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Lojasiewicz inequalities and applications

Tobias Holck Colding and William P. Minicozzi I1

ABSTRACT. In real algebraic geometry, Lojasiewicz’s theorem asserts
that any integral curve of the gradient flow of an analytic function that
has an accumulation point has a unique limit. Lojasiewicz proved this
result in the early 1960s as a consequence of his gradient inequality.

Many problems in calculus of variations are questions about crit-
ical points or gradient flow lines of an infinite dimensional functional.
Perhaps surprisingly, even blowups at singularities of many nonlinear
PDE'’s can, in a certain sense, be thought of as limits of infinite dimen-
sional gradient flows of analytic functionals. The question of uniqueness
of blowups is perhaps the most fundamental question about singulari-
ties.

This approach to uniqueness was pioneered by Leon Simon thirty
years ago for the area functional and many related functionals using an
elaborate reduction to a finite dimensional setting where Lojasiewicz’s
arguments applied.

Recently, the authors proved two new infinite dimensional Lo-
jasiewicz inequalities at noncompact singularities where it was well-
known that a reduction to Lojasiewicz’s arguments is not possible, but
instead entirely new techniques are required. As a consequence, the au-
thors settled a major long-standing open question about uniqueness of
blowups for mean curvature flow (MCF) at all generic singularities and
for mean convex MCF at all singularities. Using this, the authors have
obtained a rather complete description of the space-time singular set for
MCF with generic singularities. In particular, the singular set of a MCF
in R"™! with only generic singularities is contained in finitely many
compact Lipschitz submanifolds of dimension at most n — 1 together
with a set of dimension at most n — 2.

0. Finite and infinite dimensional inequalities

0.1. Lojasiewicz inequalities. In real algebraic geometry, the Lo-
jasiewicz inequality, [L1], [L2], [L4], from the late 1950s named after Stanis-
law Lojasiewicz, gives an upper bound for the distance from a point to the
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nearest zero of a given real analytic function. Specifically, let f : U — R be
a real-analytic function on an open set U in R"™, and let Z be the zero locus
of f. Assume that Z is not empty. Then for any compact set K in U, there
exist o > 2 and a positive constant C' such that, for all z € K

(0.1) inf |0 — 217 < C|f(@)].

Here o can be large.

Equation (0.1) was the main inequality in Lojasiewicz’s proof of Lau-
rent Schwarz’s division conjecture! in analysis. Around the same time,
Hormander, [HO|, independently proved Schwarz’s division conjecture in
the special case of polynomials and a key step in his proof was also (0.1)
when f is a polynomial.

A few years later, Lojasiewicz solved a conjecture of Whitney? in [L3]
using the following inequality®: With the same assumptions on f, for every
p € U, there are a possibly smaller neighborhood W of p and constants
B € (0,1) and C' > 0 such that for all x € W

(0.2) 1f(x) = f(p)° < C|Vaf|.

Note that this inequality is trivial unless p is a critical point for f.

One immediate consequence of (0.2) is that every critical point of f has
a neighborhood where every other critical point has the same value. It is
easy to construct smooth functions where this is not the case.

0.2. First Lojasiewicz implies the second. In this subsection, we
will explain how the second Lojasiewicz inequality for a function f in a
neighborhood of an isolated critical point follows from the first. To make
things concrete, we will show that the second holds with § = % when the
first holds with a = 2.

Suppose that f : R® — R is smooth function with f(0) = 0 and
V f(0) = 0; without loss of generality, we may assume that the Hessian is in
diagonal form at 0 and we will write the coordinates as = = (y, z) where y
are the coordinates where the Hessian is nondegenerate. By Taylor’s formula
in a small neighborhood of 0, we have that

(0.3) f(2) = 5 52 + O(laf?).
(0.4) furlw) = aii + O(laf?) .
(0.5) Jila) = O(zP?).

It follows from this that the second of the two Lojasiewicz inequalities holds
for f and 8 =  provided that |z|*> < €|y] for some sufficiently small € > 0.

11, Schwartz conjectured that if f is a non-trivial real analytic function and T is a
distribution, then there exists a distribution S satisfying f S = T

2VVhitney conjectured that if f is analytic in an open set U of R", then the zero set
Z is a deformation retract of an open neighborhood of Z in U.

3Lojasiewicz called this inequality the gradient inequality.
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Namely, if |2|> < €]y|, then

13
(0.6) Clyl <|Vof] and |f(z)| < C7"[y|>
for some positive constant C' and, hence,
2
(0.7) |f(@)]3 < C|Vafl.

Therefore, we only need to prove the second Lojasiewicz inequality for f in
the region |2|? > €|y|. We will do this using the first Lojasiewicz inequality
for Vf. Since 0 is an isolated critical point for f, the first Lojasiewicz
inequality for V f gives that

(0.8) V. f| > Cz|?.

By assumption on the region and the Taylor expansion for f, we get that in
this region

(0.9) [f@| < ClylP+C P < Clzl* < Olaf’.
Combining these two inequalities gives
(0.10) F@)]5 < Claf < |Vafl.

