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Abstract. Modeling of a wide class of physical phenomena,
such as crystal growth and flame propagation, leads to tracking
fronts moving with curvature-dependent speed. When the speed
is the curvature this leads to one of the classical degenerate non-
linear second-order differential equations on Euclidean space.
One naturally wonders, “What is the regularity of solutions?” A
priori solutions are only defined in a weak sense, but it turns
out that they are always twice differentiable classical solutions.
This result is optimal; their second derivative is continuous only
in very rigid situations that have a simple geometric interpreta-
tion. The proof weaves together analysis and geometry. Without
deeply understanding the underlying geometry, it is impossible
to prove fine analytical properties.

Figure 1. Oil droplets in water can be modeled by the
level set method.
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The spread of a forest fire, the growth of a crystal,
the inflation of an airbag, and a droplet of oil
floating in water can all be modeled by the level
set method. See Figure 1. One of the challenges
for modeling is the presence of discontinuities.

For example, two separate fires can expand over time and
eventually merge to one, as in Figure 2, or a droplet of
liquid can split as in Figure 3. The level set method allows
for this.

Figure 2. After two fires merge the evolving front is
connected.

Figure 3. Water separates into droplets.

The level set method has been used with great success
over the last thirty years in both pure and applied mathe-
matics. Given an initial interface or front 𝑀0 bounding a
region in R𝑛+1, the level set method is used to analyze its
subsequent motion under a velocity field. The idea is to
represent the evolving front as a level set of a function
𝑣(𝑥, 𝑡), where 𝑥 is in R𝑛+1 and 𝑡 is time. The initial front
𝑀0 is given by

𝑀0 = {𝑥|𝑣(𝑥, 0) = 0},
and the evolving front is described for all later time 𝑡
as the set where 𝑣(𝑥, 𝑡) vanishes, as in Figure 4. There
are many functions that have 𝑀0 as a level set, but the
evolution of the level set does not depend on the choice
of the function 𝑣(𝑥, 0).

In mean curvature flow, the velocity vector field is the
mean curvature vector, and the evolving front is the level
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Figure 4. The gray areas represent trees that a forest
fire has not yet reached. The edge is the burning fire
front that is moving inward as time propagates left
to right in the upper part of the figure. The propaga-
tion of the fire front is given as a level set of an
evolving function in the second line.

Figure 5. The red curves represent the evolving front
at three different times. Each is the zero level set of
the evolving function. The front here is moving
outward as in Figure 2. In Figures 3 and 4, the front
is moving inward.

set of a function that satisfies a nonlinear degenerate
parabolic equation. Solutions are defined in a weak, so-
called “viscosity,” sense; in general, they may not even
be differentiable (let alone twice differentiable). However,
it turns out that for a monotonically advancing front
viscosity solutions are in fact twice differentiable and
satisfy the equation in the classical sense. Moreover, the
situation becomes very rigid when the second derivative
is continuous.

Suppose Σ ⊂ R𝑛+1 is an embedded hypersurface and n
is the unit normal of Σ. The mean curvature is given by
𝐻 = divΣ(n). Here

divΣ(n) =
𝑛
∑
𝑖=1

⟨∇𝑒𝑖n, 𝑒𝑖⟩,

where 𝑒𝑖 is an orthonormal basis for the tangent space
of Σ. For example, at a point where n points in the 𝑥𝑛+1
direction and the principal directions are in the other axis
directions,

divΣ(n) =
𝑛
∑
𝑖=1

𝜕n𝑖
𝜕𝑥𝑖

is the sum (𝑛 times the mean) of the principal curvatures.
If Σ = 𝑢−1(𝑠) is the level set of a function 𝑢 on R𝑛+1 and

𝑠 is a regular value, then n= ∇𝑢
|∇𝑢| and

𝐻 =
𝑛
∑
𝑖=1

⟨∇𝑒𝑖n, 𝑒𝑖⟩ = divR𝑛+1 ( ∇𝑢
|∇𝑢|) .

The last equality used that ⟨∇nn,n⟩ is automatically 0
because n is a unit vector.

