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Abstract

We showed earlier that the level set function of a monotonic advancing front
is twice differentiable everywhere with bounded second derivative and satisfies
the equation classically. We show here that the second derivative is continuous
if and only if the flow has a single singular time where it becomes extinct and
the singular set consists of a closed C! manifold with cylindrical singularities.
© 2017 Wiley Periodicals, Inc.

1 Introduction

The level set method has been used with great success the last thirty years in
both pure and applied mathematics to describe evolutions of various physical situ-
ations. In mean curvature flow, the evolving hypersurface (front) is thought of as
the level set of a function that satisfies a nonlinear degenerate parabolic equation.
Solutions are defined weakly in the viscosity sense; in general, they may not even
be differentiable (let alone twice differentiable).

For a monotonically advancing front, we showed in [9] (cf. [10]) that viscosity
solutions are in fact twice differentiable and satisfy the equation in the classical
sense. Here we characterize when they are C2. As we will see, the situation
becomes very rigid when the second derivative is continuous.

When v : R”t1 x R — R is a function and for each s the level set 1 — {x |
v(x,t) = s} evolves by the mean curvature flow, then v satisfies the level set
equation

(1.1) ;v = |Vv|div(|§—zl).

This equation has been studied extensively. Whereas the work of Osher and Sethian
[22] was numerical, Evans and Spruck [13] and, independently, Chen, Giga, and
Goto [4] provided the theoretical justification. This is analytically subtle, princi-
pally because the mean curvature evolution equation is nonlinear, degenerate, and
indeed defined only weakly at points where Vv = 0. Moreover, v is a priori not
even differentiable, let alone twice differentiable. They resolved these problems by
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introducing an appropriate definition of a weak solution, inspired by the notion of
viscosity solutions, and showed existence and uniqueness.

When the initial hypersurface is mean convex (the mean curvature is nonneg-
ative), so are all future ones and the front advances monotonically. In this case,
Evans and Spruck [13] showed that v(x,t) = u(x) — ¢, where u is Lipschitz and
satisfies (in the viscosity sense)

v
(12) 1 = |Vu|div[ —% ).
|Vu|

As the front moves monotonically inwards, it sweeps out the entire domain in-
side the initial hypersurface. The function u is the arrival time since u(x) is the
time when the front passes through x. It is defined on the entire compact domain
bounded by the initial hypersurface. Singular points for the flow correspond to
critical points for u: the flow has a singularity at x at time u(x) if and only if
Vu(x) = 0.

When the initial hypersurface is convex, the flow is smooth except at the point
it becomes extinct, and Huisken showed that the arrival time is C2 [15,16]. In [19,
20], Ilmanen gave an example of a rotationally symmetric mean convex dumbbell
in R3 for which the arrival time was not C2. There is even more regularity in
the plane, where Kohn and Serfaty showed that it is at least C3 [21]. Forn > 1,
Sesum [23] showed that Huisken’s result is optimal; namely, she gave examples of
convex initial hypersurfaces where the arrival time is not three times differentiable.

In the next two theorems and corollary, u is the arrival time of a mean convex
flow in R”*1 starting from a smooth closed connected hypersurface.

THEOREM 1.1. u is C? if and only if both (1) and (2) hold:

(1) There is exactly one singular time T (where the flow becomes extinct).

(2) The singular set S is a k-dimensional closed, connected, embedded C L sub-
manifold of singularities where the blowup is a cylinder Sk xR¥ at each
point.

Moreover, S is tangent to the R¥ factor in (2).

In general, even if u is not C 2 it follows from [11] that S is contained in a union
of C! submanifolds with each submanifold tangent to the axis of the correspond-
ing cylinder at each singular point.! There are finitely many (n — 1)-dimensional
submanifolds and at most countably many in each lower dimension. Theorem 1.1
gives a much stronger statement when u is C2: there is only one submanifold;, it
is closed, connected, and embedded, it lies in one singular time, and S fills out the
entire submanifold (rather than being a subset of it).