This proves the second Lojasiewicz inequality for f with g = %

Lojasiewicz used his second inequality to show the “Lojasiewicz theo-
rem”: If f: R” — R is an analytic function, z = z(t) : [0,00) — R" is a
curve with 2/(t) = =V f and x(¢) has a limit point 2, then the length of
the curve is finite and
(0.11) lim z(t) = & -

t—o0
Moreover, x, is a critical point for f.

In contrast, it is easy to construct smooth functions, even on R?, where
the Lojasiewicz theorem fails, i.e., where there are negative gradient flow
lines that have more than one limit point (and, thus, also have infinite
length); see Figure 1.

0.3. The Lojasiewicz Theorem. Next we will explain how the second
Lojasiewicz inequality is typically used to show uniqueness. Before we do
that, observe first that in the second inequality we always work in a small
neighborhood of p so that, in particular, |f(z)— f(p)| < 1 and hence smaller
powers on the left hand side of the inequality imply the inequality for higher
powers. As it turns out, we will see that any positive power strictly less than
one would do for uniqueness.

Suppose that f : R™ — R is a differentiable function. Let x = x(t) be
a curve in R™ parametrized on [0, 00) whose velocity 2’ = —V f. We would
like to show that if the second inequality of Lojasiewicz holds for f with a
power 1 > 3 > 1/2, then the Lojasiewicz theorem mentioned above holds.
That is, if 2(¢) has a limit point z, then the length of the curve is finite and
limy oo 2(t) = Too. Since z is a limit point of z(¢) and f is non-increasing
along the curve, zo, must be a critical point for f.
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FIGURE 1. There are smooth functions vanishing on an open
(compact) set for which the gradient flow lines spiral around
the zero locus. The flow lines have infinite length and the
Lojasiewicz theorem fails.

The length of the curve z(t) is [ |V f], so we must show that [ |V f|ds
is finite. Assume that f(z~) = 0 and note that if we set f(t) = f(x(t)), then
f' = —|Vf|2. Moreover, by the second Lojasiewicz inequality, we get that
< —f28 if 2(t) is sufficiently close to Zoo. (Assume for simplicity below
that x(t) stays in a small neighborhood z for t sufficiently large so that
this inequality holds; the general case follows with trivial changes.) Then
this inequality can be rewritten as (f'~2%)’ > (26 — 1) which integrates to

(0.12) F(t) < CtoT

We need to show that (0.12) implies that [ [V f| ds is finite. This shows
that x(t) converges to 2 as t — oo. To see that [ |V f|ds is finite, observe
by the Cauchy-Schwarz inequality that

(0.13)

[T wsas= [T yFass (< [T g d8>; (o ds)é |

It suffices therefore to show that
T
(0.14) —/ flstteds
1
is uniformly bounded. Integrating by parts gives
T T
(0.15) / flsiteds = |fsl+€|rip—(l—|—6)/ fsds.
1 1

If we choose € > 0 sufficiently small depending on (3, then we see that this
is bounded independent of T" and hence [ |V f|ds is finite.
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0.4. Infinite dimensional Lojasiewicz inequalities and applica-
tions. Many problems in geometry and the calculus of variations are es-
sentially questions about functionals on infinite dimensional spaces, such
as the energy functional on the space of mappings or the area functional
on the space of graphs over a hypersurface. Infinite dimensional versions of
Lojasiewicz inequalities, proven in a celebrated work of Leon Simon, [Sil],
have played an important role in these areas over the last 30 years. Clearly,
the infinite dimensional inequalities have immediate applications to unique-
ness of limits for gradient flows, but, perhaps surprisingly, they also have
implications for singularities of nonlinear PDE’s.

Once singularities occur one naturally wonders what the singularities are
like. A standard technique for analysing singularities is to magnify around
them. Unfortunately, singularities in many of the interesting problems in
Geometric-PDE looked at under a microscope will resemble one blowup,
but under higher magnification, it might (as far as anyone knows) resemble
a completely different blowup. Whether this ever happens is perhaps the
most fundamental question about singularities; see, e.g., [Si2] and [Hr|. By
general principles, the set of blowups is connected and, thus, the difficulty
for uniqueness is when the blowups are not isolated in the space of blowups.

One of the first major results on uniqueness was by Allard-Almgren in
1981, [AA], where uniqueness of tangent cones with smooth cross-section
for minimal varieties is proven under an additional integrability assumption
on the cross-section. The integrability condition applies in a number of
important cases, but it is difficult to check and is not satisfied in many
other important cases.

Perhaps surprisingly, blowups for a number of important Geometric
PDE’s can essentially be reformulated as infinite dimensional gradient flows
of analytic functionals. Thus, the uniqueness question would follow from an
infinite dimensional version of Lojasiewicz’s theorem for gradient flows of
analytic functionals. Infinite dimensional versions of Lojasiewicz inequalities
were proven in a celebrated work of Leon Simon, [Sil], for the area, energy,
and related functionals and used, in particular, to prove a fundamental result
about uniqueness of tangent cones with smooth cross-section of minimal
surfaces. This holds, for instance, at all singular points of an area-minimizing
hypersurface in RE.

