Check for
Updates

Efficient Policy-Rich Rate Enforcement with Phantom Queues

Ammar Tahir Prateesh Goyal
UIUC, Microsoft Research Microsoft Research
ammart2@illinois.edu g.pratish@gmail.com
Ilias Marinos Mike Evans Radhika Mittal
Microsoft Research Microsoft uIucC

ilias.marinos@microsoft.com

Abstract

ISPs routinely rate-limit user traffic. In addition to correctly en-
forcing the desired rates, rate-limiting mechanisms must be able to
support rich rate-sharing policies within each traffic aggregate (e.g.
per-flow fairness, weighted fairness, and prioritization). This must
be done at scale to support the vast magnitude of users efficiently.
There are two primary rate-limiting mechanisms - traffic shaping
(that buffers packets in queues to enforce the desired rates and poli-
cies) and traffic policing (that filters packets as per the desired rates
without buffering them). Policers are lightweight and scalable but
don’t support rich policy enforcement and often provide poor rate
enforcement (being notoriously hard to configure). Shapers, on the
other hand, achieve desired rates and policies, but at the cost of high
system resource (memory and CPU) utilization impacting scalability.
This paper explores whether we can get the best of both worlds. We
present our system BC-PQP, which augments a policer with (i) mul-
tiple phantom queues that simulate buffer occupancy using counters
and enable rich policy enforcement, and (ii) a novel burst-control
mechanism that enables auto-configuration of the queues for correct
rate enforcement. Our system achieves the rate and policy enforce-
ment properties close to that of a shaper with 7x higher efficiency.

CCS Concepts

« Networks — Network management; Transport protocols; Middle
boxes / network appliances.

Keywords
Rate Enforcement; Congestion Control; Network Management

ACM Reference Format:

Ammar Tahir, Prateesh Goyal, Ilias Marinos, Mike Evans, and Radhika Mittal.
2024. Efficient Policy-Rich Rate Enforcement with Phantom Queues. In ACM
SIGCOMM 2024 Conference (ACM SIGCOMM ’24), August 4-8, 2024, Sydney,
NSW, Australia. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3651890.3672267

1 Introduction

Rate limiting is prevalent among network operators and Internet
Service Providers (ISPs) [14, 21, 28, 33]. ISPs routinely rate-limit their
customers’ traffic based on their plans and subscriptions. Cellular

This work is licensed under a Creative Commons Attribution International 4.0 License.

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672267

michaelevans@microsoft.com

1000

radhikam@illinois.edu

service providers also commonly rate limit bandwidth-hungry
video streaming traffic for each user in the cellular core, before the
traffic hits their radio access network (RAN), so as to not overwhelm
the limited RAN resources [1, 28, 33, 48]. Programs like T-Mobile’s
“Binge on” [48] and Verizon’s “Netflix & Max” [52] provide unlimited
access to specific video streaming services but limit the subscribers’
network traffic outside of those services.

The rate-limiting mechanism must correctly enforce the desired
cumulative rate for each traffic aggregate (e.g. set of flows belonging
to a given user). In addition to that, it must satisfy two important re-
quirements. First, it should be able to support different rate-sharing
policies among flows within each aggregate. For example, enforcing
per-flow fairness within an aggregate allows flows using different
congestion control algorithms (BBR [17], New Reno [53], Cubic [25],
Vegas [13], etc) to compete fairly with one another [36, 41, 42]. It is
also often desirable to enforce weighted fair sharing or prioritization
within a given user’s traffic as per their preferences (e.g. prioritizing
video streams or web traffic over bulk downloads). ! Per-flow
fairness is also desired when cellular operators rate limit video
streaming sessions, so as to ensure that audio chunks are not head-
of-the-line blocked by video chunks (based on our conversations
with a large US-based telecom company, this is a highly desirable
feature that is difficult to implement for reasons we discuss below).

The second requirement is that the rate and policy enforcement
mechanism must be efficient. This requirement stems from the
scale at which such systems operate, with a typical ISP supporting
thousands of customers.

Rate limiting can be done using two different mechanisms (that
are typically implemented in a software middlebox): traffic shaping
and traffic policing. Traffic shaping for a given aggregate involves
buffering packets in one or more queues, which can be served based
on desired policies (e.g. prioritization, round-robin for fairness,
weighted round-robin, etc). Traffic shapers are thus able to enforce a
rich set of policies. However, as we detail in §2, doing so is costly as it
requires buffering packets in memory and pointer chasing at the time
of dequeues - this cost materializes as increased utilization of system
resources (memory and CPU cycles), which impacts scalability.

Policers, in contrast, are much more lightweight and therefore
more scalable. They do not require storing packets, and instead
immediately determine whether an incoming packet should be
dropped or transmitted depending on whether the incoming traffic’s
rate exceeds the enforced rate. This is typically implemented using a
token-bucket filter, where tokens are added to a fixed-size bucket at

!Commercial SD-WAN solutions [4, 5] already provide interfaces for enterprise
customers to express such preferences to their ISPs, and there are several research
proposals to enable this more broadly [12, 18, 24, 30, 54, 55].

https://doi.org/10.1145/3651890.3672267
https://doi.org/10.1145/3651890.3672267
https://doi.org/10.1145/3651890.3672267
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651890.3672267&domain=pdf&date_stamp=2024-08-04

ACM SIGCOMM ’24, August 4-8, 2024, Sydney, NSW, Australia

the specified rate (by incrementing a counter) - a packet is allowed
to pass through only if there are enough tokens in the bucket (worth
the packet size).

By the virtue of being more efficient, policers have emerged as
the more popular rate-limiting choice [21]. However, the scalability
provided by this choice has come along with notable downsides:
(1) Typical policers, by design, do not provide any mechanism for
enforcing desired rate-sharing policies within each rate-limited
traffic aggregate. (2) Policers are notoriously hard to configure, often
leading to poor rate enforcement (with a trade-off between meeting
the desired average rate limit vs reducing burstiness and packet drop
rates) [21, 28, 50]. Shapers can adequately address these downsides
of a policer, but at the cost of lower system efficiency (and scalability).

The question we explore in this paper is whether we can get the
best of both worlds: can we have the system efficiency and scalability
of a policer, along with the network-level properties (ability to enforce
desired rates and policies) of a shaper?

We answer this question in the affirmative by implementing
policers using phantom queues. Phantom queues simulate the
occupancy of a buffer without actually buffering packets, and have
been used before for active queue management [8, 31, 32]. We apply
a similar concept for policing. A phantom queue-based policer
immediately transmits a packet upon arrival if there is enough
capacity (worth the packet size) in the phantom queue, and drops it
otherwise. Every time it transmits a packet, it enqueues a phantom
packet of the same size in the phantom queue - these phantom pack-
ets are simply realized as byte counters. It dequeues the phantom
queue at the desired rate by decrementing the byte counters.

A policer implemented in the above manner using a single phan-
tom queue mimics the behavior of a token-bucket filter. To enforce
different rate-sharing policies, we extend such a policing system for
each traffic aggregate to use multiple phantom queues — we classify
incoming packets into one of these phantom queues (based on flow
identifiers in the packet header fields), and immediately transmit
or discard the packet based on the queue’s occupancy as described
above. We dequeue the phantom packets in each of these phantom
queues (i.e. decrement the corresponding byte counters) based on
the desired policy, e.g. prioritization, round-robin, etc, analogous
to a shaper system. We refer to such a phantom queue-based policer
as PQP. We show (both analytically and empirically) how PQP can
correctly enforce the desired aggregate rate, as well as achieve the
desired rate-sharing policies on average, as long as the phantom
queues are sufficiently sized.

While a sufficiently sized PQP correctly enforces the desired
rates on average (over multiple round-trip times), the instantaneous
rates over smaller timescales can burst to much higher values, with
the burst increasing with queue size. The minimum queue size
required for enforcing correct average rates with phantom queues is
very large, to begin with: O(BDP?) (in comparison to O(BDP) sized
buffers required for shaper queues with real packets). The burstiness
caused by such a large queue is further aggravated in PQP - with N
active phantom queues, the worst-case burst can be N times larger!

We therefore need a mechanism to control the burst while still
ensuring correct average rate enforcement. For this, we design
a novel burst control mechanism for phantom queues, where
we start with sizing each phantom queue to a sufficiently large
value. However, if the enqueue rate of the queue exceeds a certain

1001

Tahir et al.

N
o
o

Police
(BDP2-sized)

w

o

o
L

300 4 Shaper'

2501

Better

200 1 Better

150 4

Burst (Normalized)

100 4

CPU Usage (Cycles/Packet)

504 BC-PQP*

0 'Pollcer' | |

05 06 07 08 09
Policy Enforcement (Fairness)

Police®
(BDP—si;ed)

0.8 0.9 1.0
Average Rate (Normalized)

n BC-PQP *

0
1.0 0.7

(a) Traffic shapers are costly
whereas policers cannot enforce
policies like fairness.

(b) Policers are challenging
to size — a liberally sized policer
does correct rate enforcement
but with large bursts and vice versa.

Figure 1: Drawbacks of traffic shapers and policers
threshold, we vacuously fill up the queue with magic phantom
packets (that do not correspond to real packets). Filling up the queue
in this manner prevents the flow from bursting and induces early
drops. At the same time, keeping the queue large (but occupied
by the magic packets that drain at the desired dequeuing rate)
complies with the queue size requirement for correct average rate
enforcement. We refer to this extension of PQP as BC-PQP (for
burst-controlled PQP). The rate threshold for vacuously filling up a
phantom queue in a BC-PQP system is governed by the rate at which
the queue is served (as per the rate-sharing policy). This enables
auto-tuning of the queue configuration, as the set of active flows (and
consequently the rate assigned to a given phantom queue) changes.

We implement our system on a testbed comprising three Linux
servers (a sender, a middlebox implementing BC-PQP, and a
receiver). The middlebox transparently rate-limits the traffic sent by
the sender using a kernel-bypass stack based on Intel’s DPDK. Our
evaluation (using self-generated traffic as well as real-world applica-
tions) shows how BC-PQP achieves the rate and policy enforcement
properties close to that of a shaper while being 7 X more efficient
(with the efficiency within 1.5-2 X of a standard policer). Through
dynamic burst control, BC-PQP further achieves up to 2.5x lower
drop rates and up to 18x smaller burst (tail throughput deviation
from the desired value) than a policer. BC-PQP is able to enforce a
variety of rate-sharing policies including per-flow fairness, weighted
fairness, prioritization, and nested combinations of these policies.

2 Background and Motivation

Today, there are two prevalent mechanisms to do rate enforcement:
traffic shapers and traffic policers. We describe both of them below.

