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Abstract. High-frequency trading (HFT) plays an essential role in the financial market. However, how to 
discover and reveal trading dynamics remains a challenge in Fintech. In this study, we propose a novel 
explainable machine learning approach: Feature-Interpolation-based Dimension Reduction SCAN (FIDR-
SCAN) to handle the challenge by creating a trading map. The trading map deciphers an HFT security’s 
trading dynamics by marking the status of each transaction, grouping transactions in clusters, and 
identifying the trading markers. The proposed method presents new feature interpolation techniques to 
build a more informative and explainable feature space to unveil hidden trading behaviors. It mines HFT 
data in their low-dimensional embedding to seek exceptional trading markers and classify the statuses of 
transactions.  We validate the meaningfulness and effectiveness of the trading markers discovered from 
FIDR-SCAN in trading besides examining its special characteristics. Besides, we apply the proposed 
algorithm to cryptocurrency data and achieve reliable performance. To the best of our knowledge, this 
study is the first to use interpretable machine learning to reveal HFT trading dynamics.  
 
Keywords: Explainable AI, high-frequency trading, trading dynamics, feature interpolation 
 
1. Introduction  
 
High-frequency trading (HFT) has become a dominant method of trading since the turn of the millennium, 
relying on computers to execute buy or sell orders without human intervention. In 2022, it was estimated 
that HFT generated around 50% of all trading volumes in the financial market [3]. By leveraging 
algorithmic trading with high frequency, HFT offers the opportunity to profit from even the slightest price 
change in microseconds or nanoseconds, thanks to large trading volumes. HFT can complete transactions 
in mere nanoseconds through algorithm-driven trading systems that respond almost instantly after an 
order is placed. To gain a competitive edge, more and more high-frequency trading algorithms are being 
implemented in hardware with Field-Programmable Gate Arrays (FPGA), GPU, or related technologies, 
aiming for ultra-low trading latency. Additionally, rebate policies by exchanges have contributed to the 
popularity of HFT. For instance, the New York Stock Exchange (NYSE) offers incentives to firms that add 
liquidity to the market [2]. 
 
HFT is challenging the financial market and classic finance theory for its ultra-fast speed and huge volume. 
It generally brings high turnover rates, high order-to-trade ratios, and high Sharpe ratios. Although HFT is 
believed to increase market liquidity, this liquidity can vanish in a matter of seconds, offering little benefit 
to most traders.  In fact, HFT can provide unfair advantages to large firms due to their ability to build more 
favorable liquidating positions.  HFT adds higher levels of volatility and unpredictability to the financial 
market and sees the divergence between bid-ask spreads for large-cap and small-cap stocks. HFT also can 
generate arbitrages that enable winners to beat their competitors with just a few microseconds of lead time 
[3,4]. To some degree, HFT makes the market more volatile and unpredictable, greatly increasing the risk 
of flash crashes for its high-speed trading strategies, traders’ similar trading algorithms, and possible illegal 
trading activities.  
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High-frequency trading (HFT) data can be difficult to manage due to its sheer volume and speed. HFT data 
primarily refers to the trading data for a specific stock, rather than auxiliary data such as bid-ask quotes or 
messages associated with order placement. Unlike traditional finance models such as the Capital Asset 
Pricing Model (CAPM), which assume daily stock data resolution, HFT data provides resolution at the 
second, microsecond or even finer level. This special characteristic makes it challenging to apply traditional 
models to HFT data. 
 
High-frequency trading (HFT) data has unique characteristics compared to general financial data. It is a 
high-speed nonlinear time-series data that contains microstructure noise from different sources, including 
bid-ask bounce, latency arbitrage caused by hardware and distance in trading, rebates, or other discounts 
that can distort real prices [2,4]. This noise can make it difficult to understand the true scenarios in trading 
and can cause the movements in trading to be more nonlinear or even incomprehensible. However, it is 
currently unknown how to conduct de-noising so that true price signals can be retrieved. 
 
HFT data is typically low-dimensional, meaning that there are more observations than variables. This can 
make it difficult to accurately represent and interpret complex trading behaviors. The raw HFT data usually 
only contains three variables: price, volume, and time, despite containing hundreds or thousands of 
observations. For example, between October 4th and 15th of 2010, the raw HFT data for Johnson & Johnson 
(JNJ) included 419,565 transactions (observations). In addition to low dimensionality, HFT data also suffers 
from a feature scarcity issue. The existing features may not be sufficient for downstream analysis tasks such 
as clustering, adding an additional layer of complexity to analyzing this type of data. As a result, specific 
considerations are needed when working with HFT data, including overcoming challenges related to low 
dimensionality and feature scarcity. 
 
When we aggregate HFT data into larger time intervals, such as one minute, we can add a few more 
variables to the dataset, such as notation value and open price. However, this aggregated data still suffers 
from a feature scarcity issue because only a few new features are added. For example, the intraday data of 
JNJ has only 6 variables across 4191 observations. This lack of features can make it difficult to interpret 
downstream machine learning results and even for traders to understand the effectiveness of these results. 
 
HFT data is unique in its low dimensionality, with a large number of transactions occurring across only a 
few features. However, this can lead to a significant amount of data redundancy, as HFT prices may barely 
change over short trading periods [6-7]. This data can be thought of as "energy concentrated data," with the 
variance mostly concentrated in the first singular value directions or first two principal components. While 
there have been efforts to reduce this redundancy through dimension reduction algorithms, it is still 
unclear which ones are most effective.  Moreover, different securities in the HFT market show varying 
trading characteristics. Large-cap stocks like AAPL, for example, not only have higher trading frequencies 
than smaller, unknown stocks but are also more liquid. Discovering these differences and understanding 
their implications for downstream analysis remains a challenge in Fintech. 
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There have been quite a few studies on HFT from various perspectives, including finance, econometrics, 
AI, and data science. For example, Aquilina et al. quantified the latency arbitrage in HFT using stock 
exchange message data [3], while Han and Li estimated stock volatility in HFT using big data analytics [5]. 
Han et al. developed a manifold-learning scanning (M-SCAN) method to identify trading markers in HFT 
[6], and Aït-Sahalia and Xu applied principal component analysis (PCA) to HFT raw data [7]. Menkveld 
investigated large institution orders in HFT [8], Brogaard et al. examined the role of high-frequency traders 
(HFTs) in price discovery [9], and Baron et al. found that faster HFT firms earned significantly greater 
profits [10]. Conrad et al. studied the relationship between quotations and stock behaviors in the HFT 
market [11], while Manahov and Zhang used genetic programming trading algorithms to simulate the 
futures market under HFT [12]. Fischer investigated the role of long short-term memory (LSTM) networks 
in market prediction [13], and Fang used GARCH and support vector machines (SVM) to design HFT 
trading algorithms [14]. Additionally, Brogaard et al. showed that HFTs provided liquidity during extreme 
price movements [15], and Xu examined the optimal strategies for high-frequency traders to rationalize 
their pinging activities [16]. 
 
However, previous research has largely neglected the investigation of trading dynamics in HFT data. As 
the distinctive signature of a stock or portfolio in trading, trading dynamics reveal trading patterns and 
behaviors, identify potential trading signals, and classify transaction statuses. In essence, trading dynamics 
provide answers to the fundamental question in HFT: "how do different securities behave in trading?" 
Given the massive data and lightning-fast trading in HFT, discovering meaningful and insightful trading 
dynamics is crucial for traders to better understand securities and their movements. By uncovering trading 
dynamics, we can gain a deeper understanding of the latent mechanisms that drive HFT for different 
securities and their micro-structures. This knowledge can also inform the development of more competitive 
and adaptive trading algorithms or schemes for HFT traders. 

 
2. Explainable machine learning for trading dynamics discovery  
 
2.1 Trading dynamics discovery  
High-frequency trading (HFT) poses significant challenges to discovering trading dynamics. Firstly, there 
is a dearth of previous research on the subject, leaving uncertainty about how to identify trading dynamics 
and which key components to include [6]. Secondly, original HFT data consists of an enormous number of 
transactions occurring over a brief period due to its exceptional resolution, which may present a computing 
barrier due to its big data nature. This can be prohibitive in discovering trading dynamics without sufficient 
computing power. Thirdly, the feature scarcity issue and nonlinearity of HFT data make it unclear how to 
address them, as well as how to conduct de-noising and distinguish between the trading characteristics of 
different securities. 
 
To better capture trading dynamics in this study, we used aggregated intraday data with a 1-minute 
resolution, rather than the raw high-resolution data. This approach involved sampling data within each 1-
minute interval to obtain high, low, open, and close prices, as well as volume. By using this method, we 
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avoided the computing burden associated with processing large amounts of raw data, while still capturing 
important global trading behaviors that may have been obscured at the raw data level. 
 
High-Frequency Trading (HFT) data is inherently complex, and extracting valuable trading dynamics 
information from it requires the use of machine learning (ML) techniques. Tasks such as information 
intelligence seeking, de-noising, redundancy filtering, and distinguishing between different securities all 
benefit from ML approaches. However, determining which techniques are most effective for analyzing 
HFT data remains an active research question. 
 
2.2 Low-dimensional embedding clustering  
One promising approach is to use dimension reduction techniques to project the high-dimensional HFT 
data onto a lower-dimensional space. This approach has the potential to reveal intrinsic structures, reduce 
noise and redundancy, and ultimately expose valuable trading dynamics information. By clustering the 
resulting low-dimensional embedding, we can extract meaningful patterns and insights from the data.  
 
To achieve this, we can use a locally isometric mapping function 𝑓! to transform an HFT dataset with n 
transactions and p variables 	𝑋 = {𝑥"}"#$% ,  𝑥" ∈ ℜ&,  into a low-dimensional embedding: 𝐸 = {𝑒"}"#$% ,  𝑒" ∈
ℜ' , 𝑘 < 𝑝, 𝑠. 𝑡.	 𝑓!: 𝑥" → 𝑒" . The mapping function  transforms each transaction 𝑥" into its corresponding 𝑒" 
such that the distance metric, which may not be the Euclidean distance, between pairs of points is 
approximately preserved, i.e. 5𝑒" − 𝑒(5 ≈ 5𝑥" − 𝑥(5. Once we have the low-dimensional embeddings, we 
then apply a clustering algorithm 𝛤) to group them into different clusters 𝐶$, 𝐶*, ⋯𝐶+ , 𝐶" ∩ 𝐶( = ∅,	if 𝑖 ≠ 𝑗, 
where each cluster is disjoint from the others and shares the least mutual information possible. This 
clustering step can extract meaningful patterns and provide insights into the underlying trading structure 
of the HFT data. 
 

