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Abstract A mean curvature flow starting from a closed embedded hypersur-
face in R"*! must develop singularities. We show that if the flow has only
generic singularities, then the space-time singular set is contained in finitely
many compact embedded (n — 1)-dimensional Lipschitz submanifolds plus a
set of dimension at most n — 2. If the initial hypersurface is mean convex, then
all singularities are generic and the results apply. In R and R*, we show that
for almost all times the evolving hypersurface is completely smooth and any
connected component of the singular set is entirely contained in a time-slice.
For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead
to the same conclusion: the flow is completely smooth at almost all times and
connected components of the singular set are contained in time-slices. A key
technical point is a strong parabolic Reifenberg property that we show in all
dimensions and for all flows with only generic singularities. We also show that
the entire flow clears out very rapidly after a generic singularity. These results
are essentially optimal.
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1 Introduction

A major theme in PDE’s over the last 50 years has been understanding singular-
ities and the set where singularities occur. In the presence of a scale-invariant
monotone quantity, blowup arguments can often be used to bound the dimen-
sion of the singular set; see, e.g. [2,26]. Unfortunately, these dimension bounds
say little about the structure of the set. In this paper we obtain a rather com-
plete description of the singular set for a non-linear evolution equation that
originated in material science in the 1920s.

The evolution equation is the mean curvature flow (or MCF) of hypersur-
faces. A hypersurface in R"*! evolves over time by MCF if it is locally moving
in the direction of steepest descent for the volume element. This equation has
been used and studied in material science to model things like cell, grain, and
bubble growth.

Under MCF surfaces contract and eventually become extinct. Along the flow
singularities develop. For instance, a round sphere remains round but shrinks
and eventually becomes extinct in a point. Likewise, a round cylinder remains
round and eventually becomes extinct in a line. For a torus of revolution, the
rotational symmetry is preserved as the torus shrinks and eventually it becomes
extinct in a circle. In these three examples, the singular set consists of a point,
a line, and a closed curve, respectively, and, in each case, the singularities
occur only at a single time. The natural question is what happens in general?
Are the above examples representative? Is the singular set contained in a nice
submanifold?

The first step towards understanding singularities, and the singular set, in
MCEF is blowup analysis. In the blowup analysis, a sequence of rescalings at a
singularity has a subsequence that converges weakly to a limiting blowup (or
tangent flow). A priori different subsequences could give different limits. A
singularity of a MCF is cylindrical if ablowup at the singularity is a multiplicity
one shrinking round cylinder R¥ x 8"~ for some k < n.! If at least one tangent
flow is cylindrical, then all are by [9]; in fact, even the axis of the cylinder
is unique by [12].2 By [11], generic singularities are cylindrical. Moreover, if
the initial hypersurface is mean convex, then all singularities are cylindrical;
see [3,27,30-33,48,49,53].

Our main result is that the singular set is rectifiable:

Theorem 1.1 Let M, C R"*! be a MCF with only cylindrical singularities

starting at a closed smooth embedded hypersurface, then the space-time sin-
gular set S satisfies:

I For many of our results (though not all) one can allow the tangent flow to have multiplicity
greater than one (cf. [5]), however this higher multiplicity does not occur in the most important
cases.

2 See also Schulze [43], for uniqueness at smooth closed singularities.
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e S iscontained in finitely many (compact) embedded Lipschitz submanifolds
each of dimension at most (n — 1) together with a set of dimension at most
(n—2).

This theorem is even stronger than one might think since it uses the parabolic
distance on space-time R"*! x R. The parabolic distance between points (x, 5)
and (y, 1) of R*™! x Riis

distp ((x, ), (v, 7)) = max {|x — y|, |s — ¢]'/?}. (1.1)

This distance scales differently in time versus space and the parabolic distance
can be much greater than the Euclidean distance for points at nearby times.
The parabolic Hausdorff dimension is the Hausdorff dimension with respect
to parabolic distance. In particular, time has dimension two and space-time
has dimension n + 3.

Each submanifold in Theorem 1.1 is the image of a map from a domain
in R"~! to R"*! x R that is Lipschitz with respect to Euclidean distance on
R"~! and parabolic distance on R"*! x R. The proof of Theorem 1.1 relies
crucially on uniqueness of tangent flows.

We prove considerably more than what is stated in Theorem 1.1; see Theo-
rem 4.6 in Sect. 4. For instance, we show regularity of the entire stratification
of the space-time singular set. Moreover, we do so without ever discarding any
subset of measure zero of any dimension as is always implicit in any definition
of rectifiable.* To illustrate the much stronger version, consider the case of
evolution of surfaces in R3. In that case, we show that the space-time singular
set is contained in finitely many (compact) embedded Lipschitz curves with
cylinder singularities together with a countable set of spherical singularities.
In higher dimensions, we show the direct generalization of this.

In the simple examples of shrinking cylinders and tori of revolution, all of
the singularities occurred at a single time. Part (B) in the next theorem gives
criteria to explain this.

3

Theorem 1.2 If M, is as in Theorem 1.1, then S satisfies:

(A) S is the countable union of graphs (x, t(x)) of 2-Hélder functions on
subsets of space.

(B) Each subset of S with finite parabolic 2-dimensional Hausdorff measure
misses almost every time; each such connected subset is contained in a
time-slice.

3 The map can be taken to be a graph over a subset of a time-slice; this is connected to Theorem
1.2.

4 See, for instance [7,19,25,36,37,40,45].
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Fig.1 Aninfinite set that is a 2-Holder graph of a non-constant function: the points (N )
fork = 1,2, ... and the limit point O

In (A), x lies in a subset €2 of space Rt and the time functionz : @ — R
is 2-Holder. Recall that a function is p-Holder if there is a constant C so that

1(x) =t = Clx —y|”. (1.2)

To say that r = 7(x) is 2-Holder is equivalent to that the map x — (x, #(x))
into space-time is Lipschitz with respect to the parabolic metric. The 2-Holder
condition is very strong and is rarely considered since any 2-Holder function
on an interval must be constant. However, there are non-constant 2-Holder
functions on more general subsets, including disconnected subsets, even of
R, as in Fig. 1. Part (B) shows constancy of the time function for connected
subsets with finite 2-dimensional measure.
Theorems 1.1 and 1.2 have the following corollaries:

Corollary 1.3 Let M; C R"*! be a MCF starting at a closed smooth embed-
ded mean convex hypersurface, then the conclusions of Theorems 1.1 and 1.2
hold.