2.1 Traffic Shapers

Traffic shapers, conventionally implemented on network routers
and dedicated hardware appliances, are now often implemented
in software middleboxes as virtualized network functions for
flexibility. 2 They can support a large set of QoS (quality of service)
mechanisms such as prioritization [38], weighted fair queueing
(WFQ) [44, 46], etc.

Rate enforcement with traffic shapers. Traffic shapers maintain
a separate buffer for each traffic aggregate. An incoming packet gets

2Based on our conversation with a large US-based telecom company.

Efficient Policy-Rich Rate Enforcement with Phantom Queues

Traffic Shaper [Traffic Policer
Enqueue 29 28
Dequeue 293

Table 1: Breakdown of average number of CPU cycles spent
to process a packet with shaper and policer

enqueued into the buffer corresponding to its traffic class (e.g. based
on the end-user). If the buffer is full, the packet is dropped. Each
such buffer is dequeued at the required rate r (that is the rate that
we wish to enforce on that traffic aggregate).

Policy enforcement with traffic shapers. Traffic shapers further
divide the buffer for each traffic aggregate into a set of N queues,
and dequeue packets from these queues as per the desired policy
at a cumulative rate r. For example, to enforce weighted fairness,
a deficit round-robin scheduler is often used, which attempts to
dequeue w;MSS bytes from a queue i (if the queue is not empty),
before moving on to the next one. Since a packet can be dequeued
from the shaper only after MSS/r time, a dequeue call is scheduled
periodically every MSS/r. When doing such rate enforcement at
scale, typically a timer wheel [51] is used to schedule these dequeue
calls efficiently for different shapers.

Inefficiency of shapers: While shapers can achieve very accurate
rates and policy enforcement, they can be computationally
inefficient to implement. For starters, they require a large amount
of memory e.g. for a single traffic shaper with 16 drop-tail queues of
size 48 MSS-sized packets, the memory that needs to be reserved is
at least 1 MB. When doing rate enforcement at scale for thousands
of shapers, memory bottlenecks start to arise.

In terms of CPU cycles, fewer cycles are spent when processing a
packet at the time of enqueue. This is because on modern x86 CPUs,
that feature Intel’s Data Direct IO (DDIO) technology, incoming
packets are DMAed to the CPU’s Last Level Cache (LLC) and the
CPU can classify them without incurring cache misses. However,
the dequeue operation is an order magnitude more expensive. Since
the packets cannot be dequeued immediately they are eventually
evicted to the main memory (DRAM). The CPU constantly polls
all available shapers (i.e., queues) and instructs the NIC to DMA
packets out when allowed. While this could be a relatively efficient
operation if the shaper maintains a single FIFO queue and the
packets are buffered to contiguous memory, it is quite expensive
when enforcing policies like DRR or prioritization with multiple
queues: in such cases, packets are not necessarily dequeued in the
order that they were received and the CPU needs to lookup for
each packet individually from different locations in memory before
instructing the NIC to transmit them. Hence this operation can cause
frequent CPU stalls manifesting as increased cycles spent per packet.

Table 1 breaks down the average number of CPU cycles spent to
process a packet at enqueue and dequeue with a shaper maintaining
16 queues served using a round-robin policy, when compared to a
policer. Throughout the paper, we use CPU efficiency as a proxy for
scalability. If a rate-limiting mechanism consumes a higher number
of CPU cycles per packet, it will require a proportionally larger
number of cores (and servers) to meet the scalability requirements.

Figure 2a further compares shapers with policers in terms of
their efficiency and degree of policy enforcement. While a shaper
is more effective at policy enforcement (it achieves higher fairness,
in this case), it spends far more CPU cycles per packet compared

1002

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia

to a policer. We discuss these benefits and limitations of a policer
in more details next.

2.2 Traffic Policer

Unlike traffic shapers that regulate traffic by buffering and delaying
packets, policers enforce rate limiting by dropping packets when
a certain rate is exceeded. By avoiding packet buffering, policers
are quite lightweight and scale better than traffic shapers on
conventional hardware. Traffic policing is done using token bucket
filters (TBF) [21]. Policers maintain a TBF for each traffic aggregate.
In a TBF, tokens are added to a bucket of size B at the desired rate
r. For each packet of size s that arrives, if there are at least size s
worth of tokens in the bucket, the packet consumes those and is
immediately forwarded. Otherwise, it is dropped. This way, the
policer does not need to store any packets and hence eliminates the
overhead of memory management-related bottlenecks.

While providing an excellent option in terms of system-level
efficiency, traffic policers suffer from two key limitations:

1. Poor rate enforcement. Traffic policers are notoriously hard
to configure [21]. An inappropriately small bucket size (B) can
result in an average rate lower than the desired one. Whereas,
an appropriately large bucket size can cause a large burst in the
instantaneous rates, which can be orders of magnitude higher
than the desired rate. Figure 2b illustrates the tradeoff between the
steady-state rate and peak rate due to bursts allowed by a policer.
This can be quite problematic: bursty behavior can result in packet
drops and unfairness which can severely impact the users’ quality
of experience. As per our analysis in §3.5 (and as per what prior
studies have reported [21, 50]), such a trade-off is fundamental for
any TBF-based policer with a statically configured bucket size.

2. Lack of policy enforcement. By design, traditional traffic
policers (that use TBFs) can only support simple rate enforcement
on a traffic aggregate, without providing any means for controlling
how this aggregate rate is further subdivided between different
flows or applications within the aggregate.

Recent work, called FairPolicer, has explored the idea of augment-
ing TBF-based policers with per-flow fairness across N flows [41, 42].
It achieves this by effectively dividing the bucket B equally across
the N flows, and distributing the tokens equally between buckets of
active flows. However, it is not immediately clear how to extend the
point solution provided by FairPolicer to support more general rate-
sharing policies (e.g. weighted or hierarchical fairness). Moreover,
due to a statically configured bucket size, it suffers from large bursts
and poor rate and policy enforcement under many scenarios. Our
evaluation in §6 provides a detailed comparison with FairPolicer.

2.3 Our Goals

Based on the applications and use cases we have discussed so far,
we need a rate enforcement mechanism that:

e Does rate enforcement correctly without large bursts.
o Allows arbitrary rate-sharing policies within the aggregate.
o Is scalable, efficient, and lightweight.

Shapers satisfy the first two goals but fail on the third goal.
Policers satisfy the third goal but fail on the first two.

In the next few sections, we present our system that augments
policer with phantom queues to meet all of the above goals. As shown

ACM SIGCOMM ’24, August 4-8, 2024, Sydney, NSW, Australia

inFigure 1, our system has efficiency comparable to a policer, and rate
and policy enforcement capabilities comparable to a traffic shaper.

3 Policers with Phantom Queues

We augment a policer with phantom queues to realize different
rate-sharing policies. Prior work has used the concept of phantom
(or virtual) queues for active queue management [8, 31, 32] — these
queues simulate the occupancy of the link with lower utilization
using packet counters (without actually buffering the packets), en-
abling early signaling (via ECN or packet drops) when the simulated
buffer is full. We apply a similar concept for policing as follows.

3.1 Policing with a Single Phantom Queue

We can realize such a policing system using a phantom queue by con-
sidering a (simulated) buffer of size B, served at rate r. When a packet
of size s arrives, we first check if there is sufficient capacity in the
phantom queue’s simulated buffer. If the remaining capacity in the
phantom queueisatleasts, we immediately transmit the (real) packet
and enqueue a “phantom” packet of size s in the phantom queue on
its behalf. If the phantom queue is full (or its remaining capacity is
less than s), we drop the (real) packet. We dequeue the phantom pack-
ets in the phantom queue at rate r. Notice how we do not buffer any
real packets — we either transmit or drop the real packets right away
upon arrival. The phantom packets in the phantom queue are simply
maintained as byte counters that get incremented and decremented
upon phantom enqueue and dequeue events respectively. Moreover,
unlike a shaper, where we need to regularly dequeue packets based
onrate r, phantom dequeues can be batched and done only when the
phantom queue becomes full. Such a policing system, implemented
using a single phantom queue, essentially works in the same way as
a token bucket filter of size B with rate r, as described in section 2.2.

3.2 Policing with Multiple Phantom Queues

Once we realize a policer as a phantom queue, we can extend it
to a system of N phantom queues (analogous to a shaper with N
queues) to realize different rate-sharing policies. Figure 2 compares
such a system with an analogous traffic shaper. When a packet of
size s arrives, we classify it into one of the N queues (say Q; with
a buffer size of B;) based on packet header fields (e.g. flow ID, a
hash of source-destination addresses, etc). If the remaining buffer
capacity in Q; is at least s, we transmit the real packet and enqueue
the corresponding phantom packet in Q; by incrementing its byte
counter by s. If the remaining buffer capacity in Q; is less than s (after
accounting for any pending phantom dequeues), we drop the packet.

We dequeue the phantom packets from the phantom queues (by
decrementing the corresponding byte counters) as per the desired
policy. For example, to enforce per-flow fairness, we maintain a
phantom queue for each flow (or approximate it by hashing the flow
identifiers in the packet header fields into one of the N queues), and
dequeue phantom packets from the occupied phantom queues in a
round-robin manner at a cumulative rate of r. This phantom system
(maintained via counters) is exactly analogous to a shaper system
that enforces fairness via per-flow queues storing real packets served
in a round-robin manner at a cumulative rate of r. We can similarly
emulate other policies — weighted fairness (doing weighted round-
robin between occupied phantom queues with differing weights),

1003

Tahir et al.

prioritization (dequeuing from lower priority phantom queue only
when the higher priority queue is unoccupied), or hierarchical
combinations of these (e.g. dividing the queues into two classes, with
the first class of queues having 2x the weight of the second class,
and enforcing per-flow fairness across the queues within each class).

We refer to such a policing system with multiple phantom queues
as PQP. We further use the term “analogous shaper system” to refer
to a hypothetical shaper system that applies the same enqueuing and
dequeuing policies on real packets as PQP does on phantom packets.

3.3 Scope and Properties of PQP

Notice how PQP directly enforces the desired policies on phantom
packets (that are maintained as counters). These policies indirectly
influence real packets by changing the phantom queue occupancy,
thereby determining whether the real packets must be transmitted
or dropped. This discrepancy between real and phantom behavior
imposes certain restrictions on the kind of policies PQP can realize.
Restriction #1: No drop after enqueue. The first restriction
stems from the fact that PQP decides whether a packet should
be transmitted or dropped upon its arrival. If the corresponding
phantom queue occupancy allows the packet to be transmitted,
that is done right-away, and its phantom copy is enqueued (with
the assumption that it will eventually be dequeued). By design,
such a system cannot emulate policies where the fate of the packet
(whether it should be dropped or transmitted) changes after the
packet has been enqueued. An example of such a policy is priority
dropping - where a queue enqueues packets with differing priorities,
dropping the lowest priority packet when it is full.

