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A B S T R A C T   

With the surge of machine learning in AI and data science, there remains an urgent need to not only compare the 
performance of different methods across diverse datasets but also to analyze machine learning behaviors with 
sensitivity using an explainable approach. In this study, we introduce a uniquely designed diagnostic index: d- 
index to tackle this challenge. This tool integrates classification effectiveness from multiple dimensions, deliv
ering a transparent and comprehensive assessment that transcends the limitations of traditional evaluation 
methods in classification. We propose two innovative concepts: breakeven states and imbalanced points in this 
study. Integrated with the d-index, these concepts afford a more profound understanding of the learning be
haviors across different machine learning models compared to the existing classification metrics. Significantly, 
the d-index excels as a powerful tool, identifying learning singularity problems (LSPs) that remain elusive to most 
current machine learning models and imbalanced learning techniques. Furthermore, leveraging the d-index, we 
unravel the mechanisms behind imbalanced point generation in binary and multiclass classification. We also put 
forth a novel technique: identifying a priori informative kernels to optimize support vector machine learning, 
ensuring outstanding d-index values with the fewest necessary support vectors. Moreover, we address a seldom- 
discussed state of overfitting in deep learning, where overfitting occurs despite the training and testing loss 
curves exhibiting favorable trends throughout the epochs. To the best of our knowledge, this work represents a 
pioneering stride in the realm of explainable machine learning assessments and will inspire further studies in this 
area.   

1. Introduction 

Machine learning (ML) has achieved remarkable success in revolu
tionizing data-driven problem solving in the fields of AI and data sci
ence. Its impact is far-reaching, inspiring novel applications in areas 
such as business, engineering, medicine, and science, and contributing 
to breakthroughs in AI theory [1–2]. ML has been employed to diagnose 
COVID-19 and other complex diseases, facilitate language translation, 
enable high-frequency trading, and even beat human top-players in the 
game of Go with elegance [3–5]. For instance, deep reinforcement 
learning is used in high-frequency trading (HFT) to increase automatic 
trading efficiency [6], while different ML models and techniques are 
employed in peer-to-peer (P2P) lending to predict customer credit risk 
and achieve efficient hedging [7]. Additionally, a variety of deep 
learning methods are being used to detect emotions in speech, predict 

odor quality for previously uncharacterized odorants, and discover 
latent molecular phenotypes from histopathological images [8,9]. To a 
significant extent, ML is transforming human society and impacting lives 
in unprecedented ways, playing a vital role in advancing modern data 
science and artificial intelligence. 

Despite its remarkable success and a plethora of research initiatives 
aimed at its challenges, machine learning (ML) confronts enduring 
interpretability issues [10]. For instance, unsupervised ML techniques, 
including manifold learning, often find it challenging to meaningfully 
evaluate their dimension reduction quality in an explainable and 
comparative manner. Conversely, many supervised ML methods, despite 
their commendable outcomes, struggle to provide clear insight into their 
decision-making mechanisms. Take deep learning models as an 
example: they house millions, if not billions, of intricate parameters. 
This complexity, while enabling them to attain state-of-the-art results 
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across various tasks [2,11], often obscures their operational intricacies, 
casting them as ’black boxes’. Such obscured methodologies, despite 
their prowess, may not suffice in high-stakes arenas like healthcare or 
finance. In these sectors, comprehending the rationale behind decisions 
is paramount, especially when mere accuracy can, at times, obfuscate 
the complete narrative of ML or be biased or misleading in situations 
with data imbalances [11,12]. 

1.1. The challenge of interpretable ML assessment 

Moreover, an important issue in ML explainability, one that remains 
underexplored in both ML and explainable AI, concerns the ability to 
transparently and accurately compare the performance of distinct ML 
models, specifically in terms of interpretable ML assessment [10]. This 
becomes paramount in high-stakes sectors like finance, healthcare, and 
disease diagnosis. To illustrate, a seemingly minor performance 
disparity between two ML techniques might lead to vast differences in 
algorithmic trading returns, potentially amounting to millions. Simi
larly, in healthcare, a doctor might favor an AI diagnostic tool with even 
a marginally reduced false positive rate over another system, despite 
both offering comparable diagnostic accuracy. 

Nonetheless, comparing the learning performance of different ML 
models using existing classification evaluation measures in an accurate 
and explainable manner can be challenging. This is mainly because these 
measures, such as accuracy, recall (sensitivity), precision, and F1-score, 
each evaluate only one perspective of learning. For example, one ML 
model may have a slightly higher accuracy but a lower recall than 
another under the same learning task, making it almost impossible to 
determine which model will be more effective. Although the F1-score 
can be helpful in some cases, it still cannot provide a comprehensive 
perspective on learning evaluation and carries a risk of biased assess
ment, as it does not take true negatives into consideration. 

Moreover, using multiple classification measures simultaneously or 
at least a few measures together may further complicate the interpre
tation of learning results as it can be challenging to consistently compare 
their combinations. For instance, it would be hard to determine if ML 
model A outperforms B or vice versa, if A achieved 87 % accuracy, 92 % 
sensitivity, and 70 % specificity, while B achieved 85 % accuracy, 82 % 
sensitivity, and 89 % specificity on the same dataset. In this case, there is 
not enough numerical evidence to support which will be better. There
fore, the current classification metrics pose a challenge in selecting the 
most efficient model from a set of candidates by assessing the learning 
results in an accurate and interpretable way. 

Furthermore, the existing classification measures can be misleading 
when applied to imbalanced learning datasets. Imbalanced learning, 
which refers to datasets with imbalanced or extremely imbalanced label 
distributions, has become increasingly important in AI and data science. 
This is partly due to the fact that some real-world datasets are inherently 
imbalanced, such as P2P lending, credit risk, malware, and omics data. 
In such datasets, most observations belong to one or a few majority 
classes or sources. For instance, in credit risk or P2P lending data, only a 
small fraction of customers have a ’bad’ credit record, while the ma
jority have a ’good’ one [12]. Similarly, in cybersecurity, only a small 
percentage of software is classified as malware. Many omics datasets for 
disease diagnosis are also imbalanced because some disease subtypes 
have a much lower prevalence than others in reality or in the data 
acquisition process. 

Since imbalanced data itself introduces bias in the label distribution, 
the classic classification measures can produce misleading or biased 
evaluation results in imbalanced learning. This is because these mea
sures can only capture one learning perspective well, which might be 
sufficient for balanced data but fails to provide a comprehensive 
learning assessment and explanation that accounts for the impact of 
imbalanced data. 

The accuracy measure, though commonly used, can be misleading in 
imbalanced learning contexts. When faced with skewed data, the 

majority class can dominate the training process, leading to models that 
disproportionately recognize the majority class while neglecting the 
minority. As a consequence, the reported accuracy might closely 
approximate, or even equal, the ratio of the majority class—resulting in 
deceptively high values, especially when the majority ratio is large. Such 
a strong bias towards the majority class can drastically skew recall and 
specificity, diminishing the model’s effectiveness in detecting minority 
observations. Essentially, the ML model becomes nearly ’overfitted’ to 
the majority, largely overlooking the minority. A parallel issue can be 
observed with the F1-score. If the majority class is deemed positive, the 
F1-score can give an illusion of perfection in imbalanced learning con
texts. Technically, the F1-score, whether micro or macro, assumes that 
precision and recall are equally important. This might not hold true for 
all data science and AI applications, especially for imbalanced data. 

The biased accuracy measure in imbalanced learning can have 
adverse effects on the ML model parameter tuning process. Most 
parameter tuning methods, such as grid search, rely on the accuracy 
metric to seek the best parameters for the model. However, when 
working with imbalanced datasets, the accuracy measure can be 
misleading, and the resulting parameters may not reflect the true per
formance of the model. This can lead to false parameters and inaccurate 
learning results, even when a satisfactory accuracy cutoff is reached. 
Therefore, the built-in weakness in the existing classification metrics 
may prevent from providing explainable and accurate learning perfor
mance assessment, especially under imbalanced learning. 

1.2. Related work 

Numerous studies have addressed the weaknesses of traditional 
classification metrics and related issues in ML assessment. However, the 
literature lacks interpretable classification measures. For instance, 
Chicco and Juman demonstrated the advantages of Matthews correla
tion coefficient (MCC) over F1-score and accuracy in binary classifica
tion evaluation [13], while Tharwat provided a detailed review of 
various classification assessment measures and their influence on 
balanced and imbalanced data [14]. Sokolova and Lapalme conducted a 
systematic analysis of performance measures in classification from a 
measure invariance standpoint [15], and Hand and Christen highlighted 
the bias of F1-score by comparing it with MCC [16]. Powers noted the 
weakness of F1-score for imbalanced data [17]. Optitz and Burst found 
that the arithmetic mean of class-wise F-scores exhibited an advantage 
over the class-wise precision and recall means in multi-class classifica
tion [18], while Yang et al. introduced a generalized F1-score in multi- 
class classification [19]. Grandini et al. reviewed classification mea
sures for multi-class classification [20], and Jurman et al. compared 
MCC and CEN (confusion entropy) error measures for multi-class clas
sification [21]. Ballabio et al. examined classification performance 
measures using a multivariate analysis approach [22], and Boughorbel 
et al. discussed the use of MCC in optimal classifiers for imbalanced data 
[23]. 

The previous works have significantly advanced the understanding 
of ML performance assessment, but they may have some limitations. 
Almost all of them focus on evaluating and comparing the existing 
classification measures, rather than proposing new metrics. While Yang 
et al. introduced a generalized F1-score for multi-class classification, it is 
only applied to specific data [19]. Additionally, the previous works did 
not address the problem from an explainable AI perspective, and it re
mains unknown about the interpretability of the metrics. As such, some 
recommended measures cannot be used in explainable ML performance 
assessment because of the lack of interpretability. For instance, MCC 
suffers from its non-explainable formula and inconsistent ranges in bi
nary and multiclass classifications, limiting its impact on AI and data 
science application domains [23–26]. In addition, confusion entropy 
(CEN) lacks interpretability even when compared to traditional metrics. 
Unlike accuracy, which ranges intuitively from 0 to 1, CEN does not 
have such a straightforward scale, making its values harder to interpret 
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without context [20,21]. 

1.3. The standards of interpretable ML assessment 

It is desirable to have a novel, explainable measure to assess ML 
performance informatively to overcome the weakness of the existing 
metrics. The measure itself should own good interpretability and be 
easily understood by users and serve as a good discriminator to compare 
and select ML models. To achieve these goals, the ML assessment mea
sure should satisfy the following standards. 

It should provide a comprehensive evaluation of ML performance, 
assessing both binary and multiclass ML accurately and detecting 
subtle differences between two or more ML models. Additionally, it 
should not focus solely on one learning perspective (e.g., true posi
tive ratio). 
It should be sensitive to imbalanced learning by avoiding bias from 
traditional metrics (e.g., accuracy) and distinguishing different ML 
models while detecting anomalous behaviors such as underfitting or 
overfitting. 
The calculation of the measure should be easy to conduct and self- 
explanatory. Avoiding non-interpretable, complicated formulas is 
essential. Complex formulas can increase computational costs for 
large datasets, present difficulties in interpretability, and limit 
widespread adoption. 

In this study, we propose a novel classification assessment measure 
called the d-index, or diagnostic index, which satisfies the three stan
dards previously mentioned. Defined as d = log2(1 + a) +log2

(
1 +

s+p
2

)
, it 

leverages the learning accuracy (a), sensitivity (s), and specificity (p) to 
evaluate binary classification, with an extension for multiclass classifi
cation. It can detect subtle differences in performance between models, 
which is essential for accurate model selection. Unlike recall or preci
sion, which only consider one aspect of classification effectiveness, the 
d-index synthesizes multiple perspectives to provide a more compre
hensive evaluation of ML performance. More importantly, the d-index 
can monitor learning behaviors sensitively, especially for detecting 
anomaly learning statuses such as imbalanced points. It also demon
strates a high sensitivity to imbalanced ML performance and has a 
smooth extension to multiclass classification without changing the value 
range. Additionally, the d-index can detect underfitting, overfitting, and 
other special ML behaviors, such as learning singularity problems 
(LSPs), which can cause most ML models and imbalanced handling 
techniques to fail. 

1.4. Comparing d-index with peer measures from other studies 

Compared to common metrics like MCC, Cohen’s Kappa, CEN, micro, 
macro, and weighted F1 scores, the d-index offers good interpretability 
and broader appeal. 

The MCC ranges from −1 to 1, indicating prediction quality from 
discord to perfection, while the d-index’s 0 to 2 range is often more 
intuitive. The MCC can encounter mathematically undefined scenarios, 
especially when a class isn’t predicted or when there’s complete 
agreement between predictions and true values. This is common in 
multiclass imbalanced datasets. In contrast, the d-index doesn’t face 
such ambiguities. Further insights on the MCC and d-index comparison 
are in section 2.4. 

Cohen’s Kappa is calculated as κ = P0−Pe
(1−Pe)

, where P0 is the relative 
observed agreement and Pe is the expected agreement by chance. 
Adjusting for chance agreement, it offers a better measure ranging from 
−1 (complete disagreement) to 1 (perfect agreement) compared to 
percentage agreement. However, interpreting Kappa is challenging, 
especially with no agreed standard for a “good” value. While a high 
Kappa doesn’t always reflect strong minority class performance, the d- 

index consistently does. 
CEN’s vulnerability to data noise raises interpretability concerns. 

Even slight dataset variations can trigger notable entropy shifts that 
don’t always align with classifier performance. Additionally, GEN’s 
intricate formula adds to these interpretability challenges. More details 
on GEN, see section 2.4. 

The micro F1 score, aligning with the standard F1 score in binary 
classification, is derived from the harmonic mean of micro-averaged 
precision and recall: F1micro = 2 ×

precisionmicro×recallmicro
precisionmicro+recallmicro

. In imbalanced 
datasets, the micro F1 may lean towards majority class performance, 
whereas the d-index effectively addresses this bias. 

The macro F1 score is the arithmetic average of the F1 scores of all 
classes: F1macro =

∑m
i=1F1i, where F1i i is the F1 score for the ith class and 

m is the number of classes. It can be misleading in imbalanced datasets 
due to its equal class weighting. The d-index reliably reflects perfor
mance across all classes, especially in imbalanced scenarios. 