In dimension three and four we get in addition:

Corollary 1.4 If M, is as in Theorem 1.1 and n = 2 or 3, then the evolving
hypersurface is completely smooth (i.e., without any singularities) at almost
all times. In particular, any connected subset of the space-time singular set is
completely contained in a time-slice.

Corollary 1.5 For a generic MCF in R3 or R*, or a flow starting at a closed
smooth embedded mean convex hypersurface in R3 or R*, the conclusion of
Corollary 1.4 holds.

We get the same result as in Corollary 1.5 in all dimensions if we assume
that the initial hypersurface is 2- or 3-convex. A hypersurface is said to be
k-convex if the sum of any k principal curvatures is nonnegative.
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Fig. 2 The Koch curve is close to a line on all scales, yet the line that it is close to changes
from scale to scale. It is not rectifiable but admits a Holder parametrization

1.1 Some ingredients in the proof

A key technical point in this paper is to prove a strong parabolic Reifenberg
property for MCF with generic singularities. In fact, we will show that the
space-time singular set is parabolic Reifenberg vanishing. In analysis> a subset
of Euclidean space is said to be Reifenberg (or Reifenberg flat) if on all suffi-
ciently small scales it is, after rescaling to unit size, close to a k-dimensional
plane. The dimension of the plane is always the same but the plane itself may
change from scale to scale and from point to point. Many fractal curves, like
the Koch snowflake, are Reifenberg with k = 1 but have Hausdorff dimension
strictly larger than one; see Fig. 2. A set is said to be Reifenberg vanishing if
the closeness to a k-plane goes to zero as the scale goes to zero. It is said to
have the strong Reifenberg property if the k-dimensional plane depends only
on the point but not on the scale. Finally, one sometimes distinguishes between
half Reifenberg and full Reifenberg, where half Reifenberg refers to that the
set is close to a k-dimensional plane, whereas full Reifenberg refers to that in
addition one also has the symmetric property: The plane is also close to the
set on the given scale.

5 See, for instance [47].
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Using [12], we show in this paper that the singular set in space-time is strong
(half) Reifenberg vanishing with respect to parabolic distance.

1.2 Comparison with prior work

The results of this paper should be contrasted with a result of Altschuler et al.
[1] (cf. [46]). The paper [1] showed that in R3 the evolution of any rotationally
symmetric surface obtained by rotating the graph of a function r = u(x),
a < x < b around the x-axis is smooth except at finitely many points in
space-time where either a cylindrical or spherical singularity forms. For more
general rotationally symmetric surfaces (even mean convex), the singularities
can consist of nontrivial curves. For instance, consider a torus of revolution
bounding a region 2. If the torus is thin enough, it will be mean convex. Since
the symmetry is preserved and because the surface always remains in €2, it can
only collapse to a circle. Thus at the time of collapse, the singular setis a simple
closed curve. In [48-51] (see, for example, section 5 of [50]), White showed
that a mean convex surface evolving by MCF in R must be smooth at almost
all times, and at no time can the singular set be more than 1-dimensional. In
all dimensions, White [48-53], showed that the space-time singular set of a
mean convex MCF has parabolic Hausdorff dimension at most (n —1); see also
theorem 1.15 in [27]. White’s dimension bounds are proven by classifying the
blowups and then appealing to his parabolic version of Federer’s dimension
reducing argument in [W5]. The dimension reducing gives that the singular set
of any MCF with only cylindrical singularities has dimension at most (n — 1).
We conjecture:

Conjecture 1.6 Let M; C R be a MCF with only cylindrical singulari-
ties starting at a closed smooth embedded hypersurface. Then the space-time
singular set has only finitely many components.

If this conjecture is true, then it would follow from this paper that in R
and R* MCF with only generic singularities is smooth except at finitely many
times; cf. [4] and section 5 in [50].

Each time-slice of a MCF will be a subset of R"T!, but the space-time track
of the flow is a subset of R"*! x R, where the first n + 1 coordinates are in
space and the last is the time variable. With the parabolic distance (1.1), the unit
parabolic ball PB1(0,0) at x = 0 and ¢ = 0 is the product of B{(0) C R+
and the unit interval (—1, 1) C R. Similarly, a parabolic ball of radius r is
given by a translated copy of B,(0) x (—r2, r?). This scaling implies that
the volume of a parabolic ball of radius r is a constant times "%, Finally,
PT,(T) will be the parabolic tubular neighborhood of radius r about a set
T CcR"" xR
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Fig. 3 The parabolic Reifenberg property illustrated on one scale: The green set S lies in a
parabolic e-tubular neighborhood of the red k-dimensional plane Vy

PT.(T) = {y e R"™! x R|distp(y, T) < r}. (1.3)

The results proven here are used in [16] to prove regularity for the arrival
time in the level set method [8,21-24,39]. These results were surveyed in [17];
see also [6,20], and [35] for regularity theory in MCF.

2 Parabolic Reifenberg

A subset of space R"t! is Reifenberg® if it is close to some k-dimensional
plane on all sufficiently small scales. The k-plane can vary from point to point
and from scale to scale and “close” means that the Hausdorff distance between
the set and the k-plane is small relative to the scale. The Koch curve (with small
angle) has this property; see Fig. 2. If the k-plane does not depend on the scale,
then the set is strong Reifenberg. We will need a parabolic version for subsets
of space-time, where the parabolic distance distp is used in place of Euclidean
distance; see Fig. 3.

