rate-sharing policy, where# is the number of phantomqueues,
and- =

Õ#
8=1-8 . However, it is much smaller on average for policies

like fair sharing and prioritization. In the worst case for fairness,
we may have all = �ows become active over time period) and burst
to the maximum possible value of-+

8 . For the �rst �ow, this is \
+- ,

for the second \+-/2, then \+-/3, and so on. This is a harmonic
series, which sums to \+- (ln= + 0.5772) [11]. For 64 queues, this
number is approximately 4.72⇥\+- . Similarly, for prioritization,
a queue&8 has-8 =0 if any of the other higher-priority queues are
active. As analyzed in §3.4, the cost of this relatively smaller burst
is further amortized, the longer the queues remain occupied.

We con�gure ) according to the tail ')) e.g. 100 ms (to get
a reasonable estimate of packet enqueue and dequeue rates).
We further con�gure \� and \+ to be small multipliers (0.5 and
1.5 respectively based on requirements for New Reno). These
con�gurations ensure that we do correct rate enforcement while
avoiding unnecessary bursts. Figure 5b shows how �ows see a very
small and controlled burstwithBC-PQP,which results in fair sharing

6Maintaining a list of active queues also has an e�ciency bene�t, since during phantom
dequeue, we do not have to iterate over all queues but only the active ones.
7It is possible that we may not have enough packets in queue size to reclaim all magic
packets, however, this is a transient behavior for a backlogged �ow and does not a�ect
rate/policy enforcement much.

of 7.5 Mbps across 4 di�erent �ows in the scenario where we have
a secondary bottleneck of 8.5Mbps placed after the policer system.

We end this section by discussing some design insights below:
1. How to set the phantom queue bu�er size ⌫8 in a BC-PQP? While
the size of the phantom queue does not matter for normal behaving
�ow as we �ll it up as soon as the upper-threshold on enqueue rate
is reached, we suggest max-sizing phantom queues to about 2⇥
the required $ (⌫⇡%2) limit, so as to avoid a malicious �ow, that
constantly sends at a rate greater than A but smaller than the upper
threshold, from sending at a higher rate than A inde�nitely.
2. Why do we remove magic packets once the �ow becomes inactive?
BC-PQP removes the magic phantom packets (i.e. appropriately
decrements the byte counter) when the dequeue rate recedes the
lower threshold, e.g.whenthe�owbecomes inactive.Doingsoallows
BC-PQP to immediately allocate the spare rate to other �ows (as
opposed to continually dequeuing themagic packets). In normal PQP
with very large queues, when a �ow becomes inactive, it takes a long
time before its phantom queue is drained, which results in transient
under-enforcement of rate even though other �ows are active.
3. How does BC-PQP enable dynamic auto-con�guration of phantom
queues? BC-PQP estimates the expected dequeue rate, A8⇤ of each
queue&8 independently – adapting this rate as per the rate sharing
policies, as the set of active queues changes. This allows BC-PQP
to automatically adapt the phantom queue con�gurations (upper
and lower thresholds for adding and removing magic packets) with
changing tra�c patterns, instead of relying on a static con�guration
that is hard to tune. This also allows BC-PQP to easily generalize
to arbitrary rate-sharing policies.

5 Implementation
We develop a middlebox for transparently enforcing tra�c rates
using a kernel-bypass stack based on Intel’s DPDK.We implement
BC-PQP and other relevant baselines (including shaper, policer, and
fairpolicer) in this middlebox for our evaluations in §6. We run mi-
crobenchmarks on Azure public cloud and use three standard F8sv2
Virtual Machines running Ubuntu 22.04, dedicated for the sender,
receiver, and the middlebox respectively. For tra�c, we create �ows
of di�erent sizes using TCP sockets and con�gure the congestion
control algorithm at a per-�ow granularity. We use Linux kernel
implementation of all congestion control protocols. We use Linux
netem to arti�cially in�ate latency and approximate realistic WAN
RTTs. The sender tra�c is routed through themiddlebox responsible
for enforcing the network rate before it reaches the receiver.