 
Fig 1. DBSCAN clustering results of the UMAP embeddings of FB and AMZN from 03/01/2019 to 
05/16/2019. The clustering results may offer some insights into the trading dynamics, but they lack a clear 
interpretation and ignore the trading marker identification. 
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Figure 1 displays the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering 
results after applying Uniform Manifold Approximation and Projection (UMAP) dimension reduction to 
two intraday datasets of HFT data from Facebook (FB) and Amazon (AMZN), covering the period from 
March 1, 2019, to May 16, 2019. UMAP is a state-of-the-art dimension reduction algorithm that excels at 
capturing local data behavior, while DBSCAN is a density-based clustering algorithm that can identify 
naturally grouped clusters for data with arbitrary shapes [17-19]. The plots on the left and right side of 
Figure 1 indicate that there were 10 clusters identified in the FB trading dataset and 5 clusters in the AMZN 
trading dataset. The spatial relationships between the clusters suggest that AMZN may have more 
'orthogonal' transactions in trading than FB, as their clusters are more separated from each other. These 
insights are valuable for understanding the structure of the data and identifying trading patterns that may 
not be immediately obvious. 
 
While the DBSCAN clustering algorithm can reveal some information on the trading dynamics of HFT data, 
it lacks a comprehensive explanation of the clusters. It cannot interpret why different transactions are 
grouped in one cluster, nor can it provide insight into the trading implications of these clusters that traders 
need to know to make informed decisions. The lack of interpretability is a critical issue for ML methods 
used in HFT because of the high stakes involved. It is crucial for traders to understand the trading 
implications of different clusters to make their trading decisions more adaptive and profitable. 
 
However, most of the ML models used in HFT are non-interpretable "black box" models, including deep 
learning models, which demonstrate effectiveness but fail to explain why they work [12-13]. As a result, it 
would be difficult for traders to trust these models, even if their results are sound. To make trading 
dynamics discovery more explainable and understandable, explainable ML models should be employed, 
which can provide clear and interpretable insights into the different latent trading mechanisms disclosed 
by the ML methods. Therefore, achieving interpretability in ML methods for trading dynamics discovery 
should be a primary focus in Fintech. 
 
2.3 The Explainable machine learning standards  
 
Although trading markers are commonly used in HFT trading systems, they have not been extensively 
studied in HFT literature. Previous studies have explored extreme price movements (EPM), which are 
somewhat related to trading markers [15]. However, EPM cannot be considered as a meaningful buying or 
selling point because it does not take into account the practical trade prices. In our research, we define HFT 
trading markers based on our previous work [6]. 
 
Trading marker. Given a set of transactions  {𝑥"},!

, in a trading interval [t0, t], a transaction 𝑥, at time t is 
considered as a trading marker provided its price change ratio is more than a threshold 𝜂 (e.g., 𝜂 =0.01%):  
|𝑝(𝑡) − 𝑝(𝑡-)|/|𝑝(𝑡-)| ≥ 𝜂, where 𝑝(𝑡-)and 𝑝(𝑡) are transaction prices at time t0 and t, respectively.  
 
Different threshold values determine different trading markers. General markers have a small price change 
threshold (e.g., η = 0.01%) and are widely used to make marginal profits through large volumes. To avoid 
confusion with ad-hoc price changes, they usually have a minimum volume requirement (e.g., volume > 
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1000). Global markers, on the other hand, have a large threshold (e.g., η = 0.2%) and appear as abrupt price 
changes caused by large-scale buying or selling in a short trading period. While they appear less frequently 
than general markers, global markers have a greater impact on trading and provide more liquidity. Our 
study focuses on global markers in trading dynamics discovery.  
 
Trading dynamics abstraction. Given an HFT dataset of a security with n transactions and p variables	𝑋 =
{𝑥"}"#$% , 𝑥" ∈ ℜ& during a time period [𝑡$, 𝑡*], trading dynamics can be abstracted as a functional 𝑇!(𝑋) =
{𝑋., 𝛿(𝑋), 𝜂(𝑋)}. 𝑋. denotes the trading markers, which are significant buying or selling points in trading.  
The function δ(X) captures the global transaction pattern or structure, revealing how the trades are 
organized and interrelated. η(X) represents the trading status of each transaction, providing information 
such as whether it was a sell or a buy signal, the price at which it occurred, and the time of the trade.   
 
To effectively uncover meaningful trading dynamics, an explainable ML model must meet following 
standards according to the abstraction. Firstly, it should clearly identify and meaningfully explain trading 
markers, which are key components of trading dynamics and serve as an essential source of HFT liquidity. 
These markers are local maximum or minimum prices of the HFT price curve within a given time interval. 
Without the inclusion of trading markers, it would be difficult to accurately explain the underlying 
dynamics of trading. 
 
Secondly, the ML model should provide comprehensive information on the status of each transaction in 
trading. By understanding the status of each trading transaction, traders can gain deeper insights into 
different trading patterns, identify extreme price movements, and decipher the origins of trading markers. 
For example, annotating the status of each transaction in trading clusters can provide a more meaningful 
and intuitive visualization of the clustering information, thereby enabling traders to make informed 
decisions with greater confidence. 
 
Finally, the ML model should unveil trading dynamics by building a more informative feature space that 
overcomes the issue of feature scarcity in HFT data. The existing available features may be inadequate to 
provide knowledge-based trading behavior unveiling and trading marker identification. Therefore, it is 
essential to enrich the feature space by including additional meaningful features in trading dynamics 
discovery. By doing so, the model can uncover valuable trading dynamics information, reduce noise and 
redundancy, and ultimately assist traders in making better-informed decisions. 
 
2.4 Trading map 
 
Our study presents an innovative, explainable machine learning approach called Feature-Interpolation-
based dimension reduction SCAN (FIDR-SCAN) for discovering high-frequency trading (HFT) dynamics. 
FIDR-SCAN constructs a "trading map," which is technically an implementation of the trading dynamics 
abstraction 𝑇!(𝑋) . Each trading map allows traders to identify trading markers, annotate transaction 
statuses, and uncover trading behavior patterns in a feature space enriched with meaningful information. 
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The trading map can be thought of as a 2D signature of a stock's trading behavior, which enables traders 
to examine the behaviors of different securities, observe market tendencies, and identify buying and selling 
points. Additionally, this approach provides more insights into the significance of trading markers and 
opens up the possibility of reusing them. By merging the trading maps of a stock over a sequence of trading 
periods, we can address the essential question: "What happens to the stock in HFT?" 
 
Figure 2 shows AAPL's trading map using HFT data from February 1st, 2019 to February 22nd, 2019. The 
map displays only markers falling in RSI intervals [70, 100] or [0, 20]. RSI is a new feature added to the HFT 
feature space that indicates whether a stock is oversold or overbought [20]. The trading map groups 
transactions into ‘up’ or ‘down’ clusters, and each marker is annotated with corresponding time, prices, 
and RSI. By incorporating RSI into the trading map, we are able to categorize markers more effectively, and 
we find that around half of the markers show strong overbought or oversold signals. The RSI also helps 
identify essential trading markers by extreme RSI values, which are relatively far from their nearest 
transaction clusters. 
 
Additionally, each transaction is marked as core, reachable, or outlier points, representing normal, 
inflection, and trading marker transactions, respectively. We prove that trading markers in the trading map 
are meaningful peaks/bottoms or intermediate peaks/bottoms in the feature space to support more 
explainable trading marker discovery. 
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Fig 2. The trading map of AAPL HFT data from 2019/02/01 to 2019/02/22 under FIDR-SCAN. The trading 
markers that are outliers in DBSCAN clustering are marked with prices, time, where only the trading 
markers with RSI >=70 or <=20 are illustrated. 
 
The paper is organized into eight sections. In Section 3, we describe the HFT datasets we used in our study. 
Section 4 introduces our explainable machine learning (ML) algorithm, FIDR-SCAN, which we used to 
uncover HFT dynamics. We also present novel feature interpolation techniques that we used to enhance 
the feature space, making it easier to discover trading dynamics that are more interpretable. In Section 5, 
we validate and analyze trading maps. In Section 6, we evaluate the effectiveness of our trading markers 
from the perspective of trading profitability via AI trading. In Section 7, we discuss potential enhancements 
and extensions of our proposed algorithm. Finally, in Section 8, we conclude the study. 
 
 

3. HFT data and quantification 
 
3.1 HFT data and Kurtosis analysis  
We obtained the high-frequency trading (HFT) data used in this study from the "intraday prices" API 
provided by the IEX cloud [21]. We developed our software, HFTGlean, to retrieve intraday data for 
different stocks by communicating with the API. For this study, we selected four representative stocks from 
different sectors, including three large-cap HFT stocks (AAPL, BAC, and WMT) and one mid-cap stock 
(AEO) from IT, Banks, Retail, and Fashion sectors. 
 
We collected data for each stock from February 1, 2019, to February 22, 2019, resulting in 5850 observations 
across 9 features. The 9 features include 4 primitive price variables (high, low, open, and close), 1 volume 
variable, and 4 auxiliary variables. The high, low, open, and close prices represent the highest, lowest, 
beginning, and ending prices in each one-minute interval from the raw HFT data. The volume variable is 
the sum of all volumes of the original HFT transactions in the interval.  
 
The 4 auxiliary variables are ChangeOverTime, MarketAverage, NotionalValue, and NumberOfTrades. The 
ChangeOverTime variable represents the stock price change ratio in each one-minute interval and is 
generally a small ratio, with AAPL having a median price change ratio of 0.002 or 0.18% in the trading 
period. AEO has the lowest price change ratios per minute among the selected stocks, compared to the 
large caps AAPL, BAC, and WMT. The MarketAverage variable represents the average price of the stock per 
minute, while the NotionalValue variable refers to the total value of the position in trading, i.e., the total 
amount of the stock value at its spot price. The NumberOfTrades variable indicates the trading frequency of 
the stock by representing the number of trades placed per minute. 
 
Figure 2 illustrates the probability density functions of the close price, price change ratio (1-min) 
(ChangeOverTime), and log (volume) for HFT data on four stocks: APPL, AEO, BAC, and WMT. The non-
parametric Gaussian kernel density estimation method was used to generate these distributions, revealing 
that each stock has its own distinct trading behavior, resulting in different distributions [22]. The figure 
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also shows that these distributions do not conform closely to normal or log-normal distributions, indicating 
that each security has its own unique trading dynamics. 
 

 
Fig. 3 The close price, price change ratios (1-min), and log (volume) probability density function estimation 
of the AAPL, AEO, BAC and WMT HFT data February 1, 2019, to February 22, 2019. 
 