2.1 Strong parabolic Reifenberg

We say that a subset S € R"T! x R has the strong parabolic k-dimensional
Reifenberg property if for some small § € (0, %) and some rg > 0: For all
0<r<rg (x,1) €S, thereis a k-plane V ; C R"*! x {t} so that

PB,(x,t) NS is contained in the § r parabolic tubular neighborhood of Vy ;.
2.1

6 See [10,18,28], section 2.3 of [38,41,42,44], and [47].
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(950

Fig.4 Theset{(0,0,0), (1,0,0), (0, ¢, 0), (1, 0, €)} satisfies the strong 2-dimensional Reifen-
berg property but there is no 2-plane where the projection is bi-Lipschitz with constant close to
one

This could be called a half” Reifenberg because (2.1) requires only that S
is contained a tube about the plane V, ;; the full Reifenberg is symmetric and
requires also that the plane is contained in a tube around S. We emphasize that
the k-plane V ; is contained in R x {t} and is allowed to depend only on
the point (x, ¢) in space-time, but not on the scale r. The required closeness in
(2.1) is proportional to the scale.

It is instructive to keep in mind that a line of the form r = a x in space-time
R x R is parabolic one-dimensional Reifenberg only if a = 0. More generally,
any C' connected curve satisfying the parabolic one-dimensional Reifenberg
condition must be in a time-slice.

We say that a subset S C R"t! x R is Reifenberg vanishing if § = §(r) — 0
asr — 0.

The next example is strong 1-Reifenberg on scales < 1 and strong 2-
Reifenberg on larger scales. It is 1-Reifenberg on all scales, but not strong.

Example 2.1 (The following example is in space; there are similar examples
in space-time.)

The set consisting of the four points (0, 0, 0), (1, 0, 0), (0, €, 0), (1,0, €) in
R3 (see Fig. 4) satisfies the strong 2-dimensional Reifenberg property on the
scale 2 (and, in fact, on all scales) with 6 = €. The approximating two-planes

7 See, for instance, the remarks on page 258 of [44].
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can be taken to be V0,000 = V(0,e,00 = {z = 0} and V1,000 = Va,0,e) =
{y =0}.

e The four points do not satisfy the strong 2-dimensional full Reifenberg
property: the points are locally contained in tubular neighborhoods of the
planes, but the planes are not locally contained in neighborhoods of the
points because of the gaps in the set.

e The four points do not have the strong 1-dimensional Reifenberg property
at scale 2 for § = €. To see this, observe that the approximating line at
(0, 0, 0) must be close to the y-axis at scale € and close to the x-axis at
scale 2. Thus, no single line works at both scales.

The next lemma will give a condition that forces Reifenberg sets to be bi-
Lipschitz graphs. Some additional condition is necessary since Example 2.1
satisfies the strong 2-dimensional Reifenberg property on the scale 2, but there
is no single 2-plane where the projection is bi-Lipschitz with constant close
to one. The extra condition is (2.2) in the next lemma. This will give that the
planes for nearby points are close, giving additional regularity of the set. In
the lemma, dpy denotes parabolic Hausdorff distance.

Lemma 2.2 There exists § > 0 such that if yo € S C R"™! x R, S has the
strong (8, ro)-Reifenberg property and

dpH (P Bry(y0) NS, PBry(y0) N Vyy) < 8 ro. 2.2

then the projection y, : PB%U (yo) NS — V,, is a bi-Lipschitz map to its
image. This implies the set is a graph x — (x, t(x)) over a subset of space
and x — t(x) is 2-Holder on space.

Proof To keep the notation simple, translate so that yg = (0, 0) and rescale
so that rp = 1. We will omit the (0, 0) below and write V for Vj o, 7 for 7 o,
and P B, for PB,(0, 0). Given any y € R"t! we can decompose it into

y=m(y)+y* (2.3)

where y+ € R"*! is the part orthogonal to V.

The projection 7 is Lipschitz, so we must show that 7 is one-to-one and
the inverse is Lipschitz. This will follow by showing that if (y, ¢) and (z, s) €
PB 1 N S, then

It —sl2 < C n(y) — (). (2.4)
L <Clry) —n@)l, (2.5)

B
where the constant C depends only on § and n.

We will show that (2.4) and (2.5) follow from the strong Reifenberg property
plus
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452 T. H. Colding, W. P. Minicozzi II

If (y,1) € PBL NS, then By (y) N Vy,r C Tas(V + y), ()

where T;(K) is the spatial tubular neighborhood of radius s about a subset
K C R"*! and we have identified Vy, , € R"*! x {t} with the parallel plane
in R, O

Proof of (2.4) and (2.5) assuming (1) If we let r = distp((y, 1), (z, 5)), then
(z,8) € PT5(Vy ;). (2.6)
Since Vy ; is contained in a time-slice, this implies that

U—ﬂ%§8r:8mw{h—sﬁJy—d}. 2.7)

Since § < 1, we see that » = |y — z|. Scaling the conclusion in () gives
B-(y) N Vy: C Tgsr(V +y). (2.8)
Combining this with (2.6) gives
7(2) + 2t =2€ Br()NTs (Vy,) CTosr (V + y) =Tos(V +y5),  (2.9)

where we used that V is invariant under translation by the vector 7 (y) € V.
Thus, we get

7t € Tos (V + yh), (2.10)

which implies that |z+ — y1| < 98r. As long as § < %, this implies (2.5).
Equation (2.4) follows immediately from (2.5) and (2.7). O

Proof of (1) Use (2.2) and the strong Reifenberg property at y to get
PB% NV CPBi(y, 1) N PTs(S) C PTas(Vy,r). (2.11)

This implies that V), ; intersects Bas, so we get Tas(Vy ;) C Tys(Vy, —y) and,
thus,

B% NV CTys(Vyr — ). (2.12)

Finally, since dim V = dim V), ;, we can apply Lemma 2.3 below to get ().
O

Lemma 2.3 Suppose that V, W are both k-planes through 0 in R"*!. If B; N
V C Ts(W) for some § € (0, 1), then BiN'W C Ts(V).
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Proof Let A : V — W be orthogonal projection onto W. Thus, if v € V, then
lv — A()| = dist(v, W) <§|v], (2.13)

where the inequality used that B NV C T5(W). It follows that
AP =l = v = AP = (1 =8 ol (2.14)

We conclude that the linear map A is injective. Since V and W have the same
dimension, A is also onto. Thus, given any w € B} N W, there exists v € V
with A (v) = w. Finally, by (2.13), the sine of the angle between v and w is at
most § and, thus, the distance from w to the line through v is at most §. O

In Example 2.1, the two pairs of points could be separated by working
on scales less than one so that only one pair was visible at a time. This is
not possible in the next example, where we have arbitrarily close points with
approximating planes that are very different. This example will be strong 1-
Reifenberg, but not on a uniform scale.