! The main theorem of [11] states the submanifolds are Lipschitz, but the proof shows that they
are C1.
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A convex mean curvature flow gives an example where u is C? and S is a point
(i.e., k = 0), while the marriage ring® gives an example where 1 is C? and S is a
circle of cylindrical singularities. In contrast, any of the examples of rotationally
symmetric surfaces studied in [1] has isolated cylindrical singular points and, thus,
is not C2.

We can restate the theorem in terms of the function u as follows:

COROLLARY 1.2. u is C? if and only if both (1) and (2) hold:

(1) There is exactly one critical value T = max u.

(2) The critical set S is a k-dimensional closed, connected, embedded C ' sub-
manifold. At each critical point, Hess,, has a k-dimensional kernel tangent
to the critical set and is —ﬁ times the identity on the orthogonal com-

plement.

The Hessian is always continuous where the flow is smooth. Thus, discontinuity
of Hess,, only occurs at critical points of u. The next proposition shows that Hess,
is still continuous at a critical point if we approach it transversely to the kernel K of
Hess,, at the critical point: u is C 2 where the projection I, onto K is bounded
by the projection IT onto K.

THEOREM 1.3. Suppose that Vu(0) = 0. Given any C, there exists § > 0 so
that u is C? in the region

(1.3) Bs N {x | [Maxis(x)| = CTI(x)]}.

Thus, any lack of continuity only occurs along paths tangent to the kernel of
Hess,,.

2 C? Arrival Times

In this section, we will prove one direction of the main theorem: If the arrival
time is C2, then the flow has the one singular time and the singular set is a closed,
connected, embedded C'! submanifold.

Throughout this section, u is the arrival time of a mean convex flow in R”*!
starting from a smooth, closed, connected hypersurface.

2.1 The Stratification of S

When the initial hypersurface is mean convex, then all singularities are cylindri-
cal; see [2,14,15,17,18,24,25]; cf. [3,6].

The singular set S is stratified into subsets
2.1 SoCSC---CS-1 =8,

where Sy consists of all singularities where the tangent flow splits off a euclidean
factor of dimension at most k. In particular, S \ Si_1 is the set where the blowup

2 The marriage ring is a thin mean convex torus of revolution in R3 where the MCF is smooth
until it becomes extinct along a circle.
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is R¥ x s"—k By [9], the Hessian has a special form at a critical point. Namely, if
p € Sk \ Sk_1, then

1
2.2) Hess, (p) = — 11,
n—k
where T is an orthogonal projection onto the orthogonal complement of the R¥
factor. If £ > 1, let I1,is denote the orthogonal projection onto the k-plane tangent
to the “axis.”

It follows from upper semicontinuity of the density that the top strata S\ S,—» is
compact. A priori, it is possible that a sequence of points in one of the lower strata
might converge to a point in a higher strata. However, by (2.2), this is impossible
when the arrival time is C2:

LEMMA 2.1. Ifu is C2, then each strata Sy \ Sk is compact.

LEMMA 22. Ifuis C*at p € S \ Sk—; withk > 1 and q; is a sequence of
regular points converging to p, then

(2.3) Haxis(n(qj)) — 0.

PROOF. We will argue by contradiction, so suppose instead that there is a se-
quence g; — p with |ITuis(n(g;))| > 6 > 0. Since S™ is compact, we can pass to
a subsequence so that n(g;) — V € S”. In particular, we must have

(2‘4) |Hax15(V)| Z 8 > 0.

Using the arrival time equation (1.2) at the smooth points ¢, and then passing to
limits since u is C2, we get that

0= jl_ipgo (1 + Au(g;) — Hessy,(g;)(n(g;).n(g;)))

(2.5) =1+ Au(p) — Hessy (p)(V, V)
1 1 1
- T ow).v)|=—-—— 1_[axisVZ-
e Mo | = )
This contradicts (2.4), giving the lemma. .

The next lemma, which does not assume that u is C2, shows that a plane or-
thogonal to the axis of a singularity contains a point ¢ where I1(Vu(g)) = 0.

