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Abstract

For a monotonically advancing front, the arrival time is the time when the front
reaches a given point. We show that it is twice differentiable everywhere with
uniformly bounded second derivative. It is smooth away from the critical points
where the equation is degenerate. We also show that the critical set has finite
codimensional 2 Hausdorff measure.

For a monotonically advancing front, the arrival time is equivalent to the level
set method, a priori not even differentiable but only satisfying the equation in the
viscosity sense. Using that it is twice differentiable and that we can identify the
Hessian at critical points, we show that it satisfies the equation in the classical
sense.

The arrival time has a game theoretic interpretation. For the linear heat equa-
tion, there is a game theoretic interpretation that relates to Black-Scholes option
pricing.

From variations of the Sard and Lojasiewicz theorems, we relate differen-
tiability to whether singularities all occur at only finitely many times for flows.
© 2016 Wiley Periodicals, Inc.

1 Introduction

Let M, c R™"*! be a mean curvature flow (MCF) starting at a closed smooth
mean convex hypersurface My. Under the flow, M; remains mean convex and
thus moves monotonically inward as it sweeps out the compact domain €2¢ that is
bounded by My." The arrival time u : Q¢ — R is the time when the front M,
arrives at a point x € o,

ulx) =1t ifx € My.

Even though My is smooth, the later M;’s need not be but are given by the level
set method and the function u is a priori only continuous.

Our main result is the differentiability of the arrival time for mean convex flows:

I Each M; bounds a compact domain 2; and Q2; = Uszt My; see Section 2.3.
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THEOREM 1.1. The arrival time is twice differentiable everywhere and smooth
away from the critical set, and has uniformly bounded second derivative. More-
over:

e The critical set is contained in finitely many compact embedded (n — 1)-
dimensional Lipschitz submanifolds plus a set of dimension at most n —2.*

e At each critical point the Hessian is symmetric and has only two eigenval-
ues 0 and —%; 0 has multiplicity n — k (which could be 0) and —% has
multiplicity k + 1. Herek = 1,...,n.

o [t satisfies the equation everywhere in the classical sense.

A key point is that the second derivatives exist even at the critical set where
the flow is singular. Though it is known to be Lipschitz by a result of Evans and
Spruck [16], a priori it is not even differentiable but only satisfies the second-order
degenerate equation in the viscosity sense [6, 14, 16]. In the convex case, where
the flow is smooth except at the point it becomes extinct, Huisken showed that the
arrival time is C? in all dimensions [21,23]. There is even more regularity in the
plane, where Kohn and Serfaty showed, using [18], that it is at least C> [26]. For
n > 1, Sesum [35], using [21], showed that third derivatives do not exist even for
convex hypersurfaces. However, we will see in Theorem 5.1 that there is more
regularity in the direction of the zero eigenvalues.

1.1 Level Set Method and Viscosity Solutions

Suppose that My C R”*1 is the boundary of a (perhaps multiply connected)
closed region €2¢. The level set method is an approach to computing the subsequent
motion of My under a velocity field [31-33, 36, 38]. This velocity can depend on
position, time, the geometry of the interface (e.g., its normal or its mean curvature),
and the external physics. The idea is to define an at least continuous function
v(x, ) that represents the interface as the set where v(x,7) = 0. The level set
function v has the following properties:*

e v(x,t) > 0forx € Q;\ 9Q;.

o v(x,t) <Oforx e R*"T1\ Q.

e v(x,t) =0forx € 02, = M,.
This is of great significance for numerical computation and in applications, primar-
ily because topological changes such as breaking and merging are well-defined.
When all level sets evolve by MCF, this motion becomes

Vol div( 2
Vy = v 1 e
’ vl

2In fact, we prove much more. For example, in R3, the critical set is contained in finitely many
(compact) embedded Lipschitz curves where the Hessian has eigenvalues O (with multiplicity 1) and
—1 (with multiplicity 2) together with a countable set where the Hessian is —%Sijj.

3 Strictly speaking, the interface could have an interior; this does not occur in the case considered
here.
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and has been studied extensively. Whereas the work of Osher and Sethian was
numerical, Evans and Spruck [16] and, independently, Chen, Giga, and Goto [6]
provided the theoretical justification for this approach. This is analytically subtle,
principally because the mean curvature evolution equation is nonlinear, degenerate,
and indeed even undefined at points where Vv = 0. Moreover, v is a priori not
even differentiable, let alone twice differentiable. They resolved these problems by
introducing an appropriate definition of a weak solution, inspired by the notion of
“viscosity solutions” [5, 13].