Example 2.4 (As above, the following example is in space; there are similar
examples in space-time.) The set consisting of the union of the three sequences
(€",0,0), (62”, e+l 0), (62”+1, 0, 62”+2) satisfies the strong Reifenberg
property for € > 0 sufficiently small. This set contains two sequences which
converge to the origin inside two planes which are perpendicular to each
other.

In the applications that we have in mind, we will not be able to appeal to
Lemma 2.2. However, the distribution {V), ;} of k-planes in our applications
will have an additional regularity property which, as we will see, implies
regularity of the set S. Roughly speaking, this property is equi-continuity of
the distribution {V, }:

Suppose we have a distribution of k-dimensional planes {V, ;} with V, ; C
R"1 x {t} labeled by a subset S € R"™! x R with (y,#) € V,, N S. For
some § > O sufficiently small, let f : (0,1) — (0, §) be a monotone non-
decreasing function with lim, .o f(r) = 0. We will say the distribution {V, ,}
is f-regular if for all r > 0 and all (yy, t1), (y2,12) € S

dpg(PB,(y1,t1) N Vy 1, PBr(y1,11) NVy, 1) < f(r)r, (2.15)

for r = distp ((y1, 1), (2, 12)).
Later in our applications to MCF with generic singularities, we will show
that not only does the space-time singular set satisfy the strong parabolic
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(half) vanishing Reifenberg property but the distribution of k-planes will be
f-regular.®

The next theorem is the main result of this section. The strong Reifenberg
property gives a bi-Lipschitz approximation when the approximating planes
are close at nearby points. In Lemma 2.2, (2.2) implies this closeness. If the
distribution is f-regular, then the closeness is automatic.

Theorem 2.5 If S C R x R satisfies the strong parabolic Reifenberg
property and the distribution of k-planes is f-regular, then for (y,t) € S fixed
the projection w : S — Vy ; is a bi-Lipschitz map from a neighborhood of
(v, t) in S to its image (equivalently, near (y,t), S is a Lipschitz graph over
part of Vy ;).

Proof The proof is a slight variation of the proof of Lemma 2.2, where the
f-regularity gives the condition (7) there. m|

3 Cylindrical tangent flows

In this section, we first recall the Gaussian surface area, the monotonicity
formula for MCF and its basic properties. After that, we record a consequence
of the uniqueness theorem of [12] for cylindrical singularities that will be the
key to establishing the strong parabolic Reifenberg property for the singular
set. Recall that we will only prove the half Reifenberg, meaning that the set
lies in a small tubular neighborhood of a plane but not vice versa.

3.1 Gaussian surface area

The F-functional, or Gaussian surface area, of a hypersurface & c R"*! is

Iv—x\2

Fx,t(2)=(47rt)_g/e_'4r dy, (3.1)
)

where the Gaussian is centered at x € R"*! and /7 > 0 is the scale. The
entropy A is the supremum over all Gaussians (i.e., over all centers xp and
scales /1)
ME) =sup Fy0(2). (3.2)
X0,%0
Huisken’s monotonicity formula’, [29], for a MCF M, c R"*! states that
Fy -(M;_;) is increasing in 7 for every fixed x and ¢. That is, if 0 < 71 < 12,
then

8 In fact, one can take f(r) ~ (log|logr|)™% (@ > 0).
9 Tlmanen and White extended the monotonicity to the case where M; is a Brakke flow.
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Fx,rl (Mtfrl) = Fx,rz(Mtftz) (33)

The monotonicity gives an upper semi-continuous limiting Gaussian density
Ox,s

Ox ;= lim Fy (M;—¢). (3.4)
‘L’—>O+

The limiting density is at least one at each point in the support of the flow and
greater than one at each singularity.

By definition, a tangent flow is the limit of a sequence of parabolic dilations
at a singularity, where the convergence is on compact subsets. For instance,
a tangent flow to M; at the origin in space-time is the limit of a sequence of
rescaled flows SITM 52, where §; — 0. By Huisken’s monotonicity formula
and an argument of flmanen and White [34,51], tangent flows are shrinkers,
i.e., self-similar solutions of MCF that evolve by rescaling. A priori, different
sequences §; could give different tangent flows; the question of uniqueness
of the blowup is whether the limit is independent of the sequence. In [CM2]
(see also [15]) it was proven that tangent flows at cylindrical singularities are
unique. That is, any other tangent flow is also a cylinder with the same R¥
factor that points in the same direction.

3.2 Cylindrical singularities

Throughout this subsection, M; will be a MCF in R"*! with entropy at most
no- All constants will be allowed to depend on n and \¢.
We will let Cy denote the cylinder of radius «/2(n — k)

k n—k
R* x S\/m (3.5)

and its rotations and translations in space.'?

It will be useful to have compact notation for spatial rescalings of a set about
a fixed point. Namely, given z € R"*!, r > 0and A ¢ R"*!, let W, , (A) be
the rescaling of A about z by the factor r, i.e.,

W, (A) ={r(x —2)+2z|x € A} (3.6)

The map W, , is a rescaling in space only.

We need a notion of what it means for the flow to look like a cylinder
near a point. Namely, we will say that M; is (j, n)-cylindrical at (y, t) on the
time-scale t if for every positive s < t

10 This is a different convention than in [12] where we used & for the dimension of the spherical
factor.
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o W 1 (Bt 5(0) N Mi—y) is a graph over a fixed cylinder in C; of a
y’\/g n -
function with C! norm at most 7.