LEMMA 2.3. Suppose that Vu(0) = 0 and Hess, (0) has kernel K. There exist
€ > 0and C so that if p € Be N K, then there exists ¢ € B¢ p N (p + KL) with
(Vu(q)) = 0.

PROOF. By the uniqueness of [8], the flow is cylindrical at time ¢ = u(0) — /8
in a ball B¢ g(p) for every § € (0, €) for some € > 0 sufficiently small. Here C’
is a large constant.® Thus, since p € B N K, the level set {u = u(0) — /| p|} is

3 We can make C” as big as we want at the cost of decreasing €.

AsULOIT suowwo)) dA1ea1) 3[qedtjdde ay) Aq PaUIdA0S aIe SI[IIME V() dsn JO SN 10§ AIRIqIT duI[uQ) AJ[IA\ UO (SUONIPUOD-PUB-SULID}/WO"K3[1M " AIRIqI[UI[UO//:SANY) SUOHIPUO)) Uk SWLIA ], 3y 39S “[$707/30/60] U0 Areiqry auruQ AS[IA\ “0[ouyda], Jo amnsuy spasnyoesseiy Aq €0L 17 edo/z001°01/10p/wod Ka[imAreiqraurjuoy/:sdny woiy papeojumod v ‘8102 ‘T1€0L601



818 T. H. COLDING AND W. P. MINICOZZI I

an approximate cylinder about K in Bc¢r|p|. In particular, the intersection

(2.6) u=u0)—Ipl}n(p+ K+

is close to an S ¥*+1 and, furthermore, u is strictly decreasing at each point of
the intersection. Let ¢ € (p + K1) be the point where u achieves its maximum
inside the subset of (p + K1) bounded by {u = u(0) — \/|7| }. Tt follows that ¢ is
in the interior and, thus, Vu(q) is orthogonal to K L as claimed. O

2.2 Local Lemma

In this subsection, we assume that u is C2. The key to Theorem 1.1 is the
following local proposition:

PROPOSITION 2.4. Suppose that Vu(0) = 0 and Hess, (0) has kernel K. Then
there exists € > 0 so that Be NS is the graph of a C' map

.7 f:QCK—> K™,

where Q2 is a connected open subset of K containing 0. Furthermore, u is constant
on BcNS.

PROOF. It follows from theorem 2.5 and corollary 4.5 in [11] that there is some
8§ > 0 so that B N S is contained in the graph of a C! map®

(2.8) f:QcK—> K+

Moreover, Bg N S is automatically a (relatively) closed subset of this graph. To
prove the first part of the proposition, we show that we can choose some € € (0, §]
so & fills out the entire graph in B¢. To do this, we must rule out the following
possibility:
(») There is a sequence p; — 0 of points p; € K so that the plane P; through
p; and parallel to K © misses Bs N'S.

We will show that (x) leads to a contradiction. Namely, for each j, Lemma 2.3
gives apoint g; € B¢|p;| N Pj with

29) M(Vu(g))) =0,

where IT is an orthogonal projection onto K. Since S does not intersect Pj, we
know that Vu(g;) # 0. Therefore, (2.9) gives that

(2.10) IM(n(g;)) = 0.

However, this contradicts Lemma 2.2 since g; — 0. Thus, we get the desired
€ > 0. This gives the first part of the proposition.

Next, we must show that this graph is contained in a level set of u. This follows
immediately from part (B) of theorem 1.2 in [11] since any two points in the graph
can be connected by a C! curve in S. O

4 The main theorem of [11] states that the map f below is Lipschitz. However, the regularity of
the distribution of k-planes implies that it is in fact C 1.
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2.3 Local Extinction after Singularities

In the next lemma, p € Si \ Skg—; is a singularity of the flow and Kj‘ is the
(n + 1 — k)-dimensional plane through p orthogonal to the axis of the singularity.

LEMMA 2.5. There exists € > 0, depending only on u and not on p, so that
e Bc.(p) N{u > u(p)} does not intersect KIJ;.

