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ABSTRACT: Severe convection occurring in high-shear, low-CAPE (HSLC) environments is a common cool-season
threat in the southeastern United States. Previous studies of HSLC convection document the increased operational chal-
lenges that these environments present compared to their high-CAPE counterparts, corresponding to higher false-alarm
ratios and lower probability of detection for severe watches and warnings. These environments can exhibit rapid destabili-
zation in the hours prior to convection, sometimes associated with the release of potential instability. Here, we use self-
organizing maps (SOMs) to objectively identify environmental patterns accompanying HSLC cool-season severe events
and associate them with variations in severe weather frequency and distribution. Large-scale patterns exhibit modest varia-
tion within the HSLC subclass, featuring strong surface cyclones accompanied by vigorous upper-tropospheric troughs and
northward-extending regions of instability, consistent with prior studies. In most patterns, severe weather occurs immedi-
ately ahead of a cold front. Other convective ingredients, such as lower-tropospheric vertical wind shear, near-surface
equivalent potential temperature (ue) advection, and the release of potential instability, varied more significantly across
patterns. No single variable used to train SOMs consistently demonstrated differences in the distribution of severe weather
occurrence across patterns. Comparison of SOMs based on upper and lower quartiles of severe occurrence demonstrated
that the release of potential instability was most consistently associated with higher-impact events in comparison to other
convective ingredients. Overall, we find that previously developed HSLC composite parameters reasonably identify high-
impact HSLC events.

SIGNIFICANCE STATEMENT: Even when atmospheric instability is not optimal for severe convective storms, in
some situations they can still occur, presenting increased challenges to forecasters. These marginal environments may oc-
cur at night or during the cool season, when people are less attuned to severe weather threats. Here, we use a sorting al-
gorithm to classify different weather patterns accompanying such storms, and we distinguish which specific patterns and
weather system features are most strongly associated with severe storms. Our goals are to increase situational awareness
for forecasters and to improve understanding of the processes leading to severe convection in marginal environments.
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1. Introduction

Severe convective storms in the United States take place
within a broad spectrum of environmental patterns (e.g., Doswell
2001). Required ingredients for severe convection include ample
moisture, instability [one measure of which is convective avail-
able potential energy (CAPE)], strong vertical wind shear, and
synoptic-scale or mesoscale forcing for ascent. A subset of severe
convection events take place in environments which are mar-
ginally conducive to strong convection, such as those featuring
limited instability (e.g., mixed-layer CAPE # 1000 J kg21).
These high-shear, low-CAPE (HSLC) environments occur
frequently, especially in the southeastern United States (e.g.,
Schneider et al. 2006). While the probabilities of thunder-
storms and tornadoes are greater in high-CAPE environments,
a large percentage of total severe thunderstorm and tornado
events occur in HSLC environments, owing to their greater
frequency (see Schneider and Dean 2008 for details). Prior

studies have identified relatively high false-alarm ratios and
low probabilities of detection for severe weather watches and
warnings in HSLC environments compared to high-instability
environments (Schneider and Dean 2008; Dean and Schneider
2008, 2012; Anderson-Frey et al. 2016). The geographical lo-
cation of HSLC severe events also amplifies their impact, as
they occur with disproportionate frequency in the southeastern
United States where the population density is large and societal
awareness of severe threats is relatively low (Ashley 2007;
Ashley et al. 2008; Dean and Schneider 2012). Their temporal
distribution also exacerbates this effect: They occur with dispro-
portionate frequency during the cool season (Guyer et al. 2006;
Schneider et al. 2006; Sherburn and Parker 2014; Sherburn et al.
2016), and during the overnight hours (Kis and Straka 2010;
Sherburn and Parker 2014; Sherburn et al. 2016). Together,
these factors result in a higher percentage of deadly tornadoes
in the southeastern United States (3.8%) compared to the
United States as a whole (2.0%; Anderson-Frey et al. 2019a).

Given the operational challenges posed by HSLC severe
events, increased awareness of the variability in HSLC envi-
ronmental patterns and the relation of these patterns to theCorresponding author: Gary Lackmann, gary@ncsu.edu
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frequency and distribution of severe convection would be ben-
eficial. In this paper, we apply an objective sorting algorithm to
identify distinct environmental patterns associated with HSLC
severe convection and determine the most critical environmen-
tal variables, quantifying the frequency and distribution of se-
vere weather reports in association with these patterns and
ingredients. Our aim is to aid forecaster pattern recognition and
situational awareness, and further our understanding of key en-
vironmental conditions associated with severe weather occur-
rence in HSLC environments.

Earlier studies have identified the critical ingredients within
HSLC environments that are conducive to severe convection
(e.g., Sherburn and Parker 2014). In the southeastern United
States, HSLC environments are characterized by moist bound-
ary layers within the warm sector or ahead of cold fronts associ-
ated with strong midlatitude cyclones. The presence of strong
synoptic-scale forcing for ascent accompanying a region of re-
duced lower-tropospheric stability (Sherburn et al. 2016; King
et al. 2017) suggests the possibility of significant pattern variabil-
ity within this region. In contrast, western U.S. HSLC events
feature dry boundary layers near a surface triple-point or an up-
slope regime (Sherburn and Parker 2014; Sherburn et al. 2016).

Case studies of observed tornado-producing storms in HSLC
environments reveal that midlevel dry intrusions can coincide
with onset of severe convection, suggesting the release of poten-
tial instability (Lane and Moore 2006; Clark 2009; Evans 2010).
Numerical simulations clarify the importance of potential insta-
bility as a factor in the rapid environmental destabilization in
the hours prior to HSLC severe convection in some events,
along with lower-tropospheric advection of warm, moist air, and
strong 0–1-km wind shear (King et al. 2017). Destabilization can
occur in time intervals # 3 h prior to the arrival of convection
(King et al. 2017; LaFleur et al. 2023). Two additional opera-
tional challenges associated with predicting HSLC convection
are difficulty in detecting updraft rotation using radar-derived
azimuthal shear at distances . 60 km from radar sites, and high
false-alarm ratios associated with azimuthal shear and radar re-
flectivity signatures even when the storms are close to the radar
(Davis and Parker 2014). The low-level mesovortices associated
with QLCS events, a common convective mode in southeastern
U.S. HSLC events, are shallower (Lovell and Parker 2022),
often disconnected from any midlevel updraft, and are more
transient (Weisman and Trapp 2003), contributing to the high
false-alarm ratios. Difficulty in detecting severe weather radar
signatures along with rapid destabilization in HSLC environ-
ments complicates nowcasting and warning for HSLC severe
convection, notwithstanding knowledge of the generally condu-
cive environments and ingredients.