It is important that the dilates lIJyv % (anl ﬁ( y)NM;_g) are graphs over the

same cylinder as the time scale s varies. The constant j here is the dimension
of the Euclidean factor of the cylinder. The constant  measures how close the
flow is to the cylinder in a scale-invariant way and, as n gets smaller, the flow
is closer to a cylinder on a larger set.

We will need the following result from [12] which gives that the flow
becomes cylindrical near every cylindrical singularity. Roughly speaking, this
says that if the flow is a graph over a cylinder just before a cylindrical singu-
larity, then it remains a graph over the same cylinder as one approaches the
singularity. Moreover, after rescaling, it is a graph over a larger set and is even
closer to the cylinder.

Theorem 3.1 Givenn > 0, there exists € > 0 so that if (xo, ty) is a cylindrical
singularity in Cj and

v (Be—lﬁ(XO) N M,O,zf) is a graph over some

X0, ——
0 732

cylinder in C; of a function with C U norm at most e, ©)

then M; is (j, n)-cylindrical at (xg, ty) on the time-scale t. Furthermore, for
each n > 0, there exists T € (0, T) so that M; is (j, n)-cylindrical at (xg, to)
on the time-scale T.

Proof The first claim follows from theorem 0.2 in [12]. See footnotes 5 and 6
in [12] for the fact that it becomes even more cylindrical (i.e., (j, 7)-cylindrical
for  smaller than 5) at smaller scales, giving the second claim. O

We will also need a version of (j, n)-cylindrical where the same time-scale
7 > 0 works uniformly on a subset S C S. Namely, M; is uniformly (j, n)-
cylindrical on S on the time-scale t if M, is (j, n)-cylindrical at each y € S
on the time-scale 7. Thus, the axis of the cylinder may vary with y, but the
time-scale t cannot.

In the next corollary, we will fix j and let S be the subset of S with singularity
inC;.

Corollary 3.2 Givenn > 0, j, and y € S, there exists ry > 0 and T, > 0 so
that

o M; is uniformly (j, n)-cylindrical on P By, (y) N S on the time-scale ty.
e Forn > 0, there exists T > 0 so that M, is uniformly (j, n)-cylindrical on
PB;,(y) NS on time-scale T.
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Proof Observe that if (C) holds for €/2 in place of €, then it holds for € at
nearby points. The corollary follows from this observation and Theorem 3.1.
0

4 The singular set of a MCF

Let M; be a MCF flow in R"*! with only cylindrical singularities that starts
at a closed smooth embedded hypersurface. This means that a tangent flow at
any singularity is a multiplicity one shrinking round cylinder R* x §"~¥ for
some k < n. If at least one blowup is cylindrical, then all are by [9] and the
axis of the cylinder is unique by [12].

The singular set S is a compact subset of space-time R**! x R and can be
stratified into subsets

ScSc---cS-1=8. “4.1)

The set S consists of all singular points where the tangent flow splits off a
Euclidean factor of dimension at most k. Thus,

e y € &y if the tangent flow at y is an n-sphere.
e y € S\ Sk if the tangent flow at y is in Cy.

The Gaussian density at a singularity where the tangent flow is in Cy is equal
to ®x = Fp.1(Ck). The ®y’s are increasing in k with

l<®)<®) < - <Op_1. “4.2)

Therefore, each strata Sx \ Sg—1 is characterized by the value of the Gaussian
density at the singular point. Namely, (x, #) € Sk \ Sk—1 if and only if ®, ; is
equal to ®f. Moreover, by the upper semi-continuity of the Gaussian density
and (4.2), S \ Sk—1 is compact for each k. For example, in R3, a limit of
cylindrical singular points must be cylindrical, while a limit of spherical points
must be singular but, a priori, could be either spherical or cylindrical.

We have seen that the top strata S,,—1 \ S,—2 is compact. The same holds
for the lower strata as long as we stay away from the higher strata:

Lemma 4.1 The set S,,—1 \ S,—2 is compact. Moreover, if € > 0 and k €
{0, ..., n—=2}, then (Sp \ Sk—1) \ PTc (S \ Sk) is compact (with the convention
that S_1 = 0).

Proof This follows immediately since S \ Sx—1 is compact for each k. O
We observe next that the lowest strata Sy consists of isolated points.
Lemma 4.2 The set Sy is isolated: for each y € Sy, there is a space-time ball

PBy, (y) so that PB, (y) NS = {y}.
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Proof By assumption, a multiplicity-one sphere is collapsing off at y. Thus,
by Brakke’s regularity theorem, this sphere is itself a connected component
of the flow just before the singular time. In particular, the flow take away this
sphere has F-functional much less than one just before the singularity on the
scale of the singularity. Monotonicity gives a space-time neighborhood where
the densities (after we take away the sphere) are less than one and, thus, there
are no other singularities. O

One immediate consequence of Lemma 4.2 is that S is countable. This was
proven by White using scaling and monotonicity.

4.1 Cylindrical approximation

Givenany y € §; \ §j_1, the flow is asymptotic to a shrinking cylinder at y,
i.e., it looks like a cylinder in C; just before y. Moreover, by [12], this limiting
cylinder is unique (it has the same axis on each scale).

The main result of this subsection will show that uniformly (j, )-cylindrical
subsets of the singular set satisfy a strong Reifenberg property. The dimension
of the approximating planes will be the dimension of the affine space for the
cylinders.

Proposition 4.3 Suppose that S C S satisfies

For eachn > 0, there exists T, > 0 so that M; is uniformly

(j, m)-cylindrical on S on the time-scale . (*n)

Then:

(1) S has the strong parabolic j-dimensional vanishing Reifenberg property.
(2) The associated distribution of j-planes is f-regular for some function f.

Proof We will show that S has the strong parabolic Reifenberg property, where
the constant depends on 1 and goes to zero as 1 does. The vanishing claimed
in (1) as well as the f-regularity in (2) will then follow from Corollary 3.2
which implies that n goes to zero uniformly as we shrink the scale.