Lojasiewicz inequalities follow easily near a critical point where the Hes-
sian is uniformly non-degenerate (this is the infinite dimensional analog of
a non-degenerate critical point where the Hessian is full rank). The diffi-
culty is dealing with the directions in the kernel of the Hessian. In the cases
that Simon considers, the Hessian has finite dimensional kernel by ellip-
tic theory. The rough idea of his approach is to use the easy argument in
the (infinitely many) directions where the Hessian is invertible and use the
classical Lojasiewicz inequalities on the finite dimensional kernel. He makes
this rigorous by reducing the infinite dimensional version to the classical
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Lojasiewicz inequality using Lyapunov-Schmidt reduction. Infinite dimen-
sional Lojasiewicz inequalities proven using Lyapunov-Schmidt reduction,
as in the work of Simon, have had a profound impact on various areas of
analysis and geometry and are usually referred to as Lojasiewicz-Simon in-
equalities.

The cross-sections of the tangent cones at the singularities in these
cases are assumed to be smooth and compact and this is crucial. This
means that nearby cross-sections can be written as graphs over the cross-
section and, thus, can be identified with functions on the cross-section of
the cone. The problem is then to prove a Lojasiewicz-Simon inequality for
an analytic functional on a Banach space of functions, where 0 is a critical
point corresponding to the cross-section.

Uniqueness of tangents has important applications to regularity of the
singular set; see Section 5 and cf., e.g., [Si3], [Si4], [Si5], [BrCoL] and
[HrLi] and cf. Figure 2.

Step

k=0 ‘initiator’

‘generator’

k=00

b

FI1GURE 2. The Koch curve is close to a line on all scales, yet
the line that it is close to changes from scale to scale. It is
not rectifiable but admits a Holder parametrization. It also
illustrates that uniqueness of blowups is closely related to
rectifiability.

1. Uniqueness of blowups for mean curvature flow

In the next few sections, we will explain why at each generic singularity
of a mean curvature flow the blowup is unique; that is independent of the
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sequence of rescalings; see Figure 3. This very recent result settled a major
open problem that was open even in the case of mean convex hypersurfaces
where it was known that all singularities are generic. Moreover, it is the
first general uniqueness theorem for blowups to a Geometric-PDE at a non-
compact singularity.

U U

F1GURE 3. The essence of uniqueness of tangent flows: Can
the flow be close to a cylinder at all times right before the
singular time, yet the axis of the cylinder changes as the time
gets closer to the singular time?

As already mentioned uniqueness of blowups is perhaps the most funda-
mental question that one can ask about singularities and is known to imply
regularity of the singular set.

The proof of this uniqueness result relies on two completely new infinite
dimensional Lojasiewicz type inequalities that, unlike all other infinite di-
mensional Lojasiewicz inequalities we know of, do not follow from reduction
to the classical finite-dimensional Lojasiewicz inequalities, but rather are
proven directly and do not rely on Lojasiewicz’s arguments or results.

It is well-known that to deal with non-compact singularities requires
entirely new ideas and techniques as one cannot argue as in Simon’s work,
and all the later work that uses his ideas. Partly because of this, it is expected
that the techniques and ideas described here have applications to other flows.

The rest of this paper focuses on mean curvature flow (or MCF) of
hypersurfaces. This is a non-linear parabolic evolution equation where a
hypersurface evolves over time by locally moving in the direction of steepest
descent for the volume element. It has been used and studied in material
science for almost a century. Unlike some of the other earlier papers in
material science, both von Neumann’s 1952 paper and Mullins 1956 paper
had explicit equations. In his paper von Neumann discussed soap foams
whose interface tend to have constant mean curvature whereas Mullins is
describing coarsening in metals, in which interfaces are not generally of
constant mean curvature. Partly as a consequence, Mullins may have been
the first to write down the MCF equation in general. Mullins also found some
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of the basic self-similar solutions like the translating solution now known as
the Grim Reaper. To be precise, suppose that M; C R™t! is a one-parameter
family of smooth hypersurfaces, then we say that M; flows by the MCF if

(11) Ty = —Hn,

where H and n are the mean curvature and unit normal, respectively, of M,
at the point x.

1.1. Tangent flows. By definition, a tangent flow is the limit of a
sequence of rescalings at a singularity, where the convergence is uniform
on compact subsets.* For instance, a tangent flow to M; at the origin in
space-time is the limit of a sequence of rescaled flows 6% Myg>, where 6; — 0.
A priori, different sequences §; could give different tangeﬁt flows and the
question of the uniqueness of the blowup - independent of the sequence
- is a major question in many geometric problems. By a monotonicity
formula of Huisken, [H1], and an argument of Ilmanen and White, [I], [W3],
tangent flows are shrinkers, i.e., self-similar solutions of MCF that evolve by
rescaling. The only generic shrinkers are round cylinders by [CM1].