Understanding the convective dynamics of HSLC environ-
ments is also critical to properly assess and forecast HSLC se-
vere events. Simulations presented by McCaul and Weisman
(2001) found that robust convection can occur in low-CAPE
environments when there is a concentration of instability at
low altitudes. Despite weaker lower-tropospheric instability,
large ambient vertical wind shear supports strong low-altitude
updrafts due to dynamically induced vertical perturbation
pressure gradient accelerations (Sherburn and Parker 2019;
Wade and Parker 2021). These strong lower-tropospheric

updrafts are critical for vortex development in environments
with strong vertical wind shear and marginal instability.

Over 23% of all southeastern U.S. HSLC tornadoes occur
in association with quasi-linear convective system (QLCS)
modes (Anderson-Frey et al. 2019a). QLCSs are narrow lines
or arcs of convective storms with contiguous precipitation,
often forming along cold fronts and in environments contain-
ing strong vertical wind shear (Markowski and Richardson
2010). Differences in convective mode and dynamics are evi-
dent between southeastern HSLC convection and central
U.S. high-CAPE convection, with the former characterized
by strong synoptic-scale forcing and lower-tropospheric de-
stabilization that creates rapidly evolving convective features
(sometimes embedded within QLCSs), whereas high-CAPE
convection can be associated with weaker synoptic forcing
and ample instability that is more commonly associated with
cellular convective features (e.g., Smith et al. 2012).

To bridge the gap between HSLC climatologies, the dynami-
cal processes associated with HSLC convection, and opera-
tional forecasts, several studies have examined the skill of
environmental variables in discriminating between HSLC se-
vere and HSLC nonsevere environments. Sherburn and Parker
(2014) identified the 0–3-km and 500–700-hPa lapse rates
as the most skillful discriminants. Combining these varia-
bles with fixed-layer shear (0–3 km) and effective-layer
shear variables (SHERB and SHERBE; Sherburn and
Parker 2014) while also including variables representing
the release of potential instability (MOSH and MOSHE;
Sherburn et al. 2016) provides forecasters with promising
new tools for HSLC severe convection forecasting.

Despite the progress of many previous studies in identifying
both environmental ingredients and explicit NWP proxies that are
useful in HSLC convective prediction, relatively little work has
been done to objectively classify variability of synoptic-scale and
mesoscale patterns that accompany HSLC severe convection.
Here, we address the question: Are there distinct HSLC patterns
that are associated with significant variation in the frequency and
distribution of severe convection? To the authors’ knowledge, the
only relevant objective classification involving HSLC environ-
ments was performed by Anderson-Frey et al. (2019b), who used
self-organizing maps (SOMs) to classify tornadic near-storm envi-
ronments in tornado outbreaks using a dataset that included
southeastern U.S. HSLC events. The variance of patterns across
SOM nodes was used to determine typical and atypical patterns in
the significant tornado parameter (STP) for each region. They
found that southeastern U.S. tornado outbreaks were often spa-
tially displaced from maxima in STP, which may be unsurprising
because the STP is in turn strongly reliant on CAPE.

The purposes of this study are to objectively classify synoptic-
scale and mesoscale patterns that accompany southeastern
U.S. HSLC severe convection using SOMs, and to seek varia-
tions in the frequency and distribution of severe weather across
these objectively identified patterns. An additional goal is
to evaluate the efficacy of HSLC composite environmental
parameters such as the SHERBS3 and MOSH for severe
convection across various HSLC patterns. Specifically, the
analyses presented in this study are designed to address the
following questions:
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(i) Are there significant variations in synoptic or mesoscale
patterns that accompany southeastern U.S. HSLC se-
vere convection?

(ii) Are there significant variations in the frequency and
spatial distribution of severe weather occurrence in asso-
ciation with these environmental patterns?

(iii) Is the relative frequency and distribution of severe
weather occurrence consistent with previously devel-
oped HSLC composite environmental parameters?

Section 2 discusses data sources, the selection criteria
used in creating our HSLC severe event database, choices
relating to SOMs, and definitions of analysis metrics for
SOM output. Section 3 presents our results, emphasizing
the variations in HSLC environmental patterns demon-
strated by SOM output and the distribution of severe
weather occurrence across these patterns. Key findings, op-
erational implications, and possible future research direc-
tions are summarized in section 4.

FIG. 1. (a) Study domain for HSLC severe events, bounded by 408N, 298N, 758W, and
948W. (b) Examples of Local Storm Report (LSR) subdomains used to assess local environ-
ments for HSLC criteria, for 0000 UTC 13 Feb 2019. Boxes are 200 km 3 200 km centered
on LSRs. CAPE is shaded as in the color bar.
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2. Data and methods

a. Event selection

We used an automated algorithm to generate a 13-season cata-
log of HSLC severe events in the southeastern United States,
defining HSLC events as 6-h windows that met specific criteria.
The windows are 6-h periods beginning 0000, 0600, 1200, or 1800
UTC. Consecutive 6-h windows were considered to be indepen-
dent meteorological events based on the rationale that the envi-
ronmental patterns at different stages of storm development
could vary in meaningful ways. Given that HSLC environments
occur primarily in the southeasternUnited States (Schneider et al.
2006), a domain bounded by 408N, 298N, 758W, and 948Wwas se-
lected as our analysis region (Fig. 1a). We define the cool season
as 1 October–30 April; our dataset spans the cool seasons from
2008/09 through 2020/21. The process of identifying HSLC severe
events was automated using a two-step Python script that checks
the National Centers for Environmental Information’s (NCEI)
Storm Events Database (NCEI 2008) for Local Storm Reports
(LSRs) and National Centers for Environmental Prediction
(NCEP) 20-km Rapid Refresh/Rapid Update Cycle (RAP/
RUC) analysis data (NOAA/NCEP 2005) obtained from NCEI.

