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ARTICLE INFO ABSTRACT

Keywords: With the surge of machine learning in Al and data science, there remains an urgent need to not only compare the

D-index performance of different methods across diverse datasets but also to analyze machine learning behaviors with

glter]frewblhty sensitivity using an explainable approach. In this study, we introduce a uniquely designed diagnostic index: d-
reakeven

index to tackle this challenge. This tool integrates classification effectiveness from multiple dimensions, deliv-
ering a transparent and comprehensive assessment that transcends the limitations of traditional evaluation
methods in classification. We propose two innovative concepts: breakeven states and imbalanced points in this
study. Integrated with the d-index, these concepts afford a more profound understanding of the learning be-
haviors across different machine learning models compared to the existing classification metrics. Significantly,
the d-index excels as a powerful tool, identifying learning singularity problems (LSPs) that remain elusive to most
current machine learning models and imbalanced learning techniques. Furthermore, leveraging the d-index, we
unravel the mechanisms behind imbalanced point generation in binary and multiclass classification. We also put
forth a novel technique: identifying a priori informative kernels to optimize support vector machine learning,
ensuring outstanding d-index values with the fewest necessary support vectors. Moreover, we address a seldom-
discussed state of overfitting in deep learning, where overfitting occurs despite the training and testing loss
curves exhibiting favorable trends throughout the epochs. To the best of our knowledge, this work represents a
pioneering stride in the realm of explainable machine learning assessments and will inspire further studies in this
area.

Imbalanced point
Learning singularity problems

1. Introduction odor quality for previously uncharacterized odorants, and discover

latent molecular phenotypes from histopathological images [8,9]. To a

Machine learning (ML) has achieved remarkable success in revolu-
tionizing data-driven problem solving in the fields of AI and data sci-
ence. Its impact is far-reaching, inspiring novel applications in areas
such as business, engineering, medicine, and science, and contributing
to breakthroughs in Al theory [1-2]. ML has been employed to diagnose
COVID-19 and other complex diseases, facilitate language translation,
enable high-frequency trading, and even beat human top-players in the
game of Go with elegance [3-5]. For instance, deep reinforcement
learning is used in high-frequency trading (HFT) to increase automatic
trading efficiency [6], while different ML models and techniques are
employed in peer-to-peer (P2P) lending to predict customer credit risk
and achieve efficient hedging [7]. Additionally, a variety of deep
learning methods are being used to detect emotions in speech, predict
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significant extent, ML is transforming human society and impacting lives
in unprecedented ways, playing a vital role in advancing modern data
science and artificial intelligence.

Despite its remarkable success and a plethora of research initiatives
aimed at its challenges, machine learning (ML) confronts enduring
interpretability issues [10]. For instance, unsupervised ML techniques,
including manifold learning, often find it challenging to meaningfully
evaluate their dimension reduction quality in an explainable and
comparative manner. Conversely, many supervised ML methods, despite
their commendable outcomes, struggle to provide clear insight into their
decision-making mechanisms. Take deep learning models as an
example: they house millions, if not billions, of intricate parameters.
This complexity, while enabling them to attain state-of-the-art results
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across various tasks [2,11], often obscures their operational intricacies,
casting them as ’black boxes’. Such obscured methodologies, despite
their prowess, may not suffice in high-stakes arenas like healthcare or
finance. In these sectors, comprehending the rationale behind decisions
is paramount, especially when mere accuracy can, at times, obfuscate
the complete narrative of ML or be biased or misleading in situations
with data imbalances [11,12].

1.1. The challenge of interpretable ML assessment

Moreover, an important issue in ML explainability, one that remains
underexplored in both ML and explainable Al, concerns the ability to
transparently and accurately compare the performance of distinct ML
models, specifically in terms of interpretable ML assessment [10]. This
becomes paramount in high-stakes sectors like finance, healthcare, and
disease diagnosis. To illustrate, a seemingly minor performance
disparity between two ML techniques might lead to vast differences in
algorithmic trading returns, potentially amounting to millions. Simi-
larly, in healthcare, a doctor might favor an Al diagnostic tool with even
a marginally reduced false positive rate over another system, despite
both offering comparable diagnostic accuracy.

Nonetheless, comparing the learning performance of different ML
models using existing classification evaluation measures in an accurate
and explainable manner can be challenging. This is mainly because these
measures, such as accuracy, recall (sensitivity), precision, and F1-score,
each evaluate only one perspective of learning. For example, one ML
model may have a slightly higher accuracy but a lower recall than
another under the same learning task, making it almost impossible to
determine which model will be more effective. Although the F1-score
can be helpful in some cases, it still cannot provide a comprehensive
perspective on learning evaluation and carries a risk of biased assess-
ment, as it does not take true negatives into consideration.

Moreover, using multiple classification measures simultaneously or
at least a few measures together may further complicate the interpre-
tation of learning results as it can be challenging to consistently compare
their combinations. For instance, it would be hard to determine if ML
model A outperforms B or vice versa, if A achieved 87 % accuracy, 92 %
sensitivity, and 70 % specificity, while B achieved 85 % accuracy, 82 %
sensitivity, and 89 % specificity on the same dataset. In this case, there is
not enough numerical evidence to support which will be better. There-
fore, the current classification metrics pose a challenge in selecting the
most efficient model from a set of candidates by assessing the learning
results in an accurate and interpretable way.

Furthermore, the existing classification measures can be misleading
when applied to imbalanced learning datasets. Imbalanced learning,
which refers to datasets with imbalanced or extremely imbalanced label
distributions, has become increasingly important in Al and data science.
This is partly due to the fact that some real-world datasets are inherently
imbalanced, such as P2P lending, credit risk, malware, and omics data.
In such datasets, most observations belong to one or a few majority
classes or sources. For instance, in credit risk or P2P lending data, only a
small fraction of customers have a ’bad’ credit record, while the ma-
jority have a *good’ one [12]. Similarly, in cybersecurity, only a small
percentage of software is classified as malware. Many omics datasets for
disease diagnosis are also imbalanced because some disease subtypes
have a much lower prevalence than others in reality or in the data
acquisition process.

Since imbalanced data itself introduces bias in the label distribution,
the classic classification measures can produce misleading or biased
evaluation results in imbalanced learning. This is because these mea-
sures can only capture one learning perspective well, which might be
sufficient for balanced data but fails to provide a comprehensive
learning assessment and explanation that accounts for the impact of
imbalanced data.

The accuracy measure, though commonly used, can be misleading in
imbalanced learning contexts. When faced with skewed data, the
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majority class can dominate the training process, leading to models that
disproportionately recognize the majority class while neglecting the
minority. As a consequence, the reported accuracy might closely
approximate, or even equal, the ratio of the majority class—resulting in
deceptively high values, especially when the majority ratio is large. Such
a strong bias towards the majority class can drastically skew recall and
specificity, diminishing the model’s effectiveness in detecting minority
observations. Essentially, the ML model becomes nearly ’overfitted’ to
the majority, largely overlooking the minority. A parallel issue can be
observed with the Fl-score. If the majority class is deemed positive, the
F1-score can give an illusion of perfection in imbalanced learning con-
texts. Technically, the F1-score, whether micro or macro, assumes that
precision and recall are equally important. This might not hold true for
all data science and Al applications, especially for imbalanced data.

The biased accuracy measure in imbalanced learning can have
adverse effects on the ML model parameter tuning process. Most
parameter tuning methods, such as grid search, rely on the accuracy
metric to seek the best parameters for the model. However, when
working with imbalanced datasets, the accuracy measure can be
misleading, and the resulting parameters may not reflect the true per-
formance of the model. This can lead to false parameters and inaccurate
learning results, even when a satisfactory accuracy cutoff is reached.
Therefore, the built-in weakness in the existing classification metrics
may prevent from providing explainable and accurate learning perfor-
mance assessment, especially under imbalanced learning.

1.2. Related work

Numerous studies have addressed the weaknesses of traditional
classification metrics and related issues in ML assessment. However, the
literature lacks interpretable classification measures. For instance,
Chicco and Juman demonstrated the advantages of Matthews correla-
tion coefficient (MCC) over Fl-score and accuracy in binary classifica-
tion evaluation [13], while Tharwat provided a detailed review of
various classification assessment measures and their influence on
balanced and imbalanced data [14]. Sokolova and Lapalme conducted a
systematic analysis of performance measures in classification from a
measure invariance standpoint [15], and Hand and Christen highlighted
the bias of F1-score by comparing it with MCC [16]. Powers noted the
weakness of F1-score for imbalanced data [17]. Optitz and Burst found
that the arithmetic mean of class-wise F-scores exhibited an advantage
over the class-wise precision and recall means in multi-class classifica-
tion [18], while Yang et al. introduced a generalized F1-score in multi-
class classification [19]. Grandini et al. reviewed classification mea-
sures for multi-class classification [20], and Jurman et al. compared
MCC and CEN (confusion entropy) error measures for multi-class clas-
sification [21]. Ballabio et al examined classification performance
measures using a multivariate analysis approach [22], and Boughorbel
et al. discussed the use of MCC in optimal classifiers for imbalanced data
[23].

The previous works have significantly advanced the understanding
of ML performance assessment, but they may have some limitations.
Almost all of them focus on evaluating and comparing the existing
classification measures, rather than proposing new metrics. While Yang
et al. introduced a generalized F1-score for multi-class classification, it is
only applied to specific data [19]. Additionally, the previous works did
not address the problem from an explainable Al perspective, and it re-
mains unknown about the interpretability of the metrics. As such, some
recommended measures cannot be used in explainable ML performance
assessment because of the lack of interpretability. For instance, MCC
suffers from its non-explainable formula and inconsistent ranges in bi-
nary and multiclass classifications, limiting its impact on Al and data
science application domains [23-26]. In addition, confusion entropy
(CEN) lacks interpretability even when compared to traditional metrics.
Unlike accuracy, which ranges intuitively from 0 to 1, CEN does not
have such a straightforward scale, making its values harder to interpret
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without context [20,21].

1.3. The standards of interpretable ML assessment

It is desirable to have a novel, explainable measure to assess ML
performance informatively to overcome the weakness of the existing
metrics. The measure itself should own good interpretability and be
easily understood by users and serve as a good discriminator to compare
and select ML models. To achieve these goals, the ML assessment mea-
sure should satisfy the following standards.

It should provide a comprehensive evaluation of ML performance,
assessing both binary and multiclass ML accurately and detecting
subtle differences between two or more ML models. Additionally, it
should not focus solely on one learning perspective (e.g., true posi-
tive ratio).

It should be sensitive to imbalanced learning by avoiding bias from
traditional metrics (e.g., accuracy) and distinguishing different ML
models while detecting anomalous behaviors such as underfitting or
overfitting.

The calculation of the measure should be easy to conduct and self-
explanatory. Avoiding non-interpretable, complicated formulas is
essential. Complex formulas can increase computational costs for
large datasets, present difficulties in interpretability, and limit
widespread adoption.

In this study, we propose a novel classification assessment measure
called the d-index, or diagnostic index, which satisfies the three stan-
dards previously mentioned. Defined as d = log, (1 + a) +log, (1 +5£), it
leverages the learning accuracy (a), sensitivity (s), and specificity (p) to
evaluate binary classification, with an extension for multiclass classifi-
cation. It can detect subtle differences in performance between models,
which is essential for accurate model selection. Unlike recall or preci-
sion, which only consider one aspect of classification effectiveness, the
d-index synthesizes multiple perspectives to provide a more compre-
hensive evaluation of ML performance. More importantly, the d-index
can monitor learning behaviors sensitively, especially for detecting
anomaly learning statuses such as imbalanced points. It also demon-
strates a high sensitivity to imbalanced ML performance and has a
smooth extension to multiclass classification without changing the value
range. Additionally, the d-index can detect underfitting, overfitting, and
other special ML behaviors, such as learning singularity problems
(LSPs), which can cause most ML models and imbalanced handling
techniques to fail.

1.4. Comparing d-index with peer measures from other studies

Compared to common metrics like MCC, Cohen’s Kappa, CEN, micro,
macro, and weighted F1 scores, the d-index offers good interpretability
and broader appeal.

The MCC ranges from —1 to 1, indicating prediction quality from
discord to perfection, while the d-index’s 0 to 2 range is often more
intuitive. The MCC can encounter mathematically undefined scenarios,
especially when a class isn’t predicted or when there’s complete
agreement between predictions and true values. This is common in
multiclass imbalanced datasets. In contrast, the d-index doesn’t face
such ambiguities. Further insights on the MCC and d-index comparison
are in section 2.4.

Cohen’s Kappa is calculated as x = £o=>e

(17P5)"
observed agreement and P, is the expected agreement by chance.
Adjusting for chance agreement, it offers a better measure ranging from
—1 (complete disagreement) to 1 (perfect agreement) compared to
percentage agreement. However, interpreting Kappa is challenging,
especially with no agreed standard for a “good” value. While a high
Kappa doesn’t always reflect strong minority class performance, the d-

where Py is the relative
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index consistently does.

CEN’s vulnerability to data noise raises interpretability concerns.
Even slight dataset variations can trigger notable entropy shifts that
don’t always align with classifier performance. Additionally, GEN’s
intricate formula adds to these interpretability challenges. More details
on GEN, see section 2.4.