 
Kurtosis analysis. The HFT data's kurtosis analysis further confirms the observation. AAPL's price 
distribution follows a leptokurtic distribution with a high kurtosis value of 22.2974, indicating a larger 
number of outliers in trading compared to other stocks. On the other hand, AEO, BAC, and WMT's price 
distributions are platykurtic with negative kurtosis values indicating fewer outliers in trading. The price 
change ratio distributions of AAPL, BAC, and WMT are mesokurtic because their kurtosis values fall within 
the range of 0 to 3, which suggests a lack of extreme price changes. However, the price change ratio 
distribution of AAPL has an extreme kurtosis value of 1093.53, indicating a higher number of extreme price 
changes compared to other stocks. Additionally, AEO's log volume distribution is "leptokurtic" with a 
kurtosis value of 4.0233, while the log volume distributions of the other stocks are "mesokurtic." 
 
3.2.   HFT data quantification 
  
High-frequency trading (HFT) data can exhibit complex and dynamic patterns that are challenging to 
analyze using conventional methods. To address this issue, we employ a new measure called the variance 
concentration ratio (VCR) proposed by the first author to quantify the distribution of variance in HFT 
datasets [6,23]. The VCR is defined as the ratio between the largest singular value of the dataset and the 
total sum of all singular values. Specifically, given an HFT dataset with n transactions and p variables 𝑋 ∈
ℜ%×&, the VCR is defined as: 
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𝛽(𝑋) = 𝑠$/∑ 𝑠"
&
"#$                                                                      (1) 

 
where 𝑠"  is the ith singular value of 𝑋, 𝑖 = 1,2⋯𝑝. The VCR aims to measure how data variance distributes 
along the first singular-value direction.  The VCR acts as an index to signal the data variance level of HFT 
data: ∫𝑥*𝑓(𝑥)𝑑𝑥, where 𝑓(𝑥) is the unknown probability density function (p.d.f.) of the transaction random 
variable. 
 
 Theorem 1.  Given an HFT dataset with n transactions and p variables 𝑋 ∈ ℜ%×&,  then the variance 
concentration ratio (VCR) 𝛽(X) falls in the interval P $

√&
‖2‖"
‖2‖#

, ‖2‖"‖2‖#
Q, namely, 

 
$

√&
‖2‖"
‖2‖#

≤ 𝛽(𝑋) < ‖2‖"
‖2‖#

		                                                                                   (2) 

       
Proof. According to the Cauchy-Schwarz inequality, we have (∑ 𝑠")

&
"#$

* ≤ ∑ 𝑠"*𝑝
&
"#$ .	Then 	𝛽(𝑋)* = 3$"

(∑ 3%)
&
%'$

" ≥

3$"

∑ 3%
"&&

%'$
. The upper bound of 𝛽(𝑋)*  can be estimated as 3$"

(∑ 3%)
&
%'$

" <
3$"

3$"73""7⋯3&"
= 3$"

‖2‖#
" =

‖2‖""

‖2‖#
". The ‖𝑋‖*  and 

‖𝑋‖9 represent the spectral norm and Frobenius norm of the HFT data respectively. Thus, the VCR will fall 
in the interval: P $

√&
‖2‖"
‖2‖#

, ‖2‖"‖2‖#
Q , 𝑖. 𝑒., $

√&
‖2‖"
‖2‖#

≤ 𝛽(𝑋) < ‖2‖"
‖2‖#

. 

 
As we mentioned before, HFT data is energy concentration data with the data variance mostly concentrated 
in the first singular value direction. The ‘energy concentration’ is rooted from the high volume and high 
velocity of HFT data.  We officially define the energy concentration data according to VCR as follows.  
 
Energy concentration data. Given an HFT dataset with n transactions and p variables 𝑋 ∈ ℜ%×&, it is energy-
concentration data if and only if its VCR satisfies 𝛽(𝑋) > *

&
. 

 
We have found that high-frequency trading (HFT) data exhibits significantly higher values of variance-to-
covariance ratios (VCR) compared to other financial data, including option data and financial risk data. 
Only cryptocurrency data demonstrates similar or equally high VCRs to HFT data (data not presented). 
This suggests that HFT data is more concentrated in energy than other types of financial data. Furthermore, 
it is important to note that the VCR values are sensitive to the method of normalization used. The VCR 
values for raw HFT data can reach up to approximately 99%. However, when standard scaling is applied, 
the VCR values tend to be lower than those of other normalization methods, with a maximum value of 
around 30%, still greater than *

&
 (0.22, p=9) in our data.  In this study, the variables in the HFT data are 

heterogeneous and measured on different scales and units. To enable effective comparison and analysis, 
we employ standard normalization to normalize the data though other options can be also applied.  
 
Figure 4's left plot presents comparisons of VCRs between raw data and data from the five normalization 
methods, including standard, minmax, robust, maxabs, and power-transform normalization, across the four 
HFT datasets [24]. The results show that the raw data and maxabs normalized data have the highest VCR 
values. In the middle plot, we compare the explained variance ratios of the first two principal components 
(PCs) under the raw and five normalized data. The findings confirm the previous VCR results, where the 
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normalized data has the smallest explained variance ratios for the first two PCs, while the raw data and 
maxabs normalized data have the highest explained variance ratios. In the right plot of Figure 4, we present 
the explained variance ratios of the first two PCs under standard scaling. The results indicate that three 
datasets (AEO, BAC, WMT) achieve more than 80% of the explained variance ratios for the first two PCs.  
 
 

 
Fig. 4 compares the VCR values and the explained variance ratios of the first two principal components 
(PCs) between raw data and data from the five normalization methods (standard, minmax, robust, maxabs, 
and power transform normalization) across the four HFT datasets. The left and middle plots show the VCR 
values and the first 2 PC explained variance ratios, respectively. The results indicate that the raw data and 
maxabs normalized data have the highest VCR values and the highest explained variance ratios for the first 
two PCs. The right plot compares the explained variance ratios of the first two PCs under standard scaling 
for the four datasets, showing that three datasets (AEO, BAC, WMT) achieve more than 80% of the 
explained variance ratios for the first two PCs. 
 
The quantification of HFT data using the VCR provides a strong theoretical foundation for uncovering the 
underlying trading dynamics.  To effectively leverage the unique characteristics of HFT data, which is 
highly concentrated in energy, it is desirable to develop machine learning algorithms that can effectively 
capture and analyze this property. Technically, energy concentration data is suitable for dimension 
reduction to examine more subtle data behaviors. 
 
4. Explainable machine learning for trading dynamics discovery 

 
4.1 Explainable ML for trading dynamics discovery 
 
Figure 5 illustrates the flowchart for explainable machine learning (ML) in discovering high-frequency 
trading (HFT) dynamics by generating a trading map through adherence to the proposed standards. The 
flowchart commences with the construction of an informative feature space to reveal complex trading 
behaviors, thereby overcoming the issue of feature scarcity in HFT data. To construct the feature space, this 
study proposes a novel feature interpolation approach. Subsequently, an ‘explainable dimensional 
reduction algorithm’ is employed on the HFT data in the new feature space to generate an explainable 
trading embedding, which enables the retrieval of more concealed trading dynamics.  
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Fig. 5 The flowchart of explainable ML in discovering HFT trading dynamics by generating a trading map.  
To better capture the complex dynamics of HFT trading, there is an urgent need for an explainable ML 
algorithm that follows the proposed standards for explainable ML and leverages the distinctive features of 
HFT data. Such an algorithm should incorporate the trading dynamics abstraction 𝑇!(𝑋) = {𝑋., 𝛿(𝑋), 𝜂(𝑋)} 
by identifying crucial trading markers, grouping transactions, and marking trading statuses.  
 
The term "explainable dimensional reduction algorithm" refers to a dimension reduction algorithm 𝑓! that 
is capable of preserving the intrinsic data structure of the HFT data 𝑋 ∈ ℜ%×(&7+) after feature interpolation 
most effectively, i.e., 𝑓!: 𝑋 → 𝐸 = {𝑒"}"#$% , 𝑒" ∈ ℜ' , 𝑘 < (𝑝 + 𝑙), 𝑠. 𝑡.	 𝑓!: 𝑥" → 𝑒" , where  𝐸  is the explainable 
trading embedding capturing the essential data characteristics of 𝑋 while mitigating noise.  According to 
recent research, t-SNE outperforms other popular dimension reduction techniques such as UMAP, 
principal component analysis (PCA), locally linear embedding (LLE), Hessian locally linear embedding 
(HLLE), and Local tangent space alignment (LTSA) in keeping intrinsic data structures in terms of 
maintaining the degree of locality preservation [23]. Therefore, we have chosen to utilize t-SNE to 
implement 𝑓! in our flowchart to obtain an explainable trading embedding. 
 
After obtaining the explainable trading embedding, we need to apply an interpretable clustering algorithm 
that can identify trading markers, mark the status of each transaction, and find transaction clusters sharing 
trading similarity. Unfortunately, general clustering methods like K-means, Affinity Propagation, and 
spectral clustering methods, and their variants cannot accomplish all of these tasks simultaneously [25-26]. 
 
4.1.1 Interpreting DBSCAN: normal transactions, inflection transactions, and trading markers 
 
However, we have devised a different approach by interpreting the density-based clustering algorithm 
DBSCAN to accomplish it. DBSCAN classifies input data points into core, reachable, and outliers [19].  The 
core and reachable points are interpreted as normal and inflection transactions respectively. The normal 
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transactions are those reflecting common trading scenarios or general data behaviors in trading. The 
inflection transactions are those representing less common or less dominant behaviors in trading, and they 
are closer to trading markers spatially. The outliers are interpreted as trading markers or at least trading 
marker candidates that represent rare or unusual behaviors in trading, indicating unexpected or extreme 
market conditions. We have theoretically proven we can find trading markers through DBSCAN clustering 
for the explainable trading embedding.  In addition, the clustering structures from DBSCAN reveal the 
transaction clusters in trading.  Thus, the DBSCAN after interpreting can accomplish the tasks 
simultaneously.  Finally, we apply a trading map marking step that annotates the DBSCAN clustering 
results to create the final trading map. This approach provides a more accurate and interpretable clustering 
result for trading data, enabling better discovery of trading dynamics. 
 
4.2 HFT feature interpolation 
We provide more details about the feature interpolation techniques proposed in this study. 
 