We designed the algorithm to first identify the presence
of severe wind and tornado reports within the study region.
All 6-h windows were searched for LSRs within the domain.
Previous studies document the limitations of LSRs, includ-
ing biases due to heterogeneous population density, and in-
consistent reporting practices (Brooks et al. 2003; Doswell
et al. 2005; Trapp et al. 2006). An additional limitation
is the unavoidable lack of reporting over water. A possible
alternate data source for identifying severe convection is
radar-derived rotation tracks, which have some advantages
over LSRs (e.g., Dawson et al. 2017). However, for HSLC
convection there are serious limitations in detection at dis-
tances greater than 60 km from a radar site owing to the
small horizontal and vertical dimension of many HSLC
convective storms (Davis and Parker 2014). Hail reports
were excluded from our analysis because significant hail
(.3/4 in.) is not expected to be the primary hazard in
these environments, being more commonly associated with

high-instability environments (Schneider and Dean 2008).
Wind reports were included because convective modes preva-
lent in HSLC environments (e.g., QLCS) often produce damag-
ing winds, although we note that there are biases related to
overestimation of wind gusts in the southeastern United States
(Edwards et al. 2018). Given the above, if one or more tornado
or wind report occurred within a 6-h window in the study
region, that 6-h window was identified as a “severe event.” Our
intent in setting this low threshold is to include low-impact
events, allowing greater event diversity and stratification by
varying levels of LSR activity.

Next, our algorithm used RUC/RAP analyses to determine if
a given severe event met HSLC criteria, using the environments
in the vicinity of individual LSRs (e.g., Fig. 1b). We used
thresholds of most unstable CAPE (MUCAPE) # 1000 J kg21

and 0–6-km wind shear$ 18 m s21 to delineate HSLC environ-
ments, as in previous studies (Sherburn and Parker 2014;
Sherburn et al. 2016; King et al. 2017; Graham 2021). By exclud-
ing hail reports and eliminating high MUCAPE cases, we are ef-
fectively eliminating cases characterized by elevated convection.
We selected MUCAPE for our analysis because it is the
most stringent cutoff for what constitutes low-CAPE events.
Early in the analysis period we used 20-km RUC analyses;
the RAP was commissioned in May 2012, so subsequent
events use RAP analyses. An advantage of the RUC/RAP
analyses are reasonably high spatial resolution (20-km grid
length) and hourly temporal frequency. The analysis data

TABLE 1. Atmospheric variables used for SOM training. Variables that were used as a part of a multivariate SOM are listed in the
right column.

Training variables Used in multivariate SOM?

500-hPa geopotential height Yes (with sea level pressure)
Sea level pressure Yes (with 500-hPa geopotential height)
700–1000-hPa ue difference Yes (with 500-hPa vertical velocity)
MUCAPE No
0–6-km vertical wind shear No
0–1-km vertical wind shear No
0–1-km storm relative helicity No
Near-surface temperature advection No
Near-surface dewpoint temperature advection No
Near-surface ue advection No
500-hPa vertical velocity Yes (with 700–1000-hPa ue difference)
SHERB No
MOSH No

TABLE 2. Hyperparameters used in the SOM training process.

Hyperparameter name Hyperparameter setting

Input length 453
Learning rate 0.5
Decay function Asymptotic decay
Neighborhood function Gaussian
Topology Rectangular
Activation distance Euclidean
Random seed 1
No. of iterations 100 000
Random order True
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were taken from the event onset time (0000, 0600, 1200, or
1800 UTC) to measure the environment surrounding the se-
vere reports prior to a period of severe convection, as would
be seen by a forecaster. All LSRs within each event were ad-
justed from a latitude and longitude coordinate to the clos-
est RUC/RAP analysis data grid cell via a nearest neighbor
approach. Then, a 200 km 3 200 km subgrid around each
adjusted LSR was created to represent the respective LSR’s
local environment (Fig. 1b).

We designed our algorithm to then categorize the severe
events identified as described above into three categories:
(i) severe events in which all LSRs occur within an HSLC
environment, (ii) severe events with no LSRs occurring in
an HSLC environment, and (iii) severe events with LSRs in
both HSLC and non-HSLC environments. We retain all of
the first category events and apply conditions to select

some of the third category events for our HSLC case cata-
log. The first two categories are defined using spatially av-
eraged MUCAPE # 1000 J kg21 and 0–6-km wind shear $
18 m s21. For the third category, to accommodate events
where strong gradients of CAPE or wind shear were pre-
sent within the LSR’s local environment (“subgrid”) or
where significant geographic spread in LSRs resulted in no-
tably different local environments, all LSR CAPE and
wind shear subgrids for a given severe event were aver-
aged. If HSLC criteria were met on this averaged grid, the
severe event was included in the HSLC case catalog. For cat-
egory iii events that did not meet this additional criterion, if the
ratio of HSLC LSR subgrids to non-HSLC subgrids was $5,
the event was also included. All other category iii events were
eliminated. Out of 11027 possible 6-h windows over 13 cool sea-
sons, we identified 453 HSLC severe events having at least one

FIG. 2. SOM trained on sea level pressure (SLP; hPa) for HSLC severe events. Data are event-relative 2000 km 3 2000 km grids cen-
tered on the event-averaged storm report latitude and longitude. Pressure is contoured in solid black every 2 hPa, node composite
MUCAPE is shaded and dash contoured every 500 J kg21, and LSRs are plotted as the percentage of cases where wind and tornado
LSRs occur at in a given grid cell, shaded as in the color bar. Total number of events and the average number of wind and tornado LSRs
for each node is listed above each node; axis labels are in kilometers.
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tornado or severe wind report in the southeastern U.S. domain.
This large HSLC dataset was cross-checked against earlier
HSLC event lists compiled by Sherburn and Parker (2014) and
Graham (2021) and was found to provide an adequate match
(Campbell 2022).

b. Self-organizing maps

SOMs are an unsupervised machine learning technique that
trains a neural network using competitive learning and maps an
input dataset to a user-specified number of nodes (Kohonen
2001). Nodes are vectors made up of “weights,” where weights
are values that are updated toward the input data during the
training process. The number of weights in a node is the same
as the number of values in one sample of the input dataset.
SOMs have been used in a wide variety of meteorological
studies for classification of synoptic-scale and climate patterns
(e.g., Hewitson and Crane 2002; Schuenemann et al. 2009;
Mechem et al. 2018; Loikith et al. 2022; Radford and Lackmann

2023), as well as for study of severe convection (e.g., Nowotarski
and Jensen 2013; Nowotarski and Jones 2018; Anderson-Frey
et al. 2019b; Goldacker and Parker 2021). The SOM training
process begins with selection of a user-defined number of nodes,
followed by random initialization of the node weights (e.g.,
Vesanto and Alhoniemi 2000). Prior to training, all data are nor-
malized using a z score:

z 5
zi,j 2 z

sz

, (1)

where zi,j is the two-dimensional field of a variable for a
given event, z is the mean of the variable across all events,
and sz is the standard deviation of the variable field across
all events.