We will say that a singular point is cylindrical if at least one tangent flow
is a multiplicity one cylinder S¥ x R"*. The main application of the new
Lojasiewicz type inequality of [CM2] is the following theorem that shows
that tangent flows at generic singularities are unique:

THEOREM 1.2. [CM2] Let My be a MCF in R""t. At each cylindrical
singular point the tangent flow is unique. That is, any other tangent flow is
also a cylinder with the same RF factor that points in the same direction.

This theorem solves a major open problem; see, e.g., page 534 of [W2].
Even in the case of the evolution of mean convex hypersurfaces where all
singularities are cylindrical, uniqueness of the axis was unknown; see [HS1],
[HS2], [W1], [W4], [SS], [An] and [HaK].?

In recent joint work with Tom Ilmanen, [CIM], we showed that if one
tangent flow at a singular point of a MCF is a multiplicity one cylinder,
then all are. However, [CIM] left open the possibility that the direction of
the axis (the RF factor) depended on the sequence of rescalings. The proof
of Theorem 1.2 and, in particular, the first Lojasiewicz type inequality of
[CM2], has its roots in some ideas and inequalities from [CIM] and in fact
implicitly use that cylinders are isolated among shrinkers by [CIM].

The results of [CM2] are the first general uniqueness theorems for
tangent flows to a geometric flow at a non-compact singularity. (In fact,
not only are the singularities that [CM2]| deal with non-compact but they

AThis is analogous to a tangent cone at a singularity of a minimal variety, cf. [FFI].

5The results of [CM 2] not only give uniqueness of tangent flows but also a definite rate
where the rescaled MCF converges to the relevant cylinder. The distance to the cylinder
is decaying to zero at a definite rate over balls whose radii are increasing at a definite rate
to infinity.
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are also non-integrable.) Some special cases of uniqueness of tangent flows
for MCF were previously analyzed assuming either some sort of convexity or
that the hypersurface is a surface of rotation; see [H1], [H2]|, [HS1], [HS2],
[W1], [SS], [AAG], section 3.2 in the book [GGS], and [GK], [GKS],
[GS]. In contrast, uniqueness for blowups at compact singularities is better
understood; cf. [AA], [Sil], [H3], [Sc|, [KSy]|, and [Se].

One of the significant difficulties that [CM2] overcomes, and sets it apart
from all other work we know of, is that the singularities are noncompact.
This causes major analytical difficulties and to address them requires entirely
new techniques and ideas. This is not so much because of the subtleties
of analysis on noncompact domains, though this is an issue, but crucially
because the evolving hypersurface cannot be written as an entire graph over
the singularity no matter how close we get to the singularity. Rather, the
geometry of the situation dictates that only part of the evolving hypersurface
can be written as a graph over a compact piece of the singularity.®

2. Lojasiewicz inequalities for non-compact hypersurfaces
and MCF

The infinite dimensional Lojasiewicz-type inequalities that [CM2]
showed are for the F-functional on the space of hypersurfaces.

The F-functional is given by integrating the Gaussian over a hypersur-
face ¥ ¢ R™*!. This is also often referred to as the Gaussian surface area
and is defined by

- 2
(2.1) F(S) = (47)~"/2 / o du.
b
The entropy A(X) is the supremum of the Gaussian surface areas over all
centers and scales

2
N E

(2.2) A(X) = sup (47rt0)_”/2/e o dy.
to>0,zo€R™ D)

The entropy is a Lyapunov functional for both MCF and rescaled MCF (it
is monotone non-increasing under the flows).
It follows from the first variation formula that the gradient of F' is

(2.3) Vs F (1)) :/Z (H— <x’2n>) pe i

Thus, the critical points of F' are shrinkers, i.e., hypersurfaces with H =
L;ﬁ‘ The most important shrinkers are the generalized cylinders C; these

are the generic ones by [CM1]|. The space C is the union of Cj, for k > 1,
where Cj; is the space of cylinders S¥ x R"* where the S* is centered at 0
and has radius v'2k and we allow all possible rotations by SO(n + 1).

6In the end, what comes out of the analysis in [CM2] is that the domain the evolving
hypersurface is a graph over is expanding in time and at a definite rate, but this is not all
all clear from the outset; see also footnote 3.
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A family of hypersurfaces 5 evolves by the negative gradient flow for
the F-functional if it satisfies the equation

(2.4) (Dsx)t = —Hn + 212,

This flow is called the rescaled MCF since X, is obtained from a MCF M; by
setting X, = V%Mt’ s = —log(—t), t < 0. By (2.3), critical points for the
F-functional or, equivalently, stationary points for the rescaled MCF, are the
shrinkers for the MCF that become extinct at the origin in space-time. A
rescaled MCF has a unique asymptotic limit if and only if the corresponding
MCEF has a unique tangent flow at that singularity.