The weighted F1 score is an average of the F1 scores of each class, 
weighted by the number of true instances for each label: F1imacro =
∑m

i=1wiF1i, wi is the weight for the F1 score for the ith class. This score 
inherently favors larger classes. If a classifier falters on a crucial mi
nority class, the weighted F1 score can still appear high due to good 
majority class performance, potentially hiding poor results on smaller 
classes, and its “weighting” concept can confuse unfamiliar stake
holders. In contrast, the d-index provides a balanced evaluation 
regardless of minority class size, offering wider appeal. 

1.5. This study’s contributions 

In our study, we have demonstrated the superiority of the d-index in 
evaluating machine learning performance on benchmark datasets from 
high-stakes application domains, including credit risk prediction, natu
ral language processing (NLP), and complex disease diagnosis in 
biomedical data science. Our results show that the d-index not only 
meets the urgent demand for interpretability in machine learning result 
assessment, but also has the potential to positively impact AI by moni
toring and detecting anomalous machine learning behaviors or states. 
To the best of our knowledge, this is the first work on interpretable 
machine learning assessment and is expected to inspire future research 
in this field. We summarize our contribution in this study briefly as 
follows. 

We propose the d-index, an innovative and explainable metric for 
both binary and multiclass classification. This measure surpasses 
traditional metrics, offering a more in-depth and interpretable 
evaluation of ML performance. Through our theoretical exploration 
of the d-index, we further establish its credibility as an interpretable 
tool for efficient model selection and detecting anomaly learning 
statuses across NLP, Fintech, business, and medicine datasets. 
We introduce three novel ML concepts: breakeven states, imbalanced 
points, and learning singularity problems (LSPs). Breakeven states 
signal underfitting thresholds, and imbalanced points signify when 
the ML model is fully overfitted to the predominant class in learning. 
LSPs are ML challenges with confirmable ’learnability’ but lead most 
models to produce imbalanced points. Leveraging these concepts, the 
d-index provides enhanced insights into ML behaviors, enriching 
existing theory and application. Additionally, the introduction of 
LSPs opens a new avenue in ML research. We also unveil the 
imbalanced point generation mechanisms for both binary and mul
ticlass classification models, besides introducing a novel d-index- 
based LSP detection algorithm. 
We’ve demonstrated through theoretical proof that even if data isn’t 
imbalanced, established ML models like SVM can still falter, pro
ducing imbalanced points. We’ve introduced innovative techniques 
to pinpoint effective kernels in SVM, ensuring optimal d-index values 
with minimal support vectors before the real learning process begins. 
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In our deep learning analysis, we discovered that models, specifically 
transformers, can generate imbalanced points even with linearly 
separable data when paired with unsuitable loss functions. We also 
uncover a unique overfitting scenario in deep learning: instances 
where both training and testing loss curves consistently show posi
tive trends across epochs, yet overfitting is still present. 

The paper is organized as follows. In Section 2, we introduce the d- 
index and extend it to multiclass classification. We propose the concepts 
of the breakeven state and imbalanced point to model different ML be
haviors for more interpretable ML assessments. We also provide a 
rigorous theoretical analysis to illustrate the special characteristics of d- 
index in underfitting detection and imbalanced point generation. Sec
tion 3 demonstrates the applications of d-index in binary, multiclass, and 
imbalanced data classification by comparing it with peer measures 
under various benchmark datasets in different ML applications. We 
further validate the superiorities of d-index in robust model selection, 
sensitive imbalanced learning monitoring, and learning singularity 
problem detection. Additionally, we present a method for distinguishing 
learning performance under the same d-index values for SVM, along 
with priori kernel selection. Section 4 discusses more applications of d- 
index and its limitations, as well as possible enhancements. Finally, in 
Section 5, we conclude this study and discuss future directions for 
research in interpretable ML assessment. 

2. Diagnostic index (d-index) 

The d-index is an explainable classification metric offering a nuanced 
evaluation of classification efficacy, particularly in imbalanced learning. 
Originally devised by the first author for RNA-seq dataset comparisons, 
we’ve expanded its applicability from binary to multiclass classifications 
[24]. 

2.1. D-index 

Given an implicit prediction function f̂ (x) : x→{ − 1, 1} constructed 
from training data Xr = {xi, yi}

m
i=1 under an ML model Θ, where each 

sample xi ∈ Rk and its label yi ∈ { −1, 1}, i = 1, 2, ⋯m, d-index evaluates 
the effectiveness of f̂ (x) to predict the labels of test data Xs = {xj′, yj′}l

j,

where xj′ is a test sample and its label y′
j ∈ { −1, 1}. The d-index is 

defined as: 

d = log2(1 + a) + log2

(
1 +

s + p
2

)
(1) 

where a, s, and p represent the corresponding accuracy, sensitivity, 
and specificity in diagnosing test data Xs respectively. The d-index is in 
(0, 2]. The larger the d-index value, the better the predictability of ̂f (x),

i.e., the better learning performance achieved by the ML model Θ. d- 
index logarithmically depicts the trend of the accuracy a and balanced 
accuracy: s+p

2 , which is the average of the true positive and negative 
ratios, in a log mode because of 2d = (1 +a)

(
1 +s+p

2

)
.

The accuracy a = TP+TN
TP+FN+TN+FP is the ratio between the number of 

correctly predicted positive (+1) and negative (-1) samples and the total 
number of samples in query. TP and TN represent the number of 
correctly predicted positive and negative samples, respectively: TP =
⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
= 1 ∧ y′

j = 1
} ⃒

⃒
⃒; TN =

⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
= −1 ∧ y′

j = −1
} ⃒

⃒
⃒. In 

contrast, FN and FP represent the number of incorrectly predicted pos

itive and negative samples, respectively: FN =

⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
= −1 ∧ y′

j =

1
} ⃒

⃒
⃒; FP =

⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
= 1 ∧ y′

j = −1
} ⃒

⃒
⃒.

While accuracy provides a measure of overall classification perfor
mance, it does not consider the prediction function f̂ (x)’s performance 
on different subgroups. As a result, accuracy may not be an appropriate 

metric for evaluating classification performance in imbalanced datasets 
or when the cost of misclassification differs across subgroups. 

The sensitivity (recall) s = TP
TP+FN is the ratio of correctly predicted 

positive samples to the total number of true positive samples. It mea
sures the ability of the model to identify all positive samples, i.e., the 
true positive rate (TPR). On the other hand, the specificity p = TN

TN+FP is 
the ratio of correctly predicted negative samples to the total number of 
true negative samples. It measures the ability of the model to identify all 
negative samples, i.e., the true negative rate (TNR). Ideally, the pre
diction function f̂ (x) should be equally likely to predict + 1 and −1 
samples. However, in practice, when the training data is imbalanced, 
f̂ (x) may have a bias towards predicting the majority type sample. This 
can result in sensitivity and specificity values that demonstrate extreme 
values when evaluating classification performance in imbalanced 
datasets. 

If we assume there exist N = Np +Nn samples in query consisting of 
Np = TP +FN positive samples and Nn = TN +FP negative samples, we 
can rewrite the d-index definition as follows, 

d = log2

(
N + TN + TP

N

)

+ log2

(
2NpNn + TPNn + TNNp

2NpNn

)

(2) 

This rewritten formula for the d-index provides a more comprehen
sive explanation of learning performance compared to classic metrics, as 
it includes all elements involved in classification. Additionally, the 
weights of TP and TN in 2NpNn+TPNn+TNNp

2NpNn 
help to prevent possible biased 

impacts from imbalanced data, such as when Np is much greater than Nn,

on the classification process. 
In the following section, we introduce new ML concepts: “break

even”, “imbalanced point,” and “learning singularity” to exploit the 
potentials of the d-index for the sake of interpretable ML result 
assessment. 

2.2. Breakeven states and underfitting 

The d-index exhibits unique characteristics in the breakeven state 
and can effectively detect various forms of underfitting rigorously. More 
importantly, it eliminates the ambiguity and bias associated with using 
conventional metrics. 

2.2.1. Breakeven states 
A breakeven state in binary classification for an ML model Θ is a 

state in which the model classifies a sample as positive or negative with 
an equal likelihood. for a sample x with a label y ∈ { −1, 1}, the pre
diction function f̂ (x) of the ML model Θ maintains Pr{ f̂ (x)= 1|Θ } =

Pr{ f̂ (x)= −1|Θ } = 50% in prediction. 
The breakeven state is a critical indicator for an ML model repre

sented by the symbol Θ, as it denotes the state where the model performs 
no better than a random classifier and fails to provide any significant 
insights during the learning process. This point serves as a measure to 
evaluate the relevance of using ML. If the performance of the model Θ 
drops below this point, it leads to underfitting, where the model per
forms worse than a random classifier. In such a scenario, ML loses its 
purpose, and the model’s performance degrades to that of a random 
coin-flipping process. Moreover, if the performance of the ML model 
continues to deteriorate below the breakeven point, it can encounter 
severe underfitting, which can significantly impact its predictive 
accuracy. 

The breakeven state under binary classification has certain outcomes 
that can be analyzed to gain a holistic understanding of the performance 
of the machine learning model using the d-index. 

Lemma 1. The d-index is 2log2
(3

2
)

if an ML model is in the break-even 
state under binary classification. 

Proof. Under the breakeven state, the ML model Θ is a random 
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classifier with a 50 % probability to conduct correct prediction, i.e., TP 
= FN = Np/2and TN = FP=Nn/2. Let Nn

Np
= η, we have, 

a =
TP + TN

TP + FN + TN + FP
=

TP
Np + Nn

+
TN

Np + Nn
=

1
2 + 2η +

η
2 + 2η =

1
2

(3) 

Similarly, s = TP
TP+FN = 1

2, p = TN
TN+FP = 1

2. Thus d = log2(1 + 1/2)

+log2

(
1 +

1/2+1/2
2

)
= 2log2

(
3
2

)
under the break-even state. 

Lemma 2. If an ML model is in the breakeven state under binary classifi
cation, then AUC (area under the curve) AUC = 1

2 (s +p) = 1
2, F1 = 2

3+η,

where η = Nn
Np 

is the ratio between the number of negative samples over that of 
the negative ones. 

Proof. According to the result from Lemma 1, it is easy to have AUC =
1
2 (s +p) = 1

2 because sensitivity and specificity both are ½ at the break
even state. Similarly, we have. 

F1 =
TP

TP + (FN + FP)/2
=

Np
/

2
Np

/
2 +

(
Np + Nn

)/
2

=
2

3 + Nn
/

Np
=

2
3 + η

(4)  

Theorem 1. The F1 score of an ML model in the breakeven state falls in 
[1

2, 2
3
)
.

Proof. Based on the findings from Lemma 2, the F1 score can be 
calculated using the formula F1 = 2

3+η, where η represents the ratio of 
negative samples to positive samples in the training data. When the 
number of positive and negative samples is balanced, F1 = 0.5. How
ever, when η → 0, meaning the training data is entirely dominated by 
negative samples, the F1 score increases and approaches a value of 2/3. 

2.2.2. Underfitting detection 
The d-index is a useful metric to detect underfitting in machine 

learning models, as it provides a clear indicator of underfitting when the 
value is less than 2log₂(3/2), the d-index of the breakeven state. This 
makes it a more reliable method to identify underfitting compared to 
traditional approaches such as observing accuracy or AUC. These 
traditional methods may not be robust enough, as accuracy and AUC 
values can be misleading when the data is imbalanced, and they are not 
necessarily definitive indicators of underfitting. 

For example, a binary machine learning classifier can face under
fitting when its accuracy is lower than 50 %. This low accuracy suggests 
that the model is not capturing the underlying patterns in the data. 
However, it could also be biased due to imbalanced data. For instance, 
consider a training dataset containing 100 samples, where 25 are true 
positives (TP), 20 are true negatives (TN), 55 are false negatives (FN), 
and 5 are false positives (FP). In this case, an accuracy score of 45 % may 
not necessarily signify underfitting since the model can still accurately 
classify 80 % of the negative samples, resulting in a high specificity of 
80 %. However, it’s worth noting that the model’s d-index in this context 
will be 1.1838, which is above the d-index of the breakeven state 
(2log2

(3
2
)

= 1.1699) suggesting that there is no underfitting. 
Similarly, an AUC value of 0.49 does not necessarily indicate that the 

machine learning model is encountering underfitting. This is because an 
AUC value of 0.49 could also indicate that the model is overfitted to the 
positive samples, resulting in a high sensitivity and low specificity. For 
example, a sensitivity of 98 % and a specificity of 0 % would result in an 
AUC value of 0.49, i.e., the area under the ROC curve is equal to the area 
of a diagonal line, which represents the performance of a model that 
makes less than random predictions. 

Theorem 2 states d-index in general binary classification falls in 
(
2log2

(3
2
)
, 2

]
when there is no underfitting. 

Theorem 2. The range of d-index is between 2log2
(3

2
)

and 2 if we assume 

no underfitting in binary classification. When d-index < 2log2
(3

2
)
, which is 

the d-index of the breakeven state, the ML model encounters underfitting. 

Proof. The upper bound of d-index is 2. It indicates an ideal learning 
performance, in whicha = s = p = 100 %, i.e., all samples are perfectly 
classified . On the other hand, the lower bound of d-index comes from 
the breakeven state, i.e. d ≥ 2log2

(3
2
)

= 1.1699. When d-index is less 
than that of the breakeven state, it indicates that the ML model performs 
worse than a random classifier and encounters underfitting. 

2.3. The imbalanced point detection 

In addition to detecting underfitting, the d-index is a superior metric 
for model selection because it demonstrates good sensitivity in assessing 
imbalanced learning performance by sensitively detecting anomalous 
learning states. This section proposes a new imbalanced point concept to 
model the exceptional learning state in imbalanced learning for the sake 
of explainable and sensitive imbalanced learning assessment. In addi
tion, it compares d-index with existing AUC and MCC measures in term 
of interpretability. 