Feature interpolation (FI).  Given an HFT dataset with n observations and p variables: 𝑋 = (𝑥"() ∈ ℜ%×&, 
feature interpolation is a technique that creates a new feature space, denoted as S', by combining the 
original features 𝑥.$, 𝑥.*, ⋯𝑥.& with a set of 'interpolated features' 𝑥.&7$, ⋯𝑥.&7+ . Each interpolated feature is 
generated by applying a functional map 𝑓'(. ) to the original features, such that 𝑥.&7' = 𝑓'W𝑥.$, 𝑥.*, ⋯𝑥.&X, 
where 𝑘 = 1,2… 𝑙. Thus, the new feature space 𝑆; is spanned by the original features and the interpolated 
features:  

𝑆; = 𝑠𝑝𝑎𝑛W𝑥.$, 𝑥.*, ⋯𝑥.&, 𝑥.&7$, ⋯𝑥.&7+X			                                                  (3) 
 
In general, 𝑓'(. )  is a nonlinear functional, although it can be linear in some cases. This is an important 
consideration when dealing with HFT data after feature interpolation. For example,  𝑓'(. )   can be a 
nonlinear map that calculates the ‘local’ Relative Strength Index (RSI) based on prices over a 14-minute 
interval consisting of 14 1-minute prices. This example highlights the complex nonlinear transformations 
that  𝑓'(. )   can undergo to derive features from the original data. 
 
Lemma 1. The singular values of matrix [𝐴|𝐵] ∈ ℜ%×(&7+) includes all singular values of matrix 𝐴 ∈ ℜ%×&, 
where matrix B is added as additional columns to the matrix A. 
 
Proof. Let  𝜎  be a singular value of A with a corresponding right singular vector  𝑢.	 Consider the vector 
[𝐴|𝐵]𝑢 . Its norm is ‖[𝐴|𝐵]𝑢‖* = 𝜎* + ‖𝐵𝑤‖*,  where 𝑤 ∈ ℜ$.  Since ‖𝐵𝑤‖*  is non-negative, 𝜎  is also a 
singular value of [𝐴|𝐵] with a corresponding right singular vector of the form [𝑤;; 𝑤], where 𝑤;  is any 
vector in ℜ&	and w is any vector in ℜ$. Therefore, all singular values of A are also singular values of [A|B], 
and thus the singular values of [A|B] include all singular values of A. 
 
Theorem 2. Given an HFT dataset with n transactions and p variables 𝑋 ∈ ℜ%×&, another HFT data 𝑋< =
[𝑋|𝑋+] ∈ ℜ%×(&7+), 𝑤ℎ𝑒𝑟𝑒	𝑋 = e𝑥.$, 𝑥.*, ⋯𝑥.&f, 𝑋+ = e𝑥.&7$, ⋯𝑥.&7+f,	is obtained by doing feature interpolation 
for 𝑋. Then we have the following results 

1) 𝑇𝑟(𝑋=𝑋) < 𝑇𝑟W𝑋<=𝑋<X. 
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2) The VCR relationship: 
>=?@2(2A

B&7+>=?C2)
(2)D

𝛽(𝑋) < 𝛽W𝑋<X < *$
∗

*$
	𝛽(𝑋), where 𝜎$∗ and 𝜎$ are the first singular 

values of 𝑋< and 𝑋< , 𝜎$∗ ≥ 𝜎$.  
 
Proof.  Without loss of generality, we assume each map 𝑓': W𝑥.$, 𝑥.*, ⋯𝑥.&X → 𝑥.&7' , 𝑘 = 1,2⋯ 𝑙  is nonlinear.  
According to Lemma 1, the singular values of 𝑋< = [𝑋|𝑋+] will include other singular values: 
𝜎&7$, 𝜎&7*, ⋯𝜎&7+ > 0 besides including the original singular values 𝜎$, 𝜎*, ⋯𝜎&.	 Therefore, 

𝑇𝑟(𝑋=𝑋) = ∑ 𝜎"*
&
"#$ < ∑ 𝜎"*

&7+
"#$ = 𝑇𝑟W𝑋<=𝑋<X                                                     (4) 

It is noted that the singular values of 𝑋: 𝜎$, 𝜎*, ⋯𝜎&	 have the relationships: 𝜎$ ≥ 𝜎*, ≥ ⋯𝜎&, but the extra 
singular values  𝜎&7$, 𝜎&7*, ⋯𝜎&7+ may contain the entries greater than 𝜎$. 
 
The VCR of X:  𝛽(𝑋) = F$

F$7F"7⋯7F&
> F$

F$7F"7⋯7F&,*&,$	…,F&,/	
, let 𝜎$∗ = maxk𝜎$, 𝜎*, ⋯ , 𝜎&,, 𝜎&7$,⋯𝜎&7+l, which is 

the first singular value of 𝑋< . Then we have 𝛽(𝑋) > F$∗

F$,7F"7⋯7F&,7F&,$7⋯7F&,/	
F$
F$∗
= 𝛽W𝑋<X

F$
F$∗
, thus, 𝛽W𝑋<X <

*$
∗

*$
	𝛽(𝑋).  

Similarly, 𝛽(𝑋) < F$∗

F$7F"7⋯7F&	
= 𝛽W𝑋<X

F$7F"7⋯7F&7⋯7F&,/
	F$7F"7⋯7F&

< 𝛽W𝑋<X
B&7+>=?C2)

(2)D

>=?@2(2A
, thus, 𝛽W𝑋<X >

>=?@2(2A

B&7+>=?C2)
(2)D

. 

Therefore, 

 
>=?@2(2A

B&7+>=?C2)
(2)D

𝛽(𝑋) < 𝛽W𝑋<X < *$
∗

*$
	𝛽(𝑋)                                                                     (5) 

 
4.2.1 Data entropy of HFT data  
Feature interpolation can enhance the discovery of explainable trading dynamics by creating a more 
informative feature space through increasing the entropy of the input HFT data. To measure the impact of 
feature interpolation on HFT data, data entropy is employed as a quantifying metric. Han et al. introduced 
the concept of data entropy to explain the performance of marker discovery in HFT data [6]. We have the 
following definition for data entropy and its range estimation. 
 
Data entropy. Given a dataset with n observations and p variables: 𝑋 ∈ ℜ%×&,	its data entropy is defined as  

ℎ(𝑋) = −∑ 𝑢" 𝑙𝑜𝑔* 𝑢"	
&
"#$                                                                      (6) 

where 𝑢" = 
3%

∑ 3%
&
%'$

, and 𝑠" is the ith singular value of 𝑋.   

 
Lemma 2. HFT entropy range estimation. Given an HFT dataset with n transactions and p variables 𝑋 ∈

ℜ%×&, its data entropy falls in the following interval (1 − ‖2‖#
"

=?@2(2A
") 𝑙𝑜𝑔* 𝑒	 ≤ ℎ(𝑋) ≤ (𝑝 − 1) 𝑙𝑜𝑔* 𝑒.      

 
Proof.  According to the definition of data entropy, for all 𝑢" > 0, we see 1 − $

I%
≤ ln𝑢" ≤ 𝑢" − 1, then we 

have  ∑ 𝑢"(1 −
$
I%
)&

"#$ ≤ ∑ 𝑢" ln 𝑢" 	≤
&
"#$ ∑ 𝑢"(𝑢" − 1),

&
"#$  multiplying -1 on both sides and simplifying it, i.e., 

∑ 𝑢"(1 − 𝑢")
&
"#$ ≤ −∑ 𝑢" ln 𝑢" 	≤

&
"#$ ∑ (1 − 𝑢")

&
"#$ , plugging the  ∑ 𝑢" = 1,&

"#$  ∑ 𝑢"* =
3$"73""7⋯3&"

(∑ 3%)
&
%'$

"
&
"#$ = ‖2‖#

"

=?(2(2)"
,  to 
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the inequality,  we get the final answer: 1 − ‖2‖#
"

=?@2(2A
" ≤ −∑ 𝑢" ln 𝑢" 	≤

&
"#$ 𝑝 − 1.   Let −∑ 𝑢" ln 𝑢" =

&
"#$

−∑ 𝑢"
&
"#$

+JK" I%	
+JK" L	

, we have the final result:  0 < (1 − ‖2‖#
"

=?@2(2A
") 𝑙𝑜𝑔* 𝑒	 ≤ ℎ(𝑋) ≤ (𝑝 − 1) 𝑙𝑜𝑔* 𝑒.         

 
The HFT entropy range estimation suggests that as the number of variables, p, increases, the entropy of the 
HFT dataset also increases. This is supported by the upper bound of the entropy estimation, which confirms 
that a large number of variables results in a high entropy HFT dataset. Therefore, adding more variables to 
the dataset will increase its entropy.  
 
However, the addition of more variables also perturbs the original system, revealing more latent data 
behaviors that can increase the entropy of the entire dataset. As a result, we can conclude that feature 
interpolations have the following theorem: 
 
Theorem 3 Given an HFT dataset with n transactions and p variables 𝑋 ∈ ℜ%×&,  𝑋< = [𝑋|𝑋+] ∈
ℜ%×(&7+), where	𝑋 = e𝑥.$, 𝑥.*, ⋯𝑥.&f, 𝑋+ = e𝑥.&7$, ⋯𝑥.&7+f,	 is the HFT data obtained by doing feature 
interpolation for 𝑋, then ℎW𝑋<X > ℎ(𝑋),	 i.e., adding interpolated variables will increase the data entropy. 
 
Proof.  Let 𝜎$, 𝜎*, ⋯𝜎& be the singular values of 𝑋 and 𝜎$, 𝜎*, ⋯𝜎&, 𝜎&7$, 𝜎&7*, ⋯𝜎&7+ be the singular values of 
𝑋< .  
 
 ℎW𝑋<X = −W∑ 𝑢"

&7+
"#$ log* 𝑢"X = −W∑ 𝑢"

&
"#$ log* 𝑢"X + [−W∑ 𝑢"

&7+
"#&7$ log* 𝑢"X],		where 𝑢" =

F%
∑ F%
&,/
%'$

, 𝑖 = 1,2, …𝑝 + 𝑙.  

ℎ(𝑋) = −W∑ 𝑣(
&
(#$ log* 𝑣(X,  𝑣( =

F1
F$7F"⋯7F&

, 𝑗 = 1,2, …𝑝 .  Since 𝑢" log* 𝑢" < 𝑣" log* 𝑣" , 𝑖 = 1,2, …𝑝,  we have 

−W∑ 𝑢"
&
"#$ log* 𝑢"X > ℎ(𝑋). Thus, ℎW𝑋<X > ℎ(𝑋). 

 
The theorem is supported by real data entropy results. We have calculated the data entropies for four HFT 
datasets (AAPL, BAC, WMT, and AEO) used in this study, before and after feature interpolations. Our 
findings show that the data entropies increase after the interpolation procedure. Table 1 compares the 
entropies of the four datasets before and after feature interpolations, demonstrating a noticeable increase 
from 3.8% to 12.82%. From an information theory perspective, higher entropy data can be more explainable 
than lower entropy data. This finding suggests that the feature interpolation procedure can help to increase 
the explainability of the HFT datasets we examined in our study. The details about fetaure interpolation 
implementation can be found in the following subsection. 
 