We also test phantom queues with real applications. For this, we
implement phantom queues and other baselines inMahimahi. Inside
the Mahimahi shell, we run a browser to run di�erent applications
i.e. video streaming services like YouTube and Net�ix, and web
browsing.

6 Evaluation
We compare BC-PQP with several baselines (tra�c shapers, tra�c
policers, and FairPolicer [42]), evaluating the following:
• BC-PQP’s ability to do correct rate enforcement (§6.2).
• BC-PQP’s system e�ciency (§6.3).
• BC-PQP’s ability to enforce di�erent rate sharing policies (§6.4).
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• Improvement in application quality-of-experience (QoE) with
BC-PQP for real-world applications – video streaming and web
browsing (§6.5).

6.1 Experiment Setup
We do rate enforcement for multiple �ow aggregates (representing
a given user), each consisting of multiple �ows. Our setup consists
of three machines: a sender machine, a rate enforcer machine,
and a receiver machine. The tra�c from the sender machine is
routed through the rate enforcer machine. Our goal is to enforce
the speci�ed rate of A for each aggregate. Unless otherwise speci�ed,
we use the rate-sharing policy of round-robin (per-�ow fairness)
within each aggregate.
Rate per aggregate.We �x the enforced rate A for each �ow aggre-
gate in each experiment, varying this value across experiment runs
ranging it from 1.5Mbps to 200 Mbps. We speci�cally experiment
with per-aggregate rates of 1.5Mbps, 7.5Mbps, 25Mbps, 50Mbps,
100Mbps, and 200Mbps.
Number of aggregates. For each experiment, we have 100 �ow
aggregates, except for experiments where we set the per-aggregate
rate to 100Mbps or 200Mbps (in these experiments, we reduce
the number of �ow aggregates to 60 and 30 respectively to avoid
bottlenecks in netem at the sender).
Tra�cmix within each aggregate. The �ow sizes in each aggre-
gate range from a few 10s of KBs to 100s of MBs. For congestion con-
trol protocols,we pick fromNewReno, Cubic, BBR, andVegas (cover-
ingpopularlyusedprotocols ranging frompurely loss-based todelay-
based). We use Linux kernel implementation of all these protocols.
We also use netem to inject di�erent delays to di�erent�ows ranging
from 2ms to 50ms. In each experiment, we have amix of aggregates,
inhalf of the aggregates all�owsuse the samecongestion control pro-
tocol (2 {Cubic, Reno, BBR, Vegas}) and have the sameRTT (2 {2ms, 5
ms, 10 ms, 25 ms, 50 ms}), while in the other half, we have �ows with
di�erentcongestioncontrolprotocolsaswell asdi�erentRTTs.More-
over, in each of these groups, some aggregates only have backlogged
�ows (large �ows with �ow completion time in minutes), whereas
others only have short on-and-o� �ows (10s of KBs), whereas a third
subgroup has both backlogged and short on-and-o� �ows.
Computing relevantmetrics.The rate enforcermachine forwards
tra�c to the receiver machine, where per-�ow throughput is
measured over 250ms windows. We use these per-�ow rates over
these 250ms windows to compute di�erent �ow-speci�c metrics
when evaluating policy enforcement within each aggregate. We
further sum the throughput of each �owwithin each aggregate over
each 250ms window and normalize this aggregate throughput by
enforced rate A to compute the aggregate enforced rate over each
250ms window.
Baselines.We compare BC-PQP with the following baselines:
• Shaper :We implement our shaper inspired by an industry-standard
algorithm. Similar to Carousel [39], we use timerwheels [51] to
schedule dequeues from the shapers. Carousel puts packets to
dequeue directly on the timerwheel and therefore is unable to
support rate sharing policies within a shaper. We put shapers on
the timer wheel and dequeue packets from the shapers based on
the rate-sharing policy. Each shaper has multiple queues each sized
according to maximum BDP.