The paper [CM2]| proved versions of the two Lojasiewicz inequalities
for the F-functional on a general hypersurface .. Roughly speaking, [CM2]
showed that

(2.5) dist(%,0)* < C |VxF| ,
(2.6) (F(Z) - F(C))3 < C |VxF]| .

Equation (2.5) corresponds to Lojasiewicz’s first inequality for VF whereas
(2.6) corresponds to his second inequality for F'. The precise statements of
these inequalities are much more complicated than this, but they are of the
same flavor.

As noted earlier a consequence of the classical Lojasiewicz gradient
inequality for an analytical function on Euclidean space is that near a critical
point there is no other critical values. This consequence of a Lojasiewicz
gradient inequality for the F-functional near a round cylinder (and in fact
the corresponding consequence of (2.5)) was established in earlier joint work
with Tom Ilmanen (see [CIM] for the precise statement):

THEOREM 2.7. [CIM] Any shrinker that is sufficiently close to a round
cylinder on a large, but compact, set must itself be a round cylinder.

In [CM2] an infinite dimensional analog of the first Lojasiewicz inequal-
ity is proven directly and used together with an infinite dimensional analog of
the argument in Subsection 0.2 to show an analog of the second Lojasiewicz
inequality. As mentioned, the reason why one cannot argue as in Simon’s
work, and all the later work that makes use his ideas, comes from that the
singularities are noncompact.

2.1. The two Lojasiewicz inequalities. We will now state the two
Lojasiewicz-type inequalities for the F-functional on the space of hypersur-
faces.

Suppose that ¥ C R"*! is a hypersurface and fix some sufficiently small
eo > 0. Given a large integer ¢ and a large constant Cy, we let ry(X) be the
maximal radius so that
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® B, (x) N X is the graph over a cylinder in Cy of a function u with
|u|| 2.0 < € and |VEA| < C,.

In the next theorem, we will use a Gaussian L? distance dc(R) to
the space Cr in the ball of radius R. To define this, given ¥ € Cg, let
wy,, : R"™ — R denote the distance to the axis of Xy (i.e., to the space of
translations that leave Y invariant). Then we define

(2.8)
dZ(R) =

inf
Yk eCr Yk eC

. _e”
|ws, — \/2k:||%2(BR) = inf / (ws, — V2k)?e 1 .
BrNZy
. . _l=
The Gaussian LP norm on the ball By is HuHip(BR) = Jp, [ulPe™ 7.
Given a general hypersurface ¥, it is also convenient to define the
function ¢ by

(2.9 o= 20 g

so that ¢ is minus the gradient of the functional F'.

The main tools that [CM2] developed are the following two analogs for
non-compact hypersurfaces of Lojasiewicz’s inequalities. The first of these
inequalities is really for the gradient whereas the second is for the function.

THEOREM 2.10. (A Lojasiewicz inequality for non-compact hypersur-
faces, [CM2]). If ¥ C R"™! is a hypersurface with \(X) < X and
R e [1,ry(X) — 1], then

by, R

bom _
(2.11) d3(R) < CR’ {HqﬁuLﬁ(BR) +e } :

where C = C(n,4,Cy, Xo), p = p(n) and by, € (0,1) satisfies limy_.oc by, =
1.

The theorem bounds the L? distance to Cj, by a power of ||¢[|;1, with an
error term that comes from a cutoff argument since > is non-compact and
is not globally a graph of the cylinder.” This theorem is essentially sharp.
Namely, the estimate (2.11) does not hold for any exponent by, larger than
one, but Theorem 2.10 lets us take by, arbitrarily close to one.

In [CMZ2] it is shown that the above inequality implies the following
gradient type Lojasiewicz inequality. This inequality bounds the difference
of the F' functional near a critical point by two terms. The first is essentially
a power of VF', while the second (exponentially decaying) term comes from
that X is not a graph over the entire cylinder.

"This is a Lojasiewicz inequality for the gradient of the F' functional (¢ is the gradient
of F). This follows since, by [CIM], cylinders are isolated critical points for F' and, thus,
dc locally measures the distance to the nearest critical point.
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THEOREM 2.12. (A gradient Lojasiewicz inequality for non-compact
hypersurfaces, [CM2]). If ¥ C R™" is a hypersurface with A\(X) < Ao,
B€10,1), and R € [1,ry(X) — 1], then

(2.13)
348 cp.p (3+6) R . 2
IF(S) - F(C)| < C R’ {H¢||?§E§;§" I } ,

where C' = C(n,¢,Cy, o), p = p(n) and cip, € (0,1) satisfies limy_.o cp, =
1.

When the theorem is applied, the parameters 3 and £ is chosen to make
the exponent greater than one on the VF' term, essentially giving that
|F(X) — F(Ck)| is bounded by a power greater than one of |[VF|. A separate
argument is needed to handle the exponentially decaying error terms.