Given a point y € §, let Cy be the cylinder blowup at y (which is unique
by [12]) and let Vy be the j-plane through y that is the axis of C,. To get the
Reifenberg property (1), we will show that for r < \/7/2

PB-(y) NS C PTsr(Vy), (4.3)
where 6 depends on 1 and goes to zero as 1 does. We will divide (4.3) into

two parts, where we first show it for the projection onto time and then for the
projection onto space.
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If zisin (PB,(y) N S) \ {y}, let C, and V, be the corresponding cylinder
and j-plane through z, respectively. Without loss of generality, suppose that

1(y) =1(2). (4.4)

As long as n > 0 is small enough, it follows that the two spatial regions
where the flow is cylindrical (one centered at y and one at z) overlap when
t = t(z) — 4r?. Thus, the flow is close to two cylinders on the overlap, with
the radius of each cylinder given in terms of the time to the singularities at y
and z, respectively. The cylindrical structure about z implies that the flow is a
graph over a cylinder of radius

V2(@n —j) (2r). 4.5)

On the other hand, the cylindrical structure about y implies that the flow is a
graph over a cylinder of radius

V2 —j) \/4;"2 +1(y) —1(2). (4.6)

Comparing the two radii (and noting that #(y) < #(z)), we see that

(V2 —j)+n) \/4r2 +1(y) —1@@) =2 —j)—n2r). &7

In the limit as n — 0, (4.7) would imply that #(y) = #(z). Given y > 0, then
we can take 7 small enough so that (4.7) implies that

yr? > t(y) —1(2)]. (4.8)

This shows that (4.3) holds for the projection onto time.
.2 2 . .
We now look at the flow at time # = #(y) — 7. It is convenient to set

,02 = t(z) — t. Note that (4.8) guarantees that this makes sense for y small
enough and, in fact, that

2

2 I _ 2
P ) =t -t =yr-. 4.9)

We will choose y small enough so that this implies that p € (r/4, 3r/4).
Let IT : R"*! x R — R"*! be projection from space-time to space. The

(J, n)-cylindrical property at y (with s = %) gives that

° \IJy 2 (B,,—l %(H(y)) N M) is a graph over C, of a function with C! norm
at most 7).
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On the other hand, the (j, n)-cylindrical property at z (with s = p?) gives

° \IJZ’l (B,-1,(I(2)) N M;) is a graph over C, of a function with C! norm
at most n.

We will choose € (0, 1/4) so that ! —2 > n~!/2. Thus, since I1(z) €
B, (T1(y)), we have

B,-11(1(2) € By ): (@) C By (M), (4.10)
B,-17(T1(2) C By1,(T1(2)). (4.11)

In particular, we know that Bn_1£(l'l(z)) N M5 is a graph over both W, ,(C;)
and ¥, z (Cy). (We have now dilated the cylinders instead of Mj7.) As a conse-
quence, we have

Bn—lg(n(z)) N ‘“Ijz,,o(cz) - Tn(p+%)(qjy,%(cy))- (4.12)

As long as n > 0 is small enough (depending on §), it follows that I1(z) lies
in the (6r)-tubular neighborhood of V). This completes the proof of the strong
parabolic Reifenberg property. This also shows that the j-planes V), and V,
must be close and, in fact, the distance between them goes to zero uniformly
as the distance from y to z goes to zero; this shows the f-regularity. O

4.2 The strata are cylindrical

The following proposition shows that the top strata S,—1 \ S,—2 is always
(n — 1, n)-cylindrical on some time-scale T > 0, with a similar statement for
the lower strata.

Proposition 4.4 We have:

e Given nn > 0, there exists T > 0 (depending also on the flow M;) so that
M, is (n — 1, n)-cylindrical on S,—1 \ S,—2 on the time-scale t.

e Givenn >0, j, and € > 0, there exists T > 0 (depending also on the flow
M,) so that M, is (j, n)-cylindrical on (S; \ S§j—1) \ PTe(S \ S;) on the
time-scale t.

Proof Let € > 0 (depending on ) be given by Corollary 3.2.
Given any point (xg, fo) € S;—1 \ Sy—2, there must exist some 7y > 0 so
that

€

Fxo,to+2‘[0 (Mt0+2r()) = ®x0,to + 5 (413)
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In particular, Corollary 3.2 gives rg > 0 so that each point in
P Bry(x0,10) N Sp—1 \ Su—2 (4.14)

is (n — 1, n)-cylindrical at time-scale tg.

Since the set S;,—1 \ Sy—2 is compact by Lemma 4.1, it follows that it
can be covered by a finite collection of balls PB,, (x;, t;) where S,,_1 \ S,—2
is (n — 1, n)-cylindrical on time-scale 7; > 0. The first claim follows with
T = min; 7;.

The second claim follows similarly. O

We conclude that S,,—1 \ S,—> has a strong Reifenberg property, with a
similar statement for the lower strata:

Corollary 4.5 (1) and (2) in Proposition 4.3 hold for both

e S=8,_1\S2withj=m—1).
e S = (S \Sk-1) \ PT(S \ S) for each € > Q0 with j = k.

Proof This follows by combining Proposition 4.4 (which gives that the sets
are cylindrical) and Proposition 4.3 (which gives that (1) and (2) hold for
cylindrical sets). |

4.3 The structure of the singular set
The next theorem records the properties of the singular set S in detail.

Theorem 4.6 Let M, C R"*! be a MCF with only cylindrical singularities
starting at a closed smooth embedded hypersurface. The top strata Sy —1\Sp—2
satisfies:

e [tis contained in finitely many (n — 1)-dimensional Lipschitz submanifolds
and, thus, has finite PH,_1 measure.

e [t has the strong parabolic (n — 1)-dimensional vanishing Reifenberg prop-
erty.

e It is locally the graph of a 2-Holder function on space.

Moreover, S,—» has dimension at most n — 2 and, for each k < n — 2, the
set Sg \ Sk—1 can be written as the countable union U?il Sk.i where each Sy ;
satisfies:

e Si.i is contained in finitely many k-dimensional Lipschitz submanifolds.
e Si.i hasthe strong parabolic k-dimensional vanishing Reifenberg property.
e Si.i is locally the graph of a 2-Holder function on space.