We, therefore, restrict PQP to emulate a set of N drop-tail queues,
where each queue Q; hasa fixed size B; - if the occupancy of Q; allows
the packet to be transmitted (and its phantom copy to be enqueued)
upon arrival, then the corresponding phantom packet is guaranteed
to be eventually dequeued (with the dequeue time governed by the
policy as described in §3.2). This restriction complies with how most
policy-rich shaper systems are implemented [2, 44]. Note that we use
the term drop-tail rather generously - the only requirement being
thata (phantom) packet cannot be dropped after ithasbeen enqueued.
We need not necessarily wait for Q; to become full before we drop
a packet upon its arrival; we can apply active queue management
policies (as we do in §4) or even apply access control-based filters
that drop packets upon arrival based on other criteria.
Restriction #2: Rate-sharing Policies. The second restriction
stems from the fact that real and phantom packets in PQP are de-
queued at different times. So while PQP enforces the desired policies
(that an analogous shaper system applies on real packets) on phan-
tom packets, the specific timings do not translate to real packets. As
aresult, PQP cannot enforce policies pertaining to packet timings
or scheduling order — a packet arriving at PQP at time ¢ will either
be dropped or transmitted at time ¢. For example, a shaper served
at rate r can ensure that high-priority packets never experience any
queuing delay from low priority if all downstream hops have a ca-
pacity greater than r. In contrast, PQP can transmit a burst of (real)
low-priority packets before transmitting high-priority packets that
arrive later (while the phantom low-priority packets wait behind

Efficient Policy-Rich Rate Enforcement with Phantom Queues

drop Packet Buffers
packet Q, dequeue packets
Q, .. Rate r
divided by a
enqueue
:cket I:I: rate sharing
p Q3 i i
. policy transmit
packet

(a) Traffic Shaper buffers packets in queues

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia

Phantom Queue Size Counters

drop packet 4 decrement counters
D Rate r
divided by a
increment rate sharing
counter. policy

>
transmit packet

(b) PQP only maintains queue size counters

Figure 2: Phantom Queue Policer (PQP) serviced at rate r using a rate sharing policy, and an equivalent traffic shaper.

phantom high-priority ones) - this can cause the high-priority pack-
ets to wait behind the burst of low-priority ones at a downstream hop
whose link capacity, while greater than r, is lower than the burst rate.

While we cannot control fine-grained packet timings with PQP,
we can enforce different rate-sharing policies on an average (over
longer timescales), in terms of how the cumulative rate r is divided
between individual queues. For example, a per-flow fairness policy
(implemented as round-robin dequeue from per-flow phantom
queues) will serve Q; roughly at rate r; = max(r/N’), where N’ is
the number of non-empty queues. A weighted fairness policy will

serve Q; at rate r; = m where w; is the weight of Q;. A
J

prioritization policy will serve a lower priority queue at the rate
of r minus the rate at which the higher priority queues are served
(as driven by their packet arrival rates). 3

PQP, by design, guarantees the following properties, that allow
it to enforce such rate-sharing policies on average:

Property 1. Assuming the set of packets that arrive at a PQP system
is exactly the same as the set of packets that arrive at the analogous
shaper system, if a packet gets dequeued at time t; in the shaper
system, its phantom copy will also be dequeued at the same time t;
in the PQP system.

Property 2. If a (real) packet is transmitted by a PQP, then its
phantom copy is eventually dequeued by the PQP.

Property 3. If a POP transmits a (real) packet at time t,, its phantom
copy will be enqueued in phantom queue Q; at time t, and will be
dequeued at time ty = t, + D(i,t.), where D(i,t,) is the phantom
queuing delay i.e. the time needed to drain the phantom queue build
up until timet, at Q;.

We can combine these properties to see how PQP can effectively
enforce rate-sharing policies. As per Property 1, if an analogous
shaper system divides the rate r between N queues such that Q; is
served at rate r; (e.g. as dictated by weighted round-robin schedul-
ing, priority scheduling, or their hierarchical combination), then the
corresponding PQP system will serve the phantom packets in Q; at
rate r;. As per Properties 2 and 3, if the phantom packets in Q; are
dequeued at rate r;, then, on an average (over a longer timescale), the
corresponding real packets also get served at rate r;. How much the
instantaneous rates of real packets deviate from their ideal phantom
counterparts is dictated by the phantom queuing delay, which in turn
is governed by the phantom queue size (that controls the amount

3The precise rates at which each queue is served would depend on the rate at which
packets get enqueued in each queue, which dictates the max-min weighted fair share
rates as well as the spare capacity (in case of prioritization).

1004

o 20
o —— Average rate
S L e r+ B/At
S Max-Min Rate
]
© 10
ko]
0]
2 5
o R
Y= :
c :
w g o
0 5 10 15 20
At (s)

Figure 3: Enforced rate as a function of At
(for a Reno flow with B=1000KB at 10 Mbps).

of burst allowed the PQP system) — we analyze this more formally
in §3.4 and devise a mechanism to effectively limit the burst in §4.
Further, note that Property 1 holds under the assumption that the
set of input packets is the same in the PQP system and the analogous
shaper system. However, timing deviations in when a packet actu-
ally gets transmitted impact the feedback loop of congestion control
algorithms, thereby affecting the packet arrival rates. Our evaluation
in §6 shows how the rate and policy enforcement with PQP, in spite
of this effect, closely matches the analogous shaper system.

3.4 Bounds on Rate and Policy Enforcement

Consider a phantom queue Q of size B that is serviced at rate r. Let
the length of the phantom queue (the number of bytes in the queue’s
simulated buffer) at time ¢ be given by L(Q,t). This queue length
governs the phantom queuing delay of a packet transmitted at time ¢.

Theorem 1: Over any time interval At =t —t1, as long as phantom
queue Q occupancy does not go to zero i.e. L(Q,t) >0, Vt € (t1,t2), then
the rate enforced over duration At is bounded by (r+B/At)™.

Proof: Given, L(Q,t) > 0 over t; < t < t, Q continues to drain
phantom packets at rate r. Over time At, it drains rAt bytes.
Therefore, the amount of data, A(ty, tz), that Q accepts during
duration (#1,t2) can be given as:

A(tyt2) = (L(Q.t2) ~L(Q:t1) +rAt)*

Here, (v)* =max(0,0).

Since 0 < L(Q,t) < B, we can find upper and lower limits on the
number of accepted packets as follows:

Upper Limit: L(Q,t1) =0 and L(Q,t2) =B

Amax (t1,t2)+=rAt+B

ACM SIGCOMM ’24, August 4-8, 2024, Sydney, NSW, Australia

Lower Limit: L(Q,t;) =B and L(Q,t2) =0

Amin(t1,t2)=(rAt—B)*

Thus, number of accepted packets over duration At is given as:

A(ty,t)=(rAt£B)*

Dividing the above equation by At gives the actual enforced rate,
r’ over duration At. As At grows, the actual enforced rate comes
closer to the phantom queue draining rate of r:

A(t1,t2) .
———=1

At

This can be seen in Figure 3 for a Reno flow throttled to 10 Mbps.
The dotted lines represent the theoretical error in rate from theorem
1, whereas the shaded regionis the actual error in enforced rate. As we
increase At, the error in enforced rate becomes smaller and smaller.

The above result is provably achieved only as long as the phantom
queue remains non-empty over the duration At. If the phantom
queue is empty over some time duration, the enforced rate will
accordingly be lower than r. This can happen if the packet arrival
rate (traffic demand) is itself lower than r. It can also happen if the
traffic demand is higher than r, but the queue is not sufficiently
sized, causing it to empty out under a typical flow’s congestion
control behavior — we discuss this further in §3.5.

Now consider a set of N phantom queues, serviced at a cumulative
rate r, where r is divided across individual phantom queues Q;, each
serviced at rate r; as per the desired policy (as discussed in §3.3).
If each queue is sized by B;, we can use the above theorem to show
the following bounds on such a system: If any phantom queue Q;,
whose occupancy does not go to zero over a duration At, has a phantom

r’= lim

B
m (r+—)*=r
At— o0 At

At—o0

dequeue rate of ry, it has an enforced rate of rj = (r; + %)J’ over
duration of At. Moreover, if we sum this for all queues, we get bounds
on the overall rate enforced for the aggregate as: r’ = (r+ %)f
So, if each phantom queue is sized to be B, the overall rate enforced
isr’ = (riN%)*’

Takeaways. We have the following two key takeaways from these
theorems: (i) The average rate that PQP enforces on real packets will
match the desired rates (enforced on phantom packets) over long
enough timescales, as long as the phantom queue remains occupied.
(ii) The discrepancies in these two rates over a smaller timescale is
bounded by the size of the phantom queues. Very large queue sizes
can cause instantaneous enforced rates to be much higher than the
desired phantom rates (i.e. cause large bursts). Very small queue sizes,
on the other hand, will result in lower than desired instantaneous
(and average) rates as this may lead to phantom queue going empty
at times. We discuss how phantom queues should be sized next.

3.5 Sizing the Phantom Queues

Guidelines on how to size the phantom queue depend on factors
like rate r, RTT, and congestion control protocol used by the flow.
We now analyze how phantom queues should be sized for correct
average rate enforcement.

Our bounds on enforced rates in §3.4 were conditioned on the
queue remaining occupied over the given time duration. Therefore,
in order to achieve these bounds, the phantom queue must be sized
such that the congestion control protocol of a backlogged sender

1005

Tahir et al.

(that generates data at a rate higher than the policed rate of r) is
able to keep it occupied *. This is analogous to how we reason
about sizing shaper queues (that manage real packets) [9]. However,
the outcome (i.e. the required queue size) is very different for
phantom queues, due to the discrepancy between timings in when
the phantom packet is dequeued and the real packet is transmitted,
and how that affects the congestion control loop.

We consider congestion control protocols frequently used in
production today: Cubic (default for most users [19]), New Reno
(used by Netflix[47]), and BBR (used by Google and YouTube [3, 10]).
The phantom queue size B should be large enough to support any
of these protocols. Reno has the largest queue size requirements
amongst these protocols (we use the term Reno to refer to both Reno
and New Reno protocols, that share the same core logic, other than
fast recovery). This means that if we size the phantom queues as
per Reno’s requirements, we can ensure correct rate enforcement
for other protocols too.