When the front is advancing monotonically (so the mean curvature is nonnega-
tive) Evans and Spruck [16] showed that v(x, ) = u(x) — ¢, where u is Lipschitz
and satisfies (in the viscosity sense; see Section 4 for details)

Vu
1.1 —1 = |Vul| di .
(LD Vul w(w)

Obviously, u~1(¢) is M,; in other words: u is the arrival time; see [37] for numer-
ics.

1.2 Game Theoretic Intepretation

We will next briefly explain a game theoretical interpretation of the arrival time
following, essentially verbatim, Kohn and Serfaty [27]; see also [15,19,25-28,39].

In a two-person game, with players Paul and Carol and a small parameter €, Paul
is initially at some point x in a bounded domain € C R?; his goal is to exit as soon
as possible. Carol wants to delay his exit as long as possible. The game proceeds
as follows:

e Paul chooses a direction, i.e., a unit vector |v| = 1.

e Carol can cither accept or reverse Paul’s choice; i.e., she chooses b = +1.

e Paul then moves 2¢ in the possibly reversed direction, i.e., from x to x +
2ebv.

This cycle repeats until Paul reaches 9Q. Let u¢ be €2 times the number of steps
that Paul needs to exit. Can Paul exit? Yes indeed. For Paul’s optimal strategy the
time before exit lim¢_,o ue is exactly the arrival time.* There are similar games
that give the arrival time in higher dimensions.

The Paul-Carol game was introduced in the 1970s by Joel Spencer [39] as a
heuristic for the study of certain combinatorial problems. See [27, 28] for other
game theoretic interpretations of parabolic equations, including one for the linear
equation that is close to Black-Scholes option pricing.

4 [26] proved that lime s u¢ exists and is the arrival time u. They gave an error estimate if u
is C3.
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1.3 Finitely Many Singular Times

Differentiability is connected to the following well-known conjecture [1], [41,
p- 533], [11, conj. 0.5], and [12, conj. 6.5]:5

CONJECTURE 1.2. For M, as above, the evolving hypersurface is completely
smooth except at finitely many times.®

The connection is that the regularity of a function u controls the size of the set ¢
of critical values. In dimension 3, if u : @ C R3 — R is at least C3, then % has
measure zero by Sard’s theorem; see, e.g., [44]. Moreover, if u is C k for some
k > 3, then ¥ has dimension at most % < 1, and similarly in higher dimensions.
The arrival time is only twice differentiable, which does not seem like enough to
get measure zero from Sard’s theorem. However, using [11], we will see that the
critical set is contained in a finite union of compact curves plus countably many
points, and thus Sard’s theorem on the line suggests that 4" has dimension at most
%. This heuristic argument uses the structure established in [11]; the bound % for
the dimension was proven already in [40].

When the arrival time is real analytic, there can be only finitely many singular
times. To see this, recall the gradient Lojasiewicz inequality [9, 10,29]:

A function u is said to satisfy the gradient Lojasiewicz inequality if
for every p € 2, there is a possibly smaller neighborhood W of p
and constants 8 € (0,1) and C > 0 such that [u(x) — u(p)|? <
C|Vyu|forallx € W.

Lojasiewicz proved this inequality for analytic functions and, thus, a critical point
has a neighborhood with no other critical values. Consequently, % is finite if 2 is
compact:

COROLLARY 1.3. There are only finitely many singular times if the arrival time is
real analytic.

For mean convex MCF the Lojasiewicz inequality would say (since H |[Vu| = 1
by (2.2)) that for p € Q, there is a neighborhood W of p and constants 8 € (0, 1),
C > 0 such that H(x)|t(x) —1(p)|P < C forall x € W. Since |A|2 < CH? fora
mean convex MCF by the parabolic maximum principle for C depending on My,
the Lojasiewicz inequality would say

|A@)|le(x) —2(p)IP < C.

In other words, |A| blows up at a singular point at most like | — 79| ~#, where 7,
is the singular time. By a standard ODE comparison argument, it blows up at least

St s interesting to compare with a series of papers by Bamler [4] on the long-time behavior
of Ricci flows with surgery. He shows that only finitely many surgeries occur if the surgeries are
performed correctly.

%In low dimensions it is known by [11] that connected components of the singular set are con-
tained in time slices and almost all time slices are completely smooth.
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like |# —£o|~"/2. If | A| blows up at a rate of at most |t —zo|~'/2, then the singularity
is said to be type L.