2.3.1. Majority ratio 
The majority ratio serves as the foundation for modeling imbalanced 

learning. In binary classification, it is defined as the count of the ma
jority label divided by the total count of labels. Given training data Xr =

{xi, yi}
m
i=1, yi ∈ { −1, 1} in binary classification, the majority ratio under 

the binary classification is calculated as: 

γ =
max(|{xi : yi = 1} |, |{xi : yi = −1} | )

|{xi : yi = 1} | + |{xi : yi = −1} |
(5) 

The majority ratio can theoretically be greater than 50 % in binary 
classification. However, in practice, if the input data is imbalanced, the 
majority ratio may range from 75 % to even 99 %+. This is because it is 
possible that almost all observations belong to the majority class, while 
the minority class only contains a very small percentage of observations 
(e.g., less than 5 %). 

Majority ratio in multiclass classification is defined as the ratio of 
the maximum class count over the total counts in the training data Xr =

{xi, yi}
m
i=1, yi ∈ {1, 2, ⋯k}, where the number of classes k > 2,

γ =
max(|{xi : yi = 1} |, |{xi : yi = 2} |, ⋯|{xi : yi = k} | )

∑k
i=1

⃒
⃒
{

xj : yj = i
} ⃒

⃒
(6) 

The majority ratio can take a wider range of values in multiclass 
classification, and its value is influenced by the class imbalance present 
in the data. Generally, the larger the majority ratio, the more negative 
impacts it can have on machine learning. This is because the ML model is 
more likely to lose its learning capabilities by classifying almost all 
minority samples as the majority class. 

It is important to note that the majority ratio of the training data may 
not necessarily be the same as that of the test or validation data in 
machine learning, especially when the data has a limited number of 
minority observations. In such cases, the majority ratio of the training 
data should be replaced by that of the test or validation data when 
calculating classification metrics to ensure accurate performance eval
uation of the model. 

2.3.2. Imbalanced point 
An imbalanced point refers to a learning state in which the ML model 

Θ loses its learning capability by predicting all minority samples as 
majority ones in imbalanced or even general learning. This is technically 
an overfitting state where the model is overfitted to the majority type 
data. Without loss of generality, we can describe this phenomenon under 
binary classification as follows. 

Imbalanced point. Given training data Xr = {xi, yi}
m
i=1, yi ∈ { −1, 1}

in binary classification with the majority ratio γ, in which the majority 
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type is the positive type: ‘+1′ under an ML model Θ, f̂ (x|Θ, Xr) is the 
prediction function built under the model Θ using the training data. The 
ML model is said to reach an imbalanced point, provided f̂ (x|Θ, Xr) =

+1 for ∀x whose label is unknown. 
In other words, at the imbalanced point, the ML model will classify 

all majority samples correctly but all minority samples incorrectly. The 
following lemma states that the special values of classic metrics at the 
imbalanced point. 

Lemma 3. The classic metrics have the following special values at the 
imbalanced point in binary classification with majority ratio γ, assuming the 
majority type is positive. These values are accuracy α = γ, sensitivity s = 100 
%, specificity p = 0 %, and F1 score F1 = 2γ

γ+1.

Proof. We assume there are N samples in query under the ML model Θ 
at the imbalanced point, then we have TP = N × γ, FN = 0, TN = 0, and 
FP = N × (1 −γ). This is because all majority samples, which are 
assumed positive, are correctly predicted: TP = N × γ and TN = 0.

Similarly, all minority samples are falsely predicted: FP = N × (1 −γ)

and TN = 0. Therefore, the learning accuracy α = TP+TN
TP+FN+TN+FP =

N×γ
N×γ+N×(1−γ)

= γ. Similarly, precision = TP
TP+FP =

N×γ
N×γ+N×(1−γ)

= γ, sensitivity 

s = TP
TP+FN =

N×γ
N×γ = 100%, and specificity p = TN

TN+FP = 0%. Moreover,F1 =

TP
TP+(FN+FP)/2 = Nγ

Nγ+(N×(1−γ))/2 = 2γ
γ+1.

The Lemma 3 states that classic metrics such as accuracy, precision, 
and F1 score become biased and lose their interpretability when 
assessing machine learning results on imbalanced datasets. This is 
especially true when the majority class ratio (γ) is very high. In such 
cases, these metrics may appear to be good (e.g., 90 % accuracy, 94.73 % 
F1 score, 100 % sensitivity, and 90 % precision), but they can be 
deceptive as they do not reflect the true learning status. Essentially, the 
model is only making a majority class prediction, regardless of the input. 

On the other hand, the following theorem shows that d-index can 
provide more interpretable and transparent learning assessment at the 
imbalanced point. The d-index overcomes the bias of the classic metric 
by reporting the true learning status. By doing so, it provides a clear 
indication of whether the model has learned to differentiate between the 
minority and majority classes or is merely predicting the majority class. 

Theorem 3. Binary imbalanced point theorem. Given an implicit pre
diction function f̂ (x) : x→{ − 1, 1} constructed from training data Xr =

{xi, yi}
m
i=1 with the majority ratio γ, under the ML model Θ, then at an 

imbalanced point, the ML model has the d-index d = log2

(
3(1+γ)

2

)
.

Proof. Without loss of generality, we assume the majority type is 
positive at the imbalanced point. We have accuracy α = γ sensitivity s =

100%, and specificity p = 0% according to the Lemma 3, then the d- 
index value: 

d = log2(1 + γ) + log2
3
2

= log2

(
3(1 + γ)

2

)

(7) 

Imbalanced point detection using d-index. The d-index is a more 
appropriate measure than traditional classification metrics for detecting 
the imbalanced point in imbalanced learning. This is because the d- 
index is calculated as a function of the majority ratio γ, making it a more 
accurate measure in such scenarios. For instance, when γ is 90 %, an F1- 
score of 94.74 % and accuracy of 90 % may suggest that the model has 
good learning performance. However, a low d-index value of 1.5110 
indicates that the model’s performance is actually poor. 

2.3.3. Imbalanced point generation 
It’s worth noting that not all imbalanced learning scenarios will lead 

to the occurrence of the imbalanced point. However, its appearance is a 
clear indication that the machine learning model has failed to handle the 
imbalanced data. In general, the higher the majority ratio, the more 
likely the imbalanced point will occur. Once the imbalanced point is 

generated, the learning process fails and becomes trapped in a special 
overfitting state. This overfitting state can result in the machine learning 
model becoming “too rigid” to recognize any minority samples, leading 
to poor classification performance on these samples. 

We employ a k-NN model to illustrate how the imbalanced point is 
generated in imbalanced learning. For an incoming test sample, all its 
nearest neighbors in k-NN will have more majority samples than the 
minority ones because of imbalanced data. Thus, an incoming sample 
will be classified as the majority type inevitably or at least with a very 
high likelihood no matter what kinds of voting schemes employed. 
Therefore, all test samples will be classified as the majority type. Finally, 
the k-NN learning accuracy will be the majority ratio of the test dataset, 
which will be the majority ratio γ of the training dataset or approximate 
it. 

Approximately imbalanced points (AIPs). In practice, the imbal
anced point may appear as an approximately imbalanced points (AIP) 
under an ML model, i.e., accuracy will be approximately the majority 

ratio γ and d-index will be close to log2

(
3(1+γ)

2

)
This is because the ML 

model may classify few majority samples as the minority type or vice 
versa in learning. 

For example, if the training dataset has the majority ratio γ = 0.92, 

then its imbalanced point will be reached d-index log2

(
3(1+γ)

2

)

|γ=0.92
=

1.52 with accuracy 0.92 under an ML model according to the Theorem 3. 
However, when some ML model achieves d-index 1.51 with an accuracy 
0.89, such an AIP is still an imbalanced point practically. The following 
theorem estimates the range of d-index under imbalanced data classi
fication, where the d-index touches its lower bound at the imbalanced 
point or AIP. 

Theorem 4. The d-index has the following range when the training dataset 
has a large enough majority ratio (e.g., γ ≥ 75%) under an ML model Θ,

log2

(
3(1 + γ)

2

)

+ ε ≤ d ≤ 2 (8)  

where |ε| > 0 is a small ratio related to the model Θ. The better the 
model’s learning capability, the more likely that d-index move right 
with respect to the imbalanced point’s d-index. 

Proof. The worst situation will be that the prediction function f̂ (x)

built from the training dataset would misclassify all the minority sam
ples incorrectly but all the majority samples correctly, i.e., accuracy a =

γ, d = log2
3(1+γ)

2 , and the ML model attains the imbalanced point. 
However, there exists a likelihood that few majority samples might 

be misclassified due to unpredictable nonlinearity or artifacts during the 
ML process. At the same time, some minority samples can be also 
correctly learned in the procedure. If the former had more contributions 

to the learning results, then d-index would be < log2

(
3(1+γ)

2

)
slightly, 

because the decrease of the accuracy and sensitivity will be more than 

the increase of the specificity, i.e., ε < 0. Otherwise, d-index would be >

log2

(
3(1+γ)

2

)
because ε > 0. Besides the characteristics of the imbalanced 

dataset, the better the ML model, the higher likelihood its d-index moves 
to right. 

According to the previous results, we have the following d-index 
estimations of the AIP and the imbalanced point under the extremely 
imbalanced binary classification. 

Corollary 1. Given training data Xr = {xi, yi}
m
i=1, xi ∈ Rk, yi ∈ { −1, 1}

with the majority ratio γ > 50% in binary classification under the ML model 
Θ, if there exists an AIP, then its accuracy and d-index will be close to the 

majority ratio γ and log2

(
3(1+γ)

2

)
respectively. 

Extremely imbalanced cases in binary classification. Since d- 
index is the function of the majority ratio γ at the imbalanced point: 
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d(γ) = log2

(
3(1+γ)

2

)
, it will approach log23(1.5850): lim

γ→1
log2

(
3(γ+1)

2

)
=

1.5850 at the imbalanced point in the extremely imbalanced binary 
classification, in which the majority ratio γ→1.

2.3.4. Imbalanced point generation under non-imbalanced data 
It is worth noting that an imbalanced point can even be generated 

under non-imbalanced data. The non-imbalanced data refers to those 
data with a majority ratio close to 50 % (e.g., 55 %). While technically 
considered balanced data, it is possible for certain machine learning 
models to generate an imbalanced point in these cases. To illustrate this 
point, we will use support vector machines (SVMs) as an example, given 
their importance in machine learning. 

The following theorem highlights that SVM can generate an imbal
anced point even when the input data is non-imbalanced data, provided 
that the kernel matrix is an identity or approximately an identity matrix. 
This anomalous learning state can be difficult to detect using traditional 
metrics like accuracy, but d-index offers a straightforward way to 
identify it. 

Theorem 5. Imbalanced point generation under SVM. Given training 
data Xr = {xi, yi}

m
i=1, xi ∈ Rq, yi ∈ { −1, 1} under binary SVM classification 

with a kernel k(x, y), let f̂ (x) : x→{ − 1, 1} be the prediction function con
structed in training. If the SVM kernel matrix K is an identity or approxi
mately identity matrix, i.e., ∀xi, xj ∈ Xr, i ∕= j, Kij = k

(
xi, xj

)
0, and Kii =

k(xi, xi) = 1, then there exists an imbalanced point in SVM learning, i.e., for 
∀x with an unknown type, f̂ (x) = +1, if we assume the majority type is the 
positive ‘+1′. 

Proof. Given training data Xr = {xi, yi}
m
i=1, xi ∈ Rq, yi ∈ { −1, 1}, the 

SVM model seeks the optimal hyperplane wTφ(x) +b by finding the 
normal vector w ∈ Rq and offset b ∈ R1 by solving the quadratic pro
gramming problem: 

minw
1
2

wT w + C
∑m

i=1
ξi, w ∈ Rq , ξi ∈ R, b ∈ R

s.t.yi
(
wT φ(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, i = 1, 2⋯m,

(9)  

where ξi, i = 1, 2⋯m are slack variables, C > 0 is the penalty term, and 
φ(x) is the function mapping input data into the high-dimensional Hil
bert space, where k

(
xi, xj

)
= φ(xi)

Tφ
(
xj

)
. Thus, the SVM prediction 

function is f̂ (x) = sign
(∑m

i=1αiyik
(
xi,x

)
+b

)
, where αi ≥ 0 are the solu

tions of the dual problem of the original quadratic programming 
problem, 

maxα −
1
2

∑m

i=1

∑m

j=1
yiyjk

(
xi, xj

)
αiαj +

∑m

i=1
αi

s.t.
∑m

i=1
αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2⋯m

(10) 

Since non-diagonal kernel matrix terms are zero or approximately 
zero, i.e., k

(
xi,x

)
0, the classification result will only depend on the offset 

term b, i.e., ̂f (x) = sign(b). The offset b can be determined by the normal 
vector w =

∑m
i=1αiφ(xi)yi, i.e., b = −1

2 (wTφ(x+) +wTφ(x−), where x+ and 
x− are two support vectors with + 1 and −1 labels respectively, i.e., 

b = −
1
2

(
∑m

j=1
αjyjk

(
xj, x+

)
+

∑m

j=1
αjyjk

(
xj, x−

)
)

(11) 

Since the kernel matrix is an identity or approximately identity 
matrix: k

(
xj, x+

)
0, k

(
xj, x−

)
0, k(x+, x+) = k(x−, x−) = 1, we have b =

−1
2 (α+ −α−), where α+ and α− are the alpha values corresponding to the 

two support vectors. Moreover, we have the following trivial problem by 
applying k

(
xi, xj

)
0, for i ∕= j and k(xi, xi) = 1 to the original dual: 

maxα −
1
2
∑m

i=1
αiαi +

∑m

i=1
αi

s.t.
∑m

i=1
αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2⋯m

(12) 

The trivial dual exists solutions: α+ = m−

m , α− = m+

m , where m+ = |{xi :

yi = +1} |, m− = |{xi : yi = −1} |. Thus, we have the final offset b =

m+−m−

2m and prediction function f̂ (x) = sign
(m+−m−

2m

)
= sign(m+ −m−).

The prediction function of imbalanced learning implies that a query 
sample’s class type is determined by the majority class in the training 
data. If the majority class is positive, then every query sample will be 
classified as positive (+1), i.e., for ∀x with an unknown type, ̂f (x) = +1,

regardless of its actual class. This generates an imbalanced point, where 
all samples are classified as the majority class. 