PROOF. By the uniqueness of [8], the flow is cylindrical at time ¢ = u(p) — /8
in a ball B¢ g(p) for every § € (0,¢€) for some € > 0 sufficiently small. Here
€ > 0 depends only on the cylindrical scale and, thus, is uniform in p by theorem
3.1in [11] because each strata is compact by Lemma 2.1.

The intersection of the level set u = u(p) — /8 with K;_ is an (n — k)-sphere

that separates K ;_ (at least in the ball B¢(p)) into an inside containing p and an
outside where the flow has recently gone through. Because the flow is monotone, it
can never return to this outside region. By assumption, these inside regions shrink
to pasé — 0. g

The next corollary shows that if a critical time can be approached by future
regular times, then each critical point at this time is a local maximum.

COROLLARY 2.6. Suppose that u is C2, Vu(0) = 0, and there exist t; > u(0)
with t; — u(0) and Vu # 0 on {u = t;}. Then there exists § > 0 so that

(2.11) supu = u(0).
Bs

PROOF. Let € > 0 be from Lemma 2.5. We will argue by contradiction, so
suppose instead that there is a sequence p; — 0 with u(p;) > u(0). By continuity
of u, u(p;j) — u(0). Thus, after passing to subsequences for the p;’s and #;’s, we
can assume that

(2.12) u(pr) >t > u(pz) >ty >--- — u(0).

Suppose that i is large so that | p;| < €. Since u is continuous and u(p;) > t; >
u(0), the line segment from O to p; intersects {u = t;}. Thus, we can choose g;
with
(213)  [Maxis(q)|* = min{|Maxis()|* | ¢ € Be and u(q) = 1;} < | pil*.
This has two consequences:

(2.14) \gi|* — 0,
(2.15) (n(gi)) = 0.
To prove (2.14), use (2.13) to get that |1'Iaxis(q,-)|2 — 0 and then use that the

support of the flow for u > u(0) must be close to K near 0 (by theorem 3.1
in [11]).
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To see (2.15), let & : u~'(¢;) — R be given by h(x) = |Haxis(x)|2, so that
1
(2-16) 5 vxh = Haxis(x) - (Haxis(x)v n(x))n(x).

Since ¢; is a minimum of /&, we get that V,, 7 = 0 and, therefore,

(2.17) Maxis (i) = (Maxis(¢i), n(gi))n(g:)-
It follows that TTais(qi) = = |Taxis(gi)|n(g;i). This implies that
(2.18) Maxis(gi) =0 or  TI(n(g;)) = 0.
Lemma 2.5 rules out the first possibility, so we get (2.15).
On the other hand, (2.14) allows us to apply Lemma 2.2 to get that
(2.19) Maxis(n(g;)) — 0.
This contradicts (2.15), completing the proof. U

2.4 Proofs of the Main Results

We will prove one direction of Theorem 1.1 in the following proposition.

PROPOSITION 2.7. Ifu is C?, then

(1) there is exactly one singular time T (where the flow becomes extinct), and

(2) the singular set S is a k-dimensional closed, connected, embedded C L sub-
manifold of singularities where the blowup is a cylinder S"k xR¥ at each
point.

Moreover, S is tangent to the R¥ factor in (2).

PROOF. Fix a point p € S. Let k be the dimension of the kernel of Hessy (p),
so p is cylindrical of type S*k x R¥. Let Sp be the component of S containing p;
note that each point in S, must also be cylindrical of type S"* x R¥ by Lemma
2.1. Given g € Sp, let K, ;- be the k-dimensional kernel of Hess, (¢).

Proposition 2.4 implies that each point g in S, has an €4 > 0 so that

® B, (q) NSisgivenasa C! graph over KqL.

e y is constant on this graph.
Since S is compact and connected, it follows that S, is a closed, connected, em-
bedded C! k-dimensional submanifold and u = u(p) on Sp.