The micro F1 score, aligning with the standard F1 score in binary

classification, is derived from the harmonic mean of micro-averaged

— 9 x precision g, xrecallicr,

Drecision, ., +recallmicro” In imbalanced

precision and recall: Flpicro

datasets, the micro F1 may lean towards majority class performance,
whereas the d-index effectively addresses this bias.

The macro F1 score is the arithmetic average of the F1 scores of all
classes: Flpgero = > 121 F1;, where F1;; is the F1 score for the i" class and
m is the number of classes. It can be misleading in imbalanced datasets
due to its equal class weighting. The d-index reliably reflects perfor-
mance across all classes, especially in imbalanced scenarios.

The weighted F1 score is an average of the F1 scores of each class,
weighted by the number of true instances for each label: Fl;pq0 =
St iwiF1;, w; is the weight for the F1 score for the i class. This score
inherently favors larger classes. If a classifier falters on a crucial mi-
nority class, the weighted F1 score can still appear high due to good
majority class performance, potentially hiding poor results on smaller
classes, and its “weighting” concept can confuse unfamiliar stake-
holders. In contrast, the d-index provides a balanced evaluation
regardless of minority class size, offering wider appeal.

1.5. This study’s contributions

In our study, we have demonstrated the superiority of the d-index in
evaluating machine learning performance on benchmark datasets from
high-stakes application domains, including credit risk prediction, natu-
ral language processing (NLP), and complex disease diagnosis in
biomedical data science. Our results show that the d-index not only
meets the urgent demand for interpretability in machine learning result
assessment, but also has the potential to positively impact Al by moni-
toring and detecting anomalous machine learning behaviors or states.
To the best of our knowledge, this is the first work on interpretable
machine learning assessment and is expected to inspire future research
in this field. We summarize our contribution in this study briefly as
follows.

We propose the d-index, an innovative and explainable metric for
both binary and multiclass classification. This measure surpasses
traditional metrics, offering a more in-depth and interpretable
evaluation of ML performance. Through our theoretical exploration
of the d-index, we further establish its credibility as an interpretable
tool for efficient model selection and detecting anomaly learning
statuses across NLP, Fintech, business, and medicine datasets.

We introduce three novel ML concepts: breakeven states, imbalanced
points, and learning singularity problems (LSPs). Breakeven states
signal underfitting thresholds, and imbalanced points signify when
the ML model is fully overfitted to the predominant class in learning.
LSPs are ML challenges with confirmable ’learnability’ but lead most
models to produce imbalanced points. Leveraging these concepts, the
d-index provides enhanced insights into ML behaviors, enriching
existing theory and application. Additionally, the introduction of
LSPs opens a new avenue in ML research. We also unveil the
imbalanced point generation mechanisms for both binary and mul-
ticlass classification models, besides introducing a novel d-index-
based LSP detection algorithm.

We’ve demonstrated through theoretical proof that even if data isn’t
imbalanced, established ML models like SVM can still falter, pro-
ducing imbalanced points. We’ve introduced innovative techniques
to pinpoint effective kernels in SVM, ensuring optimal d-index values
with minimal support vectors before the real learning process begins.
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In our deep learning analysis, we discovered that models, specifically
transformers, can generate imbalanced points even with linearly
separable data when paired with unsuitable loss functions. We also
uncover a unique overfitting scenario in deep learning: instances
where both training and testing loss curves consistently show posi-
tive trends across epochs, yet overfitting is still present.

The paper is organized as follows. In Section 2, we introduce the d-
index and extend it to multiclass classification. We propose the concepts
of the breakeven state and imbalanced point to model different ML be-
haviors for more interpretable ML assessments. We also provide a
rigorous theoretical analysis to illustrate the special characteristics of d-
index in underfitting detection and imbalanced point generation. Sec-
tion 3 demonstrates the applications of d-index in binary, multiclass, and
imbalanced data classification by comparing it with peer measures
under various benchmark datasets in different ML applications. We
further validate the superiorities of d-index in robust model selection,
sensitive imbalanced learning monitoring, and learning singularity
problem detection. Additionally, we present a method for distinguishing
learning performance under the same d-index values for SVM, along
with priori kernel selection. Section 4 discusses more applications of d-
index and its limitations, as well as possible enhancements. Finally, in
Section 5, we conclude this study and discuss future directions for
research in interpretable ML assessment.

2. Diagnostic index (d-index)

The d-index is an explainable classification metric offering a nuanced
evaluation of classification efficacy, particularly in imbalanced learning.
Originally devised by the first author for RNA-seq dataset comparisons,
we’ve expanded its applicability from binary to multiclass classifications
[24].

2.1. D-index

Given an implicit prediction function j?(x) : x—{ — 1,1} constructed
from training data X, = {x;,y;}{~; under an ML model ©, where each
sample x; € R* and its label y; € { —1,1},i = 1,2, ---m, d-index evaluates
the effectiveness of f(x) to predict the labels of test data X; = {x//, yj’}]l.,

where x;' is a test sample and its label y] € {—-1,1}. The d-index is
defined as:

'+
d:10g2(1+a)+10g2(1+57p) [6))

where a, s, and p represent the corresponding accuracy, sensitivity,
and specificity in diagnosing test data X; respectively. The d-index is in
(0, 2]. The larger the d-index value, the better the predictability of ?(x),
i.e., the better learning performance achieved by the ML model ©. d-
index logarithmically depicts the trend of the accuracy a and balanced
=, which is the average of the true positive and negative
ratios, in a log mode because of 2¢ = (1 +a)(1 +32).

accuracy:

The accuracy a = it is the ratio between the number of
correctly predicted positive (+1) and negative (-1) samples and the total
number of samples in query. TP and TN represent the number of
correctly predicted positive and negative samples, respectively: TP =

ij:f(xj’):lijzl}); TN:ij:f(xj’):fl/\yjzfl}’. In
contrast, FN and FP represent the number of incorrectly predicted pos-
itive and negative samples, respectively: FN = ij jA‘(xJ’) =-1A y;- =
1hspp = |{x: F() =1ny, = -1} ].

While accuracy provides a measure of overall classification perfor-

mance, it does not consider the prediction function )A‘(x)’s performance
on different subgroups. As a result, accuracy may not be an appropriate
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metric for evaluating classification performance in imbalanced datasets
or when the cost of misclassification differs across subgroups.

The sensitivity (recall) s = % is the ratio of correctly predicted
positive samples to the total number of true positive samples. It mea-
sures the ability of the model to identify all positive samples, i.e., the
true positive rate (TPR). On the other hand, the specificity p = 2 is
the ratio of correctly predicted negative samples to the total number of
true negative samples. It measures the ability of the model to identify all
negative samples, i.e., the true negative rate (TNR). Ideally, the pre-

diction function f(x) should be equally likely to predict + 1 and —1
samples. However, in practice, when the training data is imbalanced,

f(x) may have a bias towards predicting the majority type sample. This
can result in sensitivity and specificity values that demonstrate extreme
values when evaluating classification performance in imbalanced
datasets.

If we assume there exist N = N, +N,, samples in query consisting of
N, = TP +FN positive samples and N, = TN +FP negative samples, we
can rewrite the d-index definition as follows,

N+TN+ TP 2N,N, + TPN, + TNN,
d:logQ(L>+logz< plNo + TN, + P) )

2N,N,

This rewritten formula for the d-index provides a more comprehen-
sive explanation of learning performance compared to classic metrics, as
it includes all elements involved in classification. Additionally, the
weights of TP and TN in W help to prevent possible biased

impacts from imbalanced data, such as when N, is much greater than N,,,
on the classification process.

In the following section, we introduce new ML concepts: “break-
even”, “imbalanced point,” and “learning singularity” to exploit the
potentials of the d-index for the sake of interpretable ML result
assessment.

2.2. Breakeven states and underfitting

The d-index exhibits unique characteristics in the breakeven state
and can effectively detect various forms of underfitting rigorously. More
importantly, it eliminates the ambiguity and bias associated with using
conventional metrics.

2.2.1. Breakeven states

A breakeven state in binary classification for an ML model O is a
state in which the model classifies a sample as positive or negative with
an equal likelihood. for a sample x with a label y € { —1,1}, the pre-
diction function )A‘(x) of the ML model ® maintains Pr{f(x): 10} =
Pr{f(x): —1]@ } = 50% in prediction.

The breakeven state is a critical indicator for an ML model repre-
sented by the symbol 0, as it denotes the state where the model performs
no better than a random classifier and fails to provide any significant
insights during the learning process. This point serves as a measure to
evaluate the relevance of using ML. If the performance of the model ®
drops below this point, it leads to underfitting, where the model per-
forms worse than a random classifier. In such a scenario, ML loses its
purpose, and the model’s performance degrades to that of a random
coin-flipping process. Moreover, if the performance of the ML model
continues to deteriorate below the breakeven point, it can encounter
severe underfitting, which can significantly impact its predictive
accuracy.

The breakeven state under binary classification has certain outcomes
that can be analyzed to gain a holistic understanding of the performance
of the machine learning model using the d-index.

Lemma 1. The d-index is 2log, (3) if an ML model is in the break-even
state under binary classification.

Proof. Under the breakeven state, the ML model © is a random
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classifier with a 50 % probability to conduct correct prediction, i.e., TP
= FN = N,/2and TN = FP=N, /2. Let %p =5, we have,

TP + TN P, TN L 1
a = = = = _
TP+FN+IN+FP N,+N, N,+N, 2+2p 2+25 2

3

TP N 1 Thus

o _ _1 _ 1
Similarly, s=®lm=% P=w.p =3

d=1log,(1+1/2)
+log, (1 +%ﬁ) = 2log, (%) under the break-even state.

Lemma 2. If an ML model is in the breakeven state under binary classifi-
cation, then AUC (area under the curve) AUC =1(s+p) =1 F1= 3%,7,

wheren = % is the ratio between the number of negative samples over that of
P
the negative ones.
Proof. According to the result from Lemma 1, it is easy to have AUC =

1(s+p) = ] because sensitivity and specificity both are % at the break-
even state. Similarly, we have.

TP N,/2 2 2
Fl = = = -_<
TP+ (FN+FP)/2 N,/2+ (N,+N,)/2 3+N,/N, 341
@
Theorem 1. The F1 score of an ML model in the breakeven state falls in
3
2:3)"

Proof. Based on the findings from Lemma 2, the F1 score can be
calculated using the formula F1 = 3%,7, where 1 represents the ratio of
negative samples to positive samples in the training data. When the
number of positive and negative samples is balanced, F1 = 0.5. How-
ever, when n — 0, meaning the training data is entirely dominated by
negative samples, the F1 score increases and approaches a value of 2/3.

2.2.2. Underfitting detection

The d-index is a useful metric to detect underfitting in machine
learning models, as it provides a clear indicator of underfitting when the
value is less than 2log2(3/2), the d-index of the breakeven state. This
makes it a more reliable method to identify underfitting compared to
traditional approaches such as observing accuracy or AUC. These
traditional methods may not be robust enough, as accuracy and AUC
values can be misleading when the data is imbalanced, and they are not
necessarily definitive indicators of underfitting.

For example, a binary machine learning classifier can face under-
fitting when its accuracy is lower than 50 %. This low accuracy suggests
that the model is not capturing the underlying patterns in the data.
However, it could also be biased due to imbalanced data. For instance,
consider a training dataset containing 100 samples, where 25 are true
positives (TP), 20 are true negatives (TN), 55 are false negatives (FN),
and 5 are false positives (FP). In this case, an accuracy score of 45 % may
not necessarily signify underfitting since the model can still accurately
classify 80 % of the negative samples, resulting in a high specificity of
80 %. However, it’s worth noting that the model’s d-index in this context
will be 1.1838, which is above the d-index of the breakeven state
(2log, (3) = 1.1699) suggesting that there is no underfitting.

Similarly, an AUC value of 0.49 does not necessarily indicate that the
machine learning model is encountering underfitting. This is because an
AUC value of 0.49 could also indicate that the model is overfitted to the
positive samples, resulting in a high sensitivity and low specificity. For
example, a sensitivity of 98 % and a specificity of 0 % would result in an
AUC value of 0.49, i.e., the area under the ROC curve is equal to the area
of a diagonal line, which represents the performance of a model that
makes less than random predictions.

Theorem 2 states d-index in general binary classification falls in
(2log, (3), 2] when there is no underfitting.

Theorem 2. The range of d-index is between 2log, (3) and 2 if we assume
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no underfitting in binary classification. When d-index < 2log, (3), which is
the d-index of the breakeven state, the ML model encounters underfitting.

Proof. The upper bound of d-index is 2. It indicates an ideal learning
performance, in whicha = s =p = 100 %, i.e., all samples are perfectly
classified . On the other hand, the lower bound of d-index comes from
the breakeven state, i.e. d > 2log,(3) = 1.1699. When d-index is less
than that of the breakeven state, it indicates that the ML model performs
worse than a random classifier and encounters underfitting.