Need O(BDP?) sized phantom queues. The rule-of-thumb for
shaper queues (with real packets) requires O(BDP) size to ensure
that they remain occupied by a backlogged Reno sender [9], where
BDP is the bandwidth-delay product of the network. In contrast, we
find that in order to keep a phantom queue occupied with a back-
logged Reno flow, we need to size it at O(BDP?). Specifically, we find
that for correct rate enforcement for a Reno flow, the phantom queue
size should be at least B?éj : XMSS bytes, where BDP=rXRTT, with
r being the desired rate (at which the phantom queue is dequeued)
and RTT is the flow’s round-trip time. This comes from our analysis
(detailed in Appendix A) that shows that in order to maintain an
average enforced rate of r, the instantaneous rate of the Reno flow
should vary between %’ and % in the steady AIMD (additive increase

multiplicative decrease) phase, and a phantom queue with buffer size

2
at least Bll)sP X MSS bytes is needed to support this rate variation. It

should also be noted that, in the steady state, the upper limit on the
size of the buffer is not important. Once the phantom queue becomes
full, it automatically makes room for more packets at the rate of r.

Why not BDP-sized queues? The reason for the larger buffer
size requirement with the phantom queue (when compared to the
rule-of-thumb for regular queues with real packets) stems from the
fact that phantom queue does not have any queuing delay for real
packets. In a real queue, when the flow’s congestion window (cwnd)
exceeds BDP, additional packets are queued and dequeued at rate
r, thus incurring a queuing delay additional to the base RTT. Only
when the acknowledgments for all packets has reached the sender,
cwnd is incremented by 1. By the time this additional packet due
to the cwnd update arrives, all the packets for the previous cwnd
had already been transmitted, thus the standing queue increases
by only 1 packet after every cwnd update. In the phantom queue,
however, acknowledgment for all cwnd amount of packets reaches
within the base RTT time (irrespective of however long it takes
the phantom queue to drain). With the shorter feedback loop that
excludes any queuing delay, by the time packets for the next cwnd
arrive, (cwnd — BDP)* phantom packets from the previous round
are also present. So, where in a physical queue, queue build-up
increases by 1 packet after each cwnd update, in phantom queues

4Senders that generate data at a rate lower than r are app-limited, and not affected by
policing.

Efficient Policy-Rich Rate Enforcement with Phantom Queues

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia

R 40
) —— B=130KB o 10
o 4000
230 -——- B=1000kB ¥ ‘g . "
....... = o Q
= B =4000KB 5 3000 —(Cm»«)
S o >392 g [a)
220 5 iy o
< . @ 2000 £, 9
S T T e ° -< o]
10 e doh Ed 734 4 S ©
£ - ’%‘»’mﬁw N Q1000 R A A A AR R f>§’ 2 o
N . i\ \ \
= 0 i l' o 0 L\/J A ‘){l &/J\/J\/J \J A 0
0 20 40 60 80 0 20 40 60 80 130 10004000 130 10004000
Time (s) Time (s) B (KB) B (KB)
(a) Throughput over time (shaded region (b) Queue occupancy over time (c) Average Throughput (d) Packet drops
represents c; and cj,.)
Figure 4: A Reno flow’s behavior with phantom queues of different sizes (B).
it increases by (cwnd—BDP)* packets. A phantom queue therefore
must be sized such that it can hold all of these additional packets. 2 12: ,,,,,,, Reno —— Vegas @ 122 ‘‘‘‘‘‘‘ Reno —— Vegas
Drawbacks of O(BDP?) sized queues. If queues are sized by the 2 ---- Cubic —— BBR g ---- Cubic —— BBR
O(BDP?) rule, they result in good rate enforcement in a steady state oo oo
. . 3 75 2 75
for all congestion control protocols. However, it can cause many 28 2
other problems. To begin with, it will cause a very large burst in rate 3 R
during the flow’s slow start phase. For example, consider a phantom £ £ %
queue sized for enforcing a rate of 15 Mbps. Suppose the queue is 0.0 5 10 15 20
sized assuming the maximum RTT of 100 ms at 1.4MBs, using the Time (s)
O(BDP?) rule. If a flow with 10 ms RTT passes through this phantom (a) O(BDP?) sized PQP (b) BC-PQP

queue, it can burst up to arate of 143 Mbps over a 100 ms period during
its slow start phase, assuming a starting cwnd of 10 MSS packets
(default in Linux). This also results in a high drop rate — the slow start
phase ends with such a high cwnd value, that it takes multiple rounds
of packet losses (and cwnd halving) before the cwnd comes down to
an average value comparable to BDP for correct rate enforcement.
Empirical results. Figure 4 shows the impact of how we size the
phantom queue buffer (B) on a Reno flow. We have a Reno flow with
RTT of 100 ms and we want to enforce rate r of 10 Mbps. For such
a flow, B needs to be at least 1000 KB. When B is set to a smaller
size of 130 KB, queue occupancy often ends up going to 0, as shown
in Figure 4b. This results in the Reno cwnd not being able to reach
the required peak, thus causing the enforced rate to be lower than
r (Figure 4c). When B is large enough (1000KB or 4000KB), we have
correct rate enforcement in the steady state, but we have a very
large bursts (Figure 4a) and higher drop rates (Figure 4d). Also, as
long as the queue remains occupied, its size does not matter in the
steady state, e.g. a 4000 KB sized phantom queue does as good a rate
enforcement as a 1000 KB one.

The issue of sizing gets worse when we have multiple queues
instead of one, where each queue must be sized by the O(BDP?) rule
to ensure correct rate enforcement. The burst caused by this would
be much larger and it can further lead to poor policy enforcement
if we have a secondary bottleneck after the phantom queue. Figure
5a shows a scenario where we use phantom queues to enforce
fair sharing of 7.5 Mbps between 4 flows. We have a secondary
bottleneck of 8.5 Mbps after phantom queues®. Since phantom
queues allow such a large burst to go through, the packets are really

5This can occur when service providers rate-limit the flows before they hit the RAN
which may have bandwidth comparable to the enforced rate.

1006

Figure 5: r=7.5 Mbps shared across 4 flows with different CC
protocols with a secondary bottleneck of 8.5 Mbps afterward.

bottlenecked at the secondary bottleneck which results in poor
policy enforcement i.e. fairness in this case.

We need the phantom queue buffers to be large enough for
correct rate enforcement in the steady state, but we would still
like to avoid the large transient burst. How do we achieve such a
behavior? We address this in the next section.

4 Burst Controlled PQP

We saw in the previous section that once a queue becomes full, irre-
spective of how big it is (albeit it is larger than Reno’s requirements),
it does correct average rate enforcement. In other words, there is
no upper limit on how the queue should be sized for it to do correct
rate enforcement in the steady state of a flow. Thus, instead of
asking a more complicated question of how to dynamically size the
queues, the answer to which depends on various factors like flow’s
congestion control protocol, RTT, enforced rate r, and demands of
other flows, we ask how we can put flows in the steady state without
letting them burst.

We have seen in the previous section that to enforce a rate of r, we
need to allow some rate variation e.g. between %r and %r for Reno.
However, any burst larger than this is undesirable. We now develop
an active phantom queue management scheme that allows us to min-
imize this burst while still doing correct rate and policy enforcement.

Our idea is based on the observation that once an appropriately
sized phantom queue becomes full, a saturating flow (with demand
greater than the desired rate r) tries to keep it full in the steady state
(e.g. the AIMD state for TCP Reno), and that results correct average
rate enforcement. However, during the starting (slow-start) phase,

ACM SIGCOMM ’24, August 4-8, 2024, Sydney, NSW, Australia

the flow can burst up to a very large rate while it is filling up an empty
phantom queue, exiting the slow-start phase only when the queue
is full. Our key insight is that we do not need to wait until the queue
becomes full to exit the starting phase. Instead, we can ‘magically’
fill the queue when the flow’s sending rate exceeds a certain upper
threshold (e.g. %r, which is the upper bound on Reno’s rate in a
steady state). Similarly, we can drain these ‘magic packets’ once the
flow is finishing up i.e. its sending rate falls below a lower threshold
(e.g. %r, which is the lower bound on Reno’s rate in steady state).

Our algorithm achieves this in the following way. We maintain
the following additional parameters to configure a PQP system with
N queues: (i) an upper threshold multiplier %, (ii) a lower threshold
multiplier 67, and (iii) a time period length T.

On enqueue of any packet into phantom queue Q;, we estimate the
dequeue rate r; for this phantom queue and calculate the expected
number of bytes that may be dequeued from Q; over time period T as
X;=r]T.r} canbe calculated simply based on what queues are active
and the rate sharing policy °. For example, in the case of fairness, r}
is simply r divided by the number of active queues. For prioritization,
ri =rif Q; is the highest priority queue that is active, and 0 otherwise.

Based on this, we compute the upper and lower thresholds
on how many bytes each phantom queue is allowed to dequeue
before we fill it up with magic packets. Specifically, if the number
of packets accepted by a phantom queue Q; over the current time
window of length T is greater than X;" =6*X;, we fill up the queue
with magic packet by magically incrementing its byte counter by
M; = B—L(Qj,t) (where ¢ is the current time). We keep track of
magic packets added for each queue and when the accepted bytes
over time T is less than X;” =67 X;, we remove all M; ‘magic packets’
from this phantom queue 7. We refer to a PQP system that adopts
such an algorithm as burst-controlled PQP (BC-PQP).

With this, any phantom queue Q; bursts at most X" bytes, where
X{ is proportional to BDP if T is set to a value comparable to RTT.
Across all flows in an aggregate, burst is at most N0 X for any arbi-
trary rate-sharing policy, where N is the number of phantom queues,
and X = Zﬁ 1Xi. However, it is much smaller on average for policies
like fair sharing and prioritization. In the worst case for fairness,
we may have all n flows become active over time period T and burst
to the maximum possible value of Xi+. For the first flow, this is 67X,
for the second 01X /2, then 0*X/3, and so on. This is a harmonic
series, which sums to 0*X(Inn+0.5772) [11]. For 64 queues, this
number is approximately 4.72 X 07 X. Similarly, for prioritization,
a queue Q; has X; =0 if any of the other higher-priority queues are
active. As analyzed in §3.4, the cost of this relatively smaller burst
is further amortized, the longer the queues remain occupied.