Once defined, the SOM training starts by selecting a sample
from the input dataset and computing the similarity between the
values of the respective sample and each of the node

FIG. 3. Histogram plots depicting the correlation coefficients for all cases within the respective best-matched node with respect to the
node composite for the SLP trained SOM. The mean correlation coefficient in a node is indicated with a red dashed line and the median
correlation coefficient in a node is indicated with a blue dashed line, as in the legend (top right).
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weights, where similarity is measured using Euclidean
distance. A node is assigned as the “winning node” when
Euclidean distance is smallest between the node weights
and the sample’s values. The weights of the winning node
and its neighbors are then updated using a predefined
learning rate, with weights adjusted toward the sample’s
values. The radius of neighboring nodes that are updated
is a user-defined value named sigma (s). This process of
updating node weights is repeated for all input data sam-
ples over a user-defined number of iterations. As this pro-
cess is repeated, the node weights become more like the
input dataset with similar cases grouped in the same
node. Importantly, the learning rate and s are asymptoti-
cally decreased as the number of training iterations in-
creases, which characterizes the competitive learning
aspect of training; nodes that neighbor winning SOM no-
des no longer update (or do very little) during final train-
ing iterations.

Here, we use version 2.2.9 of the MiniSom Python module
(Vettigli 2018) to create SOMs trained on a set of atmospheric
variables (Table 1) to define the patterns that accompany
southeastern U.S. HSLC severe convection. These atmo-
spheric variables were selected in keeping with previous stud-
ies, which identify strong synoptic forcing as a key ingredient in
producing severe convection (Sherburn et al. 2016), along with
surface warming and moistening, lower-tropospheric forcing for
ascent, and the release of potential instability (King et al. 2017). In
addition to typical meteorological diagnostics, we also train SOMs
using two multivariate environmental predictors for HSLC severe
convection: severe hazards in environments with reduced buoy-
ancy with 0–3-km shear magnitude (SHERBS3) (Sherburn and
Parker 2014) and modified SHERB (MOSH) (Sherburn et al.
2016). The SHERBS3 [(2)] is a composite parameter designed to
separate significant HSLC severe convection from nonsevere
HSLC storms using a threshold of 1.0 (significant severe weather
is more likely for SHERBS3. 1):

FIG. 4. Histogram plots depicting the frequency of LSRs for cases within the respective best-matched SLP trained SOM node. Histo-
grams are clipped at 100 LSRs to improve clarity. The mean number of LSRs in a node is indicated with the red dashed line and the me-
dian number of LSRs in a node is indicated with a blue dashed line, as in the legend (top right).
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SHERBS3 5
S3MG
26 m s21 3

LLLR

5:2 km21 3
LR75

5:6 km21 : (2)

Here, S3MG is the 0–3-km shear magnitude, LLLR is the 0–3-km
lapse rate, and LR75 is the 700–500-hPa lapse rate (Sherburn and
Parker 2014).

The MOSH is a composite parameter designed to im-
prove upon the SHERB by including a proxy for destabili-
zation resulting from the release of potential instability:

MOSH 5
(LLLR 2 4 K km21)2

4 K2 km22 3
(S15MG 2 8 m s21)

10 m s21

3
(MAXTEVV 1 10 K Pa km21 s21)

9 K Pa km21 s21
: (3)

In (3), S15MG is the 0–1.5-km shear magnitude, andMAXTEVV
is the maximum (due/dz)3 v product calculated from the 0–6-km
layer at 0.5-km intervals (Sherburn et al. 2016). Sherburn and

Parker (2014) and Sherburn et al. (2016) also provide compos-
ite variables calculated using effective bulk shear (Thompson
et al. 2007, 2012). Here we prioritize the fixed layer MOSH
and SHERBS3 as it used by forecasters due to the current in-
ability to calculate effective bulk shear products in real time
(K. Sherburn 2022, personal communication).

We used two methods of formatting the SOM input data for
different environmental classification processes, both using the
previously mentioned RAP/RUC analysis data at the event onset
time. The first method was creating an event-relative 2000 km 3

2000 km data subset centered on the average LSR latitude and
longitude coordinate for each event and converting that coordi-
nate to the closest RAP/RUC analysis grid point. This was de-
signed to capture LSR frequency and distribution in relation to
meteorological features. Despite the relatively large size of the
subset and its location in the southeastern United States, there
were no instances in which the event-relative data subset inter-
sected the edge of RAP/RUC data domain. The second method

FIG. 5. Event-relative, multivariate SOM trained on 500-hPa geopotential height and SLP. Geopotential height is contoured in solid black
every 6 dam and SLP is contoured in dashed black every 2 hPa. LSRs are plotted as in Fig. 2; axis labels are in kilometers.
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was using the southeastern U.S. event identification domain as a
fixed domain (Fig. 1a), designed to relate the LSR frequency and
distribution to geographic features. For both methods, all SOMs
were trained using the atmospheric variables outlined in Table 1.
For brevity, only SOMs trained with event-relative data are pre-
sented here. The fixed domain SOMs exhibited a similar sample
of environmental patterns throughout all training variables as
compared to the event-relative SOMs. The primary difference
was in SOM orientation, where the organization of SOM nodes
sorted meteorological features based on their location within the
domain, resulting in a longitudinal shift in LSRs across SOM no-
des (not shown).

While SOMs provide a powerful tool for objective sorting of
patterns, they also accommodate a daunting number of possible
training variables and strategies. A single training variable can
be used to train a SOM, with additional corresponding compo-
sites of other variables displayed for the various nodes. When a
set of meteorological patterns are sorted by the SOM software,
every case fits into one of the nodes (i.e., each sample is

assigned to a winning node), and for unique or outlier cases,
this can lead to intra-SOM node distortion and variability. This
is quantified across the entire SOM via the quantization error
(described in the following paragraph), but it is also helpful to
consider variability within each node.