2.3. The imbalanced point detection

In addition to detecting underfitting, the d-index is a superior metric
for model selection because it demonstrates good sensitivity in assessing
imbalanced learning performance by sensitively detecting anomalous
learning states. This section proposes a new imbalanced point concept to
model the exceptional learning state in imbalanced learning for the sake
of explainable and sensitive imbalanced learning assessment. In addi-
tion, it compares d-index with existing AUC and MCC measures in term
of interpretability.

2.3.1. Majority ratio

The majority ratio serves as the foundation for modeling imbalanced
learning. In binary classification, it is defined as the count of the ma-
jority label divided by the total count of labels. Given training data X; =
{x,¥i}{*1,¥i € { —1,1} in binary classification, the majority ratio under
the binary classification is calculated as:

:max(\{xi sy =1 {x v =—13])
Hxicyi=1} ]+ [{xi i = =1}

The majority ratio can theoretically be greater than 50 % in binary
classification. However, in practice, if the input data is imbalanced, the
majority ratio may range from 75 % to even 99 %-+. This is because it is
possible that almost all observations belong to the majority class, while
the minority class only contains a very small percentage of observations
(e.g., less than 5 %).

Majority ratio in multiclass classification is defined as the ratio of
the maximum class count over the total counts in the training data X; =
{xi,¥i}i01. ¥i € {1,2, -k}, where the number of classes k > 2,

y= max([{x; :y; = 1} ], [{xi :yi =2} [, [{xi 1 yi = k}|)
Sl oy =i}

The majority ratio can take a wider range of values in multiclass
classification, and its value is influenced by the class imbalance present
in the data. Generally, the larger the majority ratio, the more negative
impacts it can have on machine learning. This is because the ML model is
more likely to lose its learning capabilities by classifying almost all
minority samples as the majority class.

It is important to note that the majority ratio of the training data may
not necessarily be the same as that of the test or validation data in
machine learning, especially when the data has a limited number of
minority observations. In such cases, the majority ratio of the training
data should be replaced by that of the test or validation data when
calculating classification metrics to ensure accurate performance eval-
uation of the model.

%)

(6)

2.3.2. Imbalanced point

An imbalanced point refers to a learning state in which the ML model
© loses its learning capability by predicting all minority samples as
majority ones in imbalanced or even general learning. This is technically
an overfitting state where the model is overfitted to the majority type
data. Without loss of generality, we can describe this phenomenon under
binary classification as follows.

Imbalanced point. Given training data X, = {x;,y:}1~1,y: € { -1,1}
in binary classification with the majority ratio y, in which the majority
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type is the positive type: ‘+1' under an ML model ©, )A‘(x|®,Xr) is the
prediction function built under the model © using the training data. The

ML model is said to reach an imbalanced point, provided f(x\@.,X,) =
+1 for Vx whose label is unknown.

In other words, at the imbalanced point, the ML model will classify
all majority samples correctly but all minority samples incorrectly. The
following lemma states that the special values of classic metrics at the
imbalanced point.

Lemma 3. The classic metrics have the following special values at the
imbalanced point in binary classification with majority ratio y, assuming the
majority type is positive. These values are accuracy a =y, sensitivity s = 100

%, specificity p = 0 %, and F1 score F1 = +1

Proof. We assume there are N samples in query under the ML model ®
at the imbalanced point, then we have TP = N x y, FN = 0, TN = 0, and
FP = Nx (1—y). This is because all majority samples, which are
assumed positive, are correctly predicted: TP =N xy and TN = 0.
Similarly, all minority samples are falsely predicted: FP = N x (1 —y)

and TN = 0. Therefore, the learning accuracy a = % =
Nxy _ P ring TP Nxy e s
NxyiNx(1—) — 7 Similarly, precision = .5 = WM =y, sensitivity

_TP _ _ Nxy _

0,
TP+FN — Nxy = 0%. Moreover,F1 =

s = = 100%, and specificity p =

TP _ Ny 7
TP+(ENTFP)/2 — Ny+(Nx(1-7)/2 ~ 7+1°

The Lemma 3 states that classic metrics such as accuracy, precision,
and F1 score become biased and lose their interpretability when
assessing machine learning results on imbalanced datasets. This is
especially true when the majority class ratio (y) is very high. In such
cases, these metrics may appear to be good (e.g., 90 % accuracy, 94.73 %
F1 score, 100 % sensitivity, and 90 % precision), but they can be
deceptive as they do not reflect the true learning status. Essentially, the
model is only making a majority class prediction, regardless of the input.

On the other hand, the following theorem shows that d-index can
provide more interpretable and transparent learning assessment at the
imbalanced point. The d-index overcomes the bias of the classic metric
by reporting the true learning status. By doing so, it provides a clear
indication of whether the model has learned to differentiate between the
minority and majority classes or is merely predicting the majority class.

TN+FP

Theorem 3. Binary imbalanced point theorem. Given an implicit pre-
diction function f(x) :x—{—1,1} constructed from training data X, =
{xi,yi}1L, with the majority ratio y, under the ML model ©, then at an
imbalanced point, the ML model has the d-index d = log, ( (1+7) )

Proof. Without loss of generality, we assume the majority type is
positive at the imbalanced point. We have accuracy o = y sensitivity s =
100%, and specificity p = 0% according to the Lemma 3, then the d-
index value:

3 3(1+
d=1log,(1+7)+ logZE = log, (%) 7

Imbalanced point detection using d-index. The d-index is a more
appropriate measure than traditional classification metrics for detecting
the imbalanced point in imbalanced learning. This is because the d-
index is calculated as a function of the majority ratio y, making it a more
accurate measure in such scenarios. For instance, when vy is 90 %, an F1-
score of 94.74 % and accuracy of 90 % may suggest that the model has
good learning performance. However, a low d-index value of 1.5110
indicates that the model’s performance is actually poor.

2.3.3. Imbalanced point generation

It’s worth noting that not all imbalanced learning scenarios will lead
to the occurrence of the imbalanced point. However, its appearance is a
clear indication that the machine learning model has failed to handle the
imbalanced data. In general, the higher the majority ratio, the more
likely the imbalanced point will occur. Once the imbalanced point is
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generated, the learning process fails and becomes trapped in a special
overfitting state. This overfitting state can result in the machine learning
model becoming “too rigid” to recognize any minority samples, leading
to poor classification performance on these samples.

We employ a k-NN model to illustrate how the imbalanced point is
generated in imbalanced learning. For an incoming test sample, all its
nearest neighbors in k-NN will have more majority samples than the
minority ones because of imbalanced data. Thus, an incoming sample
will be classified as the majority type inevitably or at least with a very
high likelihood no matter what kinds of voting schemes employed.
Therefore, all test samples will be classified as the majority type. Finally,
the k-NN learning accuracy will be the majority ratio of the test dataset,
which will be the majority ratio y of the training dataset or approximate
it.

Approximately imbalanced points (AIPs). In practice, the imbal-
anced point may appear as an approximately imbalanced points (AIP)
under an ML model, i.e., accuracy will be approximately the majority

ratio y and d-index will be close to log, (3““ ) This is because the ML

model may classify few majority samples as the minority type or vice
versa in learning.
For example, if the training dataset has the majority ratio y = 0.92,

then its imbalanced point will be reached d-index log, (3““))‘ —_—
14

1.52 with accuracy 0.92 under an ML model according to the Theorem 3.
However, when some ML model achieves d-index 1.51 with an accuracy
0.89, such an AIP is still an imbalanced point practically. The following
theorem estimates the range of d-index under imbalanced data classi-
fication, where the d-index touches its lower bound at the imbalanced
point or AIP.

Theorem 4. The d-index has the following range when the training dataset
has a large enough majority ratio (e.g., y > 75%) under an ML model ©,

logz(w> +e<d<2 8

where |¢] > 0 is a small ratio related to the model ®. The better the
model’s learning capability, the more likely that d-index move right
with respect to the imbalanced point’s d-index.

Proof. The worst situation will be that the prediction function f(x)
built from the training dataset would misclassify all the minority sam-
ples incorrectly but all the majority samples correctly, i.e., accuracy a =

7, d =log, 3(1“ , and the ML model attains the imbalanced point.

However, there exists a likelihood that few majority samples might
be misclassified due to unpredictable nonlinearity or artifacts during the
ML process. At the same time, some minority samples can be also
correctly learned in the procedure. If the former had more contributions

to the learning results, then d-index would be < logz( (L47) )shghtly
because the decrease of the accuracy and sensitivity will be more than

the increase of the specificity, i.e., ¢ < 0. Otherwise, d-index would be >

10g2< (Liy) ) because £ > 0. Besides the characteristics of the imbalanced

dataset, the better the ML model, the higher likelihood its d-index moves
to right.

According to the previous results, we have the following d-index
estimations of the AIP and the imbalanced point under the extremely
imbalanced binary classification.

Corollary 1. Given training data X, = {x;,yi}{*1,%i € R y; e {-1,1}
with the majority ratio y > 50% in binary classification under the ML model
O, if there exists an AIP, then its accuracy and d-index will be close to the

majority ratio y and logz( (L) ) respectively.

Extremely imbalanced cases in binary classification. Since d-
index is the function of the majority ratio y at the imbalanced point:
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d(y) = log, (3“;”), it will approach log,3(1.5850): limlog, (@) -

1.5850 at the imbalanced point in the extremely imbalanced binary
classification, in which the majority ratio y—1.

2.3.4. Imbalanced point generation under non-imbalanced data

It is worth noting that an imbalanced point can even be generated
under non-imbalanced data. The non-imbalanced data refers to those
data with a majority ratio close to 50 % (e.g., 55 %). While technically
considered balanced data, it is possible for certain machine learning
models to generate an imbalanced point in these cases. To illustrate this
point, we will use support vector machines (SVMs) as an example, given
their importance in machine learning.

The following theorem highlights that SVM can generate an imbal-

anced point even when the input data is non-imbalanced data, provided
that the kernel matrix is an identity or approximately an identity matrix.
This anomalous learning state can be difficult to detect using traditional
metrics like accuracy, but d-index offers a straightforward way to
identify it.
Theorem 5. Imbalanced point generation under SVM. Given training
data X, = {x;,yi}1~1,%; € R%,y; € { —1,1} under binary SVM classification
with a kernel k(x,y), let f(x) :x—{ — 1,1} be the prediction function con-
structed in training. If the SVM kernel matrix K is an identity or approxi-
mately identity matrix, i.e., Vx;,X; € X,i # j, Ky = k(x;,%;) 0, and Ky =
k(xi,x;) =1, then there exists an imbalanced point in SVM learning, i.e., for
Vx with an unknown type, f(x) = +1, if we assume the majority type is the
positive “+1'.

Proof. Given training data X; = {x;,¥i}i q.% € R%, y; € { —1,1}, the
SVM model seeks the optimal hyperplane w'¢(x)+b by finding the
normal vector w € R? and offset b € R! by solving the quadratic pro-
gramming problem:

. 1 T m
min,, EW w +CE;:1§“ weR! & ERDER

s.t.yi(nga(x,») + b) >1—¢&,6>0i=1,2-m,

9

where &;,i = 1,2---m are slack variables, C > 0 is the penalty term, and
¢(x) is the function mapping input data into the high-dimensional Hil-
bert space, where k(x;,x;) = ¢(x;) "o (x;). Thus, the SVM prediction
function is f(x) = sign(31 ayik(x;x) +b), where a; > 0 are the solu-
tions of the dual problem of the original quadratic programming
problem,

1
max, — 5271:12;:1)}%,{(“‘7”xf)aiaf + Zilai

s.t.Zila,-y[ =0,0<a;<C,i=1,2--m

(10)

Since non-diagonal kernel matrix terms are zero or approximately
zero, i.e., k(xi,x) 0, the classification result will only depend on the offset

term b, i.e., f(x) = sign(b). The offset b can be determined by the normal
vectorw = > 1 aip(X;)y;, i.e., b =3 (WTg(x;) +w g(x_), where x, and
Xx_ are two support vectors with + 1 and —1 labels respectively, i.e.,

1 m m
b= —3 (Zjlajyjk(xj7x+) + Zj]afyjk(vax)> an

Since the kernel matrix is an identity or approximately identity
matrix: k(x;,x,) 0, k(x;,x_) 0, k(x;,x,) = k(x_,x_) = 1, we have b=
—1(as —a_), where a, and a_ are the alpha values corresponding to the
two support vectors. Moreover, we have the following trivial problem by
applying k(x;,x;) 0, for i # j and k(x;, x;) = 1 to the original dual:
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I—=m m
max, — = E oo+ E L
2L ai=1 i=1

s.t‘zyx:la[y[ =0,0<a,<C,i=1,2:'m

12)

The trivial dual exists solutions: a, ==, a_ ===, where m, = [{x; :
¥i=+1}|, mo = |{x;:y; = —1}|. Thus, we have the final offset b =

my—m_

me M- and prediction function flx) = sign (") = sign(m, —m_).

The prediction function of imbalanced learning implies that a query
sample’s class type is determined by the majority class in the training
data. If the majority class is positive, then every query sample will be

classified as positive (+1), i.e., for Vx with an unknown type, f(x) =-+1,
regardless of its actual class. This generates an imbalanced point, where
all samples are classified as the majority class.