The paper [CM2] showed that when ¥; are flowing by the rescaled MCF,
then both terms on the right-hand side of (2.13) are bounded by a power
greater than one of ||¢||z2 (the corresponding statement holds for Theorem
2.10). Thus, one essentially get the inequalities

(2.14) d% < C |Vg,F|,
(2.15) (F() — F(C))s <C |V, F|.

These two inequalities can be thought of as analogs for the rescaled MCF
of Lojasiewicz inequalities; cf. (2.5) and (2.6).

3. Cylindrical estimates for a general hypersurface

The proof of the two Lojasiewicz inequalities relies on some equations
and estimates on general hypersurfaces ¥ C R"*!. Particularly important
are bounds for V% when the mean curvature H is positive on a large set.
This will be discussed in this section.

3.1. A general Simons equation. An important point for the proof
of the Lojasiewicz type inequalities is that the second fundamental form A
of ¥ satisfies an elliptic differential equation similar to Simons’ equation for
minimal surfaces. The elliptic operator will be the L operator from [CM1]
given by

B o 1 1 9 1

where we have the following:

PROPOSITION 3.2. [CM2] If ¢ = 3(zx,n) — H, then

(3.3) LA=A+ Hessy+ ¢ A%,

where the tensor A% is given in orthonormal frame by (Az)ij = Aji, Ai;.
Note that ¢ vanishes precisely when X is a shrinker and, in this case, we

recover the Simons’ equation for A for shrinkers from [CM1].



LOJASIEWICZ INEQUALITIES AND APPLICATIONS 75

3.2. An integral bound when the mean curvature is positive.
One of the keys in the proof of the first Lojasiewicz type inequality is that
the tensor 7 = A/H is almost parallel when H is positive and ¢ is small.
This generalizes an estimate from [CIM] in the case where ¥ is a shrinker
(i.e., ¢ =0) with H > 0.

Given f > 0, define a weighted divergence operator divy and drift
Laplacian L; by
1
(3.4) div(V) = ?elx\% divy; <fe*\x|2/4 v) 7

(3.5) Liu=divy(Vu) = Lu+ (Vg f,Vu).
Here u may also be a tensor; in this case the divergence traces only with V.
Note that £ = £;. We recall the quotient rule (see lemma 4.3 in [CIM]):
LEMMA 3.6. Given a tensor T and a function g with g # 0, then
T gLTt—717Lg gLT—7TLg
3.7 Lp—= = .
(3.7) ° e 7
PROPOSITION 3.8. [CM2] On the set where H > 0, we have

A Hessy+pA* A (Ag + ¢ ]AJ?)

(39) £H2 ﬁ — H —|— H2 5
(3.10)
|A? A?  _(Hessy+ ¢ A% A) _|A]2 (Ad+ ¢ |A]?)

The proposition follows easily from Proposition 3.2 and the Leibniz rule
of Lemma 3.6; see [CM2] for details.

The next proposition gives exponentially decaying integral bounds for
V(A/H) when H is positive on a large ball. It will be important that these
bounds decay rapidly.

ProPOSITION 3.11. [CM2| If B NY is smooth with H > 0, then for
s € (0, R) we have

(3.12)

/.;BR_SOZ
Rfs)2

4 (
< — sup |A? Vol(BRN'X) e™ 4
8% BgrNY

2
=]

2
V;‘ H e 2

AP

4
+ 2 / {‘(Hess¢,A>+A¢‘+'<A27A>+ 4]
BrNE H

H

olf e

PROOF. Set 7 = A/H and u = |7|*> = |A|*/H?. Tt will be convenient
within this proof to use square brackets [-] to denote Gaussian integrals over

BrNY, ie. [f] = fBRmE fe_‘x|2/4.
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Let 9 be a function with support in Bg. Using the divergence theorem,
the formula from Proposition 3.8 for Lp2u, and the absorbing inequality
dab < a® + 4b?, we get

0= [divge (¥*Vu) H?]=[ (¢* Lyzu + 2¢(Vep, Vu)) H?]

((Hess¢+¢A2,A> | A2 (A¢+¢|A|2)>
H? " H?

= Hw? V7| + 292

+ 4ap(Vp, T - vT>} H2]

> [(0? 197 = 4172 [Vy?) B2 | +2 [0 (Hessy + ¢ 42, A)]

2 [AP (Ag + o |AP)

2
* H

(4

from which we obtain
(3.13) [wQ V]2 Hﬂ <4 [va |A[2] — 2 [y? (Hess, + pA2, A)]
Al A

2
—2 [t oo G el

The proposition follows by choosing ¥ = 1 on Br_s and going to zero
linearly on 0BRg. O

This proposition has the the following corollary:

COROLLARY 3.14. [CM2] If Br N X is smooth with H > 6 > 0 and
|A| < Cy, then there exists Co = Ca(n, 6,C1) so that for s € (0, R) we have

(3.15) /
Br_sNX

A |
Cs _
< = Vol[BRNY)e

Ve

e 4

(R—s)? _l=?
T+ Oy {|Hessg| + |p|} e 1
BrNX¥

REMARK 3.16. Corollary 3.14 essentially bounds the distance squared
to the space of cylinders by ||@|| 1. This is sharp: it is not possible to get the
sharper bound where the powers are the same. This is a general fact when
there is a non-integrable kernel. Namely, if we perturb in the direction of
the kernel, then ¢ vanishes quadratically in the distance.