We configure T according to the tail RTT e.g. 100 ms (to get
a reasonable estimate of packet enqueue and dequeue rates).
We further configure 6~ and 6" to be small multipliers (0.5 and
1.5 respectively based on requirements for New Reno). These
configurations ensure that we do correct rate enforcement while
avoiding unnecessary bursts. Figure 5b shows how flows see a very
small and controlled burst with BC-PQP, which results in fair sharing

Maintaining a list of active queues also has an efficiency benefit, since during phantom
dequeue, we do not have to iterate over all queues but only the active ones.

"It is possible that we may not have enough packets in queue size to reclaim all magic
packets, however, this is a transient behavior for a backlogged flow and does not affect
rate/policy enforcement much.

1007

Tahir et al.

of 7.5 Mbps across 4 different flows in the scenario where we have
a secondary bottleneck of 8.5Mbps placed after the policer system.
We end this section by discussing some design insights below:
1. How to set the phantom queue buffer size B; in a BC-PQP? While
the size of the phantom queue does not matter for normal behaving
flow as we fill it up as soon as the upper-threshold on enqueue rate
is reached, we suggest max-sizing phantom queues to about 2x
the required O(BDP?) limit, so as to avoid a malicious flow, that
constantly sends at a rate greater than r but smaller than the upper
threshold, from sending at a higher rate than r indefinitely.
2. Why do we remove magic packets once the flow becomes inactive?
BC-PQP removes the magic phantom packets (i.e. appropriately
decrements the byte counter) when the dequeue rate recedes the
lower threshold, e.g. when the flow becomes inactive. Doing so allows
BC-PQP to immediately allocate the spare rate to other flows (as
opposed to continually dequeuing the magic packets). In normal PQP
with very large queues, when a flow becomes inactive, it takes a long
time before its phantom queue is drained, which results in transient
under-enforcement of rate even though other flows are active.
3. How does BC-PQP enable dynamic auto-configuration of phantom
queues? BC-PQP estimates the expected dequeue rate, r;* of each
queue Q; independently — adapting this rate as per the rate sharing
policies, as the set of active queues changes. This allows BC-PQP
to automatically adapt the phantom queue configurations (upper
and lower thresholds for adding and removing magic packets) with
changing traffic patterns, instead of relying on a static configuration
that is hard to tune. This also allows BC-PQP to easily generalize
to arbitrary rate-sharing policies.

5 Implementation

We develop a middlebox for transparently enforcing traffic rates
using a kernel-bypass stack based on Intel’s DPDK. We implement
BC-PQP and other relevant baselines (including shaper, policer, and
fairpolicer) in this middlebox for our evaluations in §6. We run mi-
crobenchmarks on Azure public cloud and use three standard F8sv2
Virtual Machines running Ubuntu 22.04, dedicated for the sender,
receiver, and the middlebox respectively. For traffic, we create flows
of different sizes using TCP sockets and configure the congestion
control algorithm at a per-flow granularity. We use Linux kernel
implementation of all congestion control protocols. We use Linux
netem to artificially inflate latency and approximate realistic WAN
RTTs. The sender traffic is routed through the middlebox responsible
for enforcing the network rate before it reaches the receiver.

We also test phantom queues with real applications. For this, we
implement phantom queues and other baselines in Mahimahi. Inside
the Mahimabhi shell, we run a browser to run different applications
i.e. video streaming services like YouTube and Netflix, and web
browsing.

6 Evaluation

We compare BC-PQP with several baselines (traffic shapers, traffic
policers, and FairPolicer [42]), evaluating the following:

® BC-PQP’s ability to do correct rate enforcement (§6.2).

® BC-PQP’s system efficiency (§6.3).

® BC-PQP’s ability to enforce different rate sharing policies (§6.4).

Efficient Policy-Rich Rate Enforcement with Phantom Queues

e Improvement in application quality-of-experience (QoE) with
BC-PQP for real-world applications — video streaming and web
browsing (§6.5).

6.1 Experiment Setup

We do rate enforcement for multiple flow aggregates (representing
a given user), each consisting of multiple flows. Our setup consists
of three machines: a sender machine, a rate enforcer machine,
and a receiver machine. The traffic from the sender machine is
routed through the rate enforcer machine. Our goal is to enforce
the specified rate of r for each aggregate. Unless otherwise specified,
we use the rate-sharing policy of round-robin (per-flow fairness)
within each aggregate.

Rate per aggregate. We fix the enforced rate r for each flow aggre-
gate in each experiment, varying this value across experiment runs
ranging it from 1.5Mbps to 200 Mbps. We specifically experiment
with per-aggregate rates of 1.5Mbps, 7.5Mbps, 25Mbps, 50Mbps,
100Mbps, and 200Mbps.

Number of aggregates. For each experiment, we have 100 flow
aggregates, except for experiments where we set the per-aggregate
rate to 100Mbps or 200Mbps (in these experiments, we reduce
the number of flow aggregates to 60 and 30 respectively to avoid
bottlenecks in netem at the sender).

Traffic mix within each aggregate. The flow sizes in each aggre-
gate range from a few 10s of KBs to 100s of MBs. For congestion con-
trol protocols, we pick from New Reno, Cubic, BBR, and Vegas (cover-
ing popularly used protocols ranging from purely loss-based to delay-
based). We use Linux kernel implementation of all these protocols.
We also use netem to inject different delays to different flows ranging
from 2 ms to 50 ms. In each experiment, we have a mix of aggregates,
inhalf of the aggregates all flows use the same congestion control pro-
tocol (€ {Cubic, Reno, BBR, Vegas}) and have the same RTT (€ {2ms, 5
ms, 10 ms, 25 ms, 50 ms}), while in the other half, we have flows with
different congestion control protocols as well as different RT Ts. More-
over, in each of these groups, some aggregates only have backlogged
flows (large flows with flow completion time in minutes), whereas
others only have short on-and-off flows (10s of KBs), whereas a third
subgroup has both backlogged and short on-and-off flows.
Computing relevant metrics. The rate enforcer machine forwards
traffic to the receiver machine, where per-flow throughput is
measured over 250ms windows. We use these per-flow rates over
these 250ms windows to compute different flow-specific metrics
when evaluating policy enforcement within each aggregate. We
further sum the throughput of each flow within each aggregate over
each 250ms window and normalize this aggregate throughput by
enforced rate r to compute the aggregate enforced rate over each
250ms window.

Baselines. We compare BC-PQP with the following baselines:

® Shaper: We implement our shaper inspired by an industry-standard
algorithm. Similar to Carousel [39], we use timerwheels [51] to
schedule dequeues from the shapers. Carousel puts packets to
dequeue directly on the timerwheel and therefore is unable to
support rate sharing policies within a shaper. We put shapers on
the timer wheel and dequeue packets from the shapers based on
the rate-sharing policy. Each shaper has multiple queues each sized
according to maximum BDP.

1008

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia

e FairPolicer (FP): As mentioned in §2, FP [42] provides a point
solution for realizing per-flow fairness with statically configured
TBF-based policers. We use the best possible configuration for
FP. We size the bucket B for FP to be the maximum of any flow’s
requirement i.e. we pick the maximum RTT and compute B needed
for correct rate enforcement for New Reno and Cubic, and pick the
maximum value. For small values of RTT and rate, Cubic requires
a larger bucket size, whereas in other cases New Reno requires a
larger bucket size (using O(BDP?)).

o Policer: A token bucket traffic policer sized according to maximum
BDP.

e Policer+: A token bucket traffic policer sized similar to FP.

For BC-PQP, we do not need to set an explicit size of the bucket
thus we pick a very high value of at least 10 XO(BDP?). For other
parameters of BC-PQP, we set 6%, 07, and T to be 1.5, 0.5, and 100ms
respectively.

6.2 Rate Enforcement

We begin with presenting results on how BC-PQP’s aggregate rate
enforcement behavior compares with the baselines. Figure 6 sum-
marizes the rate enforcement performance of BC-PQP and different
baselines. We can draw the following insights from these results:

(1) The distribution of normalized throughput of each aggregate
for all the rates is shown in Figure 6a. It can be seen that the
shaper does accurate rate enforcement over short time scales. The
instantaneous rate for other baselines also stays within small bounds
(roughly 0.8r to 1.2r) for most parts. However, Policer+ and FP cause
amuch larger burst and have a long tail for aggregate throughput (as
shown in Figure 6b). BC-PQP, in contrast, retains a small deviation
in aggregate throughput even at the tails, performing close to a
shaper. As shown previously in Figure 5 in §4, BC-PQP’s small burst
ensures that the rate and policy enforcement are correct even in the
presence of a secondary bottleneck with bandwidth comparable to r.

(2) Policer (with BDP-sized buffer) has a small burst, but at the
cost of the average throughput being lower than the desired rate
r. This can be observed in Figure 6a, where the line for Policer
is slightly shifted left. Figure 6¢ further reports the average of
all non-zero aggregate throughput measurements. The average
throughput is higher for FP and Policer+ because bursty throughput
points skew the average up.

(3) Due to the lack of buffering, all policing-based schemes induce
a higher number of packet drops than Shaper. The number of packet
drops reduces as the BDP (either of rate or RTT) increases, this is
especially apparent from trends for BDP-sized policer and BC-PQP.
However, as discussed previously a large-sized policer (and also
FP) results in a higher number of packet drops especially when
flows end up with an over-estimated congestion windows at the
end of the slow start phase. BC-PQP on the other hand avoids such
drops by avoiding large bursts and has drop rates comparable with
BDP-sized policer. Shaper’s small drop rates come at the cost of
inducing higher queuing delays. We find that the high queuing
delay of Shaper can at times hurt application performance more
than the relatively higher packet drop rates of BC-PQP (§6.5) — so
the trade-off between them is unclear.

Overall, BC-PQP results in correct aggregate rate enforcement
with 10X smaller burst compared with FP or a correctly sized policer.