Table 1 Entropy comparisons before and after feature interpolations (FI) 
 AAPL BAC AEO WMT 
Before FI  0.001463  0.02075 0.006146       0.005376 
After FI 0.001632   0.02341 0.006382 0.00563 

 
 
4.2.2 Feature interpolation implementation.  
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To implement the proposed feature interpolations, we added two groups of interpolated features to the 
HFT data. The first group localizes four traditional trading indices that capture oversold or overbought 
signals, the magnitude of price changes, and price trend strength. We achieved this by updating their 
trading unit from a day to a 1-minute trading interval. These indices include Bollinger Bands (BB), Relative 
Strength Index (RSI), Moving Average Convergence Divergence (MACD), and Average Directional Index 
(ADX) [20]. 
 
The second group comprises two new liquidity measures proposed in this study, namely pseudo-volatility 
and close-off-high (COH), in addition to the classic log return. Unlike the original primitive features, the 
interpolated features are obtained from different nonlinear transforms that model different latent data 
characteristics in trading. Therefore, these features are more interpretable and informative in describing 
the behaviors of HFT data than the original ones. We briefly introduce these metrics as follows to make this 
presentation more self-contained. 
 
The Bollinger Bands are a useful tool for identifying overbought or oversold signals in trading [20]. It 
consists of three measures in m trading intervals: a moving average 𝑀𝐴 = (∑ 𝑝")/𝑚.

"#$ ,  an upper band 𝐵I =
$
.
∑ 𝑡𝑝".
"#$ + 2𝜎., and a lower band 𝐵. = $

.
∑ 𝑡𝑝".
"#$ − 2𝜎..  The typical price 𝑡𝑝" is the average of high, low, 

and close prices  𝑡𝑝"=
&%
2%327&%

/457&%
6/478

M
  in the ith trading interval and 𝜎+ is the standard deviation of the typical 

price in the m trading intervals. When the stock price in the ith trading interval goes below the lower band, 
i.e., 𝑝" < 𝐵+ ,  it indicates that the stock is oversold. Otherwise, it signals an overbought condition when 𝑝" >
𝐵I.   
  
Relative Strength Index (RSI) is an index between 0 and 100 that signals whether a stock is oversold or 
overbought by measuring the strength or weakness of a stock's price. It is calculated using average price 
gains and losses for a given number of trading periods (e.g., 20 trading intervals in HFT). RSI > 70 means a 
security is overbought or overvalued RSI <25 means the security is oversold or undervalued. The detailed 
calculation can be found in [20]. 
 
Moving Average Convergence Divergence (MACD) is an index to measure the buy and sell signal by 
evaluating price strength [20]. The long position is suggested when the ith trading interval price is above 
the MACD line value: 𝑝" > 𝑀𝐴𝐶𝐷"; Otherwise a short position is suggested. The MACD in the ith trading 
interval is calculated as the difference between two exponential moving average (EMAs) [2]:  𝑀𝐴𝐶𝐷" =
𝐸𝑀𝐴",' − 𝐸𝑀𝐴",., where 𝐸𝑀𝐴",' and 𝐸𝑀𝐴",. are the EMAs of the kth and mth trading intervals counting from 
the existing ith interval and m-k=12. 
 
The Average Directional Index (ADX) is an index that measures the strength of a security's price trend and 
ranges from 0 to 100 [20]. An ADX value in the range of 75-100, 50-75, or 25-50 indicates an extremely strong, 
very strong, or strong up/down price trend, respectively. In contrast, a low ADX value (e.g., <25) suggests 
that there is no trend signal or a weak trend in the security price. The ADX value is calculated based on a 
moving average (MA) of the price range expansion over a certain trading period (e.g., 14 trading intervals 
in HFT). 
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Close-off-high (COH) is a measure that evaluates the relationship between the closing price and the 
extreme price in every trading interval. A higher COH value indicates higher price oscillations, and extreme 
large COH values signal an extreme change in price. The COH for the ith trading interval is calculated using 
the following formula: 

𝐶𝑂𝐻" = 2 &%
2%32N&%

6/478

&%
2%32N&%

/45	
− 1                                                                          (7) 

where 𝑝"
O"KO, 𝑝")+J3L , 𝑝"+JP are the high, close, and low prices in the ith trading interval.  

 
Pseudo-volatility represents the ratio of the difference between the highest and lowest price over the 
opening price in each time interval. The larger price fluctuation, the higher pseudo-volatility in each time 
interval. The pseudo-volatility for the ith trading interval is calculated using the following formula: 
 

                                                                   PV" =
&%
2%32N&%

/45

	&%
4&89                                                               (8) 

Where 𝑝"
O"KO, 𝑝"+JP , 𝑝"

J&L% are high, low, and open prices in the ith  trading interval.  
 

 
Fig 6. shows six interpolated variables added to the AAPL HFT data, providing valuable insights into 
market trends, volatility, and momentum. BB, MACD, COH, RSI, and pseudo-volatility are particularly 
useful for identifying extreme price movements and potential buy/sell opportunities. 
 
Figure 6 illustrates the six interpolated variables: BB, COH, pseudo-volatility, RSI, ADX, and MACD, which 
we added to the AAPL HFT data from 2019/02/01 to 2019 02/ 22. The interpolated variables describe trading 
from different perspectives, but almost all demonstrate strong sensitivity to the extreme price change 
period where the price drops abruptly in trading. For example, RSI drops to <10 and indicates the security 
is greatly undervalued; COH increases to a huge value and pseudo-volatility demonstrates a large value. 
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Correspondingly, ADX moves to <20 and MACD shows a strong buy signal during the period. The 
interpolated variables provide a detailed understanding of HFT data and offer insights into market trends, 
volatility, and momentum in trading. 
 
Figure 7 presents a comparison of PCA, t-SNE, and UMAP embeddings of the AAPL HFT data before and 
after adding interpolated features [17,23,25]. The results indicate that the feature interpolations contribute 
to uncovering more hidden trading dynamics. Notably, the data embeddings of PCA, t-SNE, and UMAP 
under the new feature space exhibit significant advantages over their counterparts in the original feature 
space. 
 
For instance, after the feature interpolation, the t-SNE embedding can separate 'up' and 'down' transactions 
better than the original t-SNE embedding, which had 'up' transactions buried among the 'down' ones. 
Similarly, the PCA embedding under the feature interpolation provides a much better separation for 'up' 
and 'down' transactions than the original features, where most 'up' and 'down' transactions are wired 
together in the embedding except for a few outliers. 
 
Moreover, the t-SNE embedding shows more 'explainable advantages' than the UMAP and PCA 
embeddings in separating the 'up' and 'down' groups [23]. It is worth noting that all other HFT datasets 
share similar characteristics (see the supplement). Thus, adding interpolated features to augment the 
original HFT feature space contributes to discovering more interpretable trading dynamics. 

 
 
Fig 7. compares the PCA, t-SNE, and UMAP embeddings of AAPL HFT data before and after feature 
interpolations. The embeddings obtained after feature interpolations demonstrate a more informative 
representation than the previous ones before feature interpolations. Notably, the t-SNE embedding after 
feature interpolations exhibits more explainable advantages than the UMAP and PCA embeddings. 
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4.3 Explainable dimension reduction 
t-SNE has the capability to distinguish various stocks' trading behaviors in the embedding space by creating 
an interpretable trading embedding. While we provide a brief introduction to t-SNE, please refer to [23] for 
a more detailed discussion of PCA, UMAP, and their explainability [23].  
 
 t-SNE calcualtes the low-dimensional embedding of input data 𝑋 = [𝑥$, 𝑥*⋯𝑥%], 𝑥" ∈ ℜ&7+  by minimizing 
the Kullback-Leibler (K-L) divergence between a Gaussian distribution 𝑃 = (𝑝"() in the input space and a 
normalized Student’s t-distribution 𝑄 = (𝑞"() in the embedding space: 
 

𝜑(𝑃, 𝑄) = 𝐾𝐿(𝑃 ∥ 𝑄) = ∑ ∑ 𝑝"(%
(#$,(Q" 𝑙𝑜𝑔 &%1

R%1
%
"#$                                                      (8) 

 

where 𝑝"( models the pairwise similarity between points 𝑥" and	𝑥( of the original data and 𝑞"( models the 
pairwise similarity of their corresponding embeddings: 𝑦" and	𝑦(  in the embedding space [27-28].  The non-

convex objective function is minimized along the negative direction of the gradient: 𝑦!"# = 𝑦! − 𝑟!
$%
$&!
,	where  

ST
SU1

= 4∑ (𝑝"( − 𝑞"()𝑞"(𝑍(𝑦" − 𝑦(),%
(Q"  𝑍 = ∑ (1 + ‖𝑦' − 𝑦+‖*)N$'Q+ , and 𝑟!  is the learning rate.  The average 

compelxity of t-SNE 𝑂(𝑛𝑙𝑜𝑔𝑛) also prepares it well for real-time processing [29-30]. 
 
4.4 Trading marker finding clustering  
As previously stated, we accomplish ‘trading marker finding clustering’ by interpreting DBSCAN. This 
enables us to identify trading markers, label the status of each transaction, and simultaneously discover 
transaction clusters. We briefly introduce DBSCAN as follows. 
 
4.4.1 DBSCAN 
DBSCAN is a density-based clustering algorithm that handles arbitrary-shaped data with noise. DBSCAN 
classifies points as core, reachable, and outliers (also called noise) in clustering [18-19]. DBSCAN clustering 
is equivalent to creating a graph with core and reachable points as vertices and edges connecting them but 
leaving the outliers unconnected.  Unlike other clustering algorithms, it doesn't require the number of 
clusters to be specified in advance, making it particularly useful for datasets with unknown cluster 
structure or variable cluster sizes. 
 
DBSCAN is a clustering algorithm that groups data points based on their proximity and density. To cluster 
a given point, which is the corresponding trading embedding of a transaction under t-SNE, DBSCAN first 
examines its ε-neighborhood, which is the set of all points within a specified distance from the point. If the 
size of the ε-neighborhood is greater than or equal to the minimum number of points (minpts) required to 
form a dense region, the algorithm initializes a new cluster with the neighbors and marks the original point 
as a core point. Otherwise, the point is marked as an outlier. 
 