A one-parameter family of smooth hypersurfaces𝑀𝑡 ⊂
R𝑛+1 flows by the mean curvature flow if the speed is
equal to the mean curvature and points inward:

𝑥𝑡 = −𝐻n ,
where𝐻 and n are the mean curvature and unit normal of
𝑀𝑡 at the point 𝑥. Our flows will always start at a smooth
embedded connected hypersurface, even if it becomes
disconnected and nonsmooth at later times. The earliest
reference to the mean curvature flow we know of is in the
work of George Birkhoff in the 1910s, where he used a
discrete version of this, and independently in thematerial
science literature in the 1920s.

Two Key Properties
• 𝐻 is the gradient of area, somean curvature flow is the

negative gradient flow for volume (Vol𝑀𝑡 decreases
most efficiently).

• Avoidance property: If 𝑀0 and 𝑁0 are disjoint, then
𝑀𝑡 and 𝑁𝑡 remain disjoint.
The avoidance principle is simply a geometric formu-

lation of the maximum principle. An application of it is
illustrated in Figure 6, which shows that if one closed
hypersurface (the red one) encloses another (the blue
one), then the outer one can never catch up with the inner
one. The reason for this is that if it did there would be a
first point of contact and right before that the inner one
would contract faster than the outer one, contradicting
that the outer was catching up.

Curve Shortening Flow
When 𝑛 = 1 and the hypersurface is a curve, the flow is the
curve shortening flow. Under the curve shortening flow,
a round circle shrinks through round circles to a point
in finite time. A remarkable result of Matthew Grayson
from 1987 (using earlier work of Richard Hamilton and
Michael Gage) shows that any simple closed curve in the
plane remains smooth under the flow until it disappears

Figure 6. Disjoint surfaces avoid each other; contact
leads to a contradiction.
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Figure 7. Grayson proved that even a tightly wound
region becomes round under curve shortening flow.

in finite time in a point. Right before it disappears, the
curve will be an almost round circle.

The evolution of the snake-like simple closed curve in
Figure 7 illustrates this remarkable fact. (The eight figures
are time shots of the evolution.)

Level Set Flow
The analytical formulation of the flow is the level set
equation that can be deduced as follows. Given a closed
embedded hypersurface Σ ⊂ R𝑛+1, choose a function
𝑣0 ∶ R𝑛+1 → R that is zero on Σ, positive inside the domain
boundedbyΣ, andnegative outside. (Alternatively, choose
a function that is negative inside and positive outside.)
• If we simultaneously flow {𝑣0 = 𝑠1} and {𝑣0 = 𝑠2} for

𝑠1 ≠ 𝑠2, then avoidance implies they stay disjoint.
• In the level set flow, we look for 𝑣 ∶ R𝑛+1 ×[0,∞) → R

so that each level set 𝑡 → {𝑣(⋅, 𝑡) = 𝑠} flows by mean
curvature and 𝑣(⋅, 0) = 𝑣0.

• If ∇𝑣 ≠ 0 and the level sets of 𝑣 flow by mean
curvature, then

𝑣𝑡 = |∇𝑣|div( ∇𝑣
|∇𝑣|) .

This is degenerate parabolic and undefined when ∇𝑣 = 0.
It may not have classical solutions.

In a paper cited more than 12, 000 times from 1988,
Stanley Osher and James Sethian studied this equation
numerically. The analytical foundation was provided by
Craig Evans and Joel Spruck in a series of four papers
in the early 1990s and, independently and at the same
time, by Yun Gang Chen, Yoshikazu Giga, and Shunichi
Goto. Both of these two groups constructed (continuous)
viscosity solutions and showed uniqueness. The notion
of viscosity solutions had been developed by Pierre-Louis
Lions and Michael G. Crandall in the early 1980s. The
work of these two groups on the level set flow was one of
the significant applications of this theory.

Examples of Singularities
Undermean curvature flow a round sphere remains round
but shrinks and eventually becomes extinct in a point. A
round cylinder remains round and eventually becomes
extinct in a line. The marriage ring is the example of a thin
torus of revolution in R3. Under the flow the marriage
ring shrinks to a circle, then disappears. See Figure 8.