ACM SIGCOMM ’24, August 4-8, 2024, Sydney, NSW, Australia Tahir et al.
101 1.01 L 1.0 15.01 m— BC-PQP
. SS-PQP 1.00 £ 1297 - ;E
= .00 - E——— | 5 0.8 = = Shaper
087 — = Shaper = 3 10.0 1 = Policer
3 8 =
— Policer 0.99 1 .I// £ 064 g — = Policer+
w 0.6 1 Policer+ " l ° g T~ —
8 0.98 1 ~~i .
© 4l o m— BC-PQP | S 0.4 © 50 =~
K ~
0.97 4 — FP 13 Sl
021 = = Shaper S 0.2 257
. 0.96 1 = Policer 004 N e
= = Policer+ 0.0 2 T N T T
0.0 1 .
T T T T T 0.95 +— T T T T «,X{" ,{:,«Q 4,0‘ 009 00-0
0.6 0.8 1.0 1.2 1.4 0 5 10 15 20 Rate Enforcement ~ v
Normalized Throughput Normalized Throughput Mechanism Rates (Mbps)
(a) CDF of instantaneous throughput (b) Tail throughput (burst) (c) Average aggregate (d) Drop rate
throughput

Figure 6: Aggregate rate enforced by BC-PQP and other baselines, 6a and 6b show distribution of aggregate throughput measured
over 250 ms windows normalized by enforced rate, 6¢c shows normalized average aggregate throughput and 6d shows drop rate
at different enforced rates

N
3501 N
N e ol o o o
300 1
o
$ 250 = BC-PQP
54 — FP
-3]
EZOO = = Shaper
%150~ = Policer
1004 \oo
‘ | — — — — . —
50 \
—— T T
be BN Q Q Q
M 0T Q0 L O
o) K A
Rates (Mbps)

Figure 7: CPU cycles spent per packet

6.3 System Efficiency

We use CPU cycles spent per packet as a proxy to quantify the
efficiency and scalability of different rate enforcement schemes. This
indirectly captures other overheads e.g. storing and retrieving of
packets from the memory. Moreover, spending more CPU cycles per
packet results in the system being able to handle fewer packets per
second. Figure 7 reports the average number of CPU cycles spent on
each packet with different schemes. BC-PQP uses 5-7 X fewer CPU
cycles per packet and is marginally costlier than a simple policer.
A shaper spends several CPU cycles during its dequeue routine
where it needs to gather packets from different queues of different
shapers before sending them to the NIC to dequeue. On the other
hand, all other schemes do not need to store packets and make the
decision about the fate of the packet on its enqueue thus avoiding
spending CPU cycles on costly memory trips. Policer and BC-PQP
furthermore are more efficient than FP because we can batch
phantom dequeues or token replenishing, and only call phantom
dequeue or token generator when the phantom queue is full or the
token bucket is empty. On the other hand, FP makes decisions to
drop incoming packets based on a dynamic threshold which is a
function of up-to-date per-flow residual bucket space. This requires
generating and allocating tokens on each enqueue of a packet.

6.4 Policy Enforcement
In this section, we look at how well BC-PQP enforces rate-sharing

policies within an aggregate.

6.4.1 Per-flow Fairness. For the experiment from §6.2, we measure
the per-flow throughput over 250 ms windows within each

1009

aggregate and estimate fairness using Jain’s Fairness Index [27].
CDF of this fairness index is reported in Figure 8a. We can see that
the shaper achieves close to perfect fair sharing of the enforced rate
as expected, but Policer and Policer+ are unable to do so. BC-PQP
achieves fairness comparable to the shaper. While FP does better
than policers, it falls a bit short for the following reason — flows
with different RT Ts require differently sized buckets for correct rate
enforcement. FP does not differentiate between them and instead
splits a single (statically configured) bucket equally among different
flows. This creates large bursts in flows with small RTTs (that
require smaller buckets), and lower than desired average rates for
flows with large RTTs (that require larger buckets), thereby causing
unfairness. BC-PQP, in contrast, dynamically adapts the phantom
queue configuration by adding and removing magic packets based
on flow arrival rates as described in §4 — it naturally fills up the
queue with magic packets sooner for flows with smaller RTTs that
ramp up faster, when compared to flows with longer RTTs.

6.4.2 Weighted Fairness. We next run a microbenchmark experi-
ment to show how BC-PQP can do accurate weighted sharing within
an aggregate. We experiment with a single aggregate, with an en-
forced rate of 50 Mbps shared between 7 flows, each with weights
from 1to 7. All flows start at the same time and are sized proportional
to their weights so that they should complete at the same time if the
rate is shared between them as per their weights. We also adapt the
token allocation logic in FairPolicer to make it do similar weighted
sharing, without changing the bucket sizing. It is non-trivial to adapt
FP’s bucket sizing logic for arbitrary rate-sharing policies. Figures 8b
and 8c show the time series of per-flow and aggregate throughput for
FP and BC-PQP. BC-PQP enforces weighted sharing correctly result-
ing in all flows completing at the same time. FP fails to do so, thisis be-
cause while FP tries to allocate tokens in a weighted fair manner, the
way it sizes each flow’s bucket works only for fair sharing. It sets each
flow’s bucket capacity to be equal to the number of tokens remaining
in the main token bucket. Thus, each flow with different weights gets
approximately same-sized token buckets even though a flow with a
higher weight should get a larger one. It is not trivial to extend FP’s
bucket sizing algorithm to support arbitrary rate-sharing policies.

6.4.3 Prioritization and Nested Policies. In this section, we show
the feasibility of enforcing prioritization and nested policies with

Efficient Policy-Rich Rate Enforcement with Phantom Queues

100

1.0 4

m— BC-PQP
— FP

== = Shaper
= Policer
7 == Policer+

0.8 80

60

Throughput

40

Throughput

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia

100

w5
a we
w7

Bl pl:wl

0 pliw2
pl: w3

. p2

801

60

Throughput

404

204

20 30 40 50

Timestamp

0 10

Fairness Index

(a) CDF of Fairness Index per aggregate (b) Weighted Fairness with Fairpolicer

60

(c) Weighted Fairness with BC-PQP

10 20 30 40
Timestamp

0

20

40 60
Timestamp

80

(d) Nested Policies with BC-PQP

Figure
8: Policy enforcement with BC-PQP and other baselines: 8a shows per-flow fairness between flows within an aggregate, 8b and 8c
show weighted fairness achieved by FairPolicer and BC-PQP respectively and 8d shows a nested policy with prioritization and
weighted fairness using BC-PQP.

BC-PQP, using a microbenchmark. We experiment with a single
aggregate with 4 flows divided into two priority groups: (i) p1 is
the higher priority group with 3 on-and-off flows, and within p1,
the rate is shared in a weighted fair manner between the 3 flows,
and (ii) p2 is the lower priority group with a single backlogged flow.
Figure 8d shows how BC-PQP allocates all bandwidth to p1 flows in
a weighted fair manner whenever they’re active and only allocates
bandwidth to p2 flow when no p1 flow is active.

6.5 Real World Applications

We show the effectiveness of BC-PQP in enforcing aggregate rates
and rate-sharing policies for different real-world applications. We
look at scenarios where an enforced aggregate rate r is shared by
different kinds of flows.

6.5.1 Video Streaming. We look at a scenario where an aggregate
rate is shared between a video stream and some other traffic. Cellular
service providers and ISPs often use policers or single queue shapers
to do such rate enforcement for each user. We simulate this scenario
with two different rates i.e. 3 Mbps and 10 Mbps. The aggregate rate
is shared between video flow and the rest of the traffic (webpage
loads, downloads, etc.). We further try to implement different
rate-sharing policies within an aggregate, with 3 Mbps, we do 1:1
fairness and with 10 Mbps, we do 4:1 weighted fairness between
video flow and the rest of the traffic respectively.

We repeat this experiment using 3 videos from YouTube and 2
videos from Netflix. YouTube uses BBR [3], while Netflix uses New
Reno [47] for its congestion control protocols. For baselines, we use
a simple policer and a single queue shaper as well as a shaper with
deficit round robin. The first two are the status quo mechanisms
to do rate enforcement.

Figure 9a shows the results with a 3Mbps aggregate rate that is
shared in a 1:1 fairness ratio between the video flow and the rest
of the traffic. It plots the video quality on the Y-axis and the fairness
index on the X-axis. We find that BC-PQP shares the rate fairly
between the video stream and the other flows, and also achieved
high video quality with both Netflix and YouTube. Single queue
shaper and policer, on the other hand, are not able to share the
rate fairly. While shaper with DRR ensures fairness between traffic,

1010

YouTube videos’ quality suffers — this is likely due to an additional
queuing delay introduced due to the buffering of packets. 8

Figure 9b shows the average video quality achieved by the
video streams when an aggregate rate of 10Mbps is split to give
higher weightage to video flows. Video quality is similar for Netflix
irrespective of rate enforcement mechanism and rate sharing
policy, this is because Netflix caps the video quality at 720p on web
browsers. However, BC-PQP outperforms the other baselines for
YouTube flows, resulting in higher video quality compared to policer
and single-queue shaper due to better policy enforcement, and
even compared to shaper with DRR (presumably due to YouTube’s
adverse reaction to queuing delay, as mentioned above).

6.5.2 Web Browsing. Similar to the previous setup, we share a 20
Mbps aggregate rate between a download flow and web browsing
traffic. We open 75 web pages for each experiment in the presence
of a bulk download flow. We use DRR shaper and BC-PQP to enforce
weighted sharing of rate between bulk flow and web browsing flows
in ratio of 1:1. CDF of web page load times is reported in figure 9c.
BC-PQP achieves up to 2x lower page load times compared to status
quo baselines of policer and single queue shaper.

7 Related Work

Rate enforcement is a key building block for any kind of network
management. Mechanisms to do rate enforcement correctly have
been explored in the past [7, 23, 39-42]. These solutions usually
include traffic shapers [7, 23, 39, 40], which buffer packets in
memory or traffic policers [41, 42, 50]. Previous works have noted
the limitations of traffic shapers and policers, namely traffic shapers
are expensive to implement [21, 41], whereas traffic policers suffer
from poor rate enforcement and high packet losses [21, 28, 50].
Traffic policers are known to be difficult to configure [21, 50].
Guidelines around configuring policer bucket sizes are not homoge-
nous and depend largely on which factor is more important: correct
rate enforcement [41, 42] or small burst [6, 21]. [50] presents a dy-
namically sized bucket that is adapted based on how long it takes for
a flow to ramp up after packet losses. This is an iterative process that
takes multiple attempts to gauge the correct size needed for a flow,
eventually setting the size to O(BDP?) for a Reno flow. BC-PQP does

8The precise reason for this is not clear because of the lack of visibility into YouTube’s
ABR algorithm.

ACM SIGCOMM ’24, August 4-8, 2024, Sydney, NSW, Australia

Tahir et al.