2 Preliminary Estimates

2.1 Mean Convex MCF

We have already seen that the level set method is equivalent to the arrival time
function for a monotonically advancing front. Namely, v(x,?) = u(x) — ¢ by
Section 1.1. Since we will use the equation for u (i.e., (1.1)) several times, we will
deduce it for completeness. Suppose therefore that M; C R”*! is a mean convex
MCF and u = ¢. As we will explain in Section 4, the equation for u is initially
interpreted in the classical sense at points where Vu # 0 and in the barrier, or
viscosity, sense everywhere else.

For the sake of deducing the equation, assume we are at a point where Vu # 0

and u is smooth; then
di Vu \ Vu
iv = —X;.
M\ Vul ) Vul !

Since u(x(t)) = ¢, we have that (Vu, x;) = 1, or, equivalently,

B 1 Vu B Vu
© | Vu| [Vu|  |Vu|?’

Xt

Putting this together gives

. Vu . ( Vu
—-1= |Vu|d1VM,(W) = |Vu|d1v(|vu|)

Vu Vu
= Au—Hessy| —. — | = Aqu,
! e“"(w |Vu|) "

2.1

where A is the 1-Laplacian.” The operator A1 is the trace of the Hessian over
the n-dimensional subspace orthogonal to Vu. It is nonlinear and degenerate el-
liptic. The ordinary Laplacian A is the sum of A and the co-Laplacian Aou =
Hess, (Vu/|Vu|, Vu/|Vu|). The mean curvature H (with respect to the outward
unit normal of Q) is

(2.2) H = |Vu|™L.

As an example, consider the shrinking round cylinder S¥ x R?~* in R**! with
radius ~/—2k ¢ for t < 0 so that at time —1 the radius is +/2k and it becomes extinct
at time 0. In this case, u = —ﬁ(x% + -t x,%H) is analytic and the critical set

is {0} x R" K,

71t is more common to define the 1-Laplacian as div(Vu/|Vu|), which differs by a factor of |Vul;
cf. [15].
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2.2 C11 Estimates Away from the Singular Set

LEMMA 2.1. There is a constant C1,1 depending on the initial hypersurface so
that

|Hessy | < Cy,1 on the regular set (the complement
of the singular set for the flow).

In contrast, the derivatives of the Hessian are not uniformly bounded in general
[35]. To prove the lemma, we need that, by a result of Haslhofer-Kleiner [20],8 for
each integer £ > 0, there is a C (depending on My and £) so that

(2.3) IVéA| < CHYH.

PROOF OF LEMMA 2.1. We will consider three cases for the various compo-
nents of the Hessian.

Since H = |Vu|™! and, given unit vectors ¢; and e ; tangent to the level set, we
have
Hessy (¢, e;)

[Vl

it follows that [Hessy (e;,e;)| = |A(e;, ej)|/H is uniformly bounded by the case
£ = 0 of (2.3).

For the double normal direction, use that |Vu| = H~! and x; = Vu/|Vu|? =
Hn so that

Alej,ej) = = H Hessy(e;i, ej),

3H AH |A]?

H3®  H3® H?

where the last equality is Simons’ equation for H. We have already bounded the

last term and the remaining A H / H? term is bounded by the case £ = 2 of (2.3).
Similarly, the Hessian in a mixed tangential/normal direction is given by

1
—Hess,(n,n) = —V,|Vu| = —7 H ' =

- H;
Hessy(e;,n) = Ve |Vu| = Ve H ! = —H—;_
This term is bounded by the case £ = 1 of (2.3), completing the proof. U

2.3 Level Set Flow

Up until now, we have worked solely on the regular set for the flow where the
solution u is smooth and Vu # 0. We will now work across the singularities.

We begin by recalling the properties of mean convex MCF starting from a
smooth closed mean convex hypersurface:

(1) There is a unique Lipschitz function u giving a viscosity solution of the
level set flow.

(2) The flow is nonfattening (i.e., the level sets have no interior), each level set
is the boundary of a compact mean convex set, and u is defined everywhere
on the interior.

8 This applies by theorem 1.5 of [20]; cf. Andrews [2,3].
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(3) The level sets define a Brakke flow of integral varifolds.
(4) Each tangent flow at a singularity is a multiplicity 1 (generalized) cylinder.
(5) On the regular set for the flow, the function u is smooth and Vu # 0.