This type of imbalanced point generation under SVM occurs
frequently in high-dimensional omics data when the Gaussian kernel is
not properly set. For example, when the parameter 7 is set improperly

small (e.g., 7=0.5) in the Gaussian kernel: k(x,y) = e~*  the
corresponding SVM kernel matrix will become the identity matrix or
approximately one because of the large pairwise distance between omics
samples caused by the molecular signal amplification mechanism [27].
As aresult, even non-imbalanced data can generate an imbalanced point
because all samples are classified as the majority type.

As an example, we applied SVM to a breast cancer omics dataset
[27], consisting of 97 patient samples across 24,188 genes, with 46
patients exhibiting 5-year metastasis and 51 patients without. Although
the dataset has a majority ratio of only 52.58 %, we observed the gen-

eration of an imbalanced point under SVM with the Gaussian kernel k(x,

y) = e Ix¥"/2 ynder the 5-fold cross validation. Specifically, all mi-
nority samples were classified as the majority type, resulting in a d-index

of d =log, <w =1.1945, accuracy a = y = 0.5258, sensi-

) y=51/97
tivity s = 1.0, and specificity p = 0.0. This highlights that even non-
imbalanced data can lead to an imbalanced point under SVM.

2.3.5. The difference between the imbalanced point and breakeven

Both the breakeven state and imbalanced point describe anomalous
states in classification where an ML model loses its learning capabilities.
However, they are caused by different reasons and occur in different
datasets. The breakeven state is mainly caused by the ML model being
unsuitable for the input data, whether balanced or not. On the other
hand, the imbalanced point is primarily caused by the high majority
ratio in imbalanced data, along with improper parameter settings in the
ML model (such as in SVM). The breakeven state can be considered the
“inflexion point” at which underfitting occurs, while the imbalanced
point is the state at which overfitting occurs and the ML model can only
recognize the majority type. In this case, the learning process is
“hijacked” by the majority samples, and the ML model can become “too
overfitted” to recognize the minority samples.

Traditional classification metrics lack enough sensitivity and good
interpretability to distinguish the two learning states well because they
generally only reflect a single learning perspective. However, d-index
can model and interpret them accurately and detect the anomalous
states sensitively because it explains and models learning behaviors
from more comprehensive perspectives. To some degree, with the help
of d-index, the two new concepts would contribute to interpreting ML
results more accurately and rigorously.

2.4. D-index is more representative and explainable

The proposed d-index also demonstrates its superiority to widely
used non-accuracy measures such as AUC and MCC in monitoring
imbalanced learning by providing interpretable assessment. For
example, let us consider an ML model © that produces TP = 90, FN = 0,
TN = 0, FP = 10 results under a majority ratio: y = 0.9 for 100 samples
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in query. The accuracy (90 %), sensitivity (100 %), F1 score (0.9474),
and precision (0.9) values indicate good performance, while the speci-
ficity (0 %) and AUC (0.5) values suggest the opposite. However, the d-
index value of 1.5110 indicates that it is a poor performance case.

Compared to d-index, AUC is less informative because it cannot
distinguish between the breakeven and imbalanced point states, both of
which have AUC values of 0.5. However, d-index can differentiate be-
tween these two states, with values of 1.1699 and 1.5110 + &, respec-
tively, as per Theorem 4. Thus, d-index provides a more comprehensive
and informative evaluation of the two learning states compared to the
AUC metric. The d-index not only includes information from AUC,
which is the average of sensitivity and specificity, but also considers the
overall classification performance.

In addition, compared to MCC that takes values in [-1,1], d-index
that falls in (0,2] is more intuitive and explainable. It is built upon the
three widely used measures accuracy, sensitivity, and specificity. On the
other hand, MCC can be viewed as a special discretized version of the
Pearson correlation for binary variables [28]:

TP x TN — FP x FN

MCC = (13)
/(TP + FN)(TP + FP)(TN + FP)(TN + FN)

Despite MCC’s utility, its formula’s complexity often renders it less
intuitive to interpret. Furthermore, MCC cannot differentiate between
the breakeven and imbalanced point, returning zero values for both
scenarios. This inability makes MCC less effective in discerning these
unique learning states. Conversely, as highlighted before, the d-index
distinctly values these learning states, proving it more representative
than both AUC and MCC.

Furthermore, the d-index is easy to understand and explain
compared to the less utilized metric GEN, defined by the formula: CEN =

c c Cpj . .
Zilej:lPijlog(p“éU>7 where ¢ is the number of classes, p; is the

probability of class i being predicted as class j, p;; is the marginal
probability of the true class being i, and p. ; is the marginal probability
of the predicted class being j. Besides its complicated calculation, the
range of the CEN depends on the number of classes, meaning that the
CEN values are not directly comparable across datasets with a different
number of classes. Therefore, it is almost impossible to use it to detect
the breakeven and imbalanced points.

2.5. Multiclass d-index

We extend d-index to the multiclass by averaging the local d-index
values for each class in the multiclass. The extension consists of the
following three steps. The first step redefines the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values for each
class.

Given a classiin total k classes: A = {1,2,---k}, we define the samples
belonging to the class i as positive and the samples belonging to other

classes (—i) as negative respectively. Suppose j?(x) is the prediction
function built under an ML model © using training data X, = {x;,yi}1";,
¥i € A. We have the following definitions of TP, TN, FP, and FN for each

classi=1,2, ---k. Given test data X; = {xj’,yj/};:l, yJ € A, we have

o tp;: TP of the class i: the number of samples belonging to class i
correctly classified as class i, i.e.,i—1i,

zpi:’{x;-if()?/):Myf”:i}’ -

o fp;: FP of the class i: the number of non-i class samples falsely clas-
sified as the class i, i.e.,—i—1,
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for = {5 :F() = iny i} | (15)

e tn; : TN of i: the number of non-i class samples correctly classified as
non-i class, i.e.,—i——i

tn; = Hx}:]?(x/) #i/\y};éi}‘ (16)

o fn;: FN of i: the number of class i samples falsely classified as the non-i
class, i.e.,i—»—i

= {7 #1031 a7

i +im;
mi+p;+fpi+fny?

and d-index

The second step calculates the local accuracy o; =

sensitivity s; = fﬁ, specificity p; = m,%fp,’
d; = log, (1 + a;) +log, (1 +*32) for each class i € A:
The third step calculates the final d-index as the expected value of the

local d-index values for all classes as

d= %Z:;] (log2(1 +a) + ]ng(l +¥>) e

2.6. Breakeven state in multiclass classification

Breakeven state in multiclass classification for a multiclass ML
model O is a state in which the model classifies a sample as one of labels
in A = {1,2,---k} with an equal likelihood. For a sample x with a label
y € A, the prediction function f(x) of the ML model ® maintains
Pr{f(x): 110} = Pr{f (x)=k|© } =} in prediction. The d-index of an
ML model under the breakeven in multiclass classification is 2log, (¥1)
by extending the previous result in binary classification.

Lemma 4. The d-index is 2log, (%2), where k is the number of classes:
A ={1,2, .-k}, if an ML model is in the break-even state under multiclass
classification.

Proof. According to the definitions of multiclass d-index and break-

even, we have local accuracy, sensitivity, and specificity for each class
i€A a;=s;=p;=1 Then the d-index:d = %ZLI (logy (1 +14) +
logy (1+7)) = 2logy (¢1).
Theorem 6. The range of d-index in multiclass classification is
(2log, (51),2], where k is the number of classes: A = {1,2,-k}. If we
assume no underfitting in learning. When d-index < 2log, (&), which is the
d-index of the breakeven state, the ML model encounters underfitting.

Corollary 2. An ML model © is more likely to encounter underfitting in
multiclass classification with an increase in the number of labels.

Theorem 6 states that the range of multiclass d-index values falls
between (logz’ik1 ,2], and its proof is omitted for simplicity. This suggests
that multiclass classification in ML models is more likely to encounter
underfitting due to the lower d-index cutoff at the breakeven state. For
instance, when k = 3, the breakeven state is characterized by d-index
d = 2log, (%) 0.8301. If the d-index is less than d = 2log, (3), the model
will encounter underfitting for 3-class classification. Similarly, for 4-
class, 5-class, and 6-class classification, the breakeven d-indices will
be 0.6439, 0.5261, and 0.4448, respectively. As the breakeven d-index
cutoff decreases with an increase in the number of classes, it suggests
that an ML model is more likely to encounter underfitting in multiclass
classification with an increase in the number of labels.
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2.7. Multiclass imbalanced point d-index estimation

We have the following d-index estimation at the imbalanced point in
multiclass classification.

Theorem 7. Multiclass imbalanced point theorem. Given an implicit
prediction function jA‘(x) : x—A ={1,2---k} constructed from training data
Xr = {xy,¥i}i1, Y € A, with the majority ratio y(e.g.,50%), under the ML
model ©, then at an imbalanced point, the ML model has the following d-
index:

diﬁ%{fﬁkz—m<g +b&<;1+ﬂ>

Proof. Without loss of generality, we define the label ratio y; =
|{xii}’i:j} |
>t fo=i} |
total k classes follow the relationship: 0 < y; <y, < -+ <y, < 1, where

the majority count ratio y = y,.

At the imbalanced point, all the first k-1 classes will be recognized as
the majority type, denoted as i — k where i ranges from 1 to k-1. If we
assume there are m total samples in the classification, then the True
Positive (TP) and False Positive (FP) values for class i will be 0, repre-
sented as tp; = fp; = 0.

The False Negative (FP) value for class i (i # k) can be calculated as
fn; = my;, because all samples belonging to class i, which is my;, are
falsely classified as the majority type k. Similarly, the True Negative
(TN) for class i can be calculated as tn; = m —my;, because all samples not
belonging to class i, which is m —my;, are correctly classified as —i, which
is the majority type k. Therefore, we have the confusion matrix C; for
class i,i # k,

_ [t foi) _ 0 0
€= <mi f”i) - (m(l -7 my,.> e

Then, we calculate the local accuracy, local sensitivity, and local
specificity for class i as follows. Since there are no True Positives for that
class, and all its samples are falsely classified as the majority class k. The
local accuracy for class i only depends on the False Negative rate, which
is the proportion of samples from class i that are classified as k. Thus

0;

19

for class j = 1,2---k. We also assume the label ratios of the

Lo _q . it s _
local accuracy o; = ™00 = 1 - local sensitivity: s; = ST =

and local specificity p; = m'("l(l;ﬁo = 1. Finally, we calculate the local d-
index for class i as

3
= togs2 ) +loes 3 @1

Similarly, when i = k, we have the confusion matrix Cy for class k :

_ (e for) _ (mre m(l—y)
G = (tnk jhk>‘* < 0 0 (22)

We then calculate the local accuracy, local sensitivity, local speci-
ficity, and local d-index for class k as ax = =Y Sk = %: =1,px=
oty = 0, and d = log, (1 +7,) +log, (3) correspondingly.

Finally, we calculate the expected value of the local d-index values
for all classes to get the final d-index that assesses the overall quality of

the ML model’s learning performance across all classes.

1 - 3 3
d= % |:Zj.(1] <10g2 (2—7:) +log, (5)) +log, (1 +7,) +1log, <§> } (23)

After simplification, we have d= [log2 {H;:ll (2- 71’)(%)] +

my+0

log, 3(1+7)) ] , where the majority ratio y = y,.

The theorem suggests that the d-index in multiclass classification, at
the point of imbalance, will increase as the majority ratio y increases.
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For instance, in a 3-class classification, the d-index at the imbalanced
point is 1.3182 when y; =y, = 0.25, and y3 = 0.5. However, it reaches
1.48 when y; =y, = 0.1, and y3 = 0.8. It means the latter has a higher
degree of overfitting at the imbalanced point.

It is worth noting that the majority ratio y does not have to be very
large (e.g., >50 %) to generate an imbalanced point in multiclass clas-
sification, but it should large enough compared to } for a k-class clas-
sification. For example, in a 3-class classification problem, the
imbalanced point can be generated under a majority ratio y = 0.49 and
other two minority ratios are about 0.24 and 0.27. Additionally, it is
possible to generate more than one imbalanced point in a multiclass
classification problem if some classes have a considerably larger label
ratio than others.

The following corollary highlights the value of the d-index in the
extremely imbalanced case of multiclass classification, where the ma-
jority ratio y approaches 1, and the minority ratios y;—0 fori =0,1,2---k.
The corollary shows that the d-index value in such scenarios is consistent
with the previous binary case.

Corollary 3. D-index in extremely imbalanced cases in multiclass
classification. The d-index in the extremely imbalanced cases in multiclass
classification, where the majority ratio y—1 and other minority ratios y;—0,
fori=0,1,2--k, approaches log,3 = 1.5850.

3. Results
3.1. Data

In this section, we showcase the superiority of the d-index over
traditional classification metrics in providing explainable assessments
for machine learning (ML). To demonstrate this, we utilize four imbal-
anced datasets from various domains, including natural language pro-
cessing (NLP), FinTech, business, and medicine. The datasets, available
at https://github.com/hank08819/DINDEX, were collected by the first
author and have not been explored in any previous works. Table 1 il-
lustrates the details of the four datasets, where the majority ratio refers
to the ratio of the entries of the majority class with the most counts
relative to the total number of entries in the dataset. The parameters n
and p denote the number of observations and features, respectively.
Specifically, we highlight the advantages of the d-index in robust model
selection, sensitive monitoring of imbalanced learning, and detection of
learning singularity. Furthermore, we illustrate how to differentiate
learning performance under the same d-index values for support vector
machines (SVM) for the simulated credit risk data.