If a point is part of a cluster, its ε-neighborhood will be marked as a part of that cluster, and all points in 
the neighborhood will be added to the cluster until the density condition is satisfied. These points are called 
reachable points, as they are reachable from a core point. This process continues until all reachable points 
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have been assigned to a cluster, and all remaining points that do not belong to any cluster are marked as 
outliers. The average running time complexity of DBSCAN is 𝑂(𝑛𝑙𝑜𝑔𝑛) though the worse time complexity 
is 𝑂(𝑛*). 
 
4.4.2 Implement ‘trading marker finding clustering’  
The 'trading marker finding clustering' can be implemented in two ways. The first approach involves 
collecting as many outliers as possible from the DBSCAN clustering and using trading marker thresholds 
(e.g., a price change threshold of η > 0.2%) to identify and collect trading markers. To obtain more outliers, 
a small radius ε value (e.g., ε=0.5) is required given a minpts value. However, this approach is more 
conservative and computationally complex.  
 
The second approach, which we employ in this study, involves selecting a relatively large radius value (e.g.,  
ε=2) for a given minpts value to obtain a smaller set of outliers and treating them as trading markers. This 
approach is more efficient in capturing important trading markers by filtering out the trivial ones. We find 
that almost all outliers can be trading markers according to different standards. It is advisable to use a 
medium value of minpts (e.g., 30) in the DBSCAN clustering algorithm. Using a very high minpts value can 
result in grouping together many unrelated points, leading to fewer clusters and a loss of locality 
preservation. Conversely, a very low minpts value may result in the creation of spurious clusters containing 
outliers. We prove that we can seek trading markers from the outliers from the DBSCAN clustering on the 
embedding of input data provided the parameters ε and 𝑚𝑖𝑛𝑝𝑡𝑠 are carefully selected. 
 
Theorem 5 Given the embedding 𝐸 = {𝑒"}"#$% , 𝑒" ∈ ℜ'  of an HFT dataset with n observations and p variables: 
𝑋 = {𝑥"}"#$% , 𝑥" ∈ ℜ&	, 𝑘 < 𝑝 ≪ 𝑛,	under an explainable dimesnion reduction algorithm 𝑓! , which is t-SNE in 
our context,  there exists DBSCAN with parameters ε and 𝑚𝑖𝑛𝑝𝑡𝑠 applied to 𝐸 such that each outlier is 
identified as a trading marker.  
 
Proof.   Given HFT data 𝑋 = {𝑥"}"#$%  in the trading time period [𝑡-, 𝑡], we assume that price function 𝑝(𝑡) and 
volume function 𝑣(𝑡) of the trading data are known.  We then define the trading marker set for each 1-
minute trading interval [𝑡' , 𝑡'7$] based on a price change ratio threshold η and a volume cutoff δ, as follows: 
Let B(x, η, δ, k) denote the trading marker set for the k-th 1-minute interval, where x is a point in the set X. 
The trading marker set B(x, η, δ, k) is defined as: 

	
𝐵(𝑥, 𝜂, 𝛿, 𝑘) = ä𝑥: |&(,:,$)N&(,:)||&(,:)|

≥ 𝜂, 𝑣(𝑡'7$) ≥ 𝛿ã																																																	(9) 

	
Here,	|B(x,	η,	δ,	k)|	is	either	1	or	0	depending	on	whether	x	belongs	to	the	trading	marker	set	or	not.	We	can	
define	 the	 trading	marker	 set	 N(x,	 η)	 as	 the	 union	 of	 the	 trading	marker	 sets	 for	 each	 1-minute	 interval,	
i.e.,𝑁(𝑥, 𝜂) =∪'#$% 𝐵(𝑥, 𝜂, 𝛿, 𝑘).			
	
The	image	of	the	trading	marker	set	denoted	by	𝑓!(𝑁(𝑥, 𝑛))	is	a	subset	of	𝐸.	However,	the	crowding	issue	of	t-
SNE	can	cause	several	points	in	the	input	space	to	be	mapped	to	a	single	point	in	the	embedding	space,	i.e.,		
|𝑓!(𝑁(𝑥, 𝑛)| ≤ |𝑁(𝑥, 𝜂)|	[27]. The crowding issue in t-SNE refers to the phenomenon where the distance 
between the points in the embedding space E is not preserved accurately from the input space X. As a result, 
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some points in the input space may be clustered together in the embedding space, leading to a reduction 
in the number of distinct points in 𝑓!(𝑁(𝑥, 𝑛).  
 
On the other hand, it is noted that the 𝑓!(𝑁(𝑥, 𝑛)) will be seperated from {𝐸 − 𝑓!(𝑁(𝑥, 𝑛)} spatially in the 
embedding space because the good explainaility of t-SNE and the nature of trading markers. To	identify	
the	 trading	 markers	 in	 the	 embedding	 space	 E,	 we	 can	 use	 the	 DBSCAN	 algorithm.	We	 define	 minpts	 as	

𝑚𝑖𝑛𝑝𝑡𝑠 = 𝑛 − |𝑁(𝑥, 𝜂)|.	We	also	define	𝜀 = 𝑚𝑎𝑥 ∪",(%
WL%NL1W

*
, 𝑒" , 𝑒( ∈ {𝐸 − 𝑓!(𝑁(𝑥, 𝑛)}.	Using	these	parameters,	

we	 can	 run	 DBSCAN	 clustering	 on	 the	 embedding	𝐸 = {𝑒"}"#$% 	.	 In	 this	 clustering,	 all	 points	 in	 the	 set	𝐸 −
𝑓!(𝑁(𝑥, 𝑛)	will	be	classified	as	core	points	and	reachable	points	in	one	cluster,	while	all	points	in	𝑓!(𝑁(𝑥, 𝑛)	
will	be	classified	as	outliers.	Thus,	each outlier will be identified as a trading marker.  
 
It is noted that we label each trading interval as ‘up’ or down’   before clustering according to the difference 
between the open price and close price in the interval. This approach not only imbues more detailed 
significance to trading markers but also aids in generating more informative trading maps. 
 
4.4.3 Collision detection.  Each trading map is created by DBSCAN clustering the t-SNE embedding of 
HFT data. However, due to the high density of points in the embedding space, it is possible for multiple 
common or inflection transactions to be mapped onto the same point, resulting in collisions on the trading 
map. To address this issue, collision detection must be implemented. 
 
The collision detection process involves calculating pairwise distances of the t-SNE embedding points for 
a given set of trading markers. A threshold, denoted as 𝛽!, is set as the minimum distance allowed between 
two points in clustering. If the embedding points of two trading markers, A and B, denoted as a=𝑓!(𝐴), 
b=𝑓!(𝐵) respectively, are such that their distance is less than 𝛽!, i.e., dist(a, b) < 	𝛽!, then one of the markers 
is automatically 'hidden' from the trading map due to the detected collision. It is worth noting that outliers 
are less likely to be affected by collision detection compared to other data points. 
 
4.4.4 The explainable trading dynamics discovery algorithm FIDR-SCAN 
 
Algorithm 1: Feature-Interpolation Dimension-Reduction-based SCANing (FIDR-SCAN) 
Input:    

 HFT data: 𝑋 ∈ ℝ'×) with n observations across p features, 𝑛 ≫ 𝑝 
 Explainable dimension-reduction model: 𝑓* (default t-SNE) 
 𝑚𝑖𝑛𝑝𝑡𝑠: the minimum number of points (default 30) 

 𝜀: the neighbor radius in clustering (default 2)  
 	 
Output:  
     Trading map	𝑋,.X& 
    

// mark ‘up/down’ labels for data according to price change in each interval 
1. 𝑋 ← 𝑀𝑎𝑟𝑘𝑢𝑝𝑑𝑜𝑤𝑛𝑙𝑎𝑏𝑒𝑙(𝑋) 

 
// do feature interpolations to augment the feature space 
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2. 𝑋%LP9LX,I?L3 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑋) 
 

3. 𝑋 ← [𝑋, 𝑋%LP9LX,I?L3] 
 
//Explainable dimension reduction to produce the explainable trading embedding  

4. 𝑋L.YL!"%K ← 𝑓!(𝑋) 
 

5. //DBSCAN clustering for the trading embedding 
6. 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑢𝑠,𝑚𝑎𝑟𝑘𝑒𝑟𝑠	 ← 𝐷𝐵𝑆𝐶𝐴𝑁(𝑋L.YL!!"%K, 𝑚𝑖𝑛𝑝𝑡𝑠, 𝜀) 

 
     // Trading map generation 
7. 𝑋,.X& ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑎𝑑𝑖𝑛𝑔𝑀𝑎𝑝(𝑋L.YL!!"%K, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑢𝑠,𝑚𝑎𝑟𝑘𝑒𝑟𝑠) 

 
8. Return 𝑋,.X& 

 
Algorithm 1 presents the FIDR-SCAN algorithm, which is proposed for discovering explainable trading 
dynamics. The average complexity of FIDR-SCAN is 𝑂(𝑛 + 𝑛𝑙𝑜𝑔𝑛 + 𝑙*), which is the result of the 𝑂(𝑛) 
feature interpolation complexity, 𝑂(𝑛𝑙𝑜𝑔𝑛)  average complexities for t-SNE and DBSCAN, and 𝑂(𝑙*) 
pairwise distance calculation complexity for collision detection. Marking the trading map has an additional 
complexity of 𝑂(𝑛), which is negligible as the number of trading markers is much smaller than the total 
number of transactions. Therefore, FIDR-SCAN can efficiently create a trading map for a large input dataset 
in real-time. The worst-case complexity would be 𝑂(𝑛*)  due to the 𝑂(𝑛*) time complexity of DBSCAN. 
 

5 Trading map validation and analysis 
It is reasonable to validate the meaningfulness of the trading maps generated by FIDR-SCAN by 
investigating core, reachable, and outliers, which are interpreted as normal transactions, inflection 
transactions, and trading markers. It will help to answer important queries like ‘Are they meaningful and 
effective classifications of transactions in trading dynamics unveiling?’  

 
Proposition 1. The probability density functions of normal transactions, inflection transactions, and trading markers 
identified from FIDR-SCAN exhibit distinguishable characteristics in their respective variables. 

 
5.1 Probability density function analysis 
Our probability density function analysis indicates that the three groups of points are not only meaningful 
but also demonstrate good interpretations in terms of the interpolated features indicates.  Figure 8 
compares the probability density functions (p.d.f.s) of RSI, ADX, log-return, and pseudo-volatility of the 
three groups in the AAPL trading map. The three groups demonstrate remarkably different distributions. 
The trading marker group shows obviously higher means and larger standard deviations of RSI and ADX 
than normal and inflection transactions. Similarly, it shows exceptional log-return and pseudo-volatility 
values compared to those of the other two.   
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Fig 8. The probability density functions (p.d.f.s) of RSI, ADX, log-return, and pseudo-volatility for the core 
points, reachable points, and trading markers in the AAPL trading map. The distinctive characteristics of 
the trading markers are evident, with notably higher means and larger standard deviations of RSI and ADX, 
exceptional log-return and pseudo-volatility values compared to the core and reachable points. 
 