Property (1) is theorem 7.4 in [16]; cf. [6]. Property (2) follows from theorems
3.1 and 3.2 and corollary 3.3 in [40]. Property (3) is theorem 5.1 in [40]; cf.
[17,30]. For Property (4), see theorem 3 in [43] (cf. [24]). The last property is
almost a tautology. If the flow is smooth in a neighborhood, we can write it as a
normal graph (x,?) — x + v(x,7)n(x) of a smooth function v(x, ) defined on
the level set with v(x,0) = 0. The map is smoothly invertible and u is the ¢-
component of the inverse. Invertibility follows from the inverse function theorem
since the differential of this map has full rank since H does not vanish. Finally,
Vu does not vanish on the regular part because H = |Vu|~!.

2.4 Structure of the Critical Set

Let ® : (x,f) — x be the forgetful map from R”*T! x R with the parabolic
metric’ to R”*1 with the euclidean metric. By [11], the space-time singular set
. is contained in finitely many compact embedded (n — 1)-dimensional Lipschitz
submanifolds plus a set of dimension at most n — 2. The same holds for ®(.%)
since & is distance nonincreasing. The critical set is contained in ®(.%) by (5),
giving the first part of Theorem 1.1. Thus, also

Hp—1(fx € R" | Vou = 0}) < 5,1 (9(7))
< H Py 1(F) <00,

2.5 The Singular Set Equals the Critical Set

COROLLARY 2.2. The function u is C 1! and the singular set is equal to the criti-
cal set {Vu = 0}.

We will need the following standard extension:

LEMMA 2.3. Suppose that Q@ C R"1 is a connected open set with smooth closure
and S C Q is closed and has codimension 2. If f : @\ S — R is smooth with
| f1+ |V f]| < C, then f can be extended continuously to 2 and the extension is
Lipschitz.

PROOF. Given points x, y € Q\ S, we can find a C! path y from x to y whose
length is at most twice the distance (in €2) from x to y and that avoids S since S
has codimension 2. Applying the fundamental theorem of calculus along this path,
the bound on V f gives

| f(x) = f(y)| = 2C distq(x, y).

9 The parabolic distance dist gz on R?T1 x R is dist 5 ((x, 5), (v, 1)) = max{|x — y|, |s — t|1/2}.
The parabolic Hausdorff measure 5 &7, is the k-dimensional Hausdorff measure with respect to
distg; see [11].
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Since x and y were arbitrary, f is uniformly Lipschitz on 2. It follows that f has
a unique continuous extension to all of €2 and that this extension is Lipschitz with
the same bound. (|

PROOF OF COROLLARY 2.2. We will first see that each partial derivative uy is
continuous on the entire domain 2. Let S be the singular set, so that it is closed,
by definition, and has finite codimension 2 measure by [11]. The function uy is
smooth on 2 \ § with Vi uniformly bounded by Lemma 2.1. Hence, by Lemma
2.3, uy, is defined on all of €2 and is Lipschitz.

To see that Vu vanishes on the singular set, note that each singularity has a
cylindrical tangent flow and thus is given as a limit of regular points with H =
|Vu|~! going to infinity. Since |Vu| is continuous, we must have |Vu| = 0 at the
singular point. U

3 The Second Derivatives at Critical Points

We now prove the existence of the second derivatives at a critical point and
show that the Hessian is given by the tangent flow at the singularity. This depends
crucially on the uniqueness of the tangent flow proven in [10]; cf. [7].

To keep the notation simple, we will assume that O is a critical point of u# and
u(0) = 0. By [10], there is a unique tangent flow at O that is a multiplicity 1
cylinder. After a rotation, the level set flow corresponding to the blowup cylinder
is given by the function

1 k+1
_ 2
=g L
i=1
and Vw = —x4/k, where x4 = (x1,...,Xk+1,0,...,0) is the projection of x

onto R¥+1,

PROPOSITION 3.1. The function u is twice differentiable at 0 and Hess,, = Hessy,
at 0.

To understand this, rescale the flow by a factor « > 0 so that the new arrival
time becomes

U (x) = a2 u(ax).

This rescaling preserves the Hessian at O (assuming it exists) and, as o goes to 0,

the rescaling converges (in a sense to be made precise) to the tangent flow at 0.
We will prove that the difference quotients of Vu have a limit. We will consider

two cases, depending on how the points approach 0. The main case is the following:

LEMMA 3.2. If x; is any sequence in R® 1 withu(x;) <0, x; — 0, x; /|xi| — v,
and

|xi |2

(3.1) lim sup

< 00,
isoo |U(X;)]
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then lim; o0 Vu(x;)/|x;i| exists and is equal to 3, Vw.