@ Springer



462 T. H. Colding, W. P. Minicozzi II

Proof By Corollary 4.5, the properties (1) and (2) in Proposition 4.3 hold for
Sp—1\ Sp—2 and j = (n — 1). This gives the second claim for S,,—1 \ S;—2.
The first and third claims then follow from Theorem 2.5.

The properties of the lower strata follow similarly by applying the second
claim in Corollary 4.5 with € = 27 and letting i — oo. O

Theorem 4.6 proves a strong form of rectifiability of the top strata and
countable rectifiability for each of the lower strata (at no point does one need
to disregard a set of measure zero as is usually done in the definition of recti-
fiability).

Proof of Theorem 1.1 This follows from Theorem 4.6. O

4.4 Proof of Theorem 1.2

The k-dimensional parabolic Hausdorff measure PHy, of aset S ¢ R*T1 xR
is the k-dimensional Hausdorff measure with respect to the parabolic metric.
When S is contained in a time-slice, this agrees with the usual k-dimensional
Hausdorff measure. In contrast, the time axis has parabolic Hausdorff dimen-
sion two.

The next elementary lemma relates the parabolic Hausdorff measure (as
a subset of space-time) of a graph of a 2-Holder function to the Euclidean
Hausdorff measure of its projection to space.

Lemma 4.7 Suppose that Q@ C R"* andu : Q — R is 2-Holder continuous.
Then for every k, there exists a constant C depending on k and the Holder
constant so that

Hi (2) < PHi(Graph,) < C Hi(R2). (4.15)

Proof Since u is 2-Holder, the map x — (x, u(x)) is Lipschitz with respect
to the Euclidean distance on the domain and parabolic distance in the target.
The claim now follows. O

We will say that a function u on Q@ C R"*! is 2-Hilder with vanishing
constant if there is a continuous increasing function y : [0, co) — [0, c0)
with ¥ (0) = 0 so that

u@) —u <y@Elx—yP if x,yeQ and |x—y/<e. (416)

In particular, the graph functions in Theorem 4.6 are automatically 2-Holder
with vanishing constant because the graphs satisfy the vanishing Reifenberg
property.

The next lemma gives a condition which ensures that a graph is contained
in a time-slice, in contrast to the example in Fig. 1.
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Lemma4.8 If S c R""! x R is the graph of a 2-Hélder function u with
vanishing constant on a subset Q2 C R with Ha () < o0, then:
o Hi(1(S5)) =0,

e if S is connected, then it is contained in a time-slice.

Proof Given € > 0, we can cover 2 by balls B, (x;) withO < r; <€, x; € Q,
and

D < Ha(Q) + e (4.17)

Moreover, |u(y) — u(x;)| < y(€) ri2 forall y € B, (x;) N £ and, hence,

HI(S) < > y(@rF < y(e) (Ha() + ). (4.18)

Letting € — 0 gives the first claim. The second claim follows from the first
since ¢ (S) is connected if S is. O

The same argument gives that if S ¢ R"*! x R is a 2-Hélder graph with
vanishing constant and PH{(S) < oo, then PH(¢(S)) = H%(I(S)) =0.

Proof of Theorem 1.2 (A) follows from Theorem 4.6.

To see (B), let Sk ; be as in Theorem 4.6. Each intersection S N Sk ; has finite
P'H> measure and is a 2-Holder graph with vanishing constant. Therefore, by
Lemma 4.8,

H1(t (SN Sk,i)) =0 foreachk andi. (4.19)

Similarly, we have that H; (¢ (S \ S,—2)) = 0. Since S C (S \ Sp—2) Uk.i Sk.i
where the union is taken over countably many sets, it follows that H; (¢ (S)) =
0. Furthermore, if S is also connected, then so is # () and S must be contained
in a time-slice. O

Proof of Corollary 1.4 By Theorem 4.6, the singular set S has finite PH>
measure when n = 2 or n = 3. The corollary now follows from the second
part of Theorem 1.2. O

5 Local cone property

The results of the rest of the paper are not used in the proofs of any of the
results stated in the introduction.

The proof of the rectifiability theorem (Theorem 1.1) very strongly used the
uniqueness of tangent flows. In this section, we will give weaker criteria that are
sufficient for Theorem 1.2 and do not require the full strength of uniqueness.
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Moreover, these criteria are well-suited for other parabolic problems where
uniqueness is not known.

We begin by introducing a scaling condition for subsets of space-time that
is natural in parabolic problems such as the heat equation or MCF. This auto-
matically holds for the singular set of a MCF with cylindrical singularities,
but is more general. Moreover, it immediately implies that nearby singularities
happen at essentially the same time, as in the examples of shrinking cylinders
and tori of revolution. This condition has two equivalent forms: The forward
and backward parabolic cone properties.

5.1 The parabolic cone property

One way of characterizing a Euclidean cone is that it is invariant under scaling
x — x. In parabolic problems, like the heat equation or MCF, the natural
scalings of space-time R"*! x R are parabolic dilations about the origin

(x, 1) = (nx, 2710). (5.1)

A parabolic cone is a subset of space-time that is invariant under parabolic
dilations (or under parabolic dilations about another point). For example, the
set {|x|> = |t]}isa parabolic double cone; it is a double paraboloid with the
two paraboloids tangent to each other.

To define the parabolic cones that we will use here, given a point y €
R"*! x R, let T1(y) be the projection to R"*! and ¢(y) the projection onto
the time axis. Let C,(z) C R x R be the parabolic cone centered at
z € R""! x R defined by (see Fig. 5)

C,@) ={y e R"™' xRy [M(y) —TE@P = 1) —t@I}.  (5.2)

Fig. 5 The parabolic cone Cy (0)
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W
B
R

Fig. 6 The red set lies in the parabolic cone C, (0)

@,

Fig. 7 The red set lies in the forward parabolic cone

Thus C,, (z) is the region between two tangent paraboloids and the constant y
measures the “angle of the parabolic cone”. As y goes to 0, the region collapses
to a time-slice.