Determining the desired number of nodes for SOM analysis
required making trade-offs: Too few SOM nodes could result in
excessive smoothing of distinct environmental patterns within
each node, and too many nodes could result in repetition of
similar environmental patterns across multiple SOM nodes. To
optimize the number of nodes, we used a combination of quan-
titative analysis of error metrics (quantization and topographic
error) and qualitative assessment via sensitivity tests. Quantiza-
tion error is related to the degree of fit of each pattern to its
winning (i.e., best-matched) node, while topographic error de-
fines organization of the SOM by considering the number of
samples whose runner-up matched node is nonadjacent to its
best-matched node. Calculating these error metrics for all
SOMs trained using different input variables demonstrated

FIG. 6. SOM trained with MUCAPE; MUCAPE is contoured and shaded every 500 J kg21. LSRs are plotted as in Fig. 2.
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variability that is highly dependent on the “smoothness” of the
training variable. For example, a 4 3 4 dimension SOM trained
on a smoother variable such as 500-hPa geopotential height has
a lower quantization error than the SOM trained using a noisier
variable such as near-surface temperature advection. A 4 3 4
SOM dimension was most consistent in capturing distinct and
physically meaningful patterns and was thus selected for use in
much of our analysis. The remaining “hyperparameters” (i.e.,
user-defined parameters that control the learning process)
used in the SOM training process were kept constant through-
out all experiments presented in this study [Table 2, see also
Campbell (2022, his section 2.2)]. To further describe SOM rep-
resentativeness of physically meaningful patterns, we computed
the correlation coefficient between each sample within a best-
matched node and the respective node composite for all varia-
bles. Considering the mean and median of correlation coefficients
helps us to understand which nodes are the most representative
in an individual SOM, and serves to support the quantization

error results, providing insight into which training variables yield
more representative SOM nodes on average.

c. Impact metrics

Impact metrics were calculated to determine the varia-
tion in severe weather frequency between SOM nodes.
Given that tornado and wind LSRs were used in this study
to characterize severe weather, the impact metrics were de-
fined by the spread of the total number of LSRs across all
events (i.e., samples) within a node. We used the variability
in mean and median values of total LSRs across nodes to
seek meteorological patterns that are especially conducive
to severe weather occurrence. We calculated these quanti-
ties for both total LSRs and tornado-only LSRs to assess
whether particular patterns are more or less conducive to
tornadoes.

To provide a visual representation of severe weather re-
ports for each pattern, we used a nearest-neighbor approach

FIG. 7. SOM trained with 0–6-km vertical wind shear. Vertical wind shear is contoured and shaded every 5 kt. LSRs are plotted as in
Fig. 2.
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to identify the grid locations of the LSRs, and computed
LSR density. This is displayed at each grid cell as the ratio
of LSRs in that grid cell to the total number of events in
that SOM node. Given that the data are event relative, the
maximum values of LSR density are generally found near
the center of the domain. However, assessing the spatial dis-
tribution of LSR density compared to the orientation of
given meteorological features clarified the relative locations
of severe reports to these features.

To further distinguish between the environmental pat-
terns associated with varying impact (defined by LSR
count), a final set of SOMs was trained on the upper- and
lower-quartile LSR events. The upper quartile was de-
fined as events with $36 LSRs and the lower quartile was
defined as events with #4 LSRs. Given the reduced num-
ber of events in the respective datasets, additional error
metric sensitivity testing led us to select a SOM dimension
of 3 3 3 for this part of the analysis.

3. Results

a. Overall LSR distribution relative to HSLC
meteorological fields

To provide a basic view of the synoptic-scale patterns
accompanying HSLC severe convection, we first present a
SOM trained using sea level pressure and overlay composite
MUCAPE and LSR density (Fig. 2). This SOM is organized
by trough and cyclone location, orientation, and intensity, with
southwest–northeast-oriented troughs in the upper nodes, and
more intense cyclones in the lower right. The average number of
LSRs per node generally increases with cyclone intensity. Each
SOM node is viewed as a mean composite, subject to signal
smoothing and variability. To quantify this, we computed the cor-
relation coefficient between each event in a best-matched node
and the respective node mean for the training variable (Fig. 3);
this reveals that the lower and right SOM nodes in Fig. 2 exhibit
strong intranode correlation (the mean and median of the

FIG. 8. SOM trained with 0–1-km vertical wind shear; vertical wind shear is contoured and shaded every 5 kt. LSRs are plotted as in Fig. 2.
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correlation coefficient are nearly 0.9), while the upper left nodes
exhibit considerably more intranode variability (mean and me-
dian correlation coefficient, 0.7). We also consider the statistical
distribution of each event’s LSRs across this SOM (Fig. 4). De-
spite the tendency for greater LSR counts for SOM nodes
featuring stronger composite cyclones (lower and right
rows; Fig. 4), we find that all nodes feature a mode in the
lowest LSR count bin (less than 10 LSR events), and that
the higher averages for the lower-right nodes arise from
the right tail of the LSR distribution.

We also used a multivariate approach, training SOMs with
normalized patterns of two or more variables. For example,
an event-relative multivariate SOM trained on sea level pres-
sure and 500-hPa geopotential height exhibits greater cyclone
intensity in the lower right nodes (Fig. 5). Node-average
LSRs counts for this SOM exhibit a broader range (12–71)
relative to the SLP-only trained SOM (13–66; Figs. 2–4),
but the LSR averages are not systematically structured
across the SOM despite a general tendency for larger LSR
averages where implied synoptic-scale forcing for ascent is
stronger. The LSR distribution is focused in the immediate

vicinity of the implied cold-frontal trough (Fig. 5), with
less LSR density in the warm-frontal region despite strong
warm advection suggested by geostrophic veering in many
of the lower nodes.

It is also instructive to train SOMs with basic convective in-
gredients, such as CAPE (i.e., MUCAPE) and vertical wind
shear, seeking tendencies for greater LSR frequency corre-
sponding to larger CAPE and vertical wind shear. This exercise
demonstrates that there is some tendency for greater LSR
counts with higher CAPE (Fig. 6), but again the relation is not
systematic, and maximum LSR density concentrates along the
gradient of CAPEmore than within regions of larger CAPE val-
ues. Of course, it is important to remember that we have elimi-
nated high-CAPE cases from our database, which contributes
to this distribution. The alignment of LSRs with CAPE gra-
dients also suggests that severe convection is taking place in the
presence of a lower-tropospheric frontal boundary, a location
made more favorable for severe convection by the associated
vertical wind shear and ascending motion associated with frontal
circulations, which could also aid in the release of potential in-
stability and locally enhance CAPE.