Dumbbell
Figure 9 shows the evolution of a rotationally symmetric
mean convex dumbbell in R3. If the neck is sufficiently
thin, then the neck pinches off first, and the surface
disconnects into two components. Later each component
(bell) shrinks to a round point. This example falls into a
larger category of surfaces that are rotationally symmetric
around an axis. Because of the symmetry, the solution
reduces to a one-dimensional heat equation. This was
analyzed in the early 1990s by Sigurd Angenent, Steven
Altschuler, and Giga; cf. also with work of Halil Mete Soner
and Panagiotis Souganidis from around the same time. A
key tool in the arguments of Angenent-Altschuler-Giga
was a parabolic Sturm-Liouville theorem of Angenent that
holds in one spatial dimension.

Singular Set
Undermean curvature flow closed hypersurfaces contract,
develop singularities, and eventually become extinct. The
singular set 𝒮 is the set of points in space and time where
the flow is not smooth.

In the first three examples—the sphere, the cylinder,
and the marriage ring—𝒮 is a point, a line, and a closed
curve, respectively. In each case, the singularities occur
only at a single time. In contrast, the dumbbell has two
singular times with one singular point at the first time
and two at the second.

Mean Convex Flows
A hypersurface is convex if every principal curvature is
positive. It is mean convex if 𝐻 > 0, i.e., if the sum of
the principal curvatures is positive at every point. Under
the mean curvature flow, a mean convex hypersurface
moves inward, and, since mean convexity is preserved,
it will continue to move inward and eventually sweep
out the entire compact domain bounded by the initial
hypersurface.

Inmany applications, the speed of themoving interface
does not change sign and the front moves monotonically.
This corresponds to positive mean curvature in our
case. Monotone movement can be modeled particularly

Figure 8. The marriage ring shrinks to a circle under
mean curvature flow.
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Figure 9. A narrow neck on a dumbbell pinches off,
and then each half shrinks to a point.

efficiently numerically by the Fast Marching Method of
James Sethian.

Level Set Flow for Mean Convex Hypersurfaces
When the hypersurfaces are mean convex, the equation
can be rewritten as a degenerate elliptic equation for a
function 𝑢 defined by

𝑢(𝑥) = {𝑡 | 𝑥 ∈ 𝑀𝑡}.
We say that 𝑢 is the arrival time, since it is the time the
hypersurfaces 𝑀𝑡 arrive at 𝑥 as the front sweeps through
the compact domain bounded by the initial hypersurface.
The arrival time has a game theoretic interpretation by
work of Robert Kohn and Sylvia Serfaty. It follows easily
that if we set𝑣(𝑥, 𝑡) = 𝑢(𝑥)−𝑡, then𝑣 satisfies the level set
flow. Now the level set equation 𝑣𝑡 = |∇𝑣|div(∇𝑣/|∇𝑣|)
becomes

−1 = |∇𝑢|div( ∇𝑢
|∇𝑢|) .

This is a degenerate elliptic equation that is undefined
when ∇𝑢 = 0. Note that if 𝑢 satisfies this equation, then
so does 𝑢 plus a constant. This just corresponds to
shifting the time when the flow arrives by a constant. A

particular example of a solution to this equation is the
function 𝑢 = − 1

2 (𝑥
2
1 + 𝑥2

2), which is the arrival time for
shrinking round cylinders in R3. In general, Evans-Spruck
(cf. Chen-Giga-Goto) constructed Lipschitz solutions to
this equation.

Singular Set of Mean Convex Level Set Flow
The singular set of the flow is the critical set of 𝑢. Namely,
(𝑥, 𝑢(𝑥)) is singular if and only if ∇𝑥𝑢 = 0. For instance,
in the example of the shrinking round cylinders in R3,
the arrival time is given by 𝑢 = − 1

2 (𝑥
2
1 +𝑥2

2), and the flow
is singular in the line 𝑥1 = 𝑥2 = 0, that is, exactly where
∇𝑢 = 0.

We will next see that even though the arrival time was
only a solution to the level set equation in a weak sense,
it turns out to be always a twice differentiable classical
solution.

Differentiability
From [CM2]:
• 𝑢 is twice differentiable everywhere, with bounded

second derivatives, and smooth away from the critical
set.

• 𝑢 satisfies the equation everywhere in the classical
sense.