A set satisfies the parabolic cone property at a point if it sits between these
two tangent paraboloids that make up the parabolic cone. We say that a set S
has the y-local parabolic cone property'! if there exists ro > 0 so that

PB,y(z) NS CCy(z) forallze S; (5.3)

see Fig. 6. We say that S has the vanishing local parabolic cone property if
y =y(rg) > O0asrg — 0.

We observe next that if a set satisfies a half-cone property, then it automat-
ically satisfies the full-cone property (we state this for the forward half-cone;
the same is true for the backward half-cone); see Fig. 7.

11 Cf. lemma 1.1.2 in [13] and section I11.2 in [14].
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Lemma 5.1 If there exists ro > 0 so that
PB,(zx) NSN{y|t(y) >1t(z)} CC)(z) forallz €S, (5.4)

then S has the y-local parabolic cone property.

Proof Suppose that y and z are points in S with 7(y) # #(z). We must show
that

y M) — M@ = [t(y) — 1), (5.5

If t(y) > t(z), then this follows from (5.4) at z. If 1(y) < t(z), then (5.5)
follows from (5.4) at y. m|

The next proposition shows that a set satisfying the parabolic cone property
is a 2-Holder graph (x, u(x)) where x is in space and ¢ = u(x).

Proposition 5.2 If S € R"! x R has the y-local parabolic cone property,
then S is locally the graph'? of a 2-Hélder regular function u with Holder
constant y

S ={(x,ulx))|x e QC{t =0}} = Graph,. (5.6)
Proof Fix a parabolic ball where the parabolic cone property holds; we will
show that § is a graph in this ball. From now on, we will work only inside this
ball.

Given y and z in S (inside this ball), the local parabolic cone property
gives

y IT(y) = TP = 1(y) — 1(2)]. (5.7

It follows immediately that the projection IT : § — {¢ = 0} is one to one and,
thus, that S is a graph of a function u defined by

u(Il(z)) = 1(2). (5.8)

over a subset 2 = T1(S) C {tr = 0}. The 2-Holder bound follows from (5.7).
O

The next corollary gives a condition which ensures that a set is contained
in a time-slice.

12 The function u may be multi-valued, but the projection from S to {# = 0} is a finite-to-one
covering map.
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Corollary 5.3 If S ¢ R*! x R has the vanishing parabolic cone property
and PH7(S) < oo, then:

e Hi((5) =0,

e if S is connected, then it is contained in a time-slice.

Proof By Proposition 5.2 and Lemma 4.7, § is locally the graph of a 2-Holder
regular function # on some domain €2 in space with finite {, measure. The
vanishing parabolic cone property implies that u is 2-Holder with vanishing
constant. The corollary now follows from Lemma 4.8. O

The same argument gives that if S C R"*! x R has the vanishing parabolic
cone property and PH(S) < oo, then PH(2(S)) = H%(I(S)) =0.

6 Rapid clearing out

In this section, we show that the entire flow is rapidly clearing out after a
cylindrical singularity; this will not be used elsewhere.

Theorem 6.1 There exist constants T, w > 1 so thatif M, is (j, n)-cylindrical
at (xg, tg) on the time-scale t > 0 for some n < 1, then fors € (0, 7)

77_2 —4602
B | sxo)NM; =9 forte|to+ (T —1Ds, to+|———5—]) 5)-
nT 5 4-6()2
6.1)

Note that the proposition only has content when 7 is small enough that
-2
T < 1.

The key for the theorem is a local estimate for the Gaussian areas. Since
the cylinder has sub-Euclidean volume growth, its Gaussian surface area F) ;
is small when ¢ is large. The next lemma observes that this is true for any
hypersurface ¥ close to a cylinder.

Lemma 6.2 There exist T > 1 and w > 1 so that if \(X) < \o and

e B-1NXisaC Y graph over a cylinder C € C j with norm at most one,
then Fy ((X) < % aslong ast > T and |x| + w/t < 77_1.

Proof This follows from the sub-Euclidean volume growth of the cylinders.
Namely, there exists a constant ¢, depending only on n so that

sup {Vol(BRx)NZ) [|x|+ R<n'and R > 1} <c, R"'. (6.2
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Suppose that# > T > 1, x € R""! and w > 1 satisfy |x| + wy/f < n~!. We
have
2 n y—x)?
Foi(D) < (4mt)™% Vol(B, () N %) + ()3 / S ar
$\B, /(%)
(6.3)

Since |x| + w+/7 < n~!, we can use (6.2) to estimate the first term by

(@r1)"% Vol(B,, ;(x)NE) < @n1) "% ¢, 0" 1T <cp 0" (dm) " T2
(6.4)
For the second term, we have

o0

_ ly=x? _ly=xi?
e & dy= z e 4 dy
E\Bwﬁ(x) k=1 B(k+1)wﬁ(x)mZ\Bkw~/;(x)

s W2 12 ; 0 W2 K2
< > Vol(By 1) oys) NE) e T < Cogrfo” D> (k+1)"e 7,

k=1 k=1
(6.5)
where C depends on n. Thus, we can take w large enough so that

_n =2 1
(4mt)~2 e~ & dy < -, (6.6)

T\B,, (%) 4
and this same w works independently of + > 1. Finally, now that we have
chosen w, we choose T large enough to make (6.4) at most }t. O

The argument in the proof of Lemma 6.2 works more generally for sub-
Euclidean volume growth. It does not work when the volume growth is
Euclidean.

Proof of Theorem 6.1 To simplify notation, translate in space-time so that
xo =0and g = 0.

Let T and w be given by Lemma 6.2. For each s € (0, ), we have that
B,-1 N, % (M_y) is a graph over a fixed cylinder in C; of a function with

C! norm at most n. In particular, since N (M;) < X9, Lemma 6.2 gives that

1

sup {Fx,,w% (M_9) |1 > T and |x| + o/ < n_l] <5 67
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Restating this in terms of M, we get for s € (7, 0) and |x]| < % n~! /s that

Fy (M_5) < % if Ts<t< eyl (6.8)
Combining this with the monotonicity (3.3) gives
O 5 < l for Ts <t <-——. (6.9)
' 2 4n? w?
The proposition follows since @y ; > 1 for x in the support of M;. O
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