The next corollary combines the Gaussian L? bound on V7 from Corol-
lary 3.14 with standard interpolation inequalities to get pointwise bounds
on V7 and V?7.

COROLLARY 3.17. [CM2] If Bgp N ¥ is smooth with H > 6 > 0,
|A|—|—‘V€+1A’ < C1, and A(X) < A, then there exists Cs = C3(n, Ao, 6, £, C1)
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so that for |y| + ﬁ < R—1, we have
(3.18)
A 2 A on | —d,, B0 Y ly?
v o+ a0 < carn {2 ol |

where the exponent dp,, € (0,1) has limy_oc dgn, = 1.

See [CM2] for the proof of Corollary 3.17.

4. Distance to cylinders and the first Lojasiewicz inequality

Finally, we will briefly outline how one get from Corollary 3.17 to the
proof of the first Lojasiewicz type inequality for the F-functional. This
inequality will follow from the bounds on the tensor 7 = % in the previous

section together with the following proposition:

PROPOSITION 4.1. [CM2| Given n, § > 0 and C, there exist g > 0,
€1 > 0 and C so that if ¥ C R is a hypersurface (possibly with boundary)
that satisfies:

(1) H>6>0 and |A|+ |VA| <Cy on BN X.
(2) By, 5, NY is € C2-close to a cylinder in Cy, for some k > 1,

then, for any r € (5v/2n, R) with

(4.2) r? sup (|¢|+|Ve|) +r° sup (|V7|+[V37]) < e,
B5\/271 By

we have that B, ;=—s; "X is the graph over (a subset of ) a cylinder in Cy, of
u with
(43)  Jul+[Vu[<C {TQ sup (|| + (Vo) + 7 sup (|V7| + IVQT!)} :
By 5 By
This proposition shows that ¥ must be close to a cylinder as long as H
is positive, ¢ is small, 7 is almost parallel and ¥ is close to a cylinder on
a fixed small ball. Together with Tom Ilmanen, we proved a similar result

in proposition 2.2 in [CIM] in the special case where ¥ is a shrinker (i.e.,
when ¢ = 0) and this proposition is inspired by that one.

To prove Proposition 4.1 we make use of the following result from [CIM]
(see corollary 4.22 in [CIM)):

LEMMA 4.4. [CIM] If ¥ C R"! is a hypersurface (possibly with
boundary) with
e 0<6<H onx,
e the tensor T = A/H satisfies V1| + ’V2T} <e<l1,
o At the point p € X, 7, has at least two distinct eigenvalues k1 # Ka,
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then

| < 2¢ ( 1 n 1 >
R1R2| &S = .
62 \|k1 —ka|  |k1 — kol

From this lemma, we see that if the assumption of the lemma holds
for a hypersurface, then the principal curvatures divide into two groups.
One group consists of principal curvatures that are close to zero and the
other group consists of principal curvatures that cluster around a non-zero
real number. Thus, we get flatness for any two-plane containing a principal
direction in the first group, while any two-plane spanned by principal
directions in the second group is umbilic. This is the starting point for the
proof of Proposition 4.1.

5. The singular set of MCF with generic singularities

A major theme in PDE’s over the last fifty years has been understanding
singularities and the set where singularities occur. In the presence of a scale-
invariant monotone quantity, blowup arguments can often be used to bound
the dimension of the singular set; see, e.g., [Al], [F]|. Unfortunately, these
dimension bounds say little about the structure of the set. However, using the
results of the previous sections, [CM3] gave a rather complete description
of the singular set for MCF with generic singularities.

The main result of [CM3] is the following:

THEOREM 5.1 ([CM3)). Let My C R™! be a MCF of closed embedded
hypersurfaces with only cylindrical singularities, then the space-time singular
set satisfies:

o It is contained in finitely many (compact) embedded Lipschit?®
submanifolds each of dimension at most (n — 1) together with a
set of dimension at most (n — 2).

e [t consists of countably many graphs of 2-Hélder functions on space.

e The time image of each subset with finite parabolic 2-dimensional
Hausdorff measure has measure zero; each such connected subset is
contained in a time-slice.