• FairPolicer (FP): As mentioned in §2, FP [42] provides a point
solution for realizing per-�ow fairness with statically con�gured
TBF-based policers. We use the best possible con�guration for
FP. We size the bucket ⌫ for FP to be the maximum of any �ow’s
requirement i.e. we pick the maximum RTT and compute ⌫ needed
for correct rate enforcement for New Reno and Cubic, and pick the
maximum value. For small values of RTT and rate, Cubic requires
a larger bucket size, whereas in other cases New Reno requires a
larger bucket size (using$ (⌫⇡%2)).
• Policer : A token bucket tra�c policer sized according to maximum
BDP.
• Policer+: A token bucket tra�c policer sized similar to FP.

For BC-PQP, we do not need to set an explicit size of the bucket
thus we pick a very high value of at least 10 ⇥$ (⌫⇡%2). For other
parameters of BC-PQP, we set \+, \� , and) to be 1.5, 0.5, and 100ms
respectively.

6.2 Rate Enforcement
We begin with presenting results on how BC-PQP’s aggregate rate
enforcement behavior compares with the baselines. Figure 6 sum-
marizes the rate enforcement performance of BC-PQP and di�erent
baselines. We can draw the following insights from these results:

(1) The distribution of normalized throughput of each aggregate
for all the rates is shown in Figure 6a. It can be seen that the
shaper does accurate rate enforcement over short time scales. The
instantaneous rate for other baselines also stayswithin small bounds
(roughly 0.8A to 1.2A ) for most parts. However, Policer+ and FP cause
amuch larger burst and have a long tail for aggregate throughput (as
shown in Figure 6b). BC-PQP, in contrast, retains a small deviation
in aggregate throughput even at the tails, performing close to a
shaper. As shown previously in Figure 5 in §4, BC-PQP’s small burst
ensures that the rate and policy enforcement are correct even in the
presence of a secondary bottleneck with bandwidth comparable to A .

(2) Policer (with BDP-sized bu�er) has a small burst, but at the
cost of the average throughput being lower than the desired rate
A . This can be observed in Figure 6a, where the line for Policer
is slightly shifted left. Figure 6c further reports the average of
all non-zero aggregate throughput measurements. The average
throughput is higher for FP and Policer+ because bursty throughput
points skew the average up.

(3) Due to the lack of bu�ering, all policing-based schemes induce
a higher number of packet drops than Shaper. The number of packet
drops reduces as the BDP (either of rate or RTT) increases, this is
especially apparent from trends for BDP-sized policer and BC-PQP.
However, as discussed previously a large-sized policer (and also
FP) results in a higher number of packet drops especially when
�ows end up with an over-estimated congestion windows at the
end of the slow start phase. BC-PQP on the other hand avoids such
drops by avoiding large bursts and has drop rates comparable with
BDP-sized policer. Shaper’s small drop rates come at the cost of
inducing higher queuing delays. We �nd that the high queuing
delay of Shaper can at times hurt application performance more
than the relatively higher packet drop rates of BC-PQP (§6.5) – so
the trade-o� between them is unclear.

Overall, BC-PQP results in correct aggregate rate enforcement
with 10⇥ smaller burst compared with FP or a correctly sized policer.
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(a) CDF of instantaneous throughput
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(b) Tail throughput (burst)
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(c) Average aggregate
throughput
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(d) Drop rate

Figure 6: Aggregate rate enforced by BC-PQP and other baselines, 6a and 6b show distribution of aggregate throughputmeasured
over 250mswindows normalized by enforced rate, 6c shows normalized average aggregate throughput and 6d shows drop rate

at di�erent enforced rates
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Figure 7: CPU cycles spent per packet

6.3 System E�ciency
We use CPU cycles spent per packet as a proxy to quantify the
e�ciency and scalability of di�erent rate enforcement schemes. This
indirectly captures other overheads e.g. storing and retrieving of
packets from the memory. Moreover, spending more CPU cycles per
packet results in the system being able to handle fewer packets per
second. Figure 7 reports the average number of CPU cycles spent on
each packet with di�erent schemes. BC-PQP uses 5-7 ⇥ fewer CPU
cycles per packet and is marginally costlier than a simple policer.
A shaper spends several CPU cycles during its dequeue routine
where it needs to gather packets from di�erent queues of di�erent
shapers before sending them to the NIC to dequeue. On the other
hand, all other schemes do not need to store packets and make the
decision about the fate of the packet on its enqueue thus avoiding
spending CPU cycles on costly memory trips. Policer and BC-PQP
furthermore are more e�cient than FP because we can batch
phantom dequeues or token replenishing, and only call phantom
dequeue or token generator when the phantom queue is full or the
token bucket is empty. On the other hand, FP makes decisions to
drop incoming packets based on a dynamic threshold which is a
function of up-to-date per-�ow residual bucket space. This requires
generating and allocating tokens on each enqueue of a packet.