3.2. Robust model selection using d-index

We showcase how the d-index can effectively enhance model selec-
tion by providing a comprehensive and explainable assessment of
learning performance. To demonstrate this, we employ the imbalanced
NLP dataset IB-EMODB, derived from the benchmark German emotional
dataset EMODB used in speech emotion recognition [9]. The original
EMODB dataset contains 535 sentences (audio files) spanning seven
distinct emotion categories. The subset we utilize, IB-EMODB, includes
300 spoken sentences that are grouped into four emotional categories:
anger (A), boredom (B), disgust (D), and fear (F). Of these, the anger (A)
category is the most prevalent, constituting 42.33 % of the total

Table 1
Four datasets.

Dataset (n,p) Majority ratio Classes Field
IB-EMODB (300,54) 42.33 % 4 NLP
Credit risk (150,000,11) 93.05 % 2 Fintech
Simulated credit risk (1670,6) 92.22 % 2 Business
Ovarian (266,20531) 98.50 % 2 Medicine
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sentences. Audio files file is characterized by 54 features obtained
through Mel Frequency Cepstral Coefficients (MFCC) and other spectral
feature extraction techniques. More feature extraction details can be
found in the supplemental materials. Table 2 presents the distribution of
the sentences across the various emotions: anger (A) at 42.33 %,
boredom (B) at 27 %, disgust (D) at 7.67 %, and fear (F) at 23 %.

Fig. 1 illustrates the t-SNE (t-distributed Stochastic Neighbor
Embedding) visualization of this multiclass dataset, revealing that the
various emotions are relatively well separated [29]. Nearly every class
forms its own distinct, well-bounded local clusters in the t-SNE
embedding space, despite some scattering observed among these clus-
ters. Notably, only a few samples from different classes are intertwined.
This visualization showcases the good separability of the dataset, sug-
gesting that ML models hold the potential to deliver reasonable, if not
excellent, performance on it.

To demonstrate the superiority of the d-index in model selection, we
compare the learning performance of six widely used ML models on this
dataset. For this purpose, we partition the dataset into 80 % training and
20 % testing data for each model. The ML models used in this compar-
ison include an SVM with a Gaussian kernel, random forests (RF) with
500 ’gini’-based trees capped at a depth of 20; extremely randomized
trees (ET) with 500 non-bootstrapped trees also limited to depth 20;
deep neural networks (DNN) with Ly regularization (x = 0.0001), having
hidden layers of 100, 50, and 25 neurons; linear discriminant analysis
(LDA) employing ’svd’ solver with no shrinkage; and Gaussian-
distributed NB [30-35]. To assess the learning performance of these
models, we calculate the d-index as well as classic measures such as
accuracy, sensitivity, specificity, precision, and negative prediction ratio
(NPR) for this multiclass dataset.

The d-index provides a more comprehensive and explainable
assessment of learning performance than traditional measures, leading
to more accurate model evaluation. Table 3 presents a comparison of the
performance of the six ML models based on both the d-index and
traditional classification metrics. Using traditional measures, it can be
challenging to evaluate the models’ performance in an interpretable
manner. For example, it is unclear whether SVM outperforms DNN and
LDA or vice versa, as SVM has higher accuracy and precision, while DNN
and LDA have better sensitivities and nearly equivalent specificities
compared to SVM. However, the d-index comparison resolves this issue
by demonstrating that DNN would slightly outperform SVM and LDA,
based on their d-index values: 1.9078 (DNN) > 1.9050 (SVM) > 1.9015
(LDA). Similarly, the d-index of NB shows it outperforms ET and RF,
despite ET having better accuracy than RF and NB. Furthermore, based
on the d-index, it is evident that DNN is the best model for this NLP
dataset. Therefore, the d-index offers a more straightforward and
comprehensive evaluation in model selection, owing to its good
interpretability.

Fig. 2 provides a visual representation of the comparison between
the d-index and traditional classification measures for multiclass clas-
sification. The left plot compares the performance of the ML models
using the 5 traditional classification measures. However, it can be
challenging to evaluate the performance of the models using individual
measures like accuracy or all possible measures. This is because indi-
vidual measures do not fully reflect all aspects of learning, and
combining them can lead to inconsistent evaluation of the models.

On the other hand, the right plot of Fig. 2 evaluates the performance
of the models using their d-index values. It presents the performance of

Table 2
The IB-EMODB dataset information.

Emotion type The number of observations

Anger (A) 127
Boredom (B) 81
Disgust (D) 23
Fear (F) 69
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the ML models more clearly based on their d-index values in model se-
lection, where DNN > SVM > LDA > NB > ET > RF. It avoids the
possible bias from the accuracy measure and confusion that may arise
when using all the traditional classification measures.

3.3. Monitoring imbalanced learning using d-index

We use two imbalanced credit risk datasets to demonstrate how the
d-index can be employed to monitor the behavior of ML models in
imbalanced learning scenarios. The first dataset is a large-scale credit
risk dataset, privately collected from small businesses. The second
dataset, referred to as “simulated credit risk data,” is a small credit risk
dataset derived from a classic simulated credit risk dataset [36].

The first imbalanced credit risk dataset comprises of n = 150,000
credit records across p = 11 variables obtained from small businesses
with no more than 20 employees. To obtain a clean dataset, we remove
missing data which results in n = 120,269 observations. Out of these,
111,912 observations correspond to non-delinquency (‘good credit’)
and 8,357 to delinquency (‘bad credit’) samples. The majority type ratio
for this dataset is y = 93.05 %. Table 4 presents all the variables
including 10 general variables and one dependent variable ’de-
linquency’ indicating the credit risk status.

The t-SNE visualization in Fig. 3(a) reveals the imbalanced nature of
the delinquency and non-delinquency data, highlighting the risk of the
majority data potentially dominating the learning process. Additionally,
the variable visualization demonstrates that the two groups of data
follow different probability distributions. Specifically, Fig. 3(b) presents
a violin plot of the 10 variables in relation to delinquency and non-
delinquency, with data being subjected to a log transformation. The
plot indicates that each variable exhibits distinct distributions in terms
of delinquency and non-delinquency. For example, the delinquency
samples have a higher median revolving credit percentage than the non-
delinquency ones, although the latter have more large outliers in
revolving credit percentages. Similarly, the non-delinquency samples
have a greater number of outliers in capital reservations and monthly
income. Additionally, the non-delinquency type has a substantially
smaller number of entries with late payments of <=60/90 days or
longer.

We employed 4 ML models: k-NN, random forests (RF), gradient
boosting (GB), extremely randomized tress (ET), and 4 deep learning
models: deep neural networks (DNN), convolution neural networks
(CNN), long short-term memory (LSTM), and transformer to handle this
large imbalanced dataset [37-41]. The k-NN employs 5 neighbors with
uniform weights, using the Euclidean distance and an auto-selected
search algorithm. The GB operates with 100 trees, a depth of 3, a 0.1
learning rate, and employs the Friedman mean squared error for de-
cisions. The CNN features two convolution layers of 128 and 64 nodes,
followed by a pooling layer, flatten layer, and a dense layer with 20 %
dropout, using 'relu’ and ’softmax’ activations. The LSTM has 5 sets of
paired LSTM and dense layers with 64 and 128 nodes, accompanied by a
flatten layer and 35 % dropout. The transformer integrates two
embedding layers, two transformer blocks with multi-head attentions,
two flatten layers, and two feedforward layers. All deep models adopt
cross-entropy as their loss function. The RF, ET, and DNN maintain
earlier settings. To evaluate their performance, we partitioned the
dataset into 80 % for training and 20 % for testing purposes. Table 5
compares d-index and classic classification metrics of different learning
models on the dataset.

The d-index values of the learning models demonstrate superior
modeling capabilities compared to the classic metrics for imbalanced
learning. While accuracy, specificity, and NPR metrics indicate good
classification performance for all models, precision and sensitivity sug-
gest mediocre or poor performance. However, the d-index values suggest
that all models, except for LSTM, generate AlIPs, as they are close to the

imbalance point d-index log, (W) = 1.5339, as stated in Theo-
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Fig. 1. t-SNE visualization of the IB-EMODB dataset depicting four types of emotions” ‘Anger’, ‘Boredom’, ‘Disgust’, and ‘Fear’. The samples corresponding to the
’Anger’ emotion display a relatively more concentrated distribution compared to the other three emotions.

Table 3

The d-index values and traditional measures on the multiclass dataset.
Measures\Models SVM LDA DNN RF ET NB
D-Index 1.9050 1.9015 1.9078 1.8033 1.8447 1.8467
Accuracy 0.95 0.9167 0.9333 0.8833 0.9 0.8833
Sensitivity 0.8636 0.9242 0.9034 0.7576 0.8201 0.8598
Specificity 0.9830 0.9748 0.9792 0.9594 0.9646 0.9602
Precision 0.9534 0.8576 0.9375 0.9 0.9131 0.8490
NPR 0.9849 0.9711 0.9767 0.9630 0.9672 0.9590

rem 2. This reveals that the models generally fail to learn because only a
very small portion of minority samples are correctly predicted, as indi-
cated by their low sensitivities. Table 4 compares the d-index and classic
classification metrics of different learning models on the dataset, further
highlighting the superior performance of d-index values.

For instance, the sensitivities of k-NN and ET are extremely low, at
0.0473 and 0.0119 respectively, indicating that they only correctly
classify a mere 4.73 % and 1.19 % of minority samples, while mis-
classifying the remaining 95.27 % and 98.81 % of minority samples as

the majority type. In contrast, both k-NN and ET correctly predict 99.72
% and 99.96 % of majority samples. This suggests that these models
have a high tendency to recognize only the majority type, making them
unsuitable for imbalanced learning as they generate AIPs. Similarly,
while RF, GB, DNN, CNN, and transformer have slightly better d-index
values than k-NN and ET, they too fail at imbalanced learning. It is not
surprising to see that the self-attention mechanism in transformers
cannot contribute to performance enhancement. While self-attention
can enhance the model’s ability to identify complex patterns and re-
lationships in the data, it doesn’t inherently contribute much to
addressing the data imbalance issue, because attention may not be
synonymous with data representation.

On the other hand, the LSTM’s d-index of 1.7544 suggests that it is
significantly different from the d-index of the imbalanced point of
1.5339, indicating a somewhat acceptable performance in imbalanced
learning even though it correctly classifies only 55.45 % of the minority
samples. However, it would be nearly impossible to distinguish the
models’ different behaviors using only their accuracy values, which are
very close to the majority ratio: 93.05 %. Similarly, the weighted F1
score of 95 % obtained from this dataset falsely suggests that the
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Fig. 2. A comparative analysis of six ML models’ performance on the NLP multiclass dataset, utilizing both traditional classification measures (left plot) and their
associated d-index values (right plot). The d-index offers a clearer and more interpretable assessment for model selection. As depicted, the DNN model surpasses
others in both evaluation metrics, with the model hierarchy as follows: DNN > SVM > LDA > NB > ET > RF.
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Table 4
Credit risk dataset variables.
Variable Descriptions
Revolving Credit The percentage of revolving credit over the total credit limits.
Percentage

Capital Reserves

Num Late 60:
Debt Ratio:

Monthly Income ($):

Num Credit Lines
($1000):

Num Late Past 90:

Num Real Estate:

Num Late 90:

Num Employees:

Delinquency

Money reserved in account to pay contingencies (e.g.,
mortgage)

The number of late payments within 60 days
Borrower’s debt to asset ratio.

The monthly income of borrower

The total amount of credit lines

The number of late payments above 90 days

The number of real estates owned by borrower

The number of late payments within 90 days

The number of employees of borrower

1 means bad credit standing (delinquency) and 0 good credit

Neurocomputing 561 (2023) 126891

albeit the accuracy remains proximate to the majority ratio. Subplot (a)
delineates the classification results, while subplot (b) exhibits the evo-
lution of accuracy and loss metrics for the training and test datasets
throughout the first 20 epochs. One potential reason for the superior
results on this imbalanced dataset is the LSTM’s capability to capture
temporal dependencies in the data, facilitating a deeper understanding
of underlying patterns not immediately apparent when analyzing indi-
vidual data points in isolation.

3.4. Detecting different imbalanced learning behaviors for linearly
separable data

While imbalanced points or AIPs are common in many imbalanced
learning problems, their presence is not guaranteed in all cases. The

standing (non-delinquency)

learning performance is excellent. Furthermore, the MCC value obtained
from this dataset is 0.25; while this indicates a performance that is better
than random chance, it falls significantly short of excellence, demon-
strating somewhat limited expressive interpretative power compared to
the d-index. Thus, the proposed d-index shows good capability in
monitoring learning models’ behavior in imbalanced learning, offering a
more accurate interpretation of imbalanced learning compared to classic
classification metrics.