Since S is compact, we conclude that S is given as a finite collection of disjoint
embedded C! closed submanifolds

N
(2.20) S=\JS, withu(Sy,) = u(p)).
j=1
Let T be the first singular time. In the remainder of the proof, we will show that

(A) T is also the extinction time and, thus, the only singular time.
(B) & has only one component.
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Let St = SN {u = T} be the union of the Sp,’s where u(p;) = T. Note that Sp
is compact and there exists ¥ > 0 so that

2.21) SN{T<u<T+kl=02

since there are only finitely many singular times. Thus, Corollary 2.6 gives § > 0
so that

(2.22) sup u =T,
T5(ST)

where T5(ST) is the §-tubular neighborhood of St.

We can now prove (A) by contradiction. Namely, if (A) does not hold, then
(2.22) and the monotonicity of the flow imply that {u = ¢} intersects both inside
and outside of T5/,(St) for 1 < T. Since the initial hypersurface is connected
and the flow is smooth before ¥ = T, we know that {u = ¢} is connected for
eacht < T. Thus, we get a sequence of points z; € d75/5(S7) withu(z;) < T
and u(z;) — T. By compactness, a subsegence of the z;’s converges to z €
0T5/2(St). Continuity of u implies that u(z) = T and, thus, (2.22) implies that
z is a local maximum for u and Vu(z) = 0. This contradicts that z € 975/, (St)
is not a critical point, giving (A).

Now that we know that every point in {u = T} is a critical point, the same
argument that we used for (A) implies that S = St is connected. This gives (B),
completing the proof. 0

3 The Arrival Time Is C? Away from the Axis

Throughout this section, ¥ will be the arrival time for a mean convex flow in
R”*1 starting from a smooth, closed mean convex hypersurface. By [9], u is
twice differentiable everywhere with bounded Hess,, and is smooth away from the
singular set where Vu = 0.

PROOF OF THEOREM 1.3. It follows from [11] that the region in (1.3) inter-
sects the singular set only at O for § > 0 small enough. Thus, by [9], we need
only show that any sequence g; — 0 in (1.3) must have Hess, (q;) — Hess, (0).
Furthermore, by lemma 2.11 of [9], u(x) < u(0) in the region (1.3) with equality

only for x = 0.
If e1, ..., ey, is an orthonormal frame for the level sets of u, then
Alei, ej)
@3.D Hessy(ei,ej) = %,
0:H (A+|APH
(3.2) Hess, (n,n) = Vy|Vu| = — ;13 =5
3.3) Hessy(e;,n) = V,,|Vu| = — i

H?
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In the region (1.3), the uniqueness of [8] gives that the rescaled level set flow
converges to cylinders with axis K. If we let p denote the distance to K, then

Vu 1 |Vul

34 —— =0 d — 1,
3.4) Vul — dp an Hp p —
A .
3.5) - = IT restricted to the tangent space,
H n—k
Vil IVH| |AH
(3.6) ——, ———, and — 0.
H H? H3

The first three claims are immediate from the uniqueness of the blowup. The last
three claims follow from the smooth convergence of the rescaled level sets to the
cylinder (where each of these quantities is 0); the powers of H are the appropriate
scaling factors.

Combining these facts shows that Hess,, is continuous in this conical region. [J

PROOF OF THEOREM 1.1. One direction is given by Proposition 2.7. We will
suppose therefore that (1) and (2) hold and show that u must be C2. By [9], u is
twice differentiable everywhere and smooth away from the singular set S. Thus,
we must show that Hess,, is continuous at each point of S.

Using the form of the Hessian, it follows that if p, p € S, then

(3.7 [Hess, (p) — Hess, (p)| < C dist(T,S, T5S).
Fixapoint p € Sandletqg; — p beany sequence. We must show that Hess, (¢,;) —
Hessy (p). For each j, let p; be a closest pointin S to ¢g;. It follows that
* [pj—qjl =Ip—q;l > 0and
o ((pj —4;).Tp;S)) = 0.
The second property allows us to apply Theorem 1.3 to get that
(3.8) |Hessy (pj) — Hessy,(q;)| — 0.
Finally, since S is C! and p; — p, (3.7) implies that
(3.9 |Hessy, (pj) — Hessy, (p)| — 0. O
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