• At each critical point the Hessian is symmetric and has
only two eigenvalues, 0 and − 1

𝑘 ; − 1
𝑘 has multiplicity

𝑘 + 1.
This result is equivalent to saying that at a critical

point, say 𝑥 = 0 and 𝑢(𝑥) = 0, the function 𝑢 is (after
possibly a rotation of R𝑛+1) up to higher-order terms
equal to the quadratic polynomial

−1
𝑘 (𝑥2

1 +⋯+ 𝑥2
𝑘+1) .

This second-order approximation is simply the arrival
time of the shrinking round cylinders. It suggests that the
level sets of 𝑢 right before the critical value and near the
origin should be approximately cylinders (with an 𝑛 − 𝑘
dimensional axis). This has indeed been known for a long
timeand isdue toHuisken,White, Sinestrari,Andrews, and
Haslhofer-Kleiner. It also suggests that those cylinders
should be nearly the same (after rescaling to unit size).

This kind of
uniqueness is a

famously difficult
problem in

geometric analysis

That is, the axis of the
cylinders should not
depend on the value
of the level set. This
last property, however,
was only very recently
established in [CM1]
and is the key to prov-
ing that the function is
twice differentiable.1
The proof that the axis
is unique, independent
on the level set, relies on a key new inequality that draws

1Uniqueness of the axis is parallel to the fact that a function is dif-
ferentiable at a point precisely if on all sufficiently small scales at
that point it looks like the same linear function.
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Figure 10. The figure illustrates a situation that turns
out to be impossible, where the axes of the cylinders
for three different level sets near the critical point are
radically different. Instead, as the level sets approach
the critical point, the axes go to a unique limit.

its inspiration from real algebraic geometry, although
the proof is entirely new. This kind of uniqueness is a
famously difficult problem in geometric analysis, and no
general case had previously been known.

Regularity of Solutions
We have seen that the arrival time is always twice dif-
ferentiable, and one may wonder whether there is even
more regularity. Gerhard Huisken showed already in 1990
that the arrival time is 𝐶2 for convex 𝑀0. However, in
1992 Tom Ilmanen gave an example of a rotationally
symmetric mean convex 𝑀0 in R3 where 𝑢 is not 𝐶2. This
result of Ilmanen shows that the above theorem about
differentiability cannot be improved to 𝐶2. We will see
later that in fact one can entirely characterize when the
arrival time is 𝐶2. In the plane, Kohn and Serfaty (2006)
showed that 𝑢 is 𝐶3, and for 𝑛 > 1 Natasa Sesum (2008)
gave an example of a convex 𝑀0 where 𝑢 is not 𝐶3. Thus
Huisken’s result is optimal for 𝑛 > 1.

Thenext result shows that one can entirely characterize
when the arrival time is 𝐶2.

Continuous Differentiability
[CM3]: 𝑢 is 𝐶2 if and only if:

• There is exactly one singular time (where the flow
becomes extinct).

• The singular set 𝒮 is a 𝑘-dimensional closed connected
embedded 𝐶1 submanifold of cylindrical singularities.

Moreover, the axis of each cylinder is the tangent plane
to 𝒮.

When 𝑢 is 𝐶2 in R3, the singular set 𝒮 is either:

(1) a single point with a spherical singularity or
(2) a simple closed 𝐶1 curve of cylindrical singularities.

The examples of the sphere and themarriage ring show
that each of these phenomena can happen, whereas the
example of the dumbbell does not fall into either case,
showing that in that case the arrival time is not 𝐶2.

We can restate this result for R3 in terms of the
structure of the critical set and Hessian: 𝑢 is 𝐶2 if and
only if 𝑢 has exactly one critical value and the critical set
is either:

(1) a single point where Hess𝑢 is − 1
2 times the identity

or
(2) a simple closed 𝐶1 curve where Hess𝑢 has eigen-

values 0 and −1 with multiplicities 1 and 2,
respectively.

In case (2), the kernel of Hess𝑢 is tangent to the curve.

Concluding Remarks
We have seen that for one of the classical differential
equations, in order to understand the analysis it is nec-
essary to understand the underlying geometry. There are
many tantalizing parallels to other differential equations,
both elliptic and parabolic.

For references about mean curvature flow, see the
survey [CMP] and [CM1]–[CM3].
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