B 0 —==
Netflix (el e
1440p - ==
720p A * P = YouTube 0.8
o () 1080p{
gl § M |
é 480p v T 720p | E 0.6 .
) R B B N
g 360p @ BC-PQP (1:1) 3 ---- Shaper: 1 Queue
WV Shaper: 1 Queue > 360p 1 0.2 —-— Shaper (DRR): 1:1
240p 1 A Shaper: DRR (1:1) Netflix 2400 7 B BC-PQP: 1:1
Y Policer EEm Youtube P 0.0
0.6 0.7 0.8 0.9 1.0 BC-PQP Shaper: Shaper: Policer 0.0 25 5.0 . 75 10.0
Fairness (1:1) 1 Queue DRR (1:1) Page Load Time (S)

(a) Video streaming at 3 Mbps

(b) Video streaming at 10 Mbps

(c) Web page load times at 20 Mbps

Figure 9: Video streaming and web browsing in the presence of background traffic with BC-PQP and baselines.

not need to vary phantom queue sizes - instead, it relies on its unique
burst control mechanism to avoid bursts and enforce correct rates.
Enforcing different policies within a traffic aggregate is desirable
for the operators as well as users [16, 29, 49]. Past work has looked
into various mechanisms to implement policies like per-flow fair-
ness, weighted fair queuing, or prioritization [20, 34, 36, 37, 43, 45].
These works usually depend on buffering packets, sometimes into
multiple queues, whereas other times into a single shared buffer
to be more space efficient [34, 36, 43]. Using bufferless mechanisms
for such policy enforcement has not been explored much. Recent
work attempts to make token bucket policers fair when flows with
different congestion control protocols pass through it [41, 42]. How-
ever, this does not extend to other rate-sharing policies. Moreover,
it suffers from burstiness and some level of RTT unfairness [41].
Phantom queues have been proposed under different names for
different functionalities. More recently, they have been popularized
asanactive queue management scheme [8, 31, 32]. However, some of
the earliest works in ATM networks used "leaky buckets as a meter”
for rate enforcement, which works the same way as a token bucket in
principle, albeit it has also been called a pseudo queue [15, 22, 26]. Our
key contribution lies in augmenting a policer with multiple phantom
queues, and showing how it can do policy-rich rate enforcement.

8 Conclusion and Discussion

Even though we, as users, do not like the idea of ISPs rate limiting
our traffic, it is prevalent and we cannot escape it — the need for
it is inherently coupled with Internet economics. In this paper,
we embrace the idea of rate limiting and focus on doing it right.
This requires enabling the ISPs to enforce different rate-sharing
policies (fairness across flows using different congestion control
algorithms, weighted rate sharing across a given user’s flows as
per their preferences, etc) at scale. Our system BC-PQP enables
that by providing the system-level efficiency of a policer (by not
buffering any packets) but the network-level properties of a shaper
(characterized by its ability to correctly enforce the desired policy
and rate). Several dimensions remain open for future research.
Expressive and customizable rate enforcement: While
we present a cost-effective solution to implement expressive
rate-sharing policies at the ISP for rate-limited traffic aggregates,
more work needs to be done towards standardizing how these
policies can be customized by end-users or applications (along the
lines of [12, 18, 24, 30, 54, 55]).

1011

Trade-off between shapers and policers: A fundamental
trade-off between shapers and policers is that of queuing delay
and packet drops. With the existing congestion control algorithm,
drops incurred by BC-PQP are unavoidable. For example, as per
Mathis’ TCP model, for AIMD protocols like Reno, the drop rate
is inversely related to the square of rate X RTT [35]. Therefore, in
the absence of queuing delay, as for BC-PQP and policer, drop rates
are high but with queuing delay, RTT is inflated, and thus drop rates
go down. While the applications we tested are not harmed by higher
packet drops caused by BC-PQP when compared to the queuing
delay induced by a shaper, certain other applications’ QoS may be
more susceptible to packet drops compared to queuing delay. We
leave such exploration with different applications to future work.
Hardware implementation of BC-PQP: The principles we
discussed that make software implementation of BC-PQP a lot more
performant than shapers, also apply to hardware implementation.
A hardware implementation of BC-PQP will require a much smaller
amount of SRAM and shorter packet pipelines compared to shapers.
We leave such hardware implementation to future work.

This work does not raise any ethical concerns.

BC-PQP’s implementation is open-source and can be found at:
https://github.com/PhantomQueuePolicer.

9 Acknowledgements

We would like to thank our shepherd, Peter Steenkiste, and the
anonymous reviewers for their helpful feedback. This work was
supported in parts by USDA NIFA (award number 2021-67021-34418),
NSF (award number 2217144), and Microsoft.

References

[1] [n.d.]. AT&T: Learn About Video Management. https://www.att.com/support/
article/wireless/KM1169198/. ([n. d.]).

[n. d.]. Linux Hierarchical Token Buckets. http://luxik.cdi.cz/~devik/qos/htb/.
([n.d.]).

[n. d.]. TCP BBR congestion control comes to GCP - your internet just got faster
| google cloud blog. ([n. d.]).

[n. d]. VMWare SD-WAN. https://docs.vmware.com/en/VMware-SD-
WANY/3.3/VMware-SD-WAN-by-VeloCloud- Administration- Guide/GUID-
EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html. ([n. d.]).

[n. d.]. What Is SD-WAN? https://www.cisco.com/c/en/us/solutions/enterprise-
networks/sd-wan/what-is-sd-wan.html. ([n. d.]).

2023. (Sep 2023). https://www.cisco.com/c/en/us/support/docs/quality-of-
service-qos/qos-policing/19645-policevsshape html#traffic

Saamer Akhshabi, Lakshmi Anantakrishnan, Constantine Dovrolis, and Ali C
Begen. 2013. Server-based traffic shaping for stabilizing oscillating adaptive
streaming players. In 23rd ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video.

https://github.com/PhantomQueuePolicer
https://www.att.com/support/article/wireless/KM1169198/
https://www.att.com/support/article/wireless/KM1169198/
http://luxik.cdi.cz/~devik/qos/htb/
https://docs.vmware.com/en/VMware-SD-WAN/3.3/VMware-SD-WAN-by-VeloCloud-Administration-Guide/GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html
https://docs.vmware.com/en/VMware-SD-WAN/3.3/VMware-SD-WAN-by-VeloCloud-Administration-Guide/GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html
https://docs.vmware.com/en/VMware-SD-WAN/3.3/VMware-SD-WAN-by-VeloCloud-Administration-Guide/GUID-EE8C35B8-FA4E-4C59-9AC2-4FD14509F60C.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/sd-wan/what-is-sd-wan.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/sd-wan/what-is-sd-wan.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html#traffic
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-policing/19645-policevsshape.html#traffic

Efficient Policy-Rich Rate Enforcement with Phantom Queues

[8] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,

and Masato Yasuda. 2012. Less is more: Trading a little bandwidth for { Ultra-Low }
latency in the data center. In 9th USENIX Symposium on Networked Systems Design
and Implementation.

Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing router buffers.
ACM SIGCOMM Computer Communication Review (2004).

Eneko Atxutegi, Fidel Liberal, Habtegebreil Kassaye Haile, Karl-Johan Grinnemo,
Anna Brunstrom, and Ake Arvidsson. 2018. On the use of TCP BBR in cellular
networks. IEEE Communications Magazine (2018).

Ralph P Boas Jr and John W Wrench Jr. 1971. Partial sums of the harmonic series.
The American Mathematical Monthly (1971).

Ilker Nadi Bozkurt, Yilun Zhou, Theophilus Benson, Bilal Anwer, Dave Levin,
Nick Feamster, Aditya Akella, Balakrishnan Chandrasekaran, Cheng Huang,
Bruce Maggs, et al. 2015. Dynamic prioritization of traffic in home networks. In
CoNEXT Student Workshop.

Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP Vegas:
New Techniques for Congestion Detection and Avoidance. In ACM Conference
on Communications Architectures, Protocols and Applications.

Lloyd Brown, Yash Kothari, Akshay Narayan, Arvind Krishnamurthy, Aurojit
Panda, Justine Sherry, and Scott Shenker. 2023. How I Learned To Stop Worrying
About CCA Contention. In 31st Workshop on Hot Topics in Networks.

Milena Butto, Elisa Cavallero, and Alberto Tonietti. 1991. Effectiveness of
the’leaky bucket’policing mechanism in ATM networks. IEEE Journal on selected
areas in communications (1991).

Frank Cangialosi, Akshay Narayan, Prateesh Goyal, Radhika Mittal, Mohammad
Alizadeh, and Hari Balakrishnan. 2021. Site-to-site internet traffic control. In 16th
European Conference on Computer Systems.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue (2016).
Saoussen Chaabnia and Aref Meddeb. 2018. Slicing aware QoS/QoE in software
defined smart home network. In IEEE/IFIP Network Operations and Management
Symposium.

Saahil Claypool, Jae Chung, and Mark Claypool. 2021. Measurements comparing
TCP cubic and TCP BBR over a satellite network. In IEEE 18th Annual Consumer
Communications & Networking Conference (CCNC).

Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and simulation
of a fair queueing algorithm. ACM SIGCOMM Computer Communication Review
(1989).

Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis Pedrosa, Yuchung Cheng,
Tayeb Karim, Ethan Katz-Bassett, and Ramesh Govindan. 2016. An Internet-Wide
Analysis of Traffic Policing. In ACM Conference on Special Interest Group on Data
Communication (SIGCOMM).

G Gallassi, G Rigolio, and Luigi Fratta. 1989. ATM: Bandwidth assignment and
bandwidth enforcement policies. In IEEE Global Telecommunications Conference
and Exhibition’Communications Technology for the 1990s and Beyond'.

Leonidas Georgiadis, Roch Guérin, Vinod Peris, and Kumar N Sivarajan. 1996.
Efficient network QoS provisioning based on per node traffic shaping. IEEE/ACM
transactions on networking (1996).

Hassan Habibi Gharakheili, Jacob Bass, Luke Exton, and Vijay Sivaraman. 2014.
Personalizing the home network experience using cloud-based SDN. In Proceeding
of IEEE International symposium on a world of wireless, mobile and multimedia
networks 2014.

Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a New TCP-friendly
High-Speed TCP Variant. ACM SIGOPS Operating System Review (2008).

[26] Joseph SM Ho, Hiiseyin Uzunalioglu, and Ian F Akyildiz. 1995. Cooperating leaky

bucket for average rate enforcement of VBR video traffic in ATM networks. In
Proceedings of INFOCOM’95.

Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. 1984. A quantitative
measure of fairness and discrimination. Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA (1984).

Arash Molavi Kakhki, Fangfan Li, David Choffnes, Ethan Katz-Bassett, and
Alan Mislove. 2016. Bingeon under the microscope: Understanding t-mobiles
zero-rating implementation. In Proceedings of the 2016 workshop on QoE-based
Analysis and Management of Data Communication Networks.

Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinadhuni,
Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Bjérn Carlin, Mihai
Amarandei-Stavila, et al. 2015. BWE: Flexible, hierarchical bandwidth allocation
for WAN distributed computing. In ACM Conference on Special Interest Group on
Data Communication (SIGCOMM).