FIG. 9. Multivariate SOM trained with 700–1000-hPa ue difference and 500-hPa vertical velocity. The ue difference is shaded
every 6 K as in the color bar (far right), and vertical velocity is contoured every 3 mb s21, with only ascent contours plotted. LSRs are plot-
ted as in Fig. 2.
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The relation between LSR occurrence and 0–6-km vertical
wind shear also generally matches expectations, but again
without a clear separation of high- and low-LSR frequency
across nodes (Fig. 7). In some nodes, LSR density maximizes
directly over the region of largest shear (lower right nodes),
while in several other nodes, maximum LSR density is offset
from the location of maximum shear (upper and left nodes).
For the upper nodes, we speculate that the strongest shear is
in the postfrontal region, with limited moisture and instability,
and forcing for subsidence (not shown).

Using the 0–1-km shear (Fig. 8), a shear layer often maxi-
mized immediately ahead of cold fronts and identified as impor-
tant in earlier studies (Sherburn et al. 2016), we see a greater
spatial correspondence between large LSR density and the
shear maxima. The magnitude of lower-tropospheric shear ex-
hibits greater variability relative to the deep-layer shear, ranging
from limited areas of shear. 20 kt (1 kt’ 0.51 m s21) to wide-
spread regions of shear. 35 kt. The strong association between
LSR density and lower-tropospheric shear underscores the

importance of this quantity as a valuable predictor for HSLC se-
vere convection, in keeping with prior studies (e.g., Sherburn
and Parker 2014; Sherburn et al. 2016).

Several earlier studies have demonstrated the importance
of the release of potential instability as a destabilization mecha-
nism accompanying some HSLC severe events (Sherburn et al.
2016; King et al. 2017). To identify this process in proxy, we
trained a multivariate SOM with 1000–700-hPa ue difference
and gridscale 500-hPa vertical motion (Fig. 9). This SOM re-
veals considerable variations in pattern, with strong cold-frontal
patterns implied in the lower left nodes (consistent with strong
gradients in ue difference) and a suggestion of warm-frontal or
frontal-wave type patterns in the lower-right nodes (implied by
the east–west orientation of ue difference). Most nodes show at
least some potential instability (ue decreasing with height from
1000 to 700 hPa) in the vicinity of the greatest LSR density, and
the maximum LSR density also aligns with the largest 500-hPa
upward vertical motion, consistent with a mechanism to release
the instability.

FIG. 10. SOM trained with SHERBS3; SHERBS3 is contoured in dashed red every 0.25. LSRs are plotted as in Fig. 2.
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The SOMs presented thus far demonstrate strong event-
relative alignment of synoptic-scale forcing for ascent and maxi-
mum LSR density. These results also demonstrate the complexity
of HSLC environments, suggesting the benefits of using compos-
ite parameters described in prior studies, such as SHERBS3 and
MOSH (Sherburn and Parker 2014; Sherburn et al. 2016). Train-
ing SOMs on these composite parameters and overlaying LSR
density provides a useful check on their efficacy. A SHERBS3-
trained SOM features LSR density maxima generally concen-
trated within local maxima of this parameter (Fig. 10). Training a
SOM using MOSH also shows generally high spatial collocation
of MOSH maxima and greatest LSR density (Fig. 11). Despite
this, some nodes (e.g., 1, 9, 11, 12) show less MOSH–LSR over-
lap. Investigation of cases in these nodes indicates that some are
due to boundary effects (no LSRs offshore). In summary, SOMs
trained using SHERBS3 and MOSH both show promising

correspondence between the distributions of these composite pa-
rameters and LSR density, reinforcing the value of these parame-
ters for operational prediction. The SHERBS3, while exhibiting
larger spatial coverage, is better aligned with LSR density max-
ima thanMOSH in the cases considered in this study.

b. Stratification by LSR count

There are no true null events in the case catalog analyzed here,
but we have set a very low case identification threshold, allowing
large variations in severe occurrence within the catalog. Although
the preceding analysis is generally consistent with the expected re-
lationships between LSR density and basic HSLC convective in-
gredients, we have not yet identified distinct synoptic or mesoscale
patterns accompanying high and low LSR activity within the set of
HSLC severe events. To examine this possible environmental dis-
tinction using an alternate strategy, we stratified the HSLC events

FIG. 11. SOM trained with MOSH from HSLC severe events. Data are event-relative 2000 km 3 2000 km grids centered on the event-
averaged storm report latitude and longitude. MOSH is contoured in red every 0.25, node composite SLP is contoured with dashed lines
every 2 hPa, and LSRs are plotted as in Fig. 2. Node number, number of events per node, and the average number of wind and tornado
LSRs for each node are listed above each node.
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by LSR activity, training separate SOMs on events within the up-
per and lower quartiles of LSR frequency. We find that while the
average cyclone intensity is stronger across nodes in the upper-
quartile SLP SOM (Fig. 12) as opposed to its lower-quartile coun-
terpart (Fig. 13), differences based on SLP alone are subtle; there
are nodes featuring strong cyclones in both the lower- and upper-
quartile SOMs (e.g., nodes in the lower left corner in Fig. 13).

The accompanying instability environments and composite
MOSH provide a more illuminating representation of the differ-
ences between the upper- and lower-quartile events. On aver-
age, larger MUCAPE values extend father north (relative to
the cyclone) in the upper-quartile SOM nodes (Fig. 12) than in
the lower-quartile SOM (Fig. 13); quantitatively, the total area
of MUCAPE. 500 J kg21 is 63% greater in the upper-quartile
SOM. There are also substantially greater MOSH values on

average in the upper-quartile SOM, in which the MOSH max-
ima overlap with the tongue of northward extending instability
(Fig. 12). Substantial MOSH values are not absent in the lower-
quartile SOM (Fig. 13), but the composite average values in most
nodes are well below the parameter threshold of 1.0 (this is in
part due to variability and signal smoothing within each node).