Fig. 4 further illustrates the classification report of the LSTM and the
accuracy and loss plots for both the training and test data over the initial
20 epochs. The data presented in the two subplots suggest that an LSTM
learning performance benchmarked at a d-index of 1.7544 is acceptable,

presence of AIPs or imbalanced points depends on various factors, such
as the ML models being used, the parameters set, and the data itself.
Interestingly, some imbalanced learning problems may be linearly
separable with one ML model but not with another, due to the presence
of AIPs, even if data is theoretically linearly sparable. Traditional clas-
sification metrics may not always be effective at detecting imbalanced
points, AIPs or other imbalanced learning behaviors for such data.
However, the d-index is a metric that can detect these behaviors with
sensitivity.

To illustrate this, we turn to the simulated credit risk dataset, char-
acterized by linearly separable data, utilizing the SVM as delineated in
[28]. Our preference for SVM over other deep learning models is
grounded in its deterministic and transparent nature, which guarantees
reproducible learning results — a crucial asset in analyzing imbalanced
learning behaviors. Although there is a minor risk of non-deterministic
results with SVM in the rare instances of ties, primarily when data
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Fig. 3. The visualizations of the credit risk data and variables. Fig. 3(a) illustrates the t-SNE visualization of the imbalanced credit risk dataset, where label in-
formation is particularly used in t-SNE manifold learning process for the sake of imbalance visualization. Fig. 3(b) shows the violin plots of 10 independent variables
after log transformation with respect to the delinquency and non-delinquency types. All variables demonstrate different probability distributions with respect to the

delinquency and non-delinquency.

Table 5

The d-index and classic measures of the credit risk dataset under different ML models.
Measures\Models k-NN RF GB ET DNN CNN LSTM Transformer
D-index 1.5555 1.6108 1.6026 1.5395 1.6134 1.6049 1.7554 1.6149
Accuracy 0.9309 0.9319 0.9336 0.9306 0.9324 0.9309 0.9319 0.9318
Sensitivity 0.0473 0.1732 0.1485 0.0119 0.1779 0.1620 0.5545 0.1817
Specificity 0.9972 0.9888 0.9926 0.9996 0.9890 0.9886 0.9407 0.9892
Precision 0.5587 0.5369 0.5994 0.6667 0.5587 0.5158 0.1796 0.5634
NPR 0.9331 0.9410 0.9395 0.9310 0.9413 0.9402 0.9890 0.9404
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Fig. 4. (a) illustrates the LSTM classification on the imbalanced credit risk dataset, where 55.45% minority samples and 98.90% majority samples are correctly
predicted. Fig. 4 (b) shows the accuracy and loss plots of the training and test data of the LSTM model during the first 20 epochs.

points align perfectly with the decision boundary, the likelihood re-
mains low, particularly with linearly separable datasets. In contrast,
deep learning models frequently encounter reproducibility issues,
largely stemming from the widespread utilization of Stochastic Gradient
Descent (SGD) for loss optimization, introducing an inherent random-
ness during weight updates, coupled with non-deterministic processes
inherent in GPU operations, and other factors.

3.4.1. Detect imbalanced points using d-index

The second credit risk dataset is a simulated dataset to analyze the
credit risk rankings of 1670 businesses from 12 industries. There are
1540 and 130 businesses across 6 variables ranked as good and bad
credits respectively. The majority ratio of this dataset is y = 92.22%.
The six variables include Working capital / Total Assets (WC/TA),
Retained Earnings / Total Assets (RE/TA), Earnings Before Interests and
Taxes / Total Assets (EBIT/TA), Market Value of Equity / Book Value of
Total Debt (MVE/BVTD), Sales / Total Assets (S/TA), and Industry
sector labels from 1 to 12 (Industry).

Fig. 5 presents the t-SNE visualization of the dataset and the corre-
lation matrix visualization of all the variables [29]. The t-SNE plot shows
that the dataset is linearly separable through orthogonal separation.
Moreover, the strong correlations between variables suggest that this
dataset could achieve good learning performance even though it is
imbalanced with a 92 % majority ratio. However, we have also
discovered that SVM can completely lose its learning capabilities under
certain special kernels, such as the Sigmoid kernel, due to the creation of

imbalanced points or AIPs. This indicates that imbalanced learning can
exhibit either linear separability or the generation of imbalanced points
under different parameter settings for an ML model like SVM.

In our implementation, we use support vector machines (SVMs) with
PCA dimension reduction to predict credit statuses and achieve good
separations. This approach not only provides accurate predictions but
also enables effective visualization of the learning process through the d-
index. To train and test our model, we partition the data into 70 % for
training and 30 % for testing. We utilize four different kernels in our
SVM implementation: ‘linear’ k(x,y) = xTy, ‘Gaussian’ k(x,y) =
ey polynomial’  k(x,y) = (pxTy + 1), ‘Sigmoid’
k(x,y) = tanh(yx"y +1). The parameter 7 is set as 1/q where q is the
number of features of the dataset [30].

Table 6 presents a comparison of the four kernels used in SVM with
respect to the d-index and classic measures. Notably, the Sigmoid kernel
exhibits a d-index of 1.5064, which suggests the existence of an AIP or
imbalanced point. This is due to its d-index being close to the value at

the imbalanced point: log, <w>

and

= 1.5227. Furthermore, the re-

sults indicate that the F1 score is biased because it achieves a high score
of 0.9464 despite all the minority samples being wrongly classified as
the majority, as both the specificity and NPR values are 0 %.
Interestingly, it is almost impossible to detect when SVM loses its
learning capability under the ‘Sigmoid’ kernel by relying solely on classic
measures like accuracy (89.82 %), F1 score (0.9464), precision
(0.9036), and sensitivity (0.9933). However, the d-index can easily
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Fig. 5. The left plot presents the t-SNE visualization of the small credit risk dataset, wherein the two groups are clearly delineated as independent clusters. The right
plot illustrates the correlation matrix for all the variables within the dataset, revealing substantial correlations between most of them.

13



H. Han et al.

Table 6

The d-index and classic measures of the small credit risk dataset under SVM.
Measures\kernels Linear Gaussian Polynomial Sigmoid
D-index 1.9978 1.9978 1.9955 1.5064
Accuracy 0.9980 0.9980 0.9960 0.8982
Sensitivity 0.9978 0.9978 0.9956 0.9933
Specificity 1.0 1.0 1.0 0.0
Precision 1.0 1.0 1.0 0.9036
NPR 0.9796 0.9796 0.9960 0.0
F1 0.9989 0.9989 0.9978 0.9464

signal the anomalous learning status. In contrast, the other three kernels
achieve nearly perfect prediction ratios, as their d-index values are close
to 2. This observation suggests that imbalanced learning does not always
result in the imbalanced point or AIP. Instead, it may exhibit different
learning behaviors under varying parameter settings of the given ML
model.

3.4.2. Distinguish learning performance under the same d-index

While it is possible for two machine learning (ML) learning results to
exhibit the same d-index value, this occurrence is often unlikely, espe-
cially when different parameter settings are used under the same ML
model, such as SVM. However, if such a situation arises, how can we
further evaluate ML performance under the same d-index values? To
address this question, let us continue using the example of small credit
risk prediction with SVM.

Table 6 demonstrates that the linear’, ‘Gaussian’, and ‘polynomial’
kernels demonstrate almost the same d-index values. Notably, the first
two kernels have identical performance across all measures, including
the d-index. In cases where the d-index values are the same under SVM,
we can evaluate model performance by considering the number of
support vectors. Support vectors refer to observations on the boundary

» Bad credit
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of the optimal hyperplane built by the training data. A smaller number
of support vectors suggests better scalability and generalization of the
SVM model.

Fig. 6 visualizes the support vectors of the four kernels under SVM
learning. The ’linear’ and 'polynomial’ kernels have fewer support vec-
tors compared to the 'Gaussian’ and ’Sigmoid’ kernels. It is evident from
the visualization that the small number of support vectors under the
'linear’ and ’polynomial’ kernels can almost perfectly separate the two
groups of samples, but the former having a slightly larger d-index than
the latter. Although the ’Gaussian’ kernel achieves the same level of
learning performance, its large number of support vectors suggest that it
requires more effort to achieve similar results compared to the ’linear’
and ’'polynomial’ kernels. Such a high number of support vectors may
lead to poor scalability and generalization in learning. Therefore, the
'linear’ kernel performs the best due to its d-index and smaller number of
support vectors.

On the other hand, the southeastern plot of Fig. 6 illustrates the
impact of the imbalanced point on the 'Sigmoid’ kernel, where almost all
minority samples in the training data are incorrectly identified as sup-
port vectors. Consequently, SVM loses its ability to learn by mis-
classifying all minority samples in queries as the majority. Similar
results occur when replacing PCA with t-SNE.

3.4.3. Priori kernel selection

Knowing which kernel will achieve a good d-index and the least
number of support vectors before applying it to real SVM classification
remains an unsolved problem in SVM learning [31-32]. Although we do
not intend to provide a systematic answer to this question, we offer a
case study solution from an interpretable assessment perspective. Since
the learning capability of an SVM model relies on the representativeness
of its kernel matrix K € #™", we believe that a kernel matrix with
sparser eigenvalues would be more representative and able to generate
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Fig. 6. Visualization of support vectors in SVM classification under linear’, ‘Gaussian’, ‘polynomial’, and ‘Sigmoid’ kernels. The ‘linear’ and ‘polynomial’ kernels have
fewer support vectors compared to the ‘Gaussian’ and ‘Sigmoid’ kernels. Notably, the ‘Sigmoid’ kernel generated the imbalanced point in classification, causing SVM to
lose learning capabilities by incorrectly identifying almost all minority samples in the training as support vectors.
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fewer support vectors while achieving good d-index values. If the ei-
genvalues of the kernel matrix are sparse, it means that the data points in
the feature space can be represented using only a small number of
principal components. This implies that the data is low-dimensional, and
the decision boundary can be defined using a relatively small number of
support vectors. As a result, the SVM model can achieve good perfor-
mance with fewer support vectors, reducing the computational
complexity and memory requirements of the model.

The sparsity of the kernel matrix eigenvalues. To determine the
sparsity of the eigenvalues in the kernel matrix of an SVM, we sort the
top k (e.g., k > 100) eigenvalues in descending order: A1 > Ay > -+ > A
and evaluate their sparsity using the parameter ¢, which is typically set
to a very small value such as ¢ = 10~'2, We define the sparsity of the
eigenvalues of the kernel matrix K as p(¢), given by the equation:

ple)=|{1:A<ed €U VxR Kx=x}|/k 24)

Here, p(¢) measures the proportion of eigenvalues that are less than
or equal to &, relative to the total number of selected top eigenvalues (e.
g., k = 100). The higher the value of p(¢), the sparser the eigenvalues in
the kernel matrix, indicating that fewer support vectors are required to
define the decision boundary of the SVM. The sparsity of the eigenvalues
of the kernel matrix K is a good indicator of the quality of SVM learning.
Therefore, we have the following proposition.

Proposition 1. If the kernel matrix K of an SVM learning machine with
sparser top eigenvalues than those of the other kernel matrices, then the SVM
can produce better learning results with fewer support vectors.

The sparsity analysis of eigenvalues for kernel matrices is closely
related to the performance of SVM kernels. As depicted in Fig. 7, we
compare the top 100 eigenvalues of the linear’, ‘Gaussian’, ‘polynomial’,
and ‘Sigmoid’ kernels, where their sparsity values for e = 10712 are 0.98,
0.0, 0.59, and 0.0, respectively. Among the four kernels, the Tinear’
kernel has the sparest eigenvalues, achieving the best d-index with the
least number of support vectors. The ‘polynomial’ kernel has the second
sparsest eigenvalues and the second lowest number of support vectors,
with a d-index value that is only slightly lower than that of the ‘linear’
kernel. However, the ‘Gaussian’ and ‘Sigmoid’ kernels have denser and
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larger eigenvalues compared to the other two, indicating that they
require more support vectors to define the decision boundary of the
SVM.

3.5. Detect learning singularity problems

The d-index not only facilitates effective model selection, monitors
ML behaviors, and detects imbalanced points, but it also has the po-
tential to identify learning singularity problems. Despite the lack of
research on this important topic, identifying and addressing learning
singularity problems is critical to both ML theory and practice as they
widely exist in all AI and data science domains such as Al disease
diagnosis in medicine. Successfully solving these problems has the po-
tential to bring unprecedented impacts on ML theory, Al techniques and
various data science applications. However, due to the limitations of
existing ML theory, these problems are generally viewed as individual
’hard’ nonlinear problems, rather than recognized as a systematic
category of ML problems with distinct characteristics. This is mainly
because they are not easily detectable. To address this issue, we propose
a definition for learning singularity problems that takes into account
their unique characteristics.

3.5.1. The learning singularity problem

A learning singularity problem can be also called a ‘Non-Determin-
istic’ Imbalanced learning (NDI) problem that cannot be solved by
existing ML models or imbalanced learning handling methods (such as
resampling) due to the generation of an imbalanced point or AIP. It
remains unknown which ML methods can find a meaningful solution by
avoiding the generation of the imbalanced point or AIP. A learning
singularity must satisfy the following two conditions.