Himal Kumar, Hassan Habibi Gharakheili, and Vijay Sivaraman. 2013. User control
of quality of experience in home networks using SDN. In 2013 IEEE International
conference on advanced networks and telecommunications systems (ANTS).
Srisankar Kunniyur and Rayadurgam Srikant. 2001. Analysis and design of an
adaptive virtual queue (AVQ) algorithm for active queue management. ACM
SIGCOMM Computer Communication Review (2001).

Srisankar S Kunniyur and Rayadurgam Srikant. 2004. An adaptive virtual queue
(AVQ) algorithm for active queue management. IEEE/ACM Transactions on
networking (2004).

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia

[33

Fangfan Li, Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and Alan Mislove.
2019. A large-scale analysis of deployed traffic differentiation practices. In
Proceedings of the ACM Special Interest Group on Data Communication. 130—-144.
Robert MacDavid, Xiaoqi Chen, and Jennifer Rexford. 2023. Scalable real-time
bandwidth fairness in switches. IEEE/ACM Transactions on Networking (2023).
Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. 1997. The
macroscopic behavior of the TCP congestion avoidance algorithm. ACM
SIGCOMM Computer Communication Review (1997).

Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. 2003. Approximate

fairness through differential dropping. ACM SIGCOMM Computer Communication

Review (2003).

Abhay K Parekh and Robert G Gallager. 1993. A generalized processor sharing

approach to flow control in integrated services networks: the single-node case.

IEEE/ACM transactions on networking (1993).

S. Blake and D. Black and M. Carlson and E. Davies and Z. Wang and W. Weiss.

1998. An Architecture for Differentiated Services. RFC 2475. (1998).

Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo

Contavalli, and Amin Vahdat. 2017. Carousel: Scalable traffic shaping at end hosts.

In ACM Special Interest Group on Data Communication (SIGCOMM).

Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,

Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and flexible software

packet scheduling. In 16th USENIX Symposium on Networked Systems Design and

Implementation.

Danfeng Shan, Linbing Jiang, Peng Zhang, Wanchun Jiang, Hao Li, Yazhe Tang,

and Fengyuan Ren. 2023. Enforcing Fairness in the Traffic Policer Among

Heterogeneous Congestion Control Algorithms. IEEE/ACM Transactions on

Networking (2023).

Danfeng Shan, Peng Zhang, Wanchun Jiang, Hao Li, and Fengyuan Ren. 2021.

Towards the Fairness of Traffic Policer. In 40th IEEE Conference on Computer

Communications, INFOCOM.

[43] Naveen Kr Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy.
2018. Approximating fair queueing on reconfigurable switches. In 15th USENIX
Symposium on Networked Systems Design and Implementation.

[44] M. Shreedhar and George Varghese. 1995. Efficient Fair Queueing Using Deficit
Round Robin. ACM SIGCOMM Computer Communication Review (1995).

[45] Madhavapeddi Shreedhar and George Varghese. 1995. Efficient fair queueing
using deficit round robin. In Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication.

[46] Madhavapeddi Shreedhar and George Varghese. 1996. Efficient fair queuing using
deficit round-robin. IEEE/ACM Transactions on networking (1996).

[47] Bruce Spang, Shravya Kunamalla, Renata Teixeira, Te-Yuan Huang, Grenville
Armitage, Ramesh Johari, and Nick McKeown. 2023. Sammy: smoothing video
traffic to be a friendly internet neighbor. In ACM SIGCOMM.

[48] T-Mobile. 2024. Unlimited video streaming with Binge On™. (2024).
https://www.t-mobile.com/tv-streaming/binge-on

[49] Ammar Tahir and Radhika Mittal. 2023. Enabling Users to Control their Internet.
In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). 555-573.

[50] Ronald van Haalen and Richa Malhotra. 2007. Improving TCP performance

with bufferless token bucket policing: A TCP friendly policer. In 2007 15th IEEE

Workshop on Local & Metropolitan Area Networks.

George Varghese and Anthony Lauck. 1987. Hashed and Hierarchical Timing

Wheels: Data Structures for the Efficient Implementation of a Timer Facility. In

11th ACM Symposium on Operating System Principles, SOSP.

Verizon. 2024. Verizon customers can save more in 2024. (2024).

https://www.verizon.com/about/news/verizon-customers- can-save-more- 2024

[53] Gary R Wright and W Richard Stevens. 1995. TCP/IP Illustrated, Volume 2

(paperback): The Implementation. Addison-Wesley Professional.

Yiannis Yiakoumis, Sachin Katti, Te-Yuan Huang, Nick McKeown, Kok-Kiong

Yap, and Ramesh Johari. 2012. Putting home users in charge of their network.

In ACM Conference on Ubiquitous Computing.

Yiannis Yiakoumis, Sachin Katti, and Nick McKeown. 2016. Neutral Net Neutrality.

In Proceedings of the 2016 ACM SIGCOMM Conference.

[34

[35

[36

®
=

[38

[39

[40

[41

[42

a
=

o
5,

o
=

o
&

APPENDIX

Appendices are supporting material that has not been peer-reviewed.

Appendix A Sizing the phantom queue for Reno

We analyze how to size the buffer B of a phantom
queue Q, being served at rate r (in packets per second), for a
backlogged Reno flow. Reno is a congestion window-driven additive
increase, multiplicative decrease protocol that is sensitive to packet
losses. The sender maintains a congestion window, cwnd, to cap the

https://www.t-mobile.com/tv-streaming/binge-on
https://www.verizon.com/about/news/verizon-customers-can-save-more-2024

ACM SIGCOMM ’24, August 4-8, 2024, Sydney, NSW, Australia

«

Tahir et al.

«

Video flow
+ Bulk Flow

Video flow
Bulk Flow

Video flow
-+ Bulk Flow

Video flow
-+ Bulk Flow

+— Rebuffering
— Video Quality ad e

+— Rebuffering +— Rebuffering

— Video Quality

+— Rebuffering
— Video Quality

ga- — Video Qu?hl:y | 21609 g‘; 2160p @4- -2160p
=) H <) el
H 0) ~1440
Z5. 3d ‘ 144;))‘ S . 144 p)
= 108002 5 5 -1080p 2
= 2 [©
g 480p g g - 480p
3 3 3
£1- 1- T l TN 360p £1- £1- -360p
[il S [
ik 240p -240p
0- 9 0- i 0- . 0-
50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (s) Time (s) Time (s) Time (s)
(a) Policer (b) BC-PQP (c) Single Queue Shaper (d) DRR Shaper
Figure 10: A youtube video stream sharing 3 Mbps link with some other traffic with different schemes.
20- === Video flow —+— Rebuffering 20- == Video flow —— Rebuffering 20~ === Video flow —— Rebuffering 20 -== Video flow —— Rebuffering
e Bulk Flow = Video Quality ++ Bulk Flow = Video Quality -+ Bulk Flow = Video Quality Bulk Flow = Video Quality
-2160p - - ~2160p
15- 15- ~1440p
>
~1080p 2

_-720p

Throughput (Mbps)
Throughput (Mbps)

100
Time (s)

(b) BC-PQP (4:1)
Figure 11: A youtube video stream sharing 10 Mbps link with some other traffic with different schemes.

(a) Policer

inflight packets. On each successful packet delivery, the congestion
window is updated as cwnd =cwnd+1/cwnd. Whereas, on
packet loss, the congestion window is halved: cwnd =cwnd/2. Since
the phantom queue does not cause any queuing delay, all cwnd
packets’ acknowledgments are received in one round trip time.
Consider that a flow has a round trip time of RTT. In the steady state
of Reno, when the phantom queue becomes full, a packet loss causes
Reno to halve its congestion window;, let’s call this congestion
window ¢;. Thus, Reno sends ¢; packets in the next round trip. After
successfully delivery of all packets, c;+1 packets are sent in the next
round, and so on. As the congestion window increases additively,
the phantom queue is drained at rate r packets per second. Suppose
it takes n RTTs for the queue to become full again. At this point, we
reach the highest congestion window - let’s call it ¢j,. Thus over time
duration nRTT, if the queue does not go to zero, we phantom dequeue
nRTT Xr=nxBDP packets from the phantom queue, and 37, (¢c;+1)
more packets are accepted over this duration. Thus, we have:

n
anDP:Z(clH)
i=1

We have following relationship between ¢; and cp,: ¢;=cp, /2
and cj, =c;+n, through which we have ¢; =n. Plugging this in
the above equation gives us values of n=c¢; ~ %BDP and ¢, = %BDP.
This means, that for correct rate enforcement with Reno, we need
the instantaneous rate (over RTT period) to vary between Z?r and
%r. When B is not large enough, we are unable to phantom dequeue
nXBDP packets over the given duration, which results in the average
enforced rate being less than r. We need B to be at least as large as
the area of the shaded in Figure 12 to hold the additional packets that

Bll)éﬂ XMSS bytes.

are sent beyond rate r, which comes out to be

AppendixB YouTube’s video stream analysis

The time series for one video with different
schemes is shown in Figure 10 for 3 Mbps and Figure 11 for 10
Mbps. Since YouTube uses BBR, with a policer, the video flow hogs

1013

Throughput (Mbps)
g

Qual

§ -480p
-360p
-240p

Throughput (Mbps)
s

100 200 0 200
Time (s)

50

100 150
Time (s)

(c) Single Queue Shaper (d) DRR Shaper (4:1)

ch=

4BDFP/3
BDP/3

c=
2BDP/3

n=2BDP/3

Figure 12: Reno’s cwnd progression over n RTTs, we
need phantom queue to be at least the size of shaded region.

most of the bandwidth thus achieving high video quality. On the
other hand, with a shaper, the video flow is not as aggressive. There
can be two explanations for this, firstly since competing traffic
carries buffer-filling flows, BBR yields bandwidth to bring down
queuing delay. The second plausible reason could be that YouTube’s
ABR algorithm is also sensitive to queuing delay. The result with
DRR-shaper gives more weight to this conclusion. Even though
YouTube flow has a separate queue, its video quality still suffers.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Traffic Shapers
	2.2 Traffic Policer
	2.3 Our Goals

	3 Policers with Phantom Queues
	3.1 Policing with a Single Phantom Queue
	3.2 Policing with Multiple Phantom Queues
	3.3 Scope and Properties of PQP
	3.4 Bounds on Rate and Policy Enforcement
	3.5 Sizing the Phantom Queues

	4 Burst Controlled PQP
	5 Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Rate Enforcement
	6.3 System Efficiency
	6.4 Policy Enforcement
	6.5 Real World Applications

	7 Related Work
	8 Conclusion and Discussion
	9 Acknowledgements
	References
	A Sizing the phantom queue for Reno
	B YouTube's video stream analysis