6.4 Policy Enforcement
In this section, we look at howwell BC-PQP enforces rate-sharing
policies within an aggregate.

6.4.1 Per-flow Fairness. For the experiment from §6.2, we measure
the per-�ow throughput over 250 ms windows within each

aggregate and estimate fairness using Jain’s Fairness Index [27].
CDF of this fairness index is reported in Figure 8a. We can see that
the shaper achieves close to perfect fair sharing of the enforced rate
as expected, but Policer and Policer+ are unable to do so. BC-PQP
achieves fairness comparable to the shaper. While FP does better
than policers, it falls a bit short for the following reason – �ows
with di�erent RTTs require di�erently sized buckets for correct rate
enforcement. FP does not di�erentiate between them and instead
splits a single (statically con�gured) bucket equally among di�erent
�ows. This creates large bursts in �ows with small RTTs (that
require smaller buckets), and lower than desired average rates for
�ows with large RTTs (that require larger buckets), thereby causing
unfairness. BC-PQP, in contrast, dynamically adapts the phantom
queue con�guration by adding and removing magic packets based
on �ow arrival rates as described in §4 – it naturally �lls up the
queue with magic packets sooner for �ows with smaller RTTs that
ramp up faster, when compared to �ows with longer RTTs.

6.4.2 Weighted Fairness. We next run a microbenchmark experi-
ment to showhowBC-PQP can do accurateweighted sharingwithin
an aggregate. We experiment with a single aggregate, with an en-
forced rate of 50 Mbps shared between 7 �ows, each with weights
from1 to 7. All�ows start at the same time and are sized proportional
to their weights so that they should complete at the same time if the
rate is shared between them as per their weights. We also adapt the
token allocation logic in FairPolicer to make it do similar weighted
sharing, without changing the bucket sizing. It is non-trivial to adapt
FP’s bucket sizing logic for arbitrary rate-sharing policies. Figures 8b
and 8c show the time series of per-�owand aggregate throughput for
FP and BC-PQP. BC-PQP enforces weighted sharing correctly result-
ing in all�ows completing at the same time. FP fails to do so, this is be-
cause while FP tries to allocate tokens in a weighted fair manner, the
way it sizes each�ow’s bucketworks only for fair sharing. It sets each
�ow’s bucket capacity to be equal to the number of tokens remaining
in themain token bucket. Thus, each�owwith di�erentweights gets
approximately same-sized token buckets even though a �owwith a
higher weight should get a larger one. It is not trivial to extend FP’s
bucket sizing algorithm to support arbitrary rate-sharing policies.

6.4.3 Prioritization and Nested Policies. In this section, we show
the feasibility of enforcing prioritization and nested policies with
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(a) CDF of Fairness Index per aggregate
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(c)Weighted Fairness with BC-PQP
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(d) Nested Policies with BC-PQP
Figure

8: Policy enforcement with BC-PQP and other baselines: 8a shows per-�ow fairness between�ows within an aggregate, 8b and 8c
showweighted fairness achieved by FairPolicer and BC-PQP respectively and 8d shows a nested policy with prioritization and

weighted fairness using BC-PQP.

BC-PQP, using a microbenchmark. We experiment with a single
aggregate with 4 �ows divided into two priority groups: (i) p1 is
the higher priority group with 3 on-and-o� �ows, and within p1,
the rate is shared in a weighted fair manner between the 3 �ows,
and (ii) p2 is the lower priority group with a single backlogged �ow.
Figure 8d shows how BC-PQP allocates all bandwidth to p1 �ows in
a weighted fair manner whenever they’re active and only allocates
bandwidth to p2 �owwhen no p1 �ow is active.