Despite being separated by LSR occurrence, the SOM
trained using upper-quartile 0–1-km vertical wind shear
(Fig. 14) shows a strikingly similar distribution to that in the
respective lower-quartile SOM (Fig. 15); quantitatively, the
upper-quartile SOM features only a 39% greater area of
shear . 20 kt. Both SOMs contain nodes with low-level wind
shear exceeding 40 kt. However, in the lower-quartile SOM
(Fig. 15), the strong shear nodes (1 and 4) are defined by a
low-level jet east of the domain center with an associated

FIG. 12. SOM trained with sea level pressure (hPa) from HSLC severe events in the upper quartile of LSR occurrence. Data are event-
relative 2000 km 3 2000 km grids centered on the event-averaged storm report latitude and longitude. Pressure is contoured in
black every 2 hPa, MUCAPE is shaded, as in the color bar, and MOSH is contoured in red every 0.25.
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more eastward located surface cyclone whereas in the upper-
quartile SOM (Fig. 14), nodes with similar shear values (no-
des 3, 6, 9) are represented by a centrally located low-level
jet and surface cyclone. This result suggests that HSLC
events with comparably fewer LSRs may be partly due to
misaligned dynamical features. The upper-quartile SOM also
contains a node of relatively low shear (node 7; 25 kt;
Fig. 14) similar to the lower-quartile SOM (node 9; 20 kt).
Because vertical wind shear is large for nearly all events, its
distribution does not particularly distinguish high and low
LSR frequency events.

Upper- and lower-quartile ue difference-trained SOMs
show similar distributions in the strength and orientation
of potential instability across all nodes (Figs. 16 and 17). How-
ever, more substantial differences between these SOMs are
evident when the accompanying 500-hPa upward vertical
velocity is considered. The upper-quartile SOM (Fig. 16)

exhibits greater 500-hPa upward vertical velocity across most
nodes relative to the corresponding lower-quartile SOM
(Fig. 17). Potential instability is present in the lower-quartile
SOM nodes, and is even ample in nodes 6 and 9, but the lack
of accompanying upward vertical velocity to provide the re-
lease of potential instability is likely a contributing factor to
reduced LSR frequency (Fig. 17). To quantify this, we com-
pute the total area of potential instability release, defined by
collocation ue decreasing with height and composite upward
500-hPa vertical velocity exceeding 3 mb s21 (1 mb 5 1023

hPa). We find a 129% larger area of proxy potential instability
release in the upper-quartile SOM relative to the lower. In
summary, proxy variables representing potential instability re-
lease are substantially more evident in higher-impact events
across the HSLC severe event dataset.

When comparing upper- and lower-quartile MOSH-trained
SOMs, we find substantial spread in maximum MOSH values

FIG. 13. As in Fig. 12, but for events in the lower quartile of LSR frequency.
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across nodes of the respective SOMs (Figs. 18 and 19). Spatial
offsets between MOSH and LSR density maxima are evident
in nodes 7 and 8 of the upper-quartile SOM (Fig. 18). How-
ever, on average across all nodes, the MOSH values associ-
ated with the upper-quartile MOSH SOM are considerably
greater than in the lower-quartile SOM; we compute a 74%
greater area of MOSH . 0.5 in the upper-quartile SOM.
Given similar distributions of shear and lapse rates between
the upper- and lower-quartile SOMs (not shown), the MOSH
difference is associated with the greater amounts of potential
instability and 500-hPa upward vertical velocity representing
the release potential instability in the upper-quartile SOM.
One reason for variability across nodes in each SOM is ex-
plained by the variability between individual events in a given

node (not shown). Inspection of individual cases within node
9 in the upper-quartile MOSH SOM reveals cases featuring
narrow regions of strong upward vertical velocity in poten-
tially unstable environments, but the locations exhibit strong
spatial variation. This results in equally narrow regions of
high MOSH values that are smoothed out in the node com-
posite, contributing to a greater area of MOSH . 0.5. Several
nodes in the lower-quartile MOSH SOM have broad regions
of high MOSH values, albeit of generally lower magnitude
than the upper-quartile SOM, because they contain events
with regions of significant upward vertical velocity in potential
instability environments over a larger area. There is also some
variability in 0–1-km vertical wind shear across nodes in this
SOM (not shown), but the nodes with highest values of

FIG. 14. SOM trained with 0–1-km vertical wind shear (kt) from HSLC severe events in the upper-quartile number of LSRs. Data are
event-relative 2000 km 3 2000 km grids centered on the event-averaged storm report latitude and longitude. Vertical wind shear is con-
toured and shaded, as in the color bar, and node-averaged sea level pressure is contoured in black every 2 hPa. The total number of events
and the average number of wind and tornado LSRs for each node are listed above each node.
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0–1-km vertical wind shear are not consistently associated
with nodes of high MOSH values. Over the entire HSLC se-
vere event dataset, there are a few low-impact HSLC severe
events that are defined by ample potential instability environ-
ments with sufficient vertical velocity forcing contributing to
high values of MOSH. Aside from limitations associated with
the LSR dataset, some of these events warrant individual ex-
amination in future case studies. On average, high values of
MOSH are most associated with higher-impact HSLC severe
events.

4. Conclusions

Severe convection in HSLC environments is a common
threat to the southeastern United States and presents signifi-
cant challenges to operational forecasters. Previous studies
have assessed the patterns and ingredients of HSLC severe

convection and examined the associated mechanisms in these
environments (e.g., Sherburn and Parker 2014; Sherburn et al.
2016; King et al. 2017; Sherburn and Parker 2019). However,
to the authors’ knowledge, little work has been done to objec-
tively classify the variations in synoptic-scale and mesoscale
patterns that accompany HSLC severe convection. Here, we
objectively classify these patterns, assess the distribution of
severe weather occurrence across these patterns, and deter-
mine if these findings are consistent with previously devel-
oped HSLC composite parameters.

An automated, objective algorithm was developed to iden-
tify HSLC severe events using historical data from 2008 to
2021. Data sources included local storm reports along with
RAP/RUC analyses (NCEI 2008; NOAA NCEP 2005). Ow-
ing to the extensive sample size, we used SOMs to identify
characteristic patterns accompanying the HSLC events. We
applied SOMs to classify the environmental patterns of 453

FIG. 15. As in Fig. 14, but for lower-quartile events.
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HSLC severe events over 13 cool seasons. SOMs were trained
on a set of 13 meteorological variables, selected based on the
findings of previous HSLC literature (Sherburn and Parker
2014; Sherburn et al. 2016; King et al. 2017) to represent the
variability in synoptic and mesoscale ingredients deemed in-
fluential to the production of HSLC severe convection. Our
main findings are:

• Objectively classified meteorological patterns are consistent
with previous HSLC environmental pattern studies, but
SOMs provide insight into pattern variations:
+ The most common synoptic structure was a strong cy-
clone, with a north–south-oriented cold-frontal trough
accompanied by a vigorous upper-tropospheric trough.