1. The imbalanced learning problem must fail almost all existing ML
models as well as imbalanced learning handling methods (e.g.,
resampling) by unavoidably generating an imbalanced point or AIP.

2. It can achieve an acceptable or even a good result when the knowl-
edge to be learned, such as the labels of the test samples, is fused in
training.
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Fig. 7. Comparison of the top 100 eigenvalues of kernel matrices for the ‘linear’, ‘Gaussian’, ‘polynomial’, and ‘Sigmoid’ kernels. The ‘linear’ kernel exhibits the highest
level of sparsity, with most entries close to zero. The ‘polynomial’ kernel shows the second highest level of sparsity. On the other hand, the ‘Gaussian’ and ‘Sigmoid’
kernels have much denser and larger eigenvalues compared to the other two kernels.
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It is important to note that there are various techniques available for
fusing knowledge into the training process. One common and relatively
simple approach, often misused by beginners in the ML field, is to
conduct resampling (e.g., SMOTE) on the entire dataset rather than
solely on the training data [42,43]. In other words, while there is a
’learning path’ to verify the ’learnability’ of a learning singularity
problem, it is still unknown whether a meaningful solution exists since
the problem typically fails existing methods by generating an imbal-
anced point or AIP. We provide the following formal description about
the learning singular problem.

Learning singularity problem. Given training data X, = {x;,yi}1';,
yi € A = {1,2---k} in classification with the majority ratio y, without loss
L{Xiiyl‘:f} |
> =i}
1,2---k. We also assume the label ratios of the total k classes follow the
relationship: 0 < y; <y, < -+ <y, < 1, where the majority ratio is from
classk,i.e.,y = y; > 1/k. Then an imbalanced learning problem is called
a learning singularity problem if and only if it satisfies the following

conditions:

of generality, we define the label ratio y; = for class j =

1) The prediction function f(x\@,Xr) constructed from any ML model ©®
will have f(x|®,X,) = k for each sample x in query with by gener-

ating an imbalanced point or AIP, i.e., d ~ log, (M) if k=2or

d = [log [T 2~ 1) @) +oga G (1 + 1) ] if k > 2.
2) If the knowledge to be learned, which are the label information of the
test data X; = {Xx, Y« }x_1, is fused into the training process, then 3 an

ML model @, and 7 > 0, such that the d-index of the model ® have

2log, (k+71> +n<d<2 (25)

Detecting a learning singularity problem can be challenging with
traditional classification metrics. This difficulty arises because such
metrics often lose interpretability in favor of providing a misleading
assessment of machine learning performance. Consequently, they may
not be able to accurately identify whether an ML model has reached an
imbalanced point or an AIP state, which is an essential step addressing
the learning singularity problem in both binary and multiclass classifi-
cation problems.

Moreover, validating the imbalanced point or AIP generation for an
input imbalanced data by trying all possible ML models and relevant
imbalanced handling techniques can be computationally prohibitive
[34]. It remains unknown which approach should be used to integrate
the knowledge to be learned in the training process.

We tackle the problem of detecting learning singularities by using the
d-index due to its good interpretability in detecting imbalanced points or
AlIPs. To avoid potential computing overhead, we select a set of repre-
sentative machine learning (ML) models and imbalanced handling
techniques, rather than including all of them. For example, the repre-
sentative ML models include basic shallow learning methods (e.g., k-
NN), kernel-based learning (SVM), ensemble learning (e.g., RF), and
deep learning (e.g., CNN). Similarly, we employ classic resampling
methods (e.g., ROS) to address data imbalance. We perform ROS
resampling for both training and test data to fuse knowledge during the
training process. Algorithm 1 presents our learning singularity problem
detection approach using the d-index. Without loss of generality, we
assume that the training and test data have the same majority ratio. If
the majority ratios are different, we use the majority ratio of the test data
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in the d-index calculation.
Algorithm 1: Learning singularity problem detection

Input: Training data: X, = {x;,yi}l1.y: € A = {1,2--k}
Test data: X, = {x. 3}, 5 € & = {1,2-k}

The majority ratio is y > 1/k and the majority class is k
The label ratio y; for classj = 1,2,k -1
Representative ML models:6;,65---0y

Imbalanced handling techniques g1 g2 - &

Tolerance ¢ (default 0.20)

Offset 7 (default 0.50)

Output: Learning singularity problem status:LSPsqes

1. LSPsaus<T

2. // representative ML models

3. for each e in 61,020y

4. dje—ComputeLearningDIndex(X;, e, X;)

5. // representative imbalanced handling techniques

6. foreachgin g & &

7. dj,,<ComputeLearningDIndex(X;,g, X, e)

8

. for din dy\Udj;,

9. ifk==2Ald - 10g2(3(12+7))\ >e

10.
11.

LSPgqps<F

Return LSPgqps

. _ 3
ik 20 Jd- fow I 2~ 10 3

12. <e

+ log, (%(1 + y))

13.
14.
15.
16.
17.

LSPyans<F

Return LSPgqps

for each ein 0y,0,---6y5

dfyse —ComputeDIndexUnderFuseknowledgelnTraining(X;, e, X,)
for d in djy

ifZlogQ(l%l> +n<d<2

Return LSPgqps
LSPgtarus < F
Return LSPgqps

18.

19.
20.
21.

3.5.2. Hdi-data-based disease diagnosis

We use HDI-data-based disease diagnosis as an example to apply
algorithm 1 to demonstrate learning singularity problem detection.

HDI (high-dimensional and imbalanced) data is a unique type of
imbalanced data that frequently arises in the field of biomedical data
science. Unlike traditional imbalanced data, HDI data is not only high-
dimensional, but also extremely imbalanced due to limited data re-
sources (such as rare disease subtypes) and acquisition limitations. A
typical HDI dataset, for instance, may contain 100 positive samples and
only 10 negative samples across a selection of 5,000 genes.

Ovarian data. The ovarian dataset comprises of RNA-seq data
collected from TCGA by the first author, consisting of 4 solid ovarian
tumors and 262 recurrent ovarian tumors across 20,531 genes. The
majority ratio of the dataset is 98.50 % (262/266), indicating that it is an
extreme HDI dataset with only 4 minority samples. In machine learning,
resampling techniques such as SMOTE are commonly used to handle
imbalanced data, especially to increase the quantity of minority
samples.

Fig. 8 illustrates the PCA visualization of the Ovarian dataset before
and after applying the SMOTE resampling procedure. The original
dataset contains 4 solid ovarian tumors and 262 recurrent ovarian tu-
mors, comprising a highly imbalanced dataset with only 4 minority
samples. As shown in the figure, the minority samples are almost
indistinguishable among the 262 majority samples. After applying
SMOTE, the minority samples are oversampled based on certain rules,
resulting in a significantly increased quantity of the minority samples.
However, the minority samples’ distributions become quite different
from the majority samples due to the specific resampling process of
SMOTE.
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Fig 8. The left plot shows the PCA visualization of the Ovarian dataset, where the four minority samples are indistinguishable from the 262 majority samples. The
right plot illustrates the effect of applying SMOTE resampling to the Ovarian dataset, resulting in a significant increase in the quantity of the minority samples (e.g.,
solid (SMOTE)). However, the distribution of the minority samples is noticeably different from that of the majority samples due to the specific resampling process

of SMOTE.

To apply Algorithm 1 and determine whether the ovarian data
classification is a learning singularity problem, we have chosen seven
representative machine learning models from various categories,
including shallow learning (e.g., k-NN), kernel-based learning (e.g.,
SVM with the ‘linear’ kernel), ensemble learning (e.g., RF, GB, and ET),
and deep learning (e.g., DNN and CNN) [35]. We partitioned the dataset
into 70 % training data with 186 observations, including 2 minority
samples, and 30 % test data with 80 samples, including the other 2
minority samples.

Table 7 presents the learning results of the seven selected ML models,
evaluated using classic metrics and d-index. As expected, all the models
produce the imbalanced point and achieve a d-index value of d =
log, (@) I 1.5668. The accuracy, sensitivity, and specificity

y=
are 97.5 % (the majority ratio), 100 %, and 0 %, respectively. This in-
dicates that all negative (positive) samples are misclassified (classified
correctly), resulting in TN = FN = 0. As a consequence, NPR is undefined
(nan) because NPR = TN/(TN + FN). Importantly, this finding is
consistent across different data partitions.

We have also observed the same imbalanced point with the d-index
of 1.5668 when using two commonly used imbalanced data handling
techniques, namely SMOTE and random oversampling (ROS), to
generate additional minority samples before training the ML models.
This finding suggests that while these techniques may increase the
number of minority samples, they cannot eliminate the risk of gener-
ating an imbalanced point in the classification results.

We further fuse the knowledge to be learned in training by con-
ducting resampling for the whole data before the train-test partition. We
find the ML models: GB achieves good performance by attaining d-index
1.9863 under SMOTE, and RF achieves d-index 2 under SMOTE and ROS
[33-34]. These findings suggest that the classification of HDI ovarian
data is a learning singularity problem according to Algorithm 1.

3.6. Imbalanced points under transformer models

It is worthy to examine the generation of imbalanced points under
deep learning models because almost all deep learning models seem to
encounter imbalanced points in both credit risk data and ovarian data
scenarios. We employ the state-of-the-art transformer model here as a
representative due to its efficiency and good scalability. This model is a
kind of deep learning architecture initially crafted for natural language
processing but has since found successful applications in a diverse array
of tasks well beyond sequential data. In our exploration, we discovered
that the transformer model encounters imbalanced points or AIPs as
readily as other deep learning models when applied to these two data-
sets. Moreover, we found that the d-index can offer a correction to the
potential biased perspectives that classic training and testing loss ana-
lyses might provide when imbalanced points are present.

3.6.1. Transformer

Leveraging self-attention mechanisms to parallel process inputs, the
transformer model manages to capture complex patterns and relation-
ships in different data types besides language data, showcasing versa-
tility and high performance across various machine learning tasks [41].
We describe the transformer model for classification in brief for the
convenience of description.

Given input data X € R™? where n is the number of samples and p is
the number of features, a transformer model uses a self-attention
mechanism to assess the importance of different data components and
assign attention weights accordingly. It organizes data with queries (Q),
keys (K), and values (V) through linear transformations: Q = XWq, K =
XWk, V = XWy, where matrices Wo, Wk, Wy are the weight matrices to
be learned in training. Q represents different aspects of the data trans-
formed through Wy, K works with Q to determine the relationships
between different components of data, and V signifies the content of the

Table 7

The d-index and classic measures of the ovarian dataset.
Measures\Models k-NN SVM RF GB ET DNN CNN
D-index 1.5668 1.5668 1.5668 1.5668 1.5668 1.5668 1.5668
Accuracy 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750
Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Specificity 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Precision 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750
NPR nan nan nan nan nan nan nan

17



H. Han et al.

data being focused upon to create new representations based on the
attention weights. The self-attention scores are computed using Q and K:

score(Q,K) = &<

7%’

scores are normalized by the softmax function: fimmax(Xj) =

where di is the dimensionality of keys. Then the

&
PO
produce attention weights: weights ;. .nion = foftmax ( \/_) Finally, the

to

attention weights apply to V to produce the self-attention output of data,
encapsulated mathematically as
X, Attention(Q, K, V) = f, (QKT ) Vv (26)
attention <—Attention(Q, K, V) = fopmar | —==
ttenty ft \/d—k

Notably, the self-attention mechanism can be implemented using
multi-head attention, utilizing multiple sets of Q, K, and V matrices in
parallel to focus on different parts of the input.

Subsequently, the output from the self-attention layer is passed
through a feedforward neural network (FFNN), represented mathemat-
ically as
27)

frclu( attention ﬂn + b ) + b

where W(‘ ffn, for i = 1,2, are the weight matrices and bias vectors
in the i layer of the FFNN, and f,.;, = max(x, 0) is the ReLu activation

function. Finally, the classification probabilities are calculated using the
softmax function applied to the FFNN output: as Pc<«fsofimax (Zn)-

3.6.2. Imbalanced points or AIPs under transformer

Our transformer model implementation incorporates two embedding
layers, two transformer blocks with multi-head attentions and two
flatten layers, alongside two dense layers, while partitioning each
dataset into 80 % for training and 20 % for testing. The model is trained
over n, = 100 epochs on each dataset. We implement a cross-entropy
loss function as
LY

rmm

- %ZLI [yilog (py +€) + (1 —yi)log(1 — (py+e))] (28)

where 0 represents the hyperparameters of the transformer model to
be optimized, y; € [—1, 1] is the true label of sample x; during training,
pyj denotes the predicted probability of x; sample at epoch j € {1,2, .-
n.}, € = 10719 is the tolerance parameter to prevent log(0), and n is the

0.986 -
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training dataset size. The model is trained over n, = 100 epochs on each
dataset. Similarly, we have the loss function for testing data:

LY, (0) =137 [yilog (pij +€) +(1 —y;)log (1 - (pij+6))] for m testing

samples muflzuw%@+é%vwm0—@%mﬂm
the rest of the parameters hold the same meanings as in the training loss
i, and {LY,(0)}}", form

function definition. The loss values {LY), (6) gt o
the training and testing loss curves.