6.5 RealWorld Applications
We show the e�ectiveness of BC-PQP in enforcing aggregate rates
and rate-sharing policies for di�erent real-world applications. We
look at scenarios where an enforced aggregate rate A is shared by
di�erent kinds of �ows.

6.5.1 Video Streaming. We look at a scenario where an aggregate
rate is shared between a video stream and some other tra�c. Cellular
service providers and ISPs often use policers or single queue shapers
to do such rate enforcement for each user. We simulate this scenario
with two di�erent rates i.e. 3 Mbps and 10 Mbps. The aggregate rate
is shared between video �ow and the rest of the tra�c (webpage
loads, downloads, etc.). We further try to implement di�erent
rate-sharing policies within an aggregate, with 3 Mbps, we do 1:1
fairness and with 10 Mbps, we do 4:1 weighted fairness between
video �ow and the rest of the tra�c respectively.

We repeat this experiment using 3 videos from YouTube and 2
videos from Net�ix. YouTube uses BBR [3], while Net�ix uses New
Reno [47] for its congestion control protocols. For baselines, we use
a simple policer and a single queue shaper as well as a shaper with
de�cit round robin. The �rst two are the status quo mechanisms
to do rate enforcement.

Figure 9a shows the results with a 3Mbps aggregate rate that is
shared in a 1:1 fairness ratio between the video �ow and the rest
of the tra�c. It plots the video quality on the Y-axis and the fairness
index on the X-axis. We �nd that BC-PQP shares the rate fairly
between the video stream and the other �ows, and also achieved
high video quality with both Net�ix and YouTube. Single queue
shaper and policer, on the other hand, are not able to share the
rate fairly. While shaper with DRR ensures fairness between tra�c,

YouTube videos’ quality su�ers – this is likely due to an additional
queuing delay introduced due to the bu�ering of packets. 8

Figure 9b shows the average video quality achieved by the
video streams when an aggregate rate of 10Mbps is split to give
higher weightage to video �ows. Video quality is similar for Net�ix
irrespective of rate enforcement mechanism and rate sharing
policy, this is because Net�ix caps the video quality at 720p on web
browsers. However, BC-PQP outperforms the other baselines for
YouTube �ows, resulting in higher video quality compared to policer
and single-queue shaper due to better policy enforcement, and
even compared to shaper with DRR (presumably due to YouTube’s
adverse reaction to queuing delay, as mentioned above).

6.5.2 Web Browsing. Similar to the previous setup, we share a 20
Mbps aggregate rate between a download �ow and web browsing
tra�c. We open 75 web pages for each experiment in the presence
of a bulk download �ow.We use DRR shaper and BC-PQP to enforce
weighted sharing of rate between bulk �ow and web browsing �ows
in ratio of 1:1. CDF of web page load times is reported in �gure 9c.
BC-PQP achieves up to 2⇥ lower page load times compared to status
quo baselines of policer and single queue shaper.

7 RelatedWork
Rate enforcement is a key building block for any kind of network
management. Mechanisms to do rate enforcement correctly have
been explored in the past [7, 23, 39–42]. These solutions usually
include tra�c shapers [7, 23, 39, 40], which bu�er packets in
memory or tra�c policers [41, 42, 50]. Previous works have noted
the limitations of tra�c shapers and policers, namely tra�c shapers
are expensive to implement [21, 41], whereas tra�c policers su�er
from poor rate enforcement and high packet losses [21, 28, 50].

Tra�c policers are known to be di�cult to con�gure [21, 50].
Guidelines around con�guring policer bucket sizes are not homoge-
nous and depend largely on which factor is more important: correct
rate enforcement [41, 42] or small burst [6, 21]. [50] presents a dy-
namically sized bucket that is adapted based on how long it takes for
a �ow to ramp up after packet losses. This is an iterative process that
takes multiple attempts to gauge the correct size needed for a �ow,
eventually setting the size to$ (⌫⇡%2) for a Reno �ow. BC-PQP does
8The precise reason for this is not clear because of the lack of visibility into YouTube’s
ABR algorithm.
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Figure 9: Video streaming andweb browsing in the presence of background tra�c with BC-PQP and baselines.

not need to vary phantomqueue sizes – instead, it relies on its unique
burst control mechanism to avoid bursts and enforce correct rates.