In fact, [CM3] proves considerably more than what is stated in Theorem
5.1; see theorem 4.18 in [CM3]. For instance, instead of just proving the first
claim of the theorem, the entire stratification of the space-time singular set
is Lipschitz of the appropriate dimension. Moreover, this holds without ever
discarding any subset of measure zero of any dimension as is always implicit
in any definition of rectifiable. To illustrate the much stronger version,
consider the case of evolution of surfaces in R3. In that case, this gives that

8In fact, Lipschitz is with respect to the parabolic distance on space-time which is a
much stronger assertion than Lipschitz with respect to the Euclidean distance. Note that
a function is Lipschitz when the target has the parabolic metric on R is equivalent to that
it is 2-Holder for the standard metric on R.
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the space-time singular set is contained in finitely many (compact) embedded
Lipschitz curves with cylinder singularities together with a countable set of
spherical singularities. In higher dimensions, the direct generalization of this
is proven.

Theorem 5.1 has the following corollaries:

COROLLARY 5.2 ([CM3]). Let M; C R""! be a MCF of closed embedded
mean convexr hypersurfaces or a MCF with only generic singularities, then
the conclusion of Theorem 5.1 holds.

More can be said in dimensions three and four:

COROLLARY 5.3 ([CM3)]). If M, is as in Theorem 5.1 and n = 2 or
3, then the evolving hypersurface is completely smooth (i.e., without any
singularities) at almost all times. In particular, any connected subset of the
space-time singular set is completely contained in a time-slice.

COROLLARY 5.4 ([CM3]). For a generic MCF in R?® or R* or a flow
starting at a closed embedded mean convex hypersurface in R3 or R?* the
conclusion of Corollary 5.3 holds.

The conclusions of Corollary 5.4 hold in all dimensions if the initial
hypersurface is 2- or 3-convex. A hypersurface is said to be k-convex if the
sum of any k principal curvatures is nonnegative.

A key technical point in [CM3] is to prove a strong parabolic Reifenberg
property for MCF with generic singularities. In fact, the space-time singular
set is proven to be (parabolically) Reifenberg vanishing. In Analysis a subset
of Euclidean space is said to be Reifenberg (or Reifenberg flat) if on all
sufficiently small scales it is, after rescaling to unit size close, to a k-
dimensional plane. The dimension of the plane is always the same but the
plane itself may change from scale to scale. Many snowflakes, like the Koch
snowflake, are Reifenberg with Hausdorff dimension strictly larger than one.
A set is said to be Reifenberg vanishing if the closeness to a k-plane goes
to zero as the scale goes to zero. It is said to have the strong Reifenberg
property if the k-dimensional plane depends only on the point but not on
the scale. Finally, one sometimes distinguishes between half Reifenberg and
full Reifenberg, where half Reifenberg refers to that the set is close to a
k-dimensional plane, whereas full Reifenberg refers to that in addition one
also has the symmetric property: The plane on the given scale is close to the
set.

Using the results from [CMZ2] described earlier in this paper, [CM3]
shows that the singular set in space-time is strong (half) Reifenberg van-
ishing with respect to the parabolic Hausdorff distance. This is done in two
steps, showing first that nearby singularities sit inside a parabolic cone (i.e.,
between two oppositely oriented space-time paraboloids that are tangent to
the time-slice through the singularity). In fact, this parabolic cone prop-
erty holds with vanishing constant. Next, in the complementary region of
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the parabolic cone in space-time (that is essentially space-like), the parabolic
Reifenberg essentially follows from the space Reifenberg that the uniqueness
of [CM2] of tangent flows implies.

An immediate consequence, of independent interest, of our parabolic
cone property with vanishing constant is that nearby a generic singularity
in space-time (nearby is with respect to the parabolic distance) all other
singularities happen at almost the same time.

These results should be contrasted with a result of Altschuler-Angenent-
Giga, [AAG] (cf. [SS]), that shows that in R? the evolution of any rota-
tionally symmetric surface obtained by rotating the graph of a function
r = u(x), a < x < b around the z-axis is smooth except at finitely many
singular times where either a cylindrical or spherical singularity forms. For
more general rotationally symmetric surfaces (even mean convex), the sin-
gularities can consist of nontrivial curves. For instance, consider a torus of
revolution bounding a region 2. If the torus is thin enough, it will be mean
convex. Since the symmetry is preserved and because the surface always
remains in €2, it can only collapse to a circle. Thus at the time of collapse,
the singular set is a simple closed curve. White showed that a mean convex
surface evolving by MCF in R3 must be smooth at almost all times, and
at no time can the singular set be more than 1-dimensional (see section 5
in [W2]). In all dimensions, White showed that the space-time singular set
of a mean convex MCF has parabolic Hausdorff dimension at most (n — 1);
see [W1] and cf. theorem 1.15 in [HaK]. In fact, White’s general dimen-
sion reducing argument gives that the singular set of any MCF with only
cylindrical singularities has dimension at most (n — 1).

These results motivate the following conjecture:

CONJECTURE 5.5 ([CMS3]). Let M; be a MCF of closed embedded
hypersurfaces in R™ T with only cylindrical singularities. Then the space-
time singular set has only finitely many components.

If this conjecture was true, then it would follow from this paper that in
R3 and R?* mean curvature flow with only generic singularities is smooth
except at finitely many times; cf. with the three-dimensional conjecture at
the end of section 5 in [W2].
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