PROOF. Since u(x;) < 0 and x; — 0, [10] implies that the rescaled level sets
{u =u(x;)}
v —ul(xi)
converge smoothly on compact sets to the cylinder X = {x% + -4 xl% 41 =
2k} € R"*!, The condition (3.1) implies that the points
., = Xi
SRVETE

lie in a bounded set. Choose a subsequence (still denoted by y;) that converges to

(3.2)

a limiting point y € R”T1. Write y as y = (y, y_), where y, € S]i/ﬁ is the
projection of y on the first £ + 1 coordinates and y_ € R”K is the orthogonal
part. At y;, the normal to the rescaled level set and the mean curvature are given
by
Vuly) 0 VUl
[V (x;)] [V (x;)|
Since these are converging to the same quantities for the limit X at y, we see that
Vut) v St VR
— and —— > —.
IVu(xi)l 2k Vu(x)l V2
Combining (3.2) with the two previous limits, we see that

Vu(x))  Vu(x;) (\/—u(xi))”'y”_l T TV

il [Vula) |\ [Vu(x)] kvl — k7

where the last equality used that x; /|x;| — v and v4+ is the projection of v onto
Rk+1

(3.3)

This limit is independent of the choice of subsequence, and thus the limit of the
difference quotients exists and is given by (3.3). Finally, we observe that this is
equal to d, Vw. O

The previous lemma gives the Hessian but requires that we approach 0 in a
direction where ¥ < 0. By the next lemma, this covers every direction except
along the axis.

LEMMA 3.3. Given € > 0, there exist C,8 > 0 so that if x = (x4,x_) € RFH1 x
Rk has

(3.4 |x4+| > €|lx—| and |x| <,

then |x|? < —Cu(x).
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PROOF. For § > 0 sufficiently small, the uniqueness of [10] implies that the
conical region in (3.4) is foliated by cylindrical graphs whose rescalings converge
to the cylinder |x |?> = 2k. Since these cylindrical graphs fill up the entire region
and |x|?> < —Cu(x) there, the estimate holds on all of (3.4). O

PROOF OF PROPOSITION 3.1. Fix a unit vector v = (v4,v—) and let §; > 0 be
a sequence converging to 0. We will consider two cases.

Suppose first that |[v4| > 0. Lemma 3.3 implies that the sequence x; = J; v (for
i large enough) satisfies the hypotheses of Lemma 3.2. Therefore, we conclude
that

\V/ . —
lim OV Ty gy,
i—00 5,‘ k

Suppose next that vy = 0. Given some small € > 0, Lemma 3.3 implies that
the sequence

Xxi = 6;v + (€6;,0,...,0)

satisfies the hypotheses of Lemma 3.2 (for i large enough). Since v4 = 0 and thus

|xi| = 8;i\/€2 + |v|?2 = 8; Ve + 1,

[lim i] _ (e,0,....,0)

[ i1+ €2 +1 '

we therefore conclude that

Vu(x; Vu(x; —(€,0,...,0

(3.5) lim ”;x’)z 21 fim ) _ (€ )
1

—>00 i i—>00 |x,~| k

To relate this to the difference quotients in the direction v, use the C ! bound to
get

Vu(x;) B Vu($;v) - [Vu(x;) — Vu(§;v)] <Ce

3.6
G:0) 8 8 - 8
Finally, since € > 0 is arbitrary, combining (3.5) and (3.6) gives
Vu(s;
lim 2O o v, O
1—>00 8,‘

4 Solving the Equation Classically

Evans and Spruck (section 7.3 in [16]; cf. [6]) constructed a continuous viscosity
solution u of (2.1) and showed that it is unique and Lipschitz. Recall that u is a
viscosity solution if it is both a sub- and supersolution. A continuous function u is
a subsolution (supersolutions are defined similarly) provided that:

If ¢ is a smooth function so that u — ¢ has a local maximum at xy,
then

1) Ao = A¢—Hess¢(%, %) > —latxgif Vo(xo) # 0.
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(2) A¢p — Hessg(v,v) > —1 at xo for some vector |[v| < 1 if
Ve (xo) = 0.
We will say that a twice-differentiable function u is a classical solution of (2.1) if

(A) Afu=Au —Hessu(%, %) = —1 where Vu # 0.