In addition to the variables analyzed in Figure 8, we also examined the probability density functions of 
several other variables to further investigate the distinctions between the three groups. The results support 
the notion that trading markers are different from normal and inflection transactions. For example, the p.d.f. 
of the number of trades indicates that trading markers and reachable points have more trades than core 
points. The p.d.f.s of BB-mid, close-off-high (COH), and MACD also suggest that trading markers have 
different characteristics than the other two groups. Specifically, trading markers have smaller COH ranges, 
indicating they are potential extreme values in trading. They also have smaller MACD ranges, suggesting 
they provide stronger buy/sell signals. Please refer to the supplemental materials for more details on the 
remaining p.d.f.s. These findings provide further evidence of the meaningfulness and effectiveness of the 
trading maps in identifying important patterns in trading dynamics. 
 
5.2. Examining trading markers 
 
Proposition 2. Assuming a known variable function 𝑓(𝑥), if 𝑥∗ ∈ 𝑋., the trading marker set identified from FIDR-
SCAN during a trading period, then 𝑓(𝑥∗) represents a local or global optimum during that period. 
 
We have observed that the trading markers (outliers) manifest themselves as either the 
'maximum/minimum' or 'local maximum/minimum' for various variables other than the price variable. 
Specifically, for the identified trading markers, the log-return and pseudo-volatility values are either 
maximum or minimum, while the volume, market notational, and other variable values of these markers 
are local maximum or minimum. This suggests that the proposed algorithm for trading marker discovery 
is effective, as it is able to identify outliers in multiple variables beyond just the price variable. By detecting 
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maximum or minimum values in variables such as log-return and pseudo-volatility, as well as local 
maximum or minimum values in variables like volume and market notational, the algorithm is able to 
pinpoint potential trading markers that may not have been identified using traditional methods.  We do 
the following case study for BAC (bank of america) HFT data to demonstrate it. 
 
 BAC trading map analysis. Trading maps can distinguish different securities from their individually 
varied trading maps reflecting their own trading dynamics. It can be hard to distinguish the price plots of 
two stocks sometimes, but it is easy to detect their trading maps because the latter reflects more trading 
essentials in a more informative and larger feature space.  
  
Figure 9 displays the trading map of BAC HFT data from 2019/02/01 to 2019/02/22, which has been clustered 
into 23 groups using FIDR-SCAN with 41 trading markers identified based on the price change ratio η≥0.2%. 
The trading map suggests that BAC is likely to experience an 'up' market, as the prices of trading markers 
in the later trading period are higher than those in the early period. Moreover, there are no significantly 
large changes in trading marker prices, indicating that BAC will not be as volatile as AAPL in trading. 
 

  
 
Fig 9. The trading map of BAC HFT data from 2019/02/01 to 2019 02/22 under FIDR-SCAN with 41 trading 
markers with the price change ratio of  𝜂 ≥ 0.2%.  The whole market is an ‘up’ market because the prices 
of later trading markers are higher than those of the previous ones. Notably, the trading map makes it easy 
to identify important markers located at $28.77 and $29.25, due to their significant distances from their 
neighboring clusters. 
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Figure 10 validates the effectiveness of the identified trading markers from the trading map across different 
variables, such as close price, price change ratio, log-return, and notional values. The markers represent 
global or local optima for these variables, as illustrated in the subplots. For instance, the price plot shows 
the markers as meaningful peaks/bottoms or local 'bottoms/peaks', while the change ratios plot shows them 
as local maximums/minimums. The log-return plot illustrates max/min log returns per trading interval, 
and the notional value plot indicates local maximum values. These findings support the proposition 2 that 
a trading marker appears at a spot where the corresponding value achieves a local or global optimal value. 
Similar results are found in the supplemental for other datasets. 

 
Fig 10. presents visualizations of BAC trading markers from FIDR-SCAN, showcasing values of variables 
such as close price, change ratio, log return, and notional value. These markers achieve either global or 
local optima on the variables. 

 
 

5.3 Parameter tuning.  
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In addition to interpolated features, FIDR-SCAN utilizes three key parameters, namely perplexity of t-SNE, 
neighbor radius ε, and minpts, to create a trading map for HFT data. Proper configuration or tuning of these 
parameters is crucial to ensure desirable generation of the trading map. 
 
The perplexity of t-SNE controls neighborhood size and level of global/local data behavior presentation in 
the explainable dimensional reduction embedding. It's defined by 2 to the power of Shannon entropy: 
𝐻(𝑃) = 2N∑ &%1Z[\" &%1%;1 , in which 𝑝"( is the joint probability to model the similarity between the 𝑖,O and 𝑗,O 
transactions [28].  Small values lead to more local behavior presentation, while large values lead to more 
global behavior. Empirically, values between 100-200 balance global and local data behavior presentation. 
 
The neighborhood radius 𝜀, which is the minimum distance between two embedding points in explainable 
dimension reduction, affects the clustering sensitively. A too small 𝜀  (e.g.,	𝜀 = 0.5 ) will produce many 
more trading markers in FIDR-SCAN so that the importance of key markers may become less obvious, 
while a too large one (e.g.,	𝜀 = 5 ) will greatly decrease the number of the outliers as well as the number of 
clusters. Therefore, it is recommended to set	𝜀 somewhere between 1.5 and 2 for the sake of producing 
appropriate clustering.  
 
 The minpts parameter is the minimum number of entries in a neighborhood for a transaction to be 
considered as a common transaction in FIDR-SCAN. A small value generates more outliers, while a large 
one misses important markers. It is recommended to set minpts to at least 30 for highly traded large caps 
(e.g., AAPL). Grid search is not recommended due to the slow real-time implementation. 
 

6  AI trading: reuse trading markers  
 
We validate the effectiveness of identified trading markers by designing profitable trading algorithms. This 
effort aims to answer traders' queries about the markers' profitability in a chosen trading period. More 
importantly, it is equivalent to reusing the identified markers within a future similar market via an ‘AI 
trading’. We evaluate the earning percentage of a trading algorithm in a trading period [𝑡3,	𝑡L]	 to assess 
the efficiency of using trading markers in trading. The earning percentage is the ratio of the difference 
between the trading account balances at the start and end times 𝑑,7 and 𝑑	,8 and to the initial balance: 
 

                                                                        𝑒𝑎𝑟𝑛𝑖𝑛𝑔& =	
!	<8N!<7
!	<7

                                                                                             (10) 

The baseline (default) earning percentage is obtained by doing nothing and just following the market. We 
compare the earning percentage of each stock using identified markers with the baseline earning 
percentage to evaluate their effectiveness. 
 
6.1 Market trend probing.  
We validate/reuse our trading markers by creating profitable trading schemes based on the detected 
markers in real-time. Our approach assumes no prior knowledge of the market other than the sequence of 
trading markers. To achieve this, we classify market trends as ‘flat’, ‘up’, or ‘down’ and use the identified 
markers to probe the market tendency, starting from the beginning of the trading period. 
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Flat, up, and down markets.  Our trading approach involves categorizing the market trend as either 'flat', 
'up', or 'down'. A 'flat' market has an equal mean price for the 'up' and 'down' intervals, while an 'up' or 
'down' market has a higher or lower mean price for the 'up' intervals, respectively, compared to a threshold. 
Based on the market trend, we use the identified markers to adaptively select buy, sell, or hold actions in 
trading, and calculate the earning percentage accordingly. 
 
To estimate the market trend for HFT data, probing only the first 𝑁,  trading time intervals (e.g., 𝑁, = 1000)  
may result in an inaccurate estimation. Trading markers can provide important sampling points that, when 
combined with historical prices, can more accurately estimate the market trading tendency. 
 
To estimate the market trend, we compare the means of the 'up' and 'down' marker prices using the formula:  
Δ𝑝∆,	 = ( "#$∑ 𝑝.

(0)2$
. − "

#%
∑ 𝑝!

(*))2&
! , where "#$∑ 𝑝.

(0)2$
.  and "#&∑ 𝑝!

(*)2&
! . Here, 𝑝"

(I), 𝑝(
(!) are the price of the ith ‘up’ marker 

and jth ‘down’ marker, and 𝑙I,  𝑙! are the numbers of 'up', 'down' markers respectively. If Δ𝑝∆,	is greater than 
a set threshold 𝛿& > 0, the market is considered an 'up' market. Conversely, if Δ𝑝∆,	is less than the negative 
of 𝛿&, the market is considered a 'down' market. Otherwise, it is a 'flat' market. The threshold is set as 𝛿) =
𝜁(∑ 𝑝.

(0)2$
. + ∑ 𝑝!

(*))2&
! /𝑙	 where 𝜁 is a cutoff ratio (e.g., 0.15%) and 𝑙 = 𝑙0 + 𝑙*. 

 
In trading, the initial amount of money is assigned randomly, and each buy/sell uses 50% of the available 
funds in the account. Algorithm 2 is a proposed trading algorithm that uses trading markers to validate the 
effectiveness of the FIDR-SCAN trading marker discovery method. The algorithm's complexity is 
approximately O(n), assuming that the number of trading markers is significantly less than n. 
 