This type of imbalanced point generation under SVM occurs 
frequently in high-dimensional omics data when the Gaussian kernel is 
not properly set. For example, when the parameter η is set improperly 
small (e.g., η = 0.5) in the Gaussian kernel: k(x, y) = e−η||x−y||

2
, the 

corresponding SVM kernel matrix will become the identity matrix or 
approximately one because of the large pairwise distance between omics 
samples caused by the molecular signal amplification mechanism [27]. 
As a result, even non-imbalanced data can generate an imbalanced point 
because all samples are classified as the majority type. 

As an example, we applied SVM to a breast cancer omics dataset 
[27], consisting of 97 patient samples across 24,188 genes, with 46 
patients exhibiting 5-year metastasis and 51 patients without. Although 
the dataset has a majority ratio of only 52.58 %, we observed the gen
eration of an imbalanced point under SVM with the Gaussian kernel k(x,

y) = e−||x−y||
2
/2 under the 5-fold cross validation. Specifically, all mi

nority samples were classified as the majority type, resulting in a d-index 

of d = log2

(
3(1+γ)

2

)

γ=51/97
= 1.1945, accuracy α = γ = 0.5258, sensi

tivity s = 1.0, and specificity p = 0.0. This highlights that even non- 
imbalanced data can lead to an imbalanced point under SVM. 

2.3.5. The difference between the imbalanced point and breakeven 
Both the breakeven state and imbalanced point describe anomalous 

states in classification where an ML model loses its learning capabilities. 
However, they are caused by different reasons and occur in different 
datasets. The breakeven state is mainly caused by the ML model being 
unsuitable for the input data, whether balanced or not. On the other 
hand, the imbalanced point is primarily caused by the high majority 
ratio in imbalanced data, along with improper parameter settings in the 
ML model (such as in SVM). The breakeven state can be considered the 
“inflexion point” at which underfitting occurs, while the imbalanced 
point is the state at which overfitting occurs and the ML model can only 
recognize the majority type. In this case, the learning process is 
“hijacked” by the majority samples, and the ML model can become “too 
overfitted” to recognize the minority samples. 

Traditional classification metrics lack enough sensitivity and good 
interpretability to distinguish the two learning states well because they 
generally only reflect a single learning perspective. However, d-index 
can model and interpret them accurately and detect the anomalous 
states sensitively because it explains and models learning behaviors 
from more comprehensive perspectives. To some degree, with the help 
of d-index, the two new concepts would contribute to interpreting ML 
results more accurately and rigorously. 

2.4. D-index is more representative and explainable 

The proposed d-index also demonstrates its superiority to widely 
used non-accuracy measures such as AUC and MCC in monitoring 
imbalanced learning by providing interpretable assessment. For 
example, let us consider an ML model Θ that produces TP = 90, FN = 0, 
TN = 0, FP = 10 results under a majority ratio: γ = 0.9 for 100 samples 
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in query. The accuracy (90 %), sensitivity (100 %), F1 score (0.9474), 
and precision (0.9) values indicate good performance, while the speci
ficity (0 %) and AUC (0.5) values suggest the opposite. However, the d- 
index value of 1.5110 indicates that it is a poor performance case. 

Compared to d-index, AUC is less informative because it cannot 
distinguish between the breakeven and imbalanced point states, both of 
which have AUC values of 0.5. However, d-index can differentiate be
tween these two states, with values of 1.1699 and 1.5110 + ε, respec
tively, as per Theorem 4. Thus, d-index provides a more comprehensive 
and informative evaluation of the two learning states compared to the 
AUC metric. The d-index not only includes information from AUC, 
which is the average of sensitivity and specificity, but also considers the 
overall classification performance. 

In addition, compared to MCC that takes values in [-1,1], d-index 
that falls in (0,2] is more intuitive and explainable. It is built upon the 
three widely used measures accuracy, sensitivity, and specificity. On the 
other hand, MCC can be viewed as a special discretized version of the 
Pearson correlation for binary variables [28]: 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

√ (13) 

Despite MCC’s utility, its formula’s complexity often renders it less 
intuitive to interpret. Furthermore, MCC cannot differentiate between 
the breakeven and imbalanced point, returning zero values for both 
scenarios. This inability makes MCC less effective in discerning these 
unique learning states. Conversely, as highlighted before, the d-index 
distinctly values these learning states, proving it more representative 
than both AUC and MCC. 

Furthermore, the d-index is easy to understand and explain 
compared to the less utilized metric GEN, defined by the formula: CEN =
∑c

i=1
∑c

j=1pijlog
(

cpij
pi,+ ,p+,j

)
, where c is the number of classes, pij is the 

probability of class i being predicted as class j, pi,+ is the marginal 
probability of the true class being i, and p+,j is the marginal probability 
of the predicted class being j. Besides its complicated calculation, the 
range of the CEN depends on the number of classes, meaning that the 
CEN values are not directly comparable across datasets with a different 
number of classes. Therefore, it is almost impossible to use it to detect 
the breakeven and imbalanced points. 

2.5. Multiclass d-index 

We extend d-index to the multiclass by averaging the local d-index 
values for each class in the multiclass. The extension consists of the 
following three steps. The first step redefines the true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) values for each 
class. 

Given a class i in total k classes: Λ = {1,2,⋯k}, we define the samples 
belonging to the class i as positive and the samples belonging to other 
classes (¬i) as negative respectively. Suppose f̂ (x) is the prediction 
function built under an ML model Θ using training data Xr = {xi, yi}

m
i=1,

yi ∈ Λ. We have the following definitions of TP, TN, FP, and FN for each 
class i = 1, 2, ⋯k. Given test data Xt = {xj′, yj′}l

j=1, y′
j ∈ Λ, we have  

• tpi: TP of the class i: the number of samples belonging to class i 
correctly classified as class i, i.e.,i→i,

tpi =

⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
= i ∧ y′

j = i
} ⃒

⃒
⃒ (14)   

• fpi: FP of the class i: the number of non-i class samples falsely clas
sified as the class i, i.e.,¬i→i,

fpi =

⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
= i ∧ y′

j ∕= i
} ⃒

⃒
⃒ (15)    

• tni : TN of i: the number of non-i class samples correctly classified as 
non-i class, i.e.,¬i→¬i 

tni =

⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
∕= i ∧ y′

j ∕= i
} ⃒

⃒
⃒ (16)    

• fni: FN of i: the number of class i samples falsely classified as the non-i 
class, i.e.,i→¬i 

fni =

⃒
⃒
⃒

{
x′

j : f̂
(
xj′

)
∕= i ∧ y′

j = i
} ⃒

⃒
⃒ (17) 

The second step calculates the local accuracy αi =
tpi+tni

tni+tpi+fpi+fni
, 

sensitivity si =
tpi

fni+tpi
, specificity pi = tni

tni+fpi
, and d-index 

di = log2(1 + αi) +log2
(
1 +

si+pi
2

)
for each class i ∈ Λ: 

The third step calculates the final d-index as the expected value of the 
local d-index values for all classes as 

d =
1
k
∑k

i=1

(
log2(1 + αi) + log2

(
1 +

si + pi

2

))
(18)  

2.6. Breakeven state in multiclass classification 

Breakeven state in multiclass classification for a multiclass ML 
model Θ is a state in which the model classifies a sample as one of labels 
in Δ = {1, 2, ⋯k} with an equal likelihood. For a sample x with a label 
y ∈ Δ, the prediction function f̂ (x) of the ML model Θ maintains 
Pr{ f̂ (x)= 1|Θ } = ⋯Pr{ f̂ (x)= k|Θ } = 1

k in prediction. The d-index of an 
ML model under the breakeven in multiclass classification is 2log2

(k+1
k

)

by extending the previous result in binary classification. 

Lemma 4. The d-index is 2log2
(k+1

k
)
, where k is the number of classes: 

Δ = {1, 2, ⋯k}, if an ML model is in the break-even state under multiclass 
classification. 

Proof. According to the definitions of multiclass d-index and break
even, we have local accuracy, sensitivity, and specificity for each class 
i ∈ Λ αi = si = pi = 1

k. Then the d-index:d = 1
k
∑k

i=1
(
log2

(
1 + 1

k
)

+

log2
(
1 + 1

k
))

= 2log2
(k+1

k
)
.

Theorem 6. The range of d-index in multiclass classification is 
(
2log2

(k+1
k

)
, 2

]
, where k is the number of classes: Δ = {1, 2, ⋯k}. If we 

assume no underfitting in learning. When d-index < 2log2
(k+1

k
)
, which is the 

d-index of the breakeven state, the ML model encounters underfitting. 

Corollary 2. An ML model Θ is more likely to encounter underfitting in 
multiclass classification with an increase in the number of labels. 

Theorem 6 states that the range of multiclass d-index values falls 
between (log2

k+1
k ,2], and its proof is omitted for simplicity. This suggests 

that multiclass classification in ML models is more likely to encounter 
underfitting due to the lower d-index cutoff at the breakeven state. For 
instance, when k = 3, the breakeven state is characterized by d-index 
d = 2log2

(4
3
)

0.8301. If the d-index is less than d = 2log2
(4

3
)
, the model 

will encounter underfitting for 3-class classification. Similarly, for 4- 
class, 5-class, and 6-class classification, the breakeven d-indices will 
be 0.6439, 0.5261, and 0.4448, respectively. As the breakeven d-index 
cutoff decreases with an increase in the number of classes, it suggests 
that an ML model is more likely to encounter underfitting in multiclass 
classification with an increase in the number of labels. 
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2.7. Multiclass imbalanced point d-index estimation 

We have the following d-index estimation at the imbalanced point in 
multiclass classification. 

Theorem 7. Multiclass imbalanced point theorem. Given an implicit 
prediction function f̂ (x) : x→Δ = {1, 2⋯k} constructed from training data 
Xr = {xi, yi}

m
i=1, yi ∈ Δ, with the majority ratio γ(e.g., 50%), under the ML 

model Θ, then at an imbalanced point, the ML model has the following d- 
index: 

d =
1
k

[

log2

[
∏k−1

i=1
(2 − γi)

(
3
2

)]

+ log2

(
3
2

(1 + γ)

) ]

(19) 

Proof. Without loss of generality, we define the label ratio γj =

|{xi :yi=j}|
∑k

i=1|{xj :yj=i}|
for class j = 1, 2⋯k. We also assume the label ratios of the 

total k classes follow the relationship: 0 < γ1 ≤ γ2 ≤ ⋯ < γk < 1, where 
the majority count ratio γ = γk.

At the imbalanced point, all the first k-1 classes will be recognized as 
the majority type, denoted as i → k where i ranges from 1 to k-1. If we 
assume there are m total samples in the classification, then the True 
Positive (TP) and False Positive (FP) values for class i will be 0, repre
sented as tpi = fpi = 0.

The False Negative (FP) value for class i (i ∕= k) can be calculated as 
fni = mγi, because all samples belonging to class i, which is mγi, are 
falsely classified as the majority type k. Similarly, the True Negative 
(TN) for class i can be calculated as tni = m −mγi, because all samples not 
belonging to class i, which is m −mγi, are correctly classified as ¬i, which 
is the majority type k. Therefore, we have the confusion matrix Ci for 
class i, i ∕= k,

Ci =

(
tpi fpi
tni fni

)

=

(
0 0

m(1 − γi) mγi

)

(20) 

Then, we calculate the local accuracy, local sensitivity, and local 
specificity for class i as follows. Since there are no True Positives for that 
class, and all its samples are falsely classified as the majority class k. The 
local accuracy for class i only depends on the False Negative rate, which 
is the proportion of samples from class i that are classified as k. Thus 
local accuracy αi =

m(1−)γi+0
m = 1 −γi; local sensitivity: si = 0

0+m(1−γi)
= 0;

and local specificity pi =
m(1−γi)

m(1−γi)+0 = 1. Finally, we calculate the local d- 
index for class i as 

di = log2(2 − γi) + log2

(
3
2

)

(21) 

Similarly, when i = k, we have the confusion matrix Ck for class k :

Ck =

(
tpk fpk
tnk fnk

)

=

(
mγk m(1 − γk)

0 0

)

(22) 

We then calculate the local accuracy, local sensitivity, local speci
ficity, and local d-index for class k as αk =

mγk+0
m = γk, sk =

mγk
mγk

= 1, pk =

0
0+m(1−γk)

= 0, and dk = log2(1 +γk) +log2
(

3
2

)
correspondingly. 

Finally, we calculate the expected value of the local d-index values 
for all classes to get the final d-index that assesses the overall quality of 
the ML model’s learning performance across all classes. 

d =
1
k

[
∑k−1

i=1

(

log2(2 − γi) + log2

(
3
2

))

+ log2(1 + γk) + log2

(
3
2

) ]

(23) 

After simplification, we have d =
[
log2

[∏k−1
i=1 (2 − γi)

(
3
2

)]
+

log2
(

3
2 (1 + γ)

) ]
, where the majority ratio γ = γk.

The theorem suggests that the d-index in multiclass classification, at 
the point of imbalance, will increase as the majority ratio γ increases. 

For instance, in a 3-class classification, the d-index at the imbalanced 
point is 1.3182 when γ1 = γ2 = 0.25, and γ3 = 0.5. However, it reaches 
1.48 when γ1 = γ2 = 0.1, and γ3 = 0.8. It means the latter has a higher 
degree of overfitting at the imbalanced point. 

It is worth noting that the majority ratio γ does not have to be very 
large (e.g., >50 %) to generate an imbalanced point in multiclass clas
sification, but it should large enough compared to 1

k for a k-class clas
sification. For example, in a 3-class classification problem, the 
imbalanced point can be generated under a majority ratio γ = 0.49 and 
other two minority ratios are about 0.24 and 0.27. Additionally, it is 
possible to generate more than one imbalanced point in a multiclass 
classification problem if some classes have a considerably larger label 
ratio than others. 

The following corollary highlights the value of the d-index in the 
extremely imbalanced case of multiclass classification, where the ma
jority ratio γ approaches 1, and the minority ratios γi→0 for i = 0,1,2⋯k. 
The corollary shows that the d-index value in such scenarios is consistent 
with the previous binary case. 

Corollary 3. D-index in extremely imbalanced cases in multiclass 
classification. The d-index in the extremely imbalanced cases in multiclass 
classification, where the majority ratio γ→1 and other minority ratios γi→0,

for i = 0, 1, 2⋯k, approaches log23 = 1.5850.