(B) Au —Hessy(v,v) = —1 at x¢ for some vector |v| = 1 if Vu(xg) = 0.
LEMMA 4.1. If w solves (2.1) classically, then w is also a viscosity solution.

PROOF. We must show that w is both a sub- and supersolution. To see that w is
a subsolution, suppose ¢ is smooth and w — ¢ has a local maximum at an interior
point xg, SO

4.1) Vw(xg) = Ve (xo).

The second-derivative test for twice-differentiable functions (exercise 11 on page
115 of [34]) gives

4.2) Hessy (v, v) < Hessg(v,v) at xq for any vector v € R

If V¢ # 0, then (4.1) implies that we are taking traces over the same n-dimensional
subspaces in (1) and (A); the inequality (4.2) then gives that (A) implies (1). In the
other case where V¢p = 0, then let v be the same unit vector in (1) as in (B).
Taking the trace over vL, we see that (B) and (4.2) imply (2). We conclude that w
is a subsolution. The proof that w is a supersolution follows similarly. O

The next lemma shows that spheres and cylinders give classical solutions to
2.1).

LEMMA 4.2. If Vu(0) = 0 and Hess,, exists at 0 and equals Hess,, where w =
—% Zf:ll xl.z, then u is a classical solution to (2.1) at 0.

PROOF. If k = n (the spherical case), then Hess,, (0) is diagonal with all n + 1

eigenvalues equal to —%. In this case, (B) holds at 0 for any unit vector v.

When k& < n, then Hess, (0) has k + 1 eigenvalues equal to —% and n — k

zero eigenvalues. In this case, (B) holds at 0 for any unit vector v in the —%

eigenspace. U

We get the following immediate consequence of Proposition 3.1 and Lemma
4.2:

COROLLARY 4.3. The viscosity solution is a classical solution.

PROOF. By Corollary 2.2, the only thing to check is on the critical set. However,
Proposition 3.1 gives the Hessian there and this satisfies (B) by Lemma 4.2. O

This completes the proof of Theorem 1.1.
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5 Vanishing Order along the Axis

The next theorem shows that Vu vanishes faster than linearly in the direction of
the axis for a cylindrical singularity SK x R” ¥ (the R” ¥ factor is the “axis”). The
rate of vanishing that we show is far from sharp. The key point is the vanishing is
faster than linear; the precise rate is not important and can be ignored by the reader.

THEOREM 5.1. If u has a cylindrical singularity at 0 and v is any unit vector in
the direction of the axis, then for some o > 0

. (log[log 8))*[Vu (5 v)|
lim =

0.
§—0 ]

PROOF. Given a vector w, let w4 be the projection onto R¥*+1 and w_ be the
projection onto R"* so vy = 0since v points in the direction of the axis.
Let X for s > 0 be the rescaled MCF associated to the blowup at 0 given by

(5.1) Si= ' fu=1) wherer= ¢’
. = U= where t = —e™°.
VA
The uniqueness of [10]'° gives C so that = is a graph over Sf/sz x R"* in the

ball B /555/c with radius /logs/C and center 0 of a function with C ! norm at
most C/./logs for s large. Using (5.1) to translate this to the original flow, we get
graphical control on the M;’s when

(5.2) |x|? < —C’t log [log —t|.

Suppose that §; is a sequence going to 0. Given any B € (0, 1), the convergence
in the growing scale-invariant region (5.2) gives points y; (for i large) in the graphs
with

2

; —8iv)— =0 and N < —t
(yi iv) an lu(yi)| < (log |log5i|)ﬂ

Since we are in the graphical region, we have

(5.3)  |)+] < V=u(i)(V2k +1) < (V2k + 1) i .
(log | log §;[)B/2

If u, was the arrival time for the cylinder itself, we would have Vu.(y;) =
—(yi)+/ k. Since y; is in the graphical region, (5.3) implies that
Vugl . C
8~ (log|logé;)A/2’

10 See theorem 0.2 and footnote 6 in [10]. We will sketch the argument using [10]. First, theorem
6.1 and lemma 6.9 give that the F functional decays polynomially in s to its value at the cylinder.
By (5.2), this means that the shrinker scale grows like a constant times +/log s; finally, theorem 5.3

gives that the cylindrical scale (where it is a graph over a cylinder) is at least the shrinker scale.
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The theorem follows (for any o« < £/2) from this and using the C 1! bound on u
to get
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