Enforcing di�erent policies within a tra�c aggregate is desirable
for the operators as well as users [16, 29, 49]. Past work has looked
into various mechanisms to implement policies like per-�ow fair-
ness, weighted fair queuing, or prioritization [20, 34, 36, 37, 43, 45].
These works usually depend on bu�ering packets, sometimes into
multiple queues, whereas other times into a single shared bu�er
to be more space e�cient [34, 36, 43]. Using bu�erless mechanisms
for such policy enforcement has not been explored much. Recent
work attempts to make token bucket policers fair when �ows with
di�erent congestion control protocols pass through it [41, 42]. How-
ever, this does not extend to other rate-sharing policies. Moreover,
it su�ers from burstiness and some level of RTT unfairness [41].

Phantom queues have been proposed under di�erent names for
di�erent functionalities. More recently, they have been popularized
as an active queuemanagement scheme [8, 31, 32]. However, some of
the earliest works in ATM networks used "leaky buckets as a meter"
for rate enforcement,whichworks the sameway as a token bucket in
principle, albeit it has alsobeencalledapseudoqueue [15, 22, 26].Our
key contribution lies in augmenting a policer withmultiple phantom
queues, and showing how it can do policy-rich rate enforcement.

8 Conclusion and Discussion
Even though we, as users, do not like the idea of ISPs rate limiting
our tra�c, it is prevalent and we cannot escape it – the need for
it is inherently coupled with Internet economics. In this paper,
we embrace the idea of rate limiting and focus on doing it right.
This requires enabling the ISPs to enforce di�erent rate-sharing
policies (fairness across �ows using di�erent congestion control
algorithms, weighted rate sharing across a given user’s �ows as
per their preferences, etc) at scale. Our system BC-PQP enables
that by providing the system-level e�ciency of a policer (by not
bu�ering any packets) but the network-level properties of a shaper
(characterized by its ability to correctly enforce the desired policy
and rate). Several dimensions remain open for future research.
Expressive and customizable rate enforcement: While
we present a cost-e�ective solution to implement expressive
rate-sharing policies at the ISP for rate-limited tra�c aggregates,
more work needs to be done towards standardizing how these
policies can be customized by end-users or applications (along the
lines of [12, 18, 24, 30, 54, 55]).

Trade-o� between shapers and policers: A fundamental
trade-o� between shapers and policers is that of queuing delay
and packet drops. With the existing congestion control algorithm,
drops incurred by BC-PQP are unavoidable. For example, as per
Mathis’ TCP model, for AIMD protocols like Reno, the drop rate
is inversely related to the square of A0C4⇥')) [35]. Therefore, in
the absence of queuing delay, as for BC-PQP and policer, drop rates
are high but with queuing delay, ')) is in�ated, and thus drop rates
go down.While the applications we tested are not harmed by higher
packet drops caused by BC-PQP when compared to the queuing
delay induced by a shaper, certain other applications’ QoS may be
more susceptible to packet drops compared to queuing delay. We
leave such exploration with di�erent applications to future work.
Hardware implementation of BC-PQP: The principles we
discussed that make software implementation of BC-PQP a lot more
performant than shapers, also apply to hardware implementation.
A hardware implementation of BC-PQP will require a much smaller
amount of SRAM and shorter packet pipelines compared to shapers.
We leave such hardware implementation to future work.

This work does not raise any ethical concerns.
BC-PQP’s implementation is open-source and can be found at:

https://github.com/PhantomQueuePolicer.
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APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

Appendix A Sizing the phantom queue for Reno
We analyze how to size the bu�er ⌫ of a phantom

queue& , being served at rate A (in packets per second), for a
backlogged Reno �ow. Reno is a congestion window-driven additive
increase, multiplicative decrease protocol that is sensitive to packet
losses. The sender maintains a congestion window, 2F=3 , to cap the

1012

https://www.t-mobile.com/tv-streaming/binge-on
https://www.verizon.com/about/news/verizon-customers-can-save-more-2024


ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Tahir et al.