Algorithm 2:  Trading with trading markers  
 
Input:    

HFT data: 𝑋 ∈ ℝ'×3 with n observations across m features, n>>m  
Trading period [𝑡4,	𝑡5]	 
Trading marker list 𝑀 = [	𝑀#, 	𝑀6, ⋯ 	𝑀2] 
Initial trading balance 𝑑,' 
Cutoff ratio 𝜁(default: 0.15%) 
Cutoff threshold 𝜀(default: 0.05%) 

Output:  
              𝑒𝑎𝑟𝑛𝑖𝑛𝑔) 
 

1. // align trading markers to each trading interval 
2. for each 𝑖,7 trading interval 𝑡. 	⊂ [𝑡4, 𝑡5] 
3.  if 	𝑀. . 𝑡𝑖𝑚𝑒 ∩ 𝑡. == ∅ // no marker found in 𝑡. 
4.           	𝑀. . 𝑝𝑟𝑖𝑐𝑒 ← ∞ 
5. // determine the potential market trend by probing  
6. 𝑚𝑎𝑟𝑘𝑒𝑡𝑇𝑟𝑒𝑛𝑑 ← 𝑝𝑟𝑜𝑏𝑖𝑛𝑔𝑀𝑎𝑟𝑘𝑒𝑡𝑇𝑟𝑒𝑛𝑑(𝑀, 𝜁) 

 
7.  if marketTrend is up  
8.      for each 𝑖,7 trading interval 𝑡. 	⊂ [𝑡4, 𝑡5] 

                        // if there exists an ‘up’ tendency locally 
                         if  (𝑖 − 1),7 trading interval 𝑡.8# is an ‘up’ interval and If curent price 𝒑𝒊 > 	𝑀.8#. 𝑝𝑟𝑖𝑐𝑒 
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                              𝑑,' . 𝑏𝑢𝑦()							 
                       // current price has a marginal change with respect to the marker 
                         else if 	(𝑀. . 𝑝𝑟𝑖𝑐𝑒 − 𝒑𝒊)/	𝑀. . 𝑝𝑟𝑖𝑐𝑒 < 𝜀 
                             𝑑,' . ℎ𝑜𝑙𝑑() 
                     // current price has an acceptable change  
                         else   
                              𝑑,' . 𝑠𝑒𝑙𝑙()         

9.  if marketTrend is down  
10.    for each 𝑖,7 trading interval 𝑡. 	⊂ [𝑡4, 𝑡5] 

      if 	𝑀.8#. 𝑝𝑟𝑖𝑐𝑒 >  	𝑀. . 𝑝𝑟𝑖𝑐𝑒  
                            Sell stocks bought before and buy stocks 
                            𝑑,' . 𝑢𝑝𝑑𝑎𝑡𝑒() 
                      else 
                            Sell stocks bought before and short stocks 
                            𝑑,' . 𝑢𝑝𝑑𝑎𝑡𝑒() 

11. if marketTrend is flat 
        if 	𝑀.8#. 𝑝𝑟𝑖𝑐𝑒 >  	𝑀. . 𝑝𝑟𝑖𝑐𝑒 
            𝑑,' . 𝑏𝑢𝑦()							 

                        else  
                             𝑑,' . 𝑏𝑢𝑦()							 

12.  𝑒𝑎𝑟𝑛𝑖𝑛𝑔) ← 𝑑,' . 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒( )						 
13.  Return  𝑒𝑎𝑟𝑛𝑖𝑛𝑔)               

 
Table 2 compares the earning percentages of the four stocks using two methods. The results show that 
using trading markers can significantly increase the earning percentages, particularly in a 'down' market. 
For instance, in AEO trading, the earning percentage with reusing markers can reach 2.34%, while the 
default is -4.54%. This demonstrates that using the identified trading markers can improve trading 
profitability and prevent losses. Furthermore, even in an 'up' market like WMT, using trading markers can 
enhance the earning percentage to 7.28%. These findings suggest that the detected trading markers are 
profitable and that the proposed FIDR-SCAN algorithm is effective in discovering trading dynamics from 
a profit trading perspective. The corresponding plots of the trading account balance dynamics can be found 
in the supplemental materials. 
 

Table 2. The comparisons of earning percentages with/o trading markers 
 AAPL BAC AEO WMT 
Baseline 𝑒𝑎𝑟𝑖𝑛𝑖𝑛𝑔)   3.29%            1.80%           -4.54%                   5.98% 

𝑒𝑎𝑟𝑖𝑛𝑖𝑛𝑔) 8.23%                3.48%                   2.34%          7.28% 

 
7 Discussion  
 
This study proposes an explainable ML algorithm FIDR-SCAN to discover trading dynamics by creating a 
trading map for HFT data. It deciphers trading dynamics by identifying meaningful trading markers and 
categorizing transactions upon a new feature space.  It provides a novel way to find significant trading 
makers, distinguish different securities’ trading behaviors in HFT, and design more profitable trading 
algorithms. Since FIDR-SCAN has relatively low 𝑂(𝑛𝑙𝑜𝑔𝑛) complexity, it makes it possible for a trader to 
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generate a sequence of trading maps for his interested security to exploit the deciphered trading dynamics 
in real-time trading.   
 
FIDR-SCAN's interpretability is attributed to its meaningful feature interpolations, explainable 
dimensional reduction, interpretable transaction status classification, and significant trading structure 
discovery. The interpolated variables increase HFT data entropy, leading to a more informative and 
interpretable feature space for discovering trading dynamics. The explainable dimensional reduction 
produces an interpretable trading embedding that captures HFT data's intrinsic structure, providing a solid 
foundation for discovering trading markers, trading status, and trading structure through DBSCAN 
interpretation from a trading perspective. Theoretically, we have proven that the outliers from DBSCAN 
clustering are trading markers if the parameters ε and minpts are carefully selected. All of these elements 
contribute to the discovered trading dynamics' interpretability. 

 
Cryptocurrency data extension. The FIDR-SCAN algorithm can be extended to analyze cryptocurrency 
data and uncover its underlying trading dynamics on the blockchain. While cryptocurrency data shares 
some similarities with HFT data, it usually has more features and can appear more volatile. To demonstrate 
the applicability of FIDR-SCAN, we applied it to 5-minute aggregated ETH data from 08/02/2018 to 
08/19/2018. Our results show that incorporating interpolated variables into PCA, t-SNE, and UMAP 
visualizations can provide more informative insights than using the original features alone. By using 
Algorithm 2 and trading markers, we achieved earning percentages as high as 19.85%, in contrast to the 
default earning percentage of -29.42% (see supplemental materials). However, a more customized trading 
dynamics algorithm may be desirable for cryptocurrency data, as the current feature interpolations are 
based on HFT data of stocks and more representative features may be required to create a more explainable 
feature space for cryptocurrency trading. [31] 
 
Trading machine construction. Moreover, the trading markers detected by FIDR-SCAN can be utilized in 
constructing trading machines. These markers, along with other data points, can be labeled as ‘buy’ if their 
prices are ≥p% of the current price in the trading interval, and ‘sell’ if their prices are ≤p% of the current 
price in the trading interval. Transactions that do not meet these criteria are labeled as ‘hold,’ as they are 
less likely to be trading markers and are more likely to be common transactions. The value of p% can be 
determined based on specific trading needs, but we suggest setting it between 0.5% and 3.5% for more 
meaningful trading. Then, the first 80% of labeled data can be used as training data to predict the remaining 
data. 
 
We used AAPL data to construct trading machines employing a five-layer convolution neural network 
(CNN), a five-layer deep neural network (DNN), and extremely randomized trees (ET) with 100 decision 
trees [32-34]. The labeled data is imbalanced, with the ‘hold’ class accounting for 90.94%. Despite this, the 
CNN, DNN, and ET models achieve 90.76%, 93.50%, and 91.37% accuracy values, respectively, under the 
original raw data without resampling. The ET model performs slightly better than the two deep learning 
models because its forecasting is less 'hijacked' by the majority ('hold') class, as shown by the comparisons 
of their confusion matrices in Figure 11. However, since the minority classes ('buy' and 'sell') mainly consist 
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of trading markers, the ET model achieves the best performance under the random-over-sampling (ROS) 
data, with a 99.57% accuracy among the three [35]. This suggests the effectiveness of using trading markers 
in building trading machines. Conversely, the deep learning models exhibit poor performance, with only 
48.24% and 64.58% accuracy values under the ROS data, as the majority class still 'hijacks' the learning 
process by classifying the minority classes as the majority class [36]. 
 

 
 

 
Fig 11.  The confusion matrices of the CNN, DNN, and Extra tree models in predicting trading statuses of 
AAPL data under raw data (w/o resampling) and random-over-sampling (ROS) data. The ROS data under 
the Extra model achieve the best performance because ROS brings more trading markers in learning.   
 

 
8 Conclusion  
 
Our proposed FIDR-SCAN algorithm offers an innovative and explainable machine learning approach for 
creating trading maps from HFT data, enabling the discovery of trading dynamics. By leveraging 
meaningful feature interpolations and interpretable dimensional reduction, FIDR-SCAN provides a solid 
foundation for identifying trading markers and conveying the statuses of transactions in an informative 
‘interpolated’ feature space. These trading markers can then be reused in the design of trading algorithms, 
unlocking new opportunities for profitable AI trading. Moreover, FIDR-SCAN's marker detection 
capabilities offer a more efficient and explainable way to discover trading markers from HFT data. 
Furthermore, FIDR-SCAN's ability to construct trading maps opens up exciting possibilities for generating 
trading signatures from both HFT and cryptocurrency data. In addition, the trading markers identified by 
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FIDR-SCAN can be leveraged to build trading machines, opening a new avenue for AI trading. Besides, 
we provide rigorous quantification analysis for HFT data and proposed feature interpolation techniques.   
 
While FIDR-SCAN has proven effective in discovering trading dynamics, there are still limitations to 
consider. For example, we don't know which features are optimal for this task despite the confirmed 
effectiveness of our proposed features. The role of entropy in the discovery of trading markers is also 
unclear, although we do know that it increases trading behavior entropy and leads to more outliers. It can 
be interesting to investigate the feature selection problem using evolutionary computing techniques [37-38] 
 
 While the average complexity of FIDR-SCAN is good for creating real-time trading maps, it may face the 
risk of running into worst-case complexity for some large datasets. To address these issues, we are 
exploring evolutionary computation techniques to search for optimal features and investigating big data 
analytics approaches with more efficient DBSCAN variants (e.g., HDBSCAN) [39-40]. Additionally, we are 
researching how to use the markers identified by FIDR-SCAN to build more effective and explainable 
trading machines using state-of-the-art learning methods such as deep reinforcement learning [41-42]. 
These efforts will enable us to further improve our understanding of trading dynamics and develop better 
tools for trading in high frequency environments. 
 
In addition, it should be noted that the timestamps are not directly utilized in the clustering process of the 
proposed algorithm for discovering explainable trading dynamics. It would be intriguing to incorporate 
time information into the algorithm to explore more insightful clusters in the creation of trading maps. 
However, it is still uncertain how much the time variable can contribute in conjunction with other 
interpolated variables. Further research is needed to investigate this potential enhancement. 
   
On the other hand, we are interested in extending the existing algorithms to cryptocurrency data though 
the existing algorithm seems to have worked well for individual datasets of cryptocurrency. Technically, 
cryptocurrency data has a slightly larger feature space than HFT data but contains more redundant 
information and are more volatile in trading [42]. Thus, how to construct an explainable feature space for 
cryptocurrency data from an interpretable learning perspective will be an interesting topic for future 
studies [43-44]. Besides exploring the trading map differences between different securities to expose their 
individualized trading microstructures on the blockchain, it would also be interesting to investigate how 
to reuse discovered markers more efficiently in future trading by designing more profitable AI trading 
algorithms for cryptocurrency data [45].  
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