Fig. 9 compares the loss curves, accuracies, and d-index values of
training and testing data of the ovarian and credit risk datasets across
100 epochs. The two subfigures on the left reveal a seemingly *good
performance’ from both the training and testing loss curves, with
notable reductions in loss and exhibiting similar patterns over time. This
observation is further corroborated by the high cosine similarity be-
tween the curves, calculated as:

-
@%M@%M”

Scoring 0.9282 for the ovarian dataset and an almost perfect 0.9996
for the credit risk dataset, the cosine similarity suggests a similar di-
rection of movement across epochs for both curves. This is generally
perceived as a positive indication of the model’s ability to effectively
generalize from the training data to the unseen testing data, avoiding the
pitfall of overfitting.

However, a deeper examination reveals that the transformer model
reaches the imbalanced point in the case of the ovarian dataset and an
Acceptable Imbalanced Point (AIP) for the credit risk dataset. This
phenomenon occurs because the d-index values for the training and
testing datasets either equal or closely approximate the theoretical d-

Fcosine =

index values derived from the equation log, (W), where y is the

majority ratio of the training or testing data.
For example, in the ovarian dataset, the d-index of the testing data is

log, < (1”)) rsass 1.5715 because they are 53 counts in the majority

class among the total 54 testing samples. Similarly, the d-index of the
(1+7) _ i oure

training data is log, ( >7:209/212 1.5747. The right subfigure in the

first row of Fig. 9 displays the d-indices, signaling a prominent over-
fitting scenario.
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Fig. 9. The comparisons of the loss curves, accuracies, and d-index values of training and testing data of the ovarian and credit risk datasets across 100 epochs.
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Besides validating the learning singularity problem from a trans-
former perspective, this finding overturns the optimistic view given by
the training and testing loss curves, which implied a good generalization
capability of the transformer model. It underscores the necessity of
evaluating d-index values to attain a precise understanding of the
model’s performance. Additionally, the neighboring subfigure points

+ log, (%(l +}/)>

d= % {logz {kall 2=7) G)

out that the high accuracies of 98.58 % and 98.15 % for training and
testing data, respectively, simply mirror the majority ratios of the
datasets. Moreover, while an MCC score of 0 might vaguely hint at
random predictions in this context, it doesn’t strictly denote “random”
predictions. Contrary to this, the d-index emerges as a more potent tool,
aptly delineating the subtle dynamics of imbalanced learning behaviors.

Similarly, the right subfigure in the second row of Fig. 9 illustrates
the d-indices of the training and testing data concerning the credit risk
dataset. After 100 epochs of learning, the testing data attain a d-index of
1.6149, which, along with a 93.18 % accuracy, 18.17 % sensitivity, and
98.92 % specificity, points to the occurrence of an AIP. This inference
comes from the fact that the d-index value is relatively close to 1.5399, a
situation arising due to the misclassification of 18.47 % of the minority
samples and 1.08 % of the majority samples during learning. Simulta-
neously, the d-indices of the training data oscillate between 1.58 and
1.63, an indication that they are bordering the d-index of the imbal-
anced point. Consequently, as depicted in the middle subfigure of the
second row of Fig. 9, the corresponding accuracies for the training and
test data hover near the majority ratio, registering at 93.05 %.

4. Discussion

Although we know how to determine which SVM models will be
optimal when they achieve identical d-index values, assessing the per-
formance of two or more ML models that share the same d-index levels
can pose a challenge, especially in the case of different deep learning
models. In such situations, we propose adhering to a general principle of
prioritizing model simplicity for the final selection; in essence, models
with fewer layers, learning nodes, or parameters should be favored. This
approach not only simplifies interpretation but also potentially en-
hances the model’s interpretability. For instance, between a CNN model
with 10 layers and 3 x 107 parameters and an LSTM model with 5 layers
and 5 x 10° parameters that achieve the same d-index, the latter should
be chosen for its reduced complexity [36-37]. However, it is important
to note that a high-complexity deep learning model that secures a su-
perior d-index compared to a low-complexity alternative should be
recognized as the preferable option. Additionally, when models share
identical d-index levels and complexity, reproducibility should be a
decisive factor in the final selection.

As an explainable metric for assessing ML models, the d-index can
also be used to identify complicated overfittings in a more straightfor-
ward and explainable approach by avoiding possible biases from tradi-
tional metrics for imbalanced data. This is achieved by comparing the d-
index derived from the training data predicting itself with the standard
d-index obtained using the testing data. An occurrence of overfitting is
suggested if there is a substantial divergence between the training and
testing d-index values, or if both approach the d-index of the imbalanced

point or AIP, such as log, (M) in binary classification. Furthermore,

[k=47,717273 (0.4233,0.0767,0.23,0.27)
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we applied the transformer model to the IB_EMODB dataset and ob-
tained a d-index value of 1.2718, which is close to the imbalanced point
d-index 1.3518 estimated by using the following equation estimated by
the theorem 7 in this study.

(30)

It suggests that the transformer encounter overfitting for its d-index,
reaffirming that the deep learning models would encounter overfitting
under the imbalanced dataset. When compared with scores such as MCC
= 0, Cohen’s Kappa = 0, and weighted F1 = 0.2451, all of which imply
at random or unsatisfactory predictions, the proposed d-index stands as
a more transparent and precise metric for evaluating the outcomes of
multiclass imbalanced learning.

Furthermore, the d-index enhances parameter tuning techniques
such as grid search, providing more precise results unaffected by
imbalanced learning bias — a notable advantage over accuracy and
other traditional metrics due to its comprehensive modeling of machine
learning performance.

Limitations. As an interpretable learning assessment measure, the d-
index comes with certain limitations. Computing the d-index can be
particularly expensive, especially with larger datasets involving a high
number of classes (e.g., >10) in the classification. This can significantly
increase the time complexity of the process, potentially resulting in a
time-consuming computation. Additionally, there is a risk of encoun-
tering numerical stability issues while computing the local d-indexes for
each class, particularly when some classes have a very small number of
instances. To mitigate this, it is advisable to either utilize data
augmentation and resampling to balance the least represented classes or
reduce the number of classes to avoid such complexities.

Impacts of loss function selection on imbalanced deep learning. Although d-
index is a sensitive metric for detecting the imbalanced points or AIPs in
imbalanced learning, it remains challenging to predict when they will
occur during various learning scenarios. This is because some imbalanced
learning scenarios may not generate the imbalanced points or AIPs even
for very imbalanced data due to the nature of data, learning models or even
relevant parameter settings. For example, the transformer model achieves
a perfect performance for the simulated credit risk dataset, which is
linearly separable data, under the cross-entropy loss, but the same model

encounters the imbalanced point d-index: log, (@ =1.5272

),:0.9222
under the focal loss: FL(p;) =a:(1 — p;)’log(p;), where p; is the true class
probability produced by the model, o, is a weighting factor for the class and
can be set to 1 for balanced datasets, B, typically set as 2, is a focusing
parameter that controls the strength of down-weighting for well-classified
examples. It suggests that imbalanced point generation can be affected by
various factors even if the dataset itself is linearly separable. On the other
hand, it implies that loss function selection can play an essential role for
some deep learning models in imbalanced learning [42,43].

It appears that deep learning models such as transformer are more
likely to produce imbalanced points or AIPs than general ML models.
This is likely due to the complex composite decision functions of deep
learning models, most of which utilize layer-by-layer mapping mecha-
nisms [44]. As a result, even a small degree of information imbalance
may be amplified in the decision function, resulting in the production of
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imbalanced points or AIPs. As such, how to design deep learning ar-
chitecture and training algorithms to mitigate such imbalanced ampli-
fication mechanism could be an interesting direction for enhancing the
explainability of deep learning models [45].

Resolving LSPs. Furthermore, detecting and solving learning sin-
gularity problems (LSPs) present a significant challenge in ML, as there
may be various types of such problems in different Al and data science
domains. Identifying meaningful solutions for these problems can lead
to breakthroughs not only in ML theory but also in various Al and data
science applications. Therefore, there is an urgent need to develop more
systematic research frameworks to address this challenge, such as cat-
egorizing different sources of learning singularity problems and utilizing
novel Al tools such as quantum machine learning to investigate them
[46].

5. Conclusion

This study introduces the d-index, a novel metric for interpretable
ML assessment that is well-suited for both binary and multiclass classi-
fication tasks. The d-index introduces new concepts in ML, such as
breakeven, imbalanced point, AIPs, and learning singularity problems,
which extend the existing ML theory and applications. Compared to
traditional metrics such as MCC, F1-score, CEN, and Cohen’s Kappa, the
d-index provides a more comprehensive and sensitive assessment of ML
performance while being self-interpreted and avoiding possible evalu-
ation biases, especially for imbalanced learning. The d-index overcomes
the limitations of traditional metrics in achieving good interpretability
and brings more robust, accurate, and efficient model selection, making
it a valuable tool for both researchers and practitioners in the field.
Furthermore, the d-index can improve parameter tuning efficiency and
fairness by avoiding possible biases caused by traditional metrics. Its
ability to enhance model performance assessment can significantly
improve the quality of ML models and facilitate their practical use in
various Al and data science applications, making it a crucial tool in the
field.

In contrast to traditional metrics, the d-index excels in assessing
various ML behaviors, especially in situations of imbalanced learning
where traditional measures such as accuracy and F1 score may be biased
or even misleading. Its significant advantage lies in its ability to sensi-
tively detect the imbalanced point or AIPs, elements often overlooked by
classic metrics. Consequently, it offers fresh insights and techniques to
the expanding field of imbalanced learning, a sector steadily gaining
traction in AI and data science. Utilizing the d-index allows for the
capture of subtle dynamics of imbalanced learning behaviors by recti-
fying potential biases derived from conventional training and testing
loss curve analyses, particularly when the curves demonstrate similar
directional trends across epochs. In technical terms, the proposed index
reveals a seldom discussed state of overfitting: a scenario where over-
fitting occurs despite the training and testing loss curves showing
favorable reductions and correlations throughout the epochs, especially
in the context of imbalanced learning.

Additionally, the d-index facilitates more rigorous and sensitive
identification of other anomalous ML behaviors such as underfitting,
offering a tool for interpretable ML performance assessment. Specif-
ically, it has been proven that a d-index within the range of (2log, (%),
2], indicates a normal learning status, with k representing the number of
classes involved in learning. Notably, a d-index falling below 2log, (:£1),
signals the onset of underfitting — a phenomenon particularly prevalent
in data imbalance scenarios which traditional learning metrics fail to
detect effectively.

Moreover, the d-index paves a new pathway in ML theory, identi-
fying learning singularity problems (LSPs) and marking out the un-
learnable sets of imbalanced learning problems within the existing ML
landscape. However, the cardinality of these unlearnable sets and their
equivalent learnable problems remain unexplored. On another note,
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given the close relationships between overfitting and LSPs in both
traditional ML and modern deep learning models, finding solutions to
LSPs could foster new techniques to address the special type of over-
fitting associated with LSPs, enhancing both the current and future
landscape of machine learning.

Furthermore, we demonstrate how to distinguish ML performance
under the same d-index values for Support vector machines (SVMs) and
propose a meaningful priori kernel selection that achieves a good d-
index and generalization. Interestingly, we also prove that SVMs can
lose their learning capability by generating the imbalanced point, even if
the data is not inherently imbalanced. Given the key status of SVM in
reproducible machine learning and kernel-based learning. These find-
ings provide new insights into the two fields from an explainable ML
assessment perspective [47,48]. Besides, we show the importance of loss
function selection plays an essential role in imbalanced learning for deep
learning models such as transformer.

Impacts of normalization on the d-index. In our study, we
observed that while different normalization methods can affect the d-
index, they generally maintain the characteristics of imbalanced points
or AIPs, especially in deep learning models. We utilized standard scaler
normalization for the datasets with predominantly Gaussian distributed
heterogeneous variables, such as IB-EMODB, credit risk, and simulated
credit datasets. Conversely, the minmax normalization was applied to
the ovarian dataset, which contains largely non-Gaussian distributed
features, to scale them between 0 and 1.

It is essential to note that using different normalization techniques
can yield varying d-indices. To illustrate, employing the MaxAbs scaler —

defined by the transformation x; = , where X; is the transformed

Xi
max(‘x;‘)
one of feature x;, and max( |X1|) is the maximum absolute value of x; — on
the credit risk dataset resulted in a d-index of 1.5909. Meanwhile, the
standard and minmax scalers gave d-indices of 1.6149 and 1.5825,
respectively. More details can be found in the supplemental materials.

The d-index serves as an interpretable ML assessment metric,
enhancing transparency and reliability in evaluating ML performance. It
unveils previously hidden deep learning subtle dynamics and ML be-
haviors under different imbalanced learning scenarios, streamlining
efficient model selection. This makes it indispensable for explainable Al,
especially in imbalanced learning scenarios. Our ongoing and future
work aims to design interpretable deep learning models with dynamic
and adjustable learning topologies along with novel knowledge extrac-
tion methods to address the learning singularity problems (LSPs)
[49,50]. Our pursuit promises to enrich the AI and data science land-
scapes, pushing for more interpretable and efficient ML models.
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