� �� ��� ��� ���
7LPH��V�

�

�

�

�

�

�

7K
UR
XJ
KS
XW
��0
ES
V�

9LGHR�IORZ
%XON�)ORZ

���S

���S

���S

���S

����S

����S

����S

4
XD
OLW
\

5HEXIIHULQJ
9LGHR�4XDOLW\

(a) Policer
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(b) BC-PQP
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(c) Single Queue Shaper
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(d) DRR Shaper

Figure 10: A youtube video stream sharing 3Mbps link with some other tra�c with di�erent schemes.
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(a) Policer
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(b) BC-PQP (4:1)

� �� ��� ��� ���
7LPH��V�

�

�

��

��

��

7K
UR
XJ
KS
XW
��0
ES
V�

9LGHR�IORZ
%XON�)ORZ

���S

���S

���S

���S

����S

����S

����S

4
XD
OLW
\

5HEXIIHULQJ
9LGHR�4XDOLW\

(c) Single Queue Shaper
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(d) DRR Shaper (4:1)

Figure 11: A youtube video stream sharing 10Mbps link with some other tra�c with di�erent schemes.

in�ight packets. On each successful packet delivery, the congestion
window is updated as 2F=3 =2F=3+1/2F=3 . Whereas, on

packet loss, the congestion window is halved: 2F=3 =2F=3/2. Since
the phantom queue does not cause any queuing delay, all 2F=3
packets’ acknowledgments are received in one round trip time.

Consider that a �ow has a round trip time of')) . In the steady state
of Reno, when the phantom queue becomes full, a packet loss causes
Reno to halve its congestion window, let’s call this congestion

window 2; . Thus, Reno sends 2; packets in the next round trip. After
successfully delivery of all packets, 2; +1 packets are sent in the next
round, and so on. As the congestion window increases additively,
the phantom queue is drained at rate A packets per second. Suppose
it takes = RTTs for the queue to become full again. At this point, we
reach the highest congestionwindow– let’s call it 2⌘ . Thus over time
duration=')) , if thequeuedoesnot go to zero,wephantomdequeue
=')) ⇥A ==⇥⌫⇡% packets fromthephantomqueue, and

Õ=
8=1 (2; +8)

more packets are accepted over this duration. Thus, we have:

=⇥⌫⇡% =
=’
8=1

(2; +8)

We have following relationship between 2; and 2⌘ : 2; =2⌘/2
and 2⌘ =2; +=, through which we have 2; ==. Plugging this in

the above equation gives us values of ==2; ⇡ 2
3⌫⇡% and 2⌘ ⇡ 4

3⌫⇡% .
This means, that for correct rate enforcement with Reno, we need
the instantaneous rate (over ')) period) to vary between 2A

3 and
4A
3 . When ⌫ is not large enough, we are unable to phantom dequeue
=⇥⌫⇡% packets over the givenduration,which results in the average
enforced rate being less than A . We need ⌫ to be at least as large as
the area of the shaded in Figure 12 to hold the additional packets that
are sent beyond rate A , which comes out to be ⌫⇡%2

18 ⇥"(( bytes.

Appendix B YouTube’s video stream analysis
The time series for one video with di�erent

schemes is shown in Figure 10 for 3 Mbps and Figure 11 for 10
Mbps. Since YouTube uses BBR, with a policer, the video �ow hogs

ch = 
4BDP/3

r

cl =
2BDP/3

n = 2BDP/3

BDP/3

BDP/3
BDP2/18

Figure 12: Reno’s 2F=3 progression over = RTTs, we
need phantom queue to be at least the size of shaded region.

most of the bandwidth thus achieving high video quality. On the
other hand, with a shaper, the video �ow is not as aggressive. There
can be two explanations for this, �rstly since competing tra�c
carries bu�er-�lling �ows, BBR yields bandwidth to bring down

queuing delay. The second plausible reason could be that YouTube’s
ABR algorithm is also sensitive to queuing delay. The result with
DRR-shaper gives more weight to this conclusion. Even though
YouTube �ow has a separate queue, its video quality still su�ers.
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