3. Results 

3.1. Data 

In this section, we showcase the superiority of the d-index over 
traditional classification metrics in providing explainable assessments 
for machine learning (ML). To demonstrate this, we utilize four imbal
anced datasets from various domains, including natural language pro
cessing (NLP), FinTech, business, and medicine. The datasets, available 
at https://github.com/hank08819/DINDEX, were collected by the first 
author and have not been explored in any previous works. Table 1 il
lustrates the details of the four datasets, where the majority ratio refers 
to the ratio of the entries of the majority class with the most counts 
relative to the total number of entries in the dataset. The parameters n 
and p denote the number of observations and features, respectively. 
Specifically, we highlight the advantages of the d-index in robust model 
selection, sensitive monitoring of imbalanced learning, and detection of 
learning singularity. Furthermore, we illustrate how to differentiate 
learning performance under the same d-index values for support vector 
machines (SVM) for the simulated credit risk data. 

3.2. Robust model selection using d-index 

We showcase how the d-index can effectively enhance model selec
tion by providing a comprehensive and explainable assessment of 
learning performance. To demonstrate this, we employ the imbalanced 
NLP dataset IB-EMODB, derived from the benchmark German emotional 
dataset EMODB used in speech emotion recognition [9]. The original 
EMODB dataset contains 535 sentences (audio files) spanning seven 
distinct emotion categories. The subset we utilize, IB-EMODB, includes 
300 spoken sentences that are grouped into four emotional categories: 
anger (A), boredom (B), disgust (D), and fear (F). Of these, the anger (A) 
category is the most prevalent, constituting 42.33 % of the total 

Table 1 
Four datasets.  

Dataset (n,p) Majority ratio Classes Field 

IB-EMODB (300,54)  42.33 % 4 NLP 
Credit risk (150,000,11)  93.05 % 2 Fintech 
Simulated credit risk (1670,6)  92.22 % 2 Business 
Ovarian (266,20531)  98.50 % 2 Medicine  

H. Han et al.                                                                                                                                                                                                                                     
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sentences. Audio files file is characterized by 54 features obtained 
through Mel Frequency Cepstral Coefficients (MFCC) and other spectral 
feature extraction techniques. More feature extraction details can be 
found in the supplemental materials. Table 2 presents the distribution of 
the sentences across the various emotions: anger (A) at 42.33 %, 
boredom (B) at 27 %, disgust (D) at 7.67 %, and fear (F) at 23 %. 

Fig. 1 illustrates the t-SNE (t-distributed Stochastic Neighbor 
Embedding) visualization of this multiclass dataset, revealing that the 
various emotions are relatively well separated [29]. Nearly every class 
forms its own distinct, well-bounded local clusters in the t-SNE 
embedding space, despite some scattering observed among these clus
ters. Notably, only a few samples from different classes are intertwined. 
This visualization showcases the good separability of the dataset, sug
gesting that ML models hold the potential to deliver reasonable, if not 
excellent, performance on it. 

To demonstrate the superiority of the d-index in model selection, we 
compare the learning performance of six widely used ML models on this 
dataset. For this purpose, we partition the dataset into 80 % training and 
20 % testing data for each model. The ML models used in this compar
ison include an SVM with a Gaussian kernel, random forests (RF) with 
500 ’gini’-based trees capped at a depth of 20; extremely randomized 
trees (ET) with 500 non-bootstrapped trees also limited to depth 20; 
deep neural networks (DNN) with L2 regularization (α = 0.0001), having 
hidden layers of 100, 50, and 25 neurons; linear discriminant analysis 
(LDA) employing ’svd’ solver with no shrinkage; and Gaussian- 
distributed NB [30–35]. To assess the learning performance of these 
models, we calculate the d-index as well as classic measures such as 
accuracy, sensitivity, specificity, precision, and negative prediction ratio 
(NPR) for this multiclass dataset. 

The d-index provides a more comprehensive and explainable 
assessment of learning performance than traditional measures, leading 
to more accurate model evaluation. Table 3 presents a comparison of the 
performance of the six ML models based on both the d-index and 
traditional classification metrics. Using traditional measures, it can be 
challenging to evaluate the models’ performance in an interpretable 
manner. For example, it is unclear whether SVM outperforms DNN and 
LDA or vice versa, as SVM has higher accuracy and precision, while DNN 
and LDA have better sensitivities and nearly equivalent specificities 
compared to SVM. However, the d-index comparison resolves this issue 
by demonstrating that DNN would slightly outperform SVM and LDA, 
based on their d-index values: 1.9078 (DNN) > 1.9050 (SVM) > 1.9015 
(LDA). Similarly, the d-index of NB shows it outperforms ET and RF, 
despite ET having better accuracy than RF and NB. Furthermore, based 
on the d-index, it is evident that DNN is the best model for this NLP 
dataset. Therefore, the d-index offers a more straightforward and 
comprehensive evaluation in model selection, owing to its good 
interpretability. 

Fig. 2 provides a visual representation of the comparison between 
the d-index and traditional classification measures for multiclass clas
sification. The left plot compares the performance of the ML models 
using the 5 traditional classification measures. However, it can be 
challenging to evaluate the performance of the models using individual 
measures like accuracy or all possible measures. This is because indi
vidual measures do not fully reflect all aspects of learning, and 
combining them can lead to inconsistent evaluation of the models. 

On the other hand, the right plot of Fig. 2 evaluates the performance 
of the models using their d-index values. It presents the performance of 

the ML models more clearly based on their d-index values in model se
lection, where DNN > SVM > LDA > NB > ET > RF. It avoids the 
possible bias from the accuracy measure and confusion that may arise 
when using all the traditional classification measures. 

3.3. Monitoring imbalanced learning using d-index 

We use two imbalanced credit risk datasets to demonstrate how the 
d-index can be employed to monitor the behavior of ML models in 
imbalanced learning scenarios. The first dataset is a large-scale credit 
risk dataset, privately collected from small businesses. The second 
dataset, referred to as “simulated credit risk data,” is a small credit risk 
dataset derived from a classic simulated credit risk dataset [36]. 

The first imbalanced credit risk dataset comprises of n = 150,000 
credit records across p = 11 variables obtained from small businesses 
with no more than 20 employees. To obtain a clean dataset, we remove 
missing data which results in n = 120,269 observations. Out of these, 
111,912 observations correspond to non-delinquency (‘good credit’) 
and 8,357 to delinquency (‘bad credit’) samples. The majority type ratio 
for this dataset is γ = 93.05 %. Table 4 presents all the variables 
including 10 general variables and one dependent variable ’de
linquency’ indicating the credit risk status. 

The t-SNE visualization in Fig. 3(a) reveals the imbalanced nature of 
the delinquency and non-delinquency data, highlighting the risk of the 
majority data potentially dominating the learning process. Additionally, 
the variable visualization demonstrates that the two groups of data 
follow different probability distributions. Specifically, Fig. 3(b) presents 
a violin plot of the 10 variables in relation to delinquency and non- 
delinquency, with data being subjected to a log transformation. The 
plot indicates that each variable exhibits distinct distributions in terms 
of delinquency and non-delinquency. For example, the delinquency 
samples have a higher median revolving credit percentage than the non- 
delinquency ones, although the latter have more large outliers in 
revolving credit percentages. Similarly, the non-delinquency samples 
have a greater number of outliers in capital reservations and monthly 
income. Additionally, the non-delinquency type has a substantially 
smaller number of entries with late payments of <=60/90 days or 
longer. 

We employed 4 ML models: k-NN, random forests (RF), gradient 
boosting (GB), extremely randomized tress (ET), and 4 deep learning 
models: deep neural networks (DNN), convolution neural networks 
(CNN), long short-term memory (LSTM), and transformer to handle this 
large imbalanced dataset [37–41]. The k-NN employs 5 neighbors with 
uniform weights, using the Euclidean distance and an auto-selected 
search algorithm. The GB operates with 100 trees, a depth of 3, a 0.1 
learning rate, and employs the Friedman mean squared error for de
cisions. The CNN features two convolution layers of 128 and 64 nodes, 
followed by a pooling layer, flatten layer, and a dense layer with 20 % 
dropout, using ’relu’ and ’softmax’ activations. The LSTM has 5 sets of 
paired LSTM and dense layers with 64 and 128 nodes, accompanied by a 
flatten layer and 35 % dropout. The transformer integrates two 
embedding layers, two transformer blocks with multi-head attentions, 
two flatten layers, and two feedforward layers. All deep models adopt 
cross-entropy as their loss function. The RF, ET, and DNN maintain 
earlier settings. To evaluate their performance, we partitioned the 
dataset into 80 % for training and 20 % for testing purposes. Table 5 
compares d-index and classic classification metrics of different learning 
models on the dataset. 

The d-index values of the learning models demonstrate superior 
modeling capabilities compared to the classic metrics for imbalanced 
learning. While accuracy, specificity, and NPR metrics indicate good 
classification performance for all models, precision and sensitivity sug
gest mediocre or poor performance. However, the d-index values suggest 
that all models, except for LSTM, generate AIPs, as they are close to the 

imbalance point d-index log2

(
3(1+0.9305)

2

)
= 1.5339, as stated in Theo

Table 2 
The IB-EMODB dataset information.  

Emotion type The number of observations 

Anger (A) 127 
Boredom (B) 81 
Disgust (D) 23 
Fear (F) 69  
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rem 2. This reveals that the models generally fail to learn because only a 
very small portion of minority samples are correctly predicted, as indi
cated by their low sensitivities. Table 4 compares the d-index and classic 
classification metrics of different learning models on the dataset, further 
highlighting the superior performance of d-index values. 

For instance, the sensitivities of k-NN and ET are extremely low, at 
0.0473 and 0.0119 respectively, indicating that they only correctly 
classify a mere 4.73 % and 1.19 % of minority samples, while mis
classifying the remaining 95.27 % and 98.81 % of minority samples as 

the majority type. In contrast, both k-NN and ET correctly predict 99.72 
% and 99.96 % of majority samples. This suggests that these models 
have a high tendency to recognize only the majority type, making them 
unsuitable for imbalanced learning as they generate AIPs. Similarly, 
while RF, GB, DNN, CNN, and transformer have slightly better d-index 
values than k-NN and ET, they too fail at imbalanced learning. It is not 
surprising to see that the self-attention mechanism in transformers 
cannot contribute to performance enhancement. While self-attention 
can enhance the model’s ability to identify complex patterns and re
lationships in the data, it doesn’t inherently contribute much to 
addressing the data imbalance issue, because attention may not be 
synonymous with data representation. 

On the other hand, the LSTM’s d-index of 1.7544 suggests that it is 
significantly different from the d-index of the imbalanced point of 
1.5339, indicating a somewhat acceptable performance in imbalanced 
learning even though it correctly classifies only 55.45 % of the minority 
samples. However, it would be nearly impossible to distinguish the 
models’ different behaviors using only their accuracy values, which are 
very close to the majority ratio: 93.05 %. Similarly, the weighted F1 
score of 95 % obtained from this dataset falsely suggests that the 

Fig. 1. t-SNE visualization of the IB-EMODB dataset depicting four types of emotions” ‘Anger’, ‘Boredom’, ‘Disgust’, and ‘Fear’. The samples corresponding to the 
’Anger’ emotion display a relatively more concentrated distribution compared to the other three emotions. 

Table 3 
The d-index values and traditional measures on the multiclass dataset.  

Measures\Models SVM LDA DNN RF ET NB 

D-Index  1.9050  1.9015  1.9078  1.8033  1.8447  1.8467 
Accuracy  0.95  0.9167  0.9333  0.8833  0.9  0.8833 
Sensitivity  0.8636  0.9242  0.9034  0.7576  0.8201  0.8598 
Specificity  0.9830  0.9748  0.9792  0.9594  0.9646  0.9602 
Precision  0.9534  0.8576  0.9375  0.9  0.9131  0.8490 
NPR  0.9849  0.9711  0.9767  0.9630  0.9672  0.9590  

Fig. 2. A comparative analysis of six ML models’ performance on the NLP multiclass dataset, utilizing both traditional classification measures (left plot) and their 
associated d-index values (right plot). The d-index offers a clearer and more interpretable assessment for model selection. As depicted, the DNN model surpasses 
others in both evaluation metrics, with the model hierarchy as follows: DNN > SVM > LDA > NB > ET > RF. 
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learning performance is excellent. Furthermore, the MCC value obtained 
from this dataset is 0.25; while this indicates a performance that is better 
than random chance, it falls significantly short of excellence, demon
strating somewhat limited expressive interpretative power compared to 
the d-index. Thus, the proposed d-index shows good capability in 
monitoring learning models’ behavior in imbalanced learning, offering a 
more accurate interpretation of imbalanced learning compared to classic 
classification metrics. 

Fig. 4 further illustrates the classification report of the LSTM and the 
accuracy and loss plots for both the training and test data over the initial 
20 epochs. The data presented in the two subplots suggest that an LSTM 
learning performance benchmarked at a d-index of 1.7544 is acceptable, 

albeit the accuracy remains proximate to the majority ratio. Subplot (a) 
delineates the classification results, while subplot (b) exhibits the evo
lution of accuracy and loss metrics for the training and test datasets 
throughout the first 20 epochs. One potential reason for the superior 
results on this imbalanced dataset is the LSTM’s capability to capture 
temporal dependencies in the data, facilitating a deeper understanding 
of underlying patterns not immediately apparent when analyzing indi
vidual data points in isolation. 

3.4. Detecting different imbalanced learning behaviors for linearly 
separable data 

While imbalanced points or AIPs are common in many imbalanced 
learning problems, their presence is not guaranteed in all cases. The 
presence of AIPs or imbalanced points depends on various factors, such 
as the ML models being used, the parameters set, and the data itself. 
Interestingly, some imbalanced learning problems may be linearly 
separable with one ML model but not with another, due to the presence 
of AIPs, even if data is theoretically linearly sparable. Traditional clas
sification metrics may not always be effective at detecting imbalanced 
points, AIPs or other imbalanced learning behaviors for such data. 
However, the d-index is a metric that can detect these behaviors with 
sensitivity. 

To illustrate this, we turn to the simulated credit risk dataset, char
acterized by linearly separable data, utilizing the SVM as delineated in 
[28]. Our preference for SVM over other deep learning models is 
grounded in its deterministic and transparent nature, which guarantees 
reproducible learning results — a crucial asset in analyzing imbalanced 
learning behaviors. Although there is a minor risk of non-deterministic 
results with SVM in the rare instances of ties, primarily when data 

Table 4 
Credit risk dataset variables.  

Variable Descriptions 

Revolving Credit 
Percentage 

The percentage of revolving credit over the total credit limits. 

Capital Reserves Money reserved in account to pay contingencies (e.g., 
mortgage) 

Num Late 60: The number of late payments within 60 days 
Debt Ratio: Borrower’s debt to asset ratio. 
Monthly Income ($): The monthly income of borrower 
Num Credit Lines 

($1000): 
The total amount of credit lines 

Num Late Past 90: The number of late payments above 90 days 
Num Real Estate: The number of real estates owned by borrower 
Num Late 90: The number of late payments within 90 days 
Num Employees: The number of employees of borrower 
Delinquency 1 means bad credit standing (delinquency) and 0 good credit 

standing (non-delinquency)  

Fig. 3. The visualizations of the credit risk data and variables. Fig. 3(a) illustrates the t-SNE visualization of the imbalanced credit risk dataset, where label in
formation is particularly used in t-SNE manifold learning process for the sake of imbalance visualization. Fig. 3(b) shows the violin plots of 10 independent variables 
after log transformation with respect to the delinquency and non-delinquency types. All variables demonstrate different probability distributions with respect to the 
delinquency and non-delinquency. 

Table 5 
The d-index and classic measures of the credit risk dataset under different ML models.  

Measures\Models k-NN RF GB ET DNN CNN LSTM Transformer 

D-index  1.5555  1.6108  1.6026  1.5395  1.6134  1.6049  1.7554  1.6149 
Accuracy  0.9309  0.9319  0.9336  0.9306  0.9324  0.9309  0.9319  0.9318 
Sensitivity  0.0473  0.1732  0.1485  0.0119  0.1779  0.1620  0.5545  0.1817 
Specificity  0.9972  0.9888  0.9926  0.9996  0.9890  0.9886  0.9407  0.9892 
Precision  0.5587  0.5369  0.5994  0.6667  0.5587  0.5158  0.1796  0.5634 
NPR  0.9331  0.9410  0.9395  0.9310  0.9413  0.9402  0.9890  0.9404  
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points align perfectly with the decision boundary, the likelihood re
mains low, particularly with linearly separable datasets. In contrast, 
deep learning models frequently encounter reproducibility issues, 
largely stemming from the widespread utilization of Stochastic Gradient 
Descent (SGD) for loss optimization, introducing an inherent random
ness during weight updates, coupled with non-deterministic processes 
inherent in GPU operations, and other factors. 

3.4.1. Detect imbalanced points using d-index 
The second credit risk dataset is a simulated dataset to analyze the 

credit risk rankings of 1670 businesses from 12 industries. There are 
1540 and 130 businesses across 6 variables ranked as good and bad 
credits respectively. The majority ratio of this dataset is γ = 92.22%.

The six variables include Working capital / Total Assets (WC/TA), 
Retained Earnings / Total Assets (RE/TA), Earnings Before Interests and 
Taxes / Total Assets (EBIT/TA), Market Value of Equity / Book Value of 
Total Debt (MVE/BVTD), Sales / Total Assets (S/TA), and Industry 
sector labels from 1 to 12 (Industry). 

Fig. 5 presents the t-SNE visualization of the dataset and the corre
lation matrix visualization of all the variables [29]. The t-SNE plot shows 
that the dataset is linearly separable through orthogonal separation. 
Moreover, the strong correlations between variables suggest that this 
dataset could achieve good learning performance even though it is 
imbalanced with a 92 % majority ratio. However, we have also 
discovered that SVM can completely lose its learning capabilities under 
certain special kernels, such as the Sigmoid kernel, due to the creation of 

imbalanced points or AIPs. This indicates that imbalanced learning can 
exhibit either linear separability or the generation of imbalanced points 
under different parameter settings for an ML model like SVM. 

In our implementation, we use support vector machines (SVMs) with 
PCA dimension reduction to predict credit statuses and achieve good 
separations. This approach not only provides accurate predictions but 
also enables effective visualization of the learning process through the d- 
index. To train and test our model, we partition the data into 70 % for 
training and 30 % for testing. We utilize four different kernels in our 
SVM implementation: ‘linear’ k(x, y) = xTy, ‘Gaussian’ k(x, y) =

e−η||x−y||
2
, ‘polynomial’ k(x, y) = (ηxTy + 1)

3
, and ‘Sigmoid’ 

k(x, y) = tanh
(
ηxTy +1

)
. The parameter η is set as 1/q where q is the 

number of features of the dataset [30]. 
Table 6 presents a comparison of the four kernels used in SVM with 

respect to the d-index and classic measures. Notably, the Sigmoid kernel 
exhibits a d-index of 1.5064, which suggests the existence of an AIP or 
imbalanced point. This is due to its d-index being close to the value at 

the imbalanced point: log2

(
3(1+0.9222)

2

)
= 1.5227. Furthermore, the re

sults indicate that the F1 score is biased because it achieves a high score 
of 0.9464 despite all the minority samples being wrongly classified as 
the majority, as both the specificity and NPR values are 0 %. 

Interestingly, it is almost impossible to detect when SVM loses its 
learning capability under the ‘Sigmoid’ kernel by relying solely on classic 
measures like accuracy (89.82 %), F1 score (0.9464), precision 
(0.9036), and sensitivity (0.9933). However, the d-index can easily 

Fig. 4. (a) illustrates the LSTM classification on the imbalanced credit risk dataset, where 55.45% minority samples and 98.90% majority samples are correctly 
predicted. Fig. 4 (b) shows the accuracy and loss plots of the training and test data of the LSTM model during the first 20 epochs. 

Fig. 5. The left plot presents the t-SNE visualization of the small credit risk dataset, wherein the two groups are clearly delineated as independent clusters. The right 
plot illustrates the correlation matrix for all the variables within the dataset, revealing substantial correlations between most of them. 
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signal the anomalous learning status. In contrast, the other three kernels 
achieve nearly perfect prediction ratios, as their d-index values are close 
to 2. This observation suggests that imbalanced learning does not always 
result in the imbalanced point or AIP. Instead, it may exhibit different 
learning behaviors under varying parameter settings of the given ML 
model. 

3.4.2. Distinguish learning performance under the same d-index 
While it is possible for two machine learning (ML) learning results to 

exhibit the same d-index value, this occurrence is often unlikely, espe
cially when different parameter settings are used under the same ML 
model, such as SVM. However, if such a situation arises, how can we 
further evaluate ML performance under the same d-index values? To 
address this question, let us continue using the example of small credit 
risk prediction with SVM. 

Table 6 demonstrates that the ‘linear’, ‘Gaussian’, and ‘polynomial’ 
kernels demonstrate almost the same d-index values. Notably, the first 
two kernels have identical performance across all measures, including 
the d-index. In cases where the d-index values are the same under SVM, 
we can evaluate model performance by considering the number of 
support vectors. Support vectors refer to observations on the boundary 

of the optimal hyperplane built by the training data. A smaller number 
of support vectors suggests better scalability and generalization of the 
SVM model. 

Fig. 6 visualizes the support vectors of the four kernels under SVM 
learning. The ’linear’ and ’polynomial’ kernels have fewer support vec
tors compared to the ’Gaussian’ and ’Sigmoid’ kernels. It is evident from 
the visualization that the small number of support vectors under the 
’linear’ and ’polynomial’ kernels can almost perfectly separate the two 
groups of samples, but the former having a slightly larger d-index than 
the latter. Although the ’Gaussian’ kernel achieves the same level of 
learning performance, its large number of support vectors suggest that it 
requires more effort to achieve similar results compared to the ’linear’ 
and ’polynomial’ kernels. Such a high number of support vectors may 
lead to poor scalability and generalization in learning. Therefore, the 
’linear’ kernel performs the best due to its d-index and smaller number of 
support vectors. 

On the other hand, the southeastern plot of Fig. 6 illustrates the 
impact of the imbalanced point on the ’Sigmoid’ kernel, where almost all 
minority samples in the training data are incorrectly identified as sup
port vectors. Consequently, SVM loses its ability to learn by mis
classifying all minority samples in queries as the majority. Similar 
results occur when replacing PCA with t-SNE. 

3.4.3. Priori kernel selection 
Knowing which kernel will achieve a good d-index and the least 

number of support vectors before applying it to real SVM classification 
remains an unsolved problem in SVM learning [31–32]. Although we do 
not intend to provide a systematic answer to this question, we offer a 
case study solution from an interpretable assessment perspective. Since 
the learning capability of an SVM model relies on the representativeness 
of its kernel matrix K ∈ R n×n, we believe that a kernel matrix with 
sparser eigenvalues would be more representative and able to generate 

Table 6 
The d-index and classic measures of the small credit risk dataset under SVM.  

Measures\kernels Linear Gaussian Polynomial Sigmoid 

D-index  1.9978  1.9978  1.9955  1.5064 
Accuracy  0.9980  0.9980  0.9960  0.8982 
Sensitivity  0.9978  0.9978  0.9956  0.9933 
Specificity  1.0  1.0  1.0  0.0 
Precision  1.0  1.0  1.0  0.9036 
NPR  0.9796  0.9796  0.9960  0.0 
F1  0.9989  0.9989  0.9978  0.9464  

Fig. 6. Visualization of support vectors in SVM classification under ‘linear’, ‘Gaussian’, ‘polynomial’, and ‘Sigmoid’ kernels. The ‘linear’ and ‘polynomial’ kernels have 
fewer support vectors compared to the ‘Gaussian’ and ‘Sigmoid’ kernels. Notably, the ‘Sigmoid’ kernel generated the imbalanced point in classification, causing SVM to 
lose learning capabilities by incorrectly identifying almost all minority samples in the training as support vectors. 
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fewer support vectors while achieving good d-index values. If the ei
genvalues of the kernel matrix are sparse, it means that the data points in 
the feature space can be represented using only a small number of 
principal components. This implies that the data is low-dimensional, and 
the decision boundary can be defined using a relatively small number of 
support vectors. As a result, the SVM model can achieve good perfor
mance with fewer support vectors, reducing the computational 
complexity and memory requirements of the model. 

The sparsity of the kernel matrix eigenvalues. To determine the 
sparsity of the eigenvalues in the kernel matrix of an SVM, we sort the 
top k (e.g., k ≥ 100) eigenvalues in descending order: λ1 ≥ λ2 ≥ ⋯ ≥ λk 
and evaluate their sparsity using the parameter ε, which is typically set 
to a very small value such as ε = 10−12. We define the sparsity of the 
eigenvalues of the kernel matrix K as ρ(ε), given by the equation: 

ρ(ε) =
⃒
⃒
{

λ : λ ≤ ε, λ ∈ ∪k
i=1λi, ∀x ∈ R

n, Kx = λx,
}

|/k (24) 

Here, ρ(ε) measures the proportion of eigenvalues that are less than 
or equal to ε, relative to the total number of selected top eigenvalues (e. 
g., k = 100). The higher the value of ρ(ε), the sparser the eigenvalues in 
the kernel matrix, indicating that fewer support vectors are required to 
define the decision boundary of the SVM. The sparsity of the eigenvalues 
of the kernel matrix K is a good indicator of the quality of SVM learning. 
Therefore, we have the following proposition. 

Proposition 1. If the kernel matrix K of an SVM learning machine with 
sparser top eigenvalues than those of the other kernel matrices, then the SVM 
can produce better learning results with fewer support vectors. 

The sparsity analysis of eigenvalues for kernel matrices is closely 
related to the performance of SVM kernels. As depicted in Fig. 7, we 
compare the top 100 eigenvalues of the ‘linear’, ‘Gaussian’, ‘polynomial’, 
and ‘Sigmoid’ kernels, where their sparsity values for ε = 10−12 are 0.98, 
0.0, 0.59, and 0.0, respectively. Among the four kernels, the ‘linear’ 
kernel has the sparest eigenvalues, achieving the best d-index with the 
least number of support vectors. The ‘polynomial’ kernel has the second 
sparsest eigenvalues and the second lowest number of support vectors, 
with a d-index value that is only slightly lower than that of the ‘linear’ 
kernel. However, the ‘Gaussian’ and ‘Sigmoid’ kernels have denser and 

larger eigenvalues compared to the other two, indicating that they 
require more support vectors to define the decision boundary of the 
SVM. 

3.5. Detect learning singularity problems 

The d-index not only facilitates effective model selection, monitors 
ML behaviors, and detects imbalanced points, but it also has the po
tential to identify learning singularity problems. Despite the lack of 
research on this important topic, identifying and addressing learning 
singularity problems is critical to both ML theory and practice as they 
widely exist in all AI and data science domains such as AI disease 
diagnosis in medicine. Successfully solving these problems has the po
tential to bring unprecedented impacts on ML theory, AI techniques and 
various data science applications. However, due to the limitations of 
existing ML theory, these problems are generally viewed as individual 
’hard’ nonlinear problems, rather than recognized as a systematic 
category of ML problems with distinct characteristics. This is mainly 
because they are not easily detectable. To address this issue, we propose 
a definition for learning singularity problems that takes into account 
their unique characteristics. 

3.5.1. The learning singularity problem 
A learning singularity problem can be also called a ‘Non-Determin

istic’ Imbalanced learning (NDI) problem that cannot be solved by 
existing ML models or imbalanced learning handling methods (such as 
resampling) due to the generation of an imbalanced point or AIP. It 
remains unknown which ML methods can find a meaningful solution by 
avoiding the generation of the imbalanced point or AIP. A learning 
singularity must satisfy the following two conditions.  

1. The imbalanced learning problem must fail almost all existing ML 
models as well as imbalanced learning handling methods (e.g., 
resampling) by unavoidably generating an imbalanced point or AIP. 

2. It can achieve an acceptable or even a good result when the knowl
edge to be learned, such as the labels of the test samples, is fused in 
training. 

Fig. 7. Comparison of the top 100 eigenvalues of kernel matrices for the ‘linear’, ‘Gaussian’, ‘polynomial’, and ‘Sigmoid’ kernels. The ‘linear’ kernel exhibits the highest 
level of sparsity, with most entries close to zero. The ‘polynomial’ kernel shows the second highest level of sparsity. On the other hand, the ‘Gaussian’ and ‘Sigmoid’ 
kernels have much denser and larger eigenvalues compared to the other two kernels. 
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It is important to note that there are various techniques available for 
fusing knowledge into the training process. One common and relatively 
simple approach, often misused by beginners in the ML field, is to 
conduct resampling (e.g., SMOTE) on the entire dataset rather than 
solely on the training data [42,43]. In other words, while there is a 
’learning path’ to verify the ’learnability’ of a learning singularity 
problem, it is still unknown whether a meaningful solution exists since 
the problem typically fails existing methods by generating an imbal
anced point or AIP. We provide the following formal description about 
the learning singular problem. 

Learning singularity problem. Given training data Xr = {xi, yi}
m
i=1,

yi ∈ Δ = {1, 2⋯k} in classification with the majority ratio γ, without loss 

of generality, we define the label ratio γj =
|{xi :yi=j}|

∑k
i=1|{xj :yj=i} |

for class j =

1, 2⋯k. We also assume the label ratios of the total k classes follow the 
relationship: 0 < γ1 ≤ γ2 ≤ ⋯ < γk < 1, where the majority ratio is from 
class k, i.e., γ = γk > 1/k. Then an imbalanced learning problem is called 
a learning singularity problem if and only if it satisfies the following 
conditions:  

1) The prediction function ̂f (x|Θ, Xr) constructed from any ML model Θ 
will have f̂ (x|Θ, Xr) = k for each sample x in query with by gener

ating an imbalanced point or AIP, i.e., d ≈ log2

(
3(1+γ)

2

)
if k = 2 or 

d ≈
[
log2

[∏k−1
i=1 (2 − γi)

(3
2
)]

+log2
(3

2 (1 + γ)
) ]

, if k > 2.

2) If the knowledge to be learned, which are the label information of the 
test data Xt = {xk, yk}

n
k=1, is fused into the training process, then ∃ an 

ML model Θ′, and η > 0, such that the d-index of the model Θ′ have 

2log2

(
k + 1

k

)

+ η < d ≤ 2 (25) 

Detecting a learning singularity problem can be challenging with 
traditional classification metrics. This difficulty arises because such 
metrics often lose interpretability in favor of providing a misleading 
assessment of machine learning performance. Consequently, they may 
not be able to accurately identify whether an ML model has reached an 
imbalanced point or an AIP state, which is an essential step addressing 
the learning singularity problem in both binary and multiclass classifi
cation problems. 

Moreover, validating the imbalanced point or AIP generation for an 
input imbalanced data by trying all possible ML models and relevant 
imbalanced handling techniques can be computationally prohibitive 
[34]. It remains unknown which approach should be used to integrate 
the knowledge to be learned in the training process. 

We tackle the problem of detecting learning singularities by using the 
d-index due to its good interpretability in detecting imbalanced points or 
AIPs. To avoid potential computing overhead, we select a set of repre
sentative machine learning (ML) models and imbalanced handling 
techniques, rather than including all of them. For example, the repre
sentative ML models include basic shallow learning methods (e.g., k- 
NN), kernel-based learning (SVM), ensemble learning (e.g., RF), and 
deep learning (e.g., CNN). Similarly, we employ classic resampling 
methods (e.g., ROS) to address data imbalance. We perform ROS 
resampling for both training and test data to fuse knowledge during the 
training process. Algorithm 1 presents our learning singularity problem 
detection approach using the d-index. Without loss of generality, we 
assume that the training and test data have the same majority ratio. If 
the majority ratios are different, we use the majority ratio of the test data 

in the d-index calculation.  
Algorithm 1: Learning singularity problem detection 

Input: Training data: Xr = {xi, yi}
n
i=1 , yi ∈ Δ = {1, 2⋯k}

Test data: Xt = {xj′, yj′}m
j=1, yj′ ∈ Δ = {1, 2⋯k}

The majority ratio is γ > 1/k and the majority class is k 
The label ratio γj for class j = 1, 2, ⋯k −1 
Representative ML models:θ1, θ2⋯θN 

Imbalanced handling techniques g1,g2,⋯gl 

Tolerance ε (default 0.20) 
Offset η (default 0.50) 
Output: Learning singularity problem status:LSPstatus  

1. LSPstatus←T  
2. // representative ML models  
3. for each e in θ1 , θ2⋯θN  

4. dlist←ComputeLearningDIndex(Xr ,e,Xt)

5. // representative imbalanced handling techniques  
6. for each g in g1,g2,⋯gl  

7. de
list←ComputeLearningDIndex(Xr ,g,Xt , e)

8. for d in dlist
⋃

de
list  

9. if k == 2 ∧ |d − log2

(3(1 + γ)

2

)

| > ε  

10. LSPstatus←F  
11. Return LSPstatus  

12. if k > 2 ∧

⃒
⃒
⃒d −

[
log2

[∏k−1
i=1 (2 − γi)

(3
2

) ]

+ log2

(
3
2

(1 + γ)

) ] ⃒
⃒
⃒
⃒
⃒

< ε  

13. LSPstatus←F  
14. Return LSPstatus  

15. for each e in θ1, θ2⋯θN  

16. dfuse←ComputeDIndexUnderFuseknowledgeInTraining(Xr, e,Xt)

17. for d in dfuse  

18. if 2log2
(k + 1

k

)

+ η < d ≤ 2  

19. Return LSPstatus  

20. LSPstatus←F  
21. Return LSPstatus  

3.5.2. Hdi-data-based disease diagnosis 
We use HDI-data-based disease diagnosis as an example to apply 

algorithm 1 to demonstrate learning singularity problem detection. 
HDI (high-dimensional and imbalanced) data is a unique type of 

imbalanced data that frequently arises in the field of biomedical data 
science. Unlike traditional imbalanced data, HDI data is not only high- 
dimensional, but also extremely imbalanced due to limited data re
sources (such as rare disease subtypes) and acquisition limitations. A 
typical HDI dataset, for instance, may contain 100 positive samples and 
only 10 negative samples across a selection of 5,000 genes. 

Ovarian data. The ovarian dataset comprises of RNA-seq data 
collected from TCGA by the first author, consisting of 4 solid ovarian 
tumors and 262 recurrent ovarian tumors across 20,531 genes. The 
majority ratio of the dataset is 98.50 % (262/266), indicating that it is an 
extreme HDI dataset with only 4 minority samples. In machine learning, 
resampling techniques such as SMOTE are commonly used to handle 
imbalanced data, especially to increase the quantity of minority 
samples. 

Fig. 8 illustrates the PCA visualization of the Ovarian dataset before 
and after applying the SMOTE resampling procedure. The original 
dataset contains 4 solid ovarian tumors and 262 recurrent ovarian tu
mors, comprising a highly imbalanced dataset with only 4 minority 
samples. As shown in the figure, the minority samples are almost 
indistinguishable among the 262 majority samples. After applying 
SMOTE, the minority samples are oversampled based on certain rules, 
resulting in a significantly increased quantity of the minority samples. 
However, the minority samples’ distributions become quite different 
from the majority samples due to the specific resampling process of 
SMOTE. 
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To apply Algorithm 1 and determine whether the ovarian data 
classification is a learning singularity problem, we have chosen seven 
representative machine learning models from various categories, 
including shallow learning (e.g., k-NN), kernel-based learning (e.g., 
SVM with the ‘linear’ kernel), ensemble learning (e.g., RF, GB, and ET), 
and deep learning (e.g., DNN and CNN) [35]. We partitioned the dataset 
into 70 % training data with 186 observations, including 2 minority 
samples, and 30 % test data with 80 samples, including the other 2 
minority samples. 

Table 7 presents the learning results of the seven selected ML models, 
evaluated using classic metrics and d-index. As expected, all the models 

produce the imbalanced point and achieve a d-index value of d =

log2

(
3(1+γ)

2

)

γ=78/80
= 1.5668. The accuracy, sensitivity, and specificity 

are 97.5 % (the majority ratio), 100 %, and 0 %, respectively. This in
dicates that all negative (positive) samples are misclassified (classified 
correctly), resulting in TN = FN = 0. As a consequence, NPR is undefined 
(nan) because NPR = TN/(TN + FN). Importantly, this finding is 
consistent across different data partitions. 

We have also observed the same imbalanced point with the d-index 
of 1.5668 when using two commonly used imbalanced data handling 
techniques, namely SMOTE and random oversampling (ROS), to 
generate additional minority samples before training the ML models. 
This finding suggests that while these techniques may increase the 
number of minority samples, they cannot eliminate the risk of gener
ating an imbalanced point in the classification results. 

We further fuse the knowledge to be learned in training by con
ducting resampling for the whole data before the train-test partition. We 
find the ML models: GB achieves good performance by attaining d-index 
1.9863 under SMOTE, and RF achieves d-index 2 under SMOTE and ROS 
[33–34]. These findings suggest that the classification of HDI ovarian 
data is a learning singularity problem according to Algorithm 1. 

3.6. Imbalanced points under transformer models 

It is worthy to examine the generation of imbalanced points under 
deep learning models because almost all deep learning models seem to 
encounter imbalanced points in both credit risk data and ovarian data 
scenarios. We employ the state-of-the-art transformer model here as a 
representative due to its efficiency and good scalability. This model is a 
kind of deep learning architecture initially crafted for natural language 
processing but has since found successful applications in a diverse array 
of tasks well beyond sequential data. In our exploration, we discovered 
that the transformer model encounters imbalanced points or AIPs as 
readily as other deep learning models when applied to these two data
sets. Moreover, we found that the d-index can offer a correction to the 
potential biased perspectives that classic training and testing loss ana
lyses might provide when imbalanced points are present. 

3.6.1. Transformer 
Leveraging self-attention mechanisms to parallel process inputs, the 

transformer model manages to capture complex patterns and relation
ships in different data types besides language data, showcasing versa
tility and high performance across various machine learning tasks [41]. 
We describe the transformer model for classification in brief for the 
convenience of description. 

Given input data X ∈ R
n×p

, where n is the number of samples and p is 
the number of features, a transformer model uses a self-attention 
mechanism to assess the importance of different data components and 
assign attention weights accordingly. It organizes data with queries (Q), 
keys (K), and values (V) through linear transformations: Q = XWQ, K =

XWK, V = XWV , where matrices WQ, WK, WV are the weight matrices to 
be learned in training. Q represents different aspects of the data trans
formed through WQ, K works with Q to determine the relationships 
between different components of data, and V signifies the content of the 

Fig 8. The left plot shows the PCA visualization of the Ovarian dataset, where the four minority samples are indistinguishable from the 262 majority samples. The 
right plot illustrates the effect of applying SMOTE resampling to the Ovarian dataset, resulting in a significant increase in the quantity of the minority samples (e.g., 
solid (SMOTE)). However, the distribution of the minority samples is noticeably different from that of the majority samples due to the specific resampling process 
of SMOTE. 

Table 7 
The d-index and classic measures of the ovarian dataset.  

Measures\Models k-NN SVM RF GB ET DNN CNN 

D-index 1.5668 1.5668 1.5668 1.5668 1.5668 1.5668 1.5668 
Accuracy 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 
Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Specificity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Precision 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 
NPR nan nan nan nan nan nan nan  
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data being focused upon to create new representations based on the 
attention weights. The self-attention scores are computed using Q and K: 
score(Q, K) = QKT

̅̅̅̅
dk

√ , where dk is the dimensionality of keys. Then the 

scores are normalized by the softmax function: fsoftmax(xj) = exj
∑k

j=1
exj 

to 

produce attention weights: weightsattention = fsoftmax

(
QKT

̅̅̅̅
dk

√

)

. Finally, the 

attention weights apply to V to produce the self-attention output of data, 
encapsulated mathematically as 

Xattention←Attention(Q, K, V) = fsoftmax

(
QKT

̅̅̅̅̅
dk

√

)

V (26) 

Notably, the self-attention mechanism can be implemented using 
multi-head attention, utilizing multiple sets of Q, K, and V matrices in 
parallel to focus on different parts of the input. 

Subsequently, the output from the self-attention layer is passed 
through a feedforward neural network (FFNN), represented mathemat
ically as 

Zffn = frelu

(
XattentionW(1)

ffn + b(1)

ffn

)
W(2)

ffn + b(2)

ffn (27) 

where W(i)
ffn, b(i)

ffn, for i = 1,2, are the weight matrices and bias vectors 
in the ith layer of the FFNN, and frelu = max(x, 0) is the ReLu activation 
function. Finally, the classification probabilities are calculated using the 
softmax function applied to the FFNN output: as Pc←fsoftmax(Zffn). 

3.6.2. Imbalanced points or AIPs under transformer 
Our transformer model implementation incorporates two embedding 

layers, two transformer blocks with multi-head attentions and two 
flatten layers, alongside two dense layers, while partitioning each 
dataset into 80 % for training and 20 % for testing. The model is trained 
over ne = 100 epochs on each dataset. We implement a cross-entropy 
loss function as 

L(j)
train(θ) = −

1
n

∑n

i=1
[yilog

(
pij +∊

)
+ (1 − yi)log

(
1 − (pij+∊)

)
] (28) 

where θ represents the hyperparameters of the transformer model to 
be optimized, yi ∈ [ −1, 1] is the true label of sample xi during training, 
pij denotes the predicted probability of xi sample at epoch j ∈ {1, 2, ⋯ 
ne}, ∊ = 10−10 is the tolerance parameter to prevent log(0), and n is the 

training dataset size. The model is trained over ne = 100 epochs on each 
dataset. Similarly, we have the loss function for testing data: 

L(j)
test(θ) = −1

m
∑m

i=1[yilog
(

pij +∊
)

+(1 −yi)log
(

1 − (pij+∊)
)

] for m testing 

samples L(j)
train(θ) = −1

m
∑m

i=1[yilog
(

pij +∊
)

+(1 −yi)log
(

1 − (pij+∊)
)

], and 

the rest of the parameters hold the same meanings as in the training loss 
function definition. The loss values {L(j)

train(θ)}
ne
j=1 and {L(j)

test(θ)}
ne
j=1 form 

the training and testing loss curves. 
Fig. 9 compares the loss curves, accuracies, and d-index values of 

training and testing data of the ovarian and credit risk datasets across 
100 epochs. The two subfigures on the left reveal a seemingly ’good 
performance’ from both the training and testing loss curves, with 
notable reductions in loss and exhibiting similar patterns over time. This 
observation is further corroborated by the high cosine similarity be
tween the curves, calculated as: 

rcosine =

∑ne
j=1L(j)

train(θ)×L(j)
test(θ)

(∑ne
j=1L(j)

train(θ)
2)1/2(∑ne

j=1L(j)
test(θ)

2
)1/2 (29) 

Scoring 0.9282 for the ovarian dataset and an almost perfect 0.9996 
for the credit risk dataset, the cosine similarity suggests a similar di
rection of movement across epochs for both curves. This is generally 
perceived as a positive indication of the model’s ability to effectively 
generalize from the training data to the unseen testing data, avoiding the 
pitfall of overfitting. 

However, a deeper examination reveals that the transformer model 
reaches the imbalanced point in the case of the ovarian dataset and an 
Acceptable Imbalanced Point (AIP) for the credit risk dataset. This 
phenomenon occurs because the d-index values for the training and 
testing datasets either equal or closely approximate the theoretical d- 

index values derived from the equation log2

(
3(1+γ)

2

)
, where γ is the 

majority ratio of the training or testing data. 
For example, in the ovarian dataset, the d-index of the testing data is 

log2

(
3(1+γ)

2

)

γ=53/54
= 1.5715 because they are 53 counts in the majority 

class among the total 54 testing samples. Similarly, the d-index of the 

training data is log2

(
3(1+γ)

2

)

γ=209/212
= 1.5747. The right subfigure in the 

first row of Fig. 9 displays the d-indices, signaling a prominent over
fitting scenario. 

Fig. 9. The comparisons of the loss curves, accuracies, and d-index values of training and testing data of the ovarian and credit risk datasets across 100 epochs.  
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Besides validating the learning singularity problem from a trans
former perspective, this finding overturns the optimistic view given by 
the training and testing loss curves, which implied a good generalization 
capability of the transformer model. It underscores the necessity of 
evaluating d-index values to attain a precise understanding of the 
model’s performance. Additionally, the neighboring subfigure points 

out that the high accuracies of 98.58 % and 98.15 % for training and 
testing data, respectively, simply mirror the majority ratios of the 
datasets. Moreover, while an MCC score of 0 might vaguely hint at 
random predictions in this context, it doesn’t strictly denote “random” 
predictions. Contrary to this, the d-index emerges as a more potent tool, 
aptly delineating the subtle dynamics of imbalanced learning behaviors. 

Similarly, the right subfigure in the second row of Fig. 9 illustrates 
the d-indices of the training and testing data concerning the credit risk 
dataset. After 100 epochs of learning, the testing data attain a d-index of 
1.6149, which, along with a 93.18 % accuracy, 18.17 % sensitivity, and 
98.92 % specificity, points to the occurrence of an AIP. This inference 
comes from the fact that the d-index value is relatively close to 1.5399, a 
situation arising due to the misclassification of 18.47 % of the minority 
samples and 1.08 % of the majority samples during learning. Simulta
neously, the d-indices of the training data oscillate between 1.58 and 
1.63, an indication that they are bordering the d-index of the imbal
anced point. Consequently, as depicted in the middle subfigure of the 
second row of Fig. 9, the corresponding accuracies for the training and 
test data hover near the majority ratio, registering at 93.05 %. 

4. Discussion 

Although we know how to determine which SVM models will be 
optimal when they achieve identical d-index values, assessing the per
formance of two or more ML models that share the same d-index levels 
can pose a challenge, especially in the case of different deep learning 
models. In such situations, we propose adhering to a general principle of 
prioritizing model simplicity for the final selection; in essence, models 
with fewer layers, learning nodes, or parameters should be favored. This 
approach not only simplifies interpretation but also potentially en
hances the model’s interpretability. For instance, between a CNN model 
with 10 layers and 3 × 107 parameters and an LSTM model with 5 layers 
and 5 × 106 parameters that achieve the same d-index, the latter should 
be chosen for its reduced complexity [36–37]. However, it is important 
to note that a high-complexity deep learning model that secures a su
perior d-index compared to a low-complexity alternative should be 
recognized as the preferable option. Additionally, when models share 
identical d-index levels and complexity, reproducibility should be a 
decisive factor in the final selection. 

As an explainable metric for assessing ML models, the d-index can 
also be used to identify complicated overfittings in a more straightfor
ward and explainable approach by avoiding possible biases from tradi
tional metrics for imbalanced data. This is achieved by comparing the d- 
index derived from the training data predicting itself with the standard 
d-index obtained using the testing data. An occurrence of overfitting is 
suggested if there is a substantial divergence between the training and 
testing d-index values, or if both approach the d-index of the imbalanced 

point or AIP, such as log2

(
3(1+γ)

2

)
in binary classification. Furthermore, 

we applied the transformer model to the IB_EMODB dataset and ob
tained a d-index value of 1.2718, which is close to the imbalanced point 
d-index 1.3518 estimated by using the following equation estimated by 
the theorem 7 in this study.   

It suggests that the transformer encounter overfitting for its d-index, 
reaffirming that the deep learning models would encounter overfitting 
under the imbalanced dataset. When compared with scores such as MCC 
= 0, Cohen’s Kappa = 0, and weighted F1 = 0.2451, all of which imply 
at random or unsatisfactory predictions, the proposed d-index stands as 
a more transparent and precise metric for evaluating the outcomes of 
multiclass imbalanced learning. 

Furthermore, the d-index enhances parameter tuning techniques 
such as grid search, providing more precise results unaffected by 
imbalanced learning bias — a notable advantage over accuracy and 
other traditional metrics due to its comprehensive modeling of machine 
learning performance. 

Limitations. As an interpretable learning assessment measure, the d- 
index comes with certain limitations. Computing the d-index can be 
particularly expensive, especially with larger datasets involving a high 
number of classes (e.g., >10) in the classification. This can significantly 
increase the time complexity of the process, potentially resulting in a 
time-consuming computation. Additionally, there is a risk of encoun
tering numerical stability issues while computing the local d-indexes for 
each class, particularly when some classes have a very small number of 
instances. To mitigate this, it is advisable to either utilize data 
augmentation and resampling to balance the least represented classes or 
reduce the number of classes to avoid such complexities. 

Impacts of loss function selection on imbalanced deep learning. Although d- 
index is a sensitive metric for detecting the imbalanced points or AIPs in 
imbalanced learning, it remains challenging to predict when they will 
occur during various learning scenarios. This is because some imbalanced 
learning scenarios may not generate the imbalanced points or AIPs even 
for very imbalanced data due to the nature of data, learning models or even 
relevant parameter settings. For example, the transformer model achieves 
a perfect performance for the simulated credit risk dataset, which is 
linearly separable data, under the cross-entropy loss, but the same model 

encounters the imbalanced point d-index: log2

(
3(1+γ)

2

)

γ=0.9222
= 1.5272 

under the focal loss: FL(pt) =αt(1 − pt)
βlog(pt), where pt is the true class 

probability produced by the model, αt is a weighting factor for the class and 
can be set to 1 for balanced datasets, β, typically set as 2, is a focusing 
parameter that controls the strength of down-weighting for well-classified 
examples. It suggests that imbalanced point generation can be affected by 
various factors even if the dataset itself is linearly separable. On the other 
hand, it implies that loss function selection can play an essential role for 
some deep learning models in imbalanced learning [42,43]. 

It appears that deep learning models such as transformer are more 
likely to produce imbalanced points or AIPs than general ML models. 
This is likely due to the complex composite decision functions of deep 
learning models, most of which utilize layer-by-layer mapping mecha
nisms [44]. As a result, even a small degree of information imbalance 
may be amplified in the decision function, resulting in the production of 

d =
1
k

[

log2

[
∏k−1

i=1
(2 − γi)

(
3
2

)]

+ log2

(
3
2

(1 + γ)

) ]

|k=4,γ,γ1γ2γ3 (0.4233,0.0767,0.23,0.27)

(30)   
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imbalanced points or AIPs. As such, how to design deep learning ar
chitecture and training algorithms to mitigate such imbalanced ampli
fication mechanism could be an interesting direction for enhancing the 
explainability of deep learning models [45]. 

Resolving LSPs. Furthermore, detecting and solving learning sin
gularity problems (LSPs) present a significant challenge in ML, as there 
may be various types of such problems in different AI and data science 
domains. Identifying meaningful solutions for these problems can lead 
to breakthroughs not only in ML theory but also in various AI and data 
science applications. Therefore, there is an urgent need to develop more 
systematic research frameworks to address this challenge, such as cat
egorizing different sources of learning singularity problems and utilizing 
novel AI tools such as quantum machine learning to investigate them 
[46]. 

5. Conclusion 

This study introduces the d-index, a novel metric for interpretable 
ML assessment that is well-suited for both binary and multiclass classi
fication tasks. The d-index introduces new concepts in ML, such as 
breakeven, imbalanced point, AIPs, and learning singularity problems, 
which extend the existing ML theory and applications. Compared to 
traditional metrics such as MCC, F1-score, CEN, and Cohen’s Kappa, the 
d-index provides a more comprehensive and sensitive assessment of ML 
performance while being self-interpreted and avoiding possible evalu
ation biases, especially for imbalanced learning. The d-index overcomes 
the limitations of traditional metrics in achieving good interpretability 
and brings more robust, accurate, and efficient model selection, making 
it a valuable tool for both researchers and practitioners in the field. 
Furthermore, the d-index can improve parameter tuning efficiency and 
fairness by avoiding possible biases caused by traditional metrics. Its 
ability to enhance model performance assessment can significantly 
improve the quality of ML models and facilitate their practical use in 
various AI and data science applications, making it a crucial tool in the 
field. 

In contrast to traditional metrics, the d-index excels in assessing 
various ML behaviors, especially in situations of imbalanced learning 
where traditional measures such as accuracy and F1 score may be biased 
or even misleading. Its significant advantage lies in its ability to sensi
tively detect the imbalanced point or AIPs, elements often overlooked by 
classic metrics. Consequently, it offers fresh insights and techniques to 
the expanding field of imbalanced learning, a sector steadily gaining 
traction in AI and data science. Utilizing the d-index allows for the 
capture of subtle dynamics of imbalanced learning behaviors by recti
fying potential biases derived from conventional training and testing 
loss curve analyses, particularly when the curves demonstrate similar 
directional trends across epochs. In technical terms, the proposed index 
reveals a seldom discussed state of overfitting: a scenario where over
fitting occurs despite the training and testing loss curves showing 
favorable reductions and correlations throughout the epochs, especially 
in the context of imbalanced learning. 

Additionally, the d-index facilitates more rigorous and sensitive 
identification of other anomalous ML behaviors such as underfitting, 
offering a tool for interpretable ML performance assessment. Specif
ically, it has been proven that a d-index within the range of 

(
2log2

(k+1
k

)
,

2
]
, indicates a normal learning status, with k representing the number of 

classes involved in learning. Notably, a d-index falling below 2log2
(k+1

k
)
,

signals the onset of underfitting — a phenomenon particularly prevalent 
in data imbalance scenarios which traditional learning metrics fail to 
detect effectively. 

Moreover, the d-index paves a new pathway in ML theory, identi
fying learning singularity problems (LSPs) and marking out the un
learnable sets of imbalanced learning problems within the existing ML 
landscape. However, the cardinality of these unlearnable sets and their 
equivalent learnable problems remain unexplored. On another note, 

given the close relationships between overfitting and LSPs in both 
traditional ML and modern deep learning models, finding solutions to 
LSPs could foster new techniques to address the special type of over
fitting associated with LSPs, enhancing both the current and future 
landscape of machine learning. 

Furthermore, we demonstrate how to distinguish ML performance 
under the same d-index values for Support vector machines (SVMs) and 
propose a meaningful priori kernel selection that achieves a good d- 
index and generalization. Interestingly, we also prove that SVMs can 
lose their learning capability by generating the imbalanced point, even if 
the data is not inherently imbalanced. Given the key status of SVM in 
reproducible machine learning and kernel-based learning. These find
ings provide new insights into the two fields from an explainable ML 
assessment perspective [47,48]. Besides, we show the importance of loss 
function selection plays an essential role in imbalanced learning for deep 
learning models such as transformer. 

Impacts of normalization on the d-index. In our study, we 
observed that while different normalization methods can affect the d- 
index, they generally maintain the characteristics of imbalanced points 
or AIPs, especially in deep learning models. We utilized standard scaler 
normalization for the datasets with predominantly Gaussian distributed 
heterogeneous variables, such as IB-EMODB, credit risk, and simulated 
credit datasets. Conversely, the minmax normalization was applied to 
the ovarian dataset, which contains largely non-Gaussian distributed 
features, to scale them between 0 and 1. 

It is essential to note that using different normalization techniques 
can yield varying d-indices. To illustrate, employing the MaxAbs scaler – 
defined by the transformation x′

i = xi
max(|x′

i|)
, where x′

i is the transformed 

one of feature xi, and max(
⃒
⃒x′

i
⃒
⃒
)

is the maximum absolute value of xi – on 
the credit risk dataset resulted in a d-index of 1.5909. Meanwhile, the 
standard and minmax scalers gave d-indices of 1.6149 and 1.5825, 
respectively. More details can be found in the supplemental materials. 

The d-index serves as an interpretable ML assessment metric, 
enhancing transparency and reliability in evaluating ML performance. It 
unveils previously hidden deep learning subtle dynamics and ML be
haviors under different imbalanced learning scenarios, streamlining 
efficient model selection. This makes it indispensable for explainable AI, 
especially in imbalanced learning scenarios. Our ongoing and future 
work aims to design interpretable deep learning models with dynamic 
and adjustable learning topologies along with novel knowledge extrac
tion methods to address the learning singularity problems (LSPs) 
[49,50]. Our pursuit promises to enrich the AI and data science land
scapes, pushing for more interpretable and efficient ML models. 
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