Few events featured weaker cyclones west of the ob-
servation domain with an eastward extending trough
(implied surface warm front). The region of maximum
LSR density was predominantly located immediately
east of an implied surface cold front (Figs. 2 and 5).

+ Events of all synoptic structures were generally char-
acterized by a region of CAPE extending northward
toward the center of LSR density maximum, with val-
ues varying from ,500 J kg21 to nearly 1000 J kg21

(Fig. 2).
• The majority of HSLC severe events took place in the pres-
ence of potential instability superimposed with midtropo-
spheric upward vertical velocity . 3 mb s21, consistent with
the release of potential instability. Upward vertical velocity

FIG. 16. SOM trained on 700–1000-hPa ue difference (K) from HSLC severe events in the upper-quartile number of LSRs. Data are
event-relative 2000 km 3 2000 km grids centered on the event-averaged storm report latitude and longitude. The ue difference is contoured
and shaded, as in the color bar, and node-averaged upward 500-hPa vertical velocity is contoured in black every 3 mb s21. The total number
of events and the average number of wind and tornado LSRs for each node are listed above each node.
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was generally strongest in the presence of a strong potential
instability gradient, aligned with an implied surface cold
front (Fig. 9).

• Substantial deep-layer shear . 40 kt and lower-tropospheric
wind shear. 20 kt were present in most cases, but the amount
of lower-tropospheric shear exhibited greater variability, rang-
ing from limited areas of shear . 20 kt to widespread regions
of shear. 35 kt (Figs. 7 and 8).

• Maxima in SHERBS3 encompassed LSR maxima in a large
majority of severe events. We found a high degree of variabil-
ity in the representation of MOSH across events, with some
MOSH nodes exhibiting a shift in MOSH maximum values
from the LSR density center, or limited depiction of any sub-
stantial MOSH values altogether (Figs. 10 and 11).

• Stratifying by LSR activity suggests that the strength of po-
tential instability release is a key discriminant between
high- and low-activity HSLC severe events.

Accounting for potential instability release is a critical com-
ponent in the MOSH composite parameter. As presented by
Sherburn et al. (2016), MOSH is most skillful in distinguishing
HSLC significant severe events from HSLC nonsevere events.
While assessment of MOSH is subject to the limitations of
this study, there are instances of lower-impact SOM nodes
where MOSH values do not represent severe convection due
to either averaging of spatially displaced cases or due to lower
parameter values (Figs. 18 and 19). Despite this, MOSH was
able to accurately depict HSLC severe convection in high-
impact events on average, and showed strong contrasts be-
tween upper- and lower-quartile SOMs. In future work, it
would be useful to analyze cases from the SOM nodes where
the MOSH parameter did not match well with LSR density
(aside from cases in which MOSH maxima fell outside of our
LSR domain). MOSH and SHERBS3 are useful discrimina-
tors between significant severe and nonsevere HSLC events,

FIG. 17. As in Fig. 16, but for lower-quartile events.
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but discrepancies can occur because these composite parame-
ters do not forecast whether convection will be initiated. Ad-
ditionally, this study did not assess the SHERBE or MOSHE
composite parameters, where effective bulk shear vector mag-
nitude is incorporated into parameter calculation. The inclu-
sion of these parameters may have provided additional
distinction in environmental patterns or distributions of se-
vere weather occurrence.

There are several important limitations of our study. Reli-
ance on LSRs to identify severe convection has known issues,
and an added difficulty in our study is the lack of LSRs over
water. Stricter wind speed or tornado severity requirements
could have been implemented to overcome the sources of
error associated with LSRs (documented in section 2), or
additional metrics such as radar reflectivity signatures or
NWS warnings could have been used to supplement LSRs.
In addition, the process of HSLC severe event identification
was automated, and only the local CAPE and wind shear

environments around LSRs were examined. Using these local
environments for automated event identification could lead to
discrepancies from a human’s subjective impression of the re-
gional environment. Future work could involve performing
the same SOM analysis, but separating events into hourly
increments (as LSRs allow) rather than characterizing the
entire event by window onset time. NWS warning data could
also allow for an improved aspect of predictability in future
studies, including the definition of a null dataset (e.g., events
featuring warnings but without LSRs). Using warning data
in combination with LSRs and radar reflectivity signatures
would also allow for computation of contingency metrics and
quantitative assessment of forecasts. Another limitation re-
lates to the somewhat coarse 20-km gridcell dimension of the
RAP/RUC dataset. There are storm-scale features, such as
cold-pool density gradients (e.g., McDonald and Weiss 2021)
that could be important discriminators for QLCS severe
weather but which are not resolved in these data. Perhaps

FIG. 18. SOM trained on MOSH from HSLC severe events in the upper-quartile number of LSRs. Data are event-relative 2000 km 3

2000 km grid centered on the event-averaged storm report latitude and longitude. MOSH is contoured in red every 0.25, node composite
ue difference is shaded every 6 K as in the legend, node composite upward 500-hPa vertical velocity is contoured in dashed black
every 3 mb s21, and LSRs are plotted as in Fig. 2. The total number of events and the average number of wind and tornado LSRs for each
node are listed above each node.
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repeating the analysis with High-Resolution Rapid Refresh
(HRRR; Dowell et al. 2022; James et al. 2022) data would al-
low examination of this aspect.

Finally, there are limits to our study related to the capabili-
ties of SOMs, particularly in relation to the need for extensive
tuning of hyperparameters and human subjectivity in assess-
ing whether SOM patterns are physically meaningful. Despite
these limitations, use of SOMs to classify gridded fields in
combination with storm reports has clarified the distribution
of severe convective storms and the associated mechanisms
for southeastern U.S. HSLC severe events. From our analysis,
it is clear that severe convection in HSLC environments in
this region occurs primarily in close association with cold
fronts, and that the presence of potential instability release is
a critical discriminant separating high- and